
A Hybrid Recon�guration Scheme for Real-TimeFault-Tolerant SystemsJong Kim, Heejo Lee Kang G. ShinDept. of CSE Dept. of EECSPOSTECH The University of MichiganPohang 790-784, KOREA Ann Arbor, MI 48109{2122AbstractNon-stop operation, despite the occurrence of faults,is a key requirement for highly-reliable, real-time sys-tems, such as aircraft and nuclear reactor controllercomputers. Recon�guration is commonly used tomean the process of transforming the execution struc-ture of a system from one state to another when afault occurs. We identi�ed two types of recon�gura-tion: fault-tolerating recon�guration (upon occurrenceof each fault) and performability-enhancing recon�gu-ration (independently of fault occurrences).This paper proposes a hybrid recon�guration schemefor real-time fault-tolerant systems. The proposedscheme not only meets the timing constraints or dead-lines of hard real-time jobs, but also maintains highperformability. In this scheme, a system recon�guresitself either when a fault occurs or when a job arrivesor completes its execution.1 IntroductionThe development of high-performance micropro-cessors & memory chips and new parallel processingtechniques has increased signi�cantly the computationspeed of today's computer systems. In addition to thisperformance enhancement, there is a strong need todevise techniques for tolerating component failures ina computer system, especially for such safety-criticalapplications as defense systems, avionics, and processcontrols. One must consider two important require-ments when designing a reliable and stable computersystem for these applications. First, the system mustsatisfy the timing requirements of the underlying ap-The work reported in this paper was supported in part by theO�ce of Naval Research under Grant N00014-91-J-1115, byTexas Instrument, and by POSTECH internal fund. Any opin-ions, �ndings, and recommendations in this paper are those ofthe authors and do not reect the views of the funding agencies.

plications. Second, the system must operate continu-ously even in the case of random fault occurrences.There are several methods proposed for �ndingan\optimal" con�guration upon the occurrence of afault [1-3]. These methods focused on \optimal" re-con�guration in the sense of maximizing reliabilityupon detection of a fault, but did not address suchissues as how many jobs are currently executing inthe system and how soon the recon�guration must becompleted to meet the timing constraints of currently-executing jobs.Melhem [4] modeled state-dependent recon�gura-tion. He identi�ed the system to be in strict- orrelaxed- mode, depending on the environment ofcurrently-running jobs. The strict-mode representsboth a heavy computational load and a strict demandfor response within a tight timing bound. The relaxed-mode, on the other hand, is characterized by a lightcomputational load with relatively relaxed constraintson the response time. For example, a radar systemwould be in strict-mode when it is tracking a target,and is in relaxed-mode when there is no object to betracked.When a system is in strict-mode and needs to berecon�gured, for example, due to the occurrence of acomponent failure, the system is required to do it fastusing only local information of the failed component.On the other hand, when the system is in relaxed-mode and needs to be recon�gured, the system maygather information on all live components and �nd anoptimal system con�guration by maximizing its sta-bility and reliability. Recon�guration based on localinformationas shown in [4] is not the only fast method.The method proposed in [3] is also fast using precom-puted recon�guration tables. In this method, possi-ble system con�gurations are determined a priori andstored in a recon�guration table, and when a fault isdetected, a possible system con�guration is selected



from the table. This kind of recon�guration is said tobe static. On the other hand, the recon�guration thatgathers information, whenever needed, from the en-tire system and �nds an optimal con�guration, is saidto be dynamic. The weakness of the method in [4] isthat there are no key parameters that can be used toclearly identify the system to be in strict- or relaxed-mode.System recon�guration may be invoked only uponthe occurrence of a fault, and, in such a case, may �ndthe \best" (in some sense) con�guration, which maystill contain the faulty component. The recon�guredstructure will no longer be the best when a new jobarrives or the currently running job �nishes its execu-tion. Upon completion of one of the currently-runningjob or upon start of a new job, the system must berecon�gured in order to enhance the system's perfor-mance and reliability (as opposed to a single task per-formance). The objective of this recon�guration is tomaximize the system's performance and reliability |commonly known as performability . The recon�gu-ration to handle the occurrence of a fault is said tobe passive and the recon�guration to maximize per-formability is said to be active. We will henceforthcall the former \fault-tolerating" recon�guration andthe latter \performability-enhancing" recon�guration.In this paper, we propose a hybrid recon�gurationscheme for real-time fault-tolerant systems. The pro-posed scheme classi�es the system to be in one of threepossible states: C (constrained), U (unconstrained), F(fault). For each of these system states, the proposedscheme prescribes an optimal con�guration by max-imizing system performability. In other words, thescheme accounts for not only fault-tolerating recon�g-uration, but also performability-enhancing recon�gu-ration. As a result, the proposed hybrid recon�gura-tion satis�es the real-time constraints and maximizesthe system performability.This paper is organized as follows. The proposedhybrid recon�guration scheme is introduced in Section2. State identi�cation and system recon�guration aretreated in Section 3. In Section 4, the performanceof the proposed hybrid recon�guration scheme is com-pared against a simple recon�guration scheme. Thepaper concludes with Section 5.

2 Recon�guration Scheme2.1 BackgroundIn a real-time system, high performance and contin-uous operation are two key attributes to the correct,timely completion of critical jobs. High performancecan be achieved by employing a well-structured sys-tem and utilizing system resources e�ciently. Contin-uous operation can be achieved by adopting and main-taining fault-tolerant structures. For performance-enhancement and fault-tolerance, the system has to berecon�gured dynamically so as to choose and maintainan optimal system con�guration. That is, the systemneeds to be recon�gured either upon the occurrenceof a fault or at anytime if it can enhance system per-formability. In [3], the recon�guration needed to en-hance system performability was called active recon-�guration, while the one needed upon occurrence of afault was called passive recon�guration.Depending on the strictness or importance of meet-ing task deadlines, a real-time system is said to behard or soft . In a hard real-time system, all criticaltasks must be completed before their deadline to avoiddynamic failure [5]. A real-time system has two op-erating modes: constrained mode and unconstrainedmode. When it is in the constrained mode, the sys-tem is heavily-loaded with time-critical jobs and busyexecuting them to meet their deadlines, thus needingto minimize any disruption (caused by system recon-�guration) in executing the tasks. By contrast, whenit is in the unconstrained mode, the system has only asmall number of critical jobs to execute and has timeto do other things, such as thorough health checkingand maintenance.The recon�guration algorithm for the constrainedmode should di�er from that for the unconstrainedmode, since there isn't enough time to �nd an e�cientor optimal con�guration. It should be fast enough notto miss the deadline of any of the currently-executingjobs. More details about recon�guration are discussedin next subsections.2.2 Hybrid Recon�gurationWe propose here a hybrid recon�guration schemefor a real-time fault-tolerant system which adopts dif-ferent recon�guration strategies depending on its op-erating status. Although the system status can beclassi�ed in many ways, we classify it in the followingtwo ways relevant to system recon�guration. First,



Reconfiguration
Fault

OccurrenceReconfiguration

C U

F

Passive-Static Passive-Dynamic

Task Variation

Task Variation

Active-Static Reconf. Active-Dynamic Reconf.Figure 1: System state transition diagram.the system status is divided into fault-free mode andfault-occurred mode, depending on whether a fault hasalready occurred or not. The system should recon�g-ure itself not only to tolerate or handle a fault upon itsoccurrence, but also to enhance the performability ofthe system, even when no fault has occurred. We willcall the \fault-tolerating" recon�guration passive andthe \performance-enhancing" recon�guration active.Second, as discussed above, we distinguish the oper-ating status/condition of a real-time system with twomodes, constrained and unconstrained , depending onthe tightness of timing constraints. Conceptually, thesystem is considered to be in the constrained mode ifthe total remaining time before task deadlines expireis small. Otherwise, the system is in the unconstrainedmode. When a system is in the constrained mode, allbut urgent operations should be avoided or shortened.For example, if a fault occurs in a constrained system,the system should perform \minimal" or fast recon�g-uration so as to minimize the disruption in the execu-tion of those tasks whose deadlines are tight. Static orpre-determined recon�guration is a typical example ofthis type. This kind of system recon�guration is suit-able for hard real-time systems. When the system isin the unconstrained mode, since there are no tightdeadlines to be met, the system derives an optimal re-con�guration structure dynamically as needed. Thiskind of system recon�guration is said to be dynamic.The proposed hybrid recon�guration scheme adoptsone of four recon�guration strategies, depending onthe system status, to enhance the system perfor-mance and dependability. The four recon�gurationstrategies are passive{static, passive{dynamic, active{static, and active{dynamic. Applying these fourstrategies, we can �nd three distinct system states.These states and transitions among them are shownin Fig. 1.

The system is classi�ed into one of three possiblestates: F (faulty), C (constrained), and U (uncon-strained). The state F represents that the systemhas a fault. When a faulty system recon�gures andit is in the constrained mode, passive{static recon-�guration is necessary to meet the tightness of tim-ing constraints. The state after this recon�gurationis thus represented as C. Passive{dynamic recon�gu-ration is performed in the unconstrained mode andthe state after this recon�guration is represented asU. The state transition from C to U or from U to Coccurs when one of the currently-running job �nishesor a new job is scheduled to execute by timing con-straint. Active{dynamic recon�guration is performedin the state U to enhance the performability of theunconstrained system. Similarly, active-static recon-�guration is performed in the state C to enhance theperformability of the constrained system.The proposed hybrid recon�guration scheme is at-tractive and of practical signi�cance since it can mini-mize the possibility of missing task deadlines and max-imize the performability of a real-time fault-tolerantsystem. However, one obvious problem of the pro-posed scheme is state identi�cation. Although it iseasy to say that the system is in the constrained orunconstrained mode, it is di�cult to di�erentiate be-tween the two modes precisely. In the next section,we will discuss how to identify the systems state.3 System State Identi�cationA system enters the recon�guration phase upon oc-currence of a fault or upon scheduling of a new jobor upon completion of a currently-running job. Therecon�guration method could be static or dynamic.Determining which recon�guration method to use de-pends on the system state at the time of recon�gu-ration. If the system is determined to be in the con-strained mode, then a static recon�guration methodwill be used. Otherwise a dynamic recon�gurationmethod will be used. Although there are many pa-rameters describing the system constraints, such asresponse time, number of jobs, job arrival rate, jobservice rate, and deadline tightness, most of them giveonly a partial view of the system state. Among theseparameters, deadline tightness is the most importantto real-time applications. We will therefore focus onthe system mode determined by the deadline tightnessof real-time jobs.Each real-time job can be described with threeparameters: its start time, execution time, and



deadline [6]. Suppose there are m real-time jobs,T1; T2; :::; Tm, in the system. The start time, executiontime, and deadline of the k-th job or Tk are denoted ass(Tk); e(Tk); d(Tk) (1 � k � m). When these m jobsare sorted in ascending order of their deadlines, job 1through job k in the sorted list have to be completedbefore the deadline of job k. Hence, the sum of exe-cution times of the �rst k jobs should be smaller thanthe deadline of job k; that is,kXi=1 e(Ti) � d(Tk); (1 � k � m)The fault-tolerating recon�guration is triggered bythe occurrence of a fault. The recon�guration processrequires a certain amount of time, called the recon�gu-ration delay , to �nd a suitable recon�gured structure.In order to meet the deadlines of real-time jobs, theaddition of recon�guration delay to the execution timeof each job should be within the job's deadline. LetR(t) denote the recon�guration delay, thenkXi=1 e(Ti) + R(t) � d(Tk); (1 � k � m)This equation restricts the recon�guration delay, R(t),to be less than d(Tk)�Pki=1 e(Tk) (1 � k � m).In the hybrid recon�guration scheme, there existtwo kinds of recon�guration delay functions for pas-sive and active recon�gurations: in constrained andunconstrained modes. Let Rc(t) and Ru(t) denote therecon�guration delay in constrained mode and uncon-strained mode, respectively. By determining the sys-tem's operating mode upon occurrence of a fault, weestimate the recon�guration delay. For example, ifthe allowable recon�guration delay R(t) is larger thanboth Rc(t) and Ru(t), then system is in unconstrainedmode. In unconstrained mode, the system has time todo optimal recon�guration. If R(t) is smaller thanRu(t) and larger than Rc(t), then the system is inconstrained mode and should be recon�gured as fastas possible to minimize the percentage of jobs missingdeadlines, or the deadline miss ratio for short. Butif the allowable recon�guration delay R(t) is smallerthan Rc(t), then there is a job that cannot a�ord anyrecon�guration delay. In such a case, the job will missits deadline irrespective of the recon�guration methodused. However, to reduce the number of jobs missingdeadlines, it would be better for the system to usestatic recon�guration. Thus, hybrid recon�gurationminimizes the deadline miss ratio. Also, recon�gura-

tion in unconstrained mode makes it possible to en-hance the performability of the system. The hybridrecon�guration scheme maximizes the system perfor-mance by minimizing the deadline miss ratio for real-time jobs.4 Performance EvaluationThe advantages of hybrid recon�guration aredemonstrated using simulations. The selected mea-sure for our evaluation is the probability of meetingthe deadlines of real-time jobs, called the deadlinehit ratio. The deadline hit ratio of hybrid recon�g-uration is compared against a simple recon�gurationscheme that uses the same parameters. We assumethat job inter-arrival times, job execution time, andfault inter-arrival times are exponentially distributedwith parameters �, �, and , respectively. Since thesystem becomes stable after a long period of time sincethe occurrence of a fault, we observed the system be-havior only for 1000 units of time measured from thepoint of failure with hybrid and simple recon�gura-tion schemes. The time to do static recon�gurationis assumed to be � % of the time to do dynamic re-con�guration. In the simulation, we generated jobswithout considering whether the generated jobs would�nish within their deadline or not, thus increasing thedeadline miss ratio. The deadline of each task is com-puted as the summation of its execution time and arandomly-generated delay between 1 and 5.Fig. 2 shows the deadline hit ratio as a function offailure rate when � = 0:5, � = 0:7, and � = 50%. Thedi�erence between the hybrid and simple schemes be-comes more pronounced as the failure rate increases.When the failure rate  is 0:01, only 10 % of the sub-mitted jobs are completed in time with the simple re-con�guration scheme, while 50 % of the submitted jobsare �nished within their deadlines with the hybrid re-con�guration scheme.Fig. 3 shows the e�ect of varying the ratio of thetime to do static recon�guration to the time to do dy-namic recon�guration. In this simulation, the failurerate is given as 0.001. When the time to do staticrecon�guration is 10% of the time to do dynamic re-con�guration, the deadline hit ratio is greater than 98%. The reason why the deadline hit ratio is less than100 % is that jobs are not checked for the feasibilityof their timely completion.In Fig. 4, the range of arrival rates that hybridrecon�guration can reduce the deadline miss ratio is



0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0.2

0.4

0.6

0.8

1

0

Failure Rate

Hybrid
Non-Hybrid

Ratio
HitFigure 2: Deadline hit ratio versus failure rate.

0.20.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.7

0.75

0.8

0.85

0.9

0.95

1

Hybrid

Non-Hybrid

Fast reconfiguration time ratio 

Hit
RatioFigure 3: Deadline hit ratio versus the ratio of recon-�guration times.evaluated in the simulation. In this simulation, �, ,� are set to 0.7, 0.001, 50%, respectively. Utilizationfactor (� = �=�) must be less than 1 for the systemto be stable. Hybrid recon�guration is shown to im-prove the deadline hit ratio for all stable conditions.Especially, the larger the utilization factor the betterhybrid recon�guration becomes.5 ConclusionThough many researchers studied the problem ofsystem recon�guration, none of their results are suit-able for real-time applications. To remedy this de�-ciency, we proposed a hybrid recon�guration schemefor fault-tolerant real-time systems. The proposedscheme classi�ed the operating status of a fault-tolerant real-time system into two types. First, the op-erating status is divided into constrained and uncon-strained modes, depending on the tightness of dead-lines of real-time jobs. Second, the operating sta-tus is divided into fault-tolerating and performability-enhancing modes, depending on whether a fault has

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.50.40.30.20.1 0.6 0.7 0.8 0.9 1

Arrival Rate

Hybrid

Non-Hybrid

Ratio
HitFigure 4: Deadline hit ratio versus job arrival rate.occurred or not. From these two di�erent classi�-cations, we identi�ed four distinct system's operat-ing modes, each of which requires a di�erent recon-�guration scheme to have better system performanceand dependability. The hybrid recon�guration schemeadopts a di�erent recon�guration strategy for each op-erating mode. Our simulation results have shown thatthe proposed hybrid recon�guration scheme outper-forms a simple recon�guration scheme.References[1] T. K. Chang Chen, An Feng and K. Torii, \Recon�g-uration algorithm for fault-tolerant arrays with min-imum number of dangerous processors," in Proc. ofFTCS-21, pp. 452{459, 1991.[2] P. Banerjee and M. Peercy, \Design and evaluation ofhardware strategies for recon�guring hypercubes andmeshes under faults," IEEE Trans. on Computers,vol. 43, pp. 841{848, July 1994.[3] Y.-H. Lee and K. G. Shin, \Optimal recon�gurationstrategy for a degradable multimodule computing sys-tem," J. of ACM, vol. 34, pp. 326{348, Apr. 1987.[4] R. G. Melhem, \Bi-level recon�gurations of fault toler-ant arrays in bi-modal computational environments,"in Proc. of FTCS-19, pp. 488{495, 1989.[5] M. H. Woodbury and K. G. Shin, \Evaluation of theprobability of dynamic failure and processor utilizationfor real-time systems," in Proc. of 9th Real-Time Sys-tem Symposium, pp. 222{231, Dec. 1988.[6] J. Y.-T. Leung, \Research in real-time scheduling," inFoundations of Real-Time Computing: Scheduling andResource Management (A. M. van Tilborg and G. M.Koob, eds.), ch. 2, pp. 31{62, Kluwer Academic Pub-lishers, 1991.


