
Transparent Load Sharing in Distributed Systems: Decentralized
Design Alternatives Based on the Condor Package

Chao-Ju Hou Kang G. Shin and Thomas Kaeppel Tsukada

Computer Engineering Division
Dept. of Elect. and Comp. Eng.

The University of Wisconsin
Madison, WI 53706-1691

jhouaece . wisc. edu

Abstract
In recent years a number of load sharing (LS) mechanisms
have been proposed or implemented to fully utilize system re-
sources. We design and implement a decentralized LS mech-
anism based on the Condor package, and give in this paper
a description of our design and implementation approoches.
Two important features of the design are the use of region-
change broadcasts in the information policy to provide each
workstation with timely state information at the minimum
communication cost, and the use of preferred list in the loca-
tion policy to avoid task collisions. With these two features,
we remove the centml manager workstation in Condor, con-
figure its functionalities into each participating workstation,
and thus enhance the capability to tolerate single worksto-
tion failure and the reliability of Condor. We also discuss
the ezperiments we conduct on the LS mechanism and the
observations we obtained from empirical data.

1 Introduct ion
The availability of inexpensive, high-performance proces-
sors and memory chips has spurred considerable interest in
distributed systems. However, since jobs may arrive un-
evenly and randomly a t the workstations and/or computa-
tion power may vary from workstation to workstation, some
workstations may get overloaded while others are left idle or
under-loaded. Livny and Melman [I] showed that in a net-
work of autonomous workstations, with a large probability,
a t least one workstation is idle while many jobs are being
queued at other workstations. Consequently, some jobs may
suffer extremely long response time while leaving the system
capacity under-utilized. Thus, an effective “load sharing”
(LS) method is called for to enable idle/underloaded work-
stations to share the loads of overloaded ones.

As was discussed in [2, 31, a LS mechanism can be de-
signed by developing the transfer policy which determines
when to transfer a job, the information policy which deter-
mines how workstations communicate with one another to
exchange state information, and the location policy which

The work reported in this paper was supported in part by the
National Science Foundation under Grant MIP-9203895, and the
Office of Naval Research under Grants N00014-92-5-1080 and
”14-91-J-1226.

Real-Time Computing Laboratory
Dept. of Elect. Eng. and Comp. Science

The University of Michigan
Ann Arbor, MI 48109-2122

{ kgshin, thomast} @eecs. umich. edu

determines where to transfer the job. On the other hand,
implementation issues commonly considered include where
to place the LS mechanism (i.e., inside or outside the OS
kernel), how to transfer process state (virtual memory, open
files, process control blocks) during job transfer/migration,
how to support LS transparency, and how to reduce the
effect of residual dependency’ [4]. A few LS mechanisms
have been proposed and implemented, e.g., the V-system
[SI, the Sprite OS [4], the Charlotte OS [6], and the Con-
dor software package [7, 81. They are designed with different
policies for transferring jobs/processes, collecting workload
statistics used for LS decisions, and locating target work-
stations. They are implemented with different strategies to
detach a migrant process from its source environment, trans-
fer it with its context (the per-process data structures held
in the kernel), and attach it to a new environment on the
destination workstation.

In this paper, we design and implement, based on the Condor
software package, a decentralized LS mechanism with each
LS policy carefully re-designed. As reported in [7, 81, Con-
dor is a software package for executing long running tasks on
workstations which would otherwise be idle. It is designed
for a workstation environment in which the workstation’s re-
sources are guaranteed to be available to the owner of the
workstation. The r e w n for choosing Condor as our “base
system” is because Condor is implemented entirely outside
the OS kernel and at the user level. This eliminates the need
access/change the internals of OS. On the other hand, there
are several design drawbacks of Condor package: Condor
uses a central manager workstation to allocate queued tasks
to idle workstations; that is, the location policy is entirely
realized by the central manager. This centralized component
makes the LS mechanism susceptible to single workstation
failures. Another drawback is that Condor uses a periodic
information policy; that is, each workstation reports period-
ically to the central manager regarding its (workload) state
and task-queueing situation. This makes the central man-
ager a potential bottleneck of network traffic from time to
time. The determination of a reporting period also becomes
crucial to the LS performance, and has to be traded off be-

‘residual dependency is defined as the need for the source work-
station to maintain data structures or provide functionality for a
remote process.

202
1060-9857/94 $4.00 0 1994 IEEE

T

tween the communication overhead introduced by frequent
reporting and the possibility of using out-of-date state in-
formation resulting from infrequent reporting. Hence, we
enhance the reliability by configuring and dispatching the
functions of the central manager workstation to multiple
workstations, and “transforming” Condor to a decentralized
LS mechanism.

Two important design issues must be considered in achiev-
ing the above goal. First, each workstation has to col-
lect/maintain elaborate and timely state information on its
own in the decentralized mechanism, and hence a policy is
needed to provide each workstation with updated state in-
formation a t the minimum communication overheads. Sec-
ondly, each workstation has to determine, for each task,
the best target workstation if there are several workstations
available, and more importantly, each workstation has to re-
duce the possibility of multiple workstations sending their
tasks to the same idle workstation. We deal with the former
issue by using region-change broadcasts as the information
policy, and the latter issue by using the preferred lists in our
location policy. Both strategies will be detailed in Section 3.

The rest of the paper is organized as follows. In Section
2, we give an overview of Condor software package and dis-
cuss how Condor daemons collaborate t o manage the task
queue and locates target idle workstations. In Section 3,
we present our decentralized LS mechanism. In particular,
we discuss the transfer, information, and location policies
used in our LS mechanism. Then, we discuss how to get rid
of the central manager by reconfiguring Condor component
daemons. In Section 4, we highlight the implement,at.ion fea-
tures adopted in the decentralized mechanism. In Section
5, we present empirical measurements, including the per-
formance improvement resulted from LS, and the extent to
which the LS mechanism distributes workload. This paper
concludes with Section 6.

2 Overview of Condor Software Package
In this section, we summarize the functionality of, and the
interactions among, Condor’s daemons. Especially, the task
distribution process is described in a step-by-step manner.

As shown in Fig. 1, there are two daemons, Negotiator and
Collector, running on the central manager workstation. In
addition, there are two other daemons, Schedd and Startd,
running on each participating workstation. Whenever a task
is executed, two additional processes, Shadow and St,arter,
shall run on the submitting workstation and on the executing
workstation, respectively (whether or not t>hese t,wo w0rkst.a-
tions are actually identical).

The Condor task relocation mechanism works as follows
(Fig. 2). A user invokes a submit program to submit a
task. The submit program takes the task description file,
constructs the corresponding data struchres, and sends a
reschedule message to Schedd on the home workstation.
Schedd then asks Negotiator on the central manager work-
station to relocate tasks to idle workstations by sending a
reschedule message to Negotiator (S1 in Fig. 2).

Upon receiving a reschedule message from any of Scliedds
on the participating workstations, or upon periodic sched-

Figure 1: Daemons in Condor.

ule timeout, Negotiator gets from Collector a list of machine
records which contains the workload and task queue of all
participating workstations (S2 in Fig. 2). Collector receives
periodically from Schedd and Startd on each participating
workstation updated information of task queue and work-
load, respectively (S3 in Fig. 2), and updates accordingly
its list of machine records.

After receiving the list of machine records, Negotiator first
prioritizes the participating workstations: the priority of a
workstation is incremented by the number of individual users
with tasks queued on that workstation, and decremented by
the number of tasks which are submitted to that workstation
and are currently running (either remotely or locally). Ne-
gotiator then contacts each workstation with queued tasks,
one at a time, starting with the workstation with the high-
est priority, and inquires to relocate the task(s) queued on
the workstation. If the swap space on the workstation be-
ing inquired is enough for Shadow processes’, the worksta-
tion supplies Negotiator with the information on the required
OS, architecture, and the task size, of a queued task, with
which Negotiator finds a server workstation for the task. A
workstation is qualified as a server if (i) both its CPU and
keyboards are idle; (ii) i t satisfies the task requirement spec-
ified; and (iii) no other task is currently running on it. The
negotiation process will be repeated for each queued task3
until either Negotiator finds for all queued tasks their server
workstations, or no server can be located (S4 in Fig. 2). At
the end of the negotiation process, Negotiator sends back
the updated record of machine priorities t o Collector (S5 in
Fig. 2).

For each server located, the task transfer process is collabw
rated on by (a) Negotiator on the central manager worksta-
tion, (b) Schedd and Shadow process on the home worksta-
tion, and (c) Startd and Starter on the server workstation in
the following steps: Negotiator sends a permission message

2As will be discussed below, each executing task will have as-
sociated Shadow processes running on the home workstation.

3The Lasks in a local queue are also prioritized with respect to
the user-specified priority and the order in which they are queued.

203

(a) Negotiation process

Figure 2: Interactions among Condor daemons.

(b) Task transfer process

Figure 2: (continued) Interactions among Condor dae-

followed by the name of the server workstation to Schedd
on the home workstation (S6 in Fig. 2). Schedd on the
home workstation then spawns off a Shadow process which
connects to Startd on the located server workstation (S7 in
Fig. 2) and will henceforth take care of remote system calls‘
from the server workstation.

Startd on the server workstation, upon being notified by
Shadow on the home workstation of the task transfer de-
cision, re-evaluates its workload situation and amount of
memory space available. If the situation has not changed
since the last time Startd reported to the central manager,
Startd creates two communication ports, and sends the port
numbers back to Shadow. Shadow acknowledges the receipt
of the port numbers. Startd then spawns off a Starter pro-
cess (which inherits these communication ports and is re-
sponsible for executing the task), and notifies Collector on
the central manager of the workload change in the server
workstation. Startd henceforth keeps track of Taskstate
of Starter, and signals Starter t o suspend, checkpoint, or
vacate the executing process whenever necessary t o ensure
that workstation owners have the workstation resources at
their disposal. For example, if during the execution of a task
(i.e., Task-state is TaskRunning), and if either the average
workload increases (e.g., AvgLoad > 0.3) or the worksta-
tion owner returns (e.g., KeyboardIdle < 5 minutes), then
a SIGUSRl (suspend) signal is sent to Starter, Taskstate
enters the Suspend state, and Starter will temporarily sus-
pend the task. If the task has been suspended for more than
a certain period (e.g., 10 minutes), a SIGTSTP (vacate)
signal is sent to Starter, Startd enters the Checkpointing
state, and Starter will abort the task and return the latest
checkpoint file to Shadow on the home workstation. Fig. 3
gives a complete description of how Startd keeps track of the
execution status of Starter and the associated Taskstate
transition process.

The newly-spawned Starter is responsible for (a) getting

*More on remote system calls will be elaborated in Section 4.

204

T

3.1 LS Policies Used
A v & d 0.3 &i& KsyboudIdb >
mmula
send S~OCONT to sprtar

h e now discuss how to incorporate our proposed LS policies
JobRunning

saad SIoURSl to S~uta
into Condor to achieve the above objective:

Figure 3: Task-state transit ion process.

the executable5 and other relevant process information from
Shadow via either NFS or RPC whichever available and
spawning off a child process to execute the task; (b) com-
municating (via remote system calls) with Shadow on the
home workstation for environments/devices-related opera-
tions; and (c) suspending, resuming, or checkpointing the
executing process upon being requested by Startd (Fig. 3).
Both Starter and Shadow exit when the task completes/stops
execution.

3 Design of a Distributed Mechanism
Based on Condor

As mentioned in Section 1, there are several design draw-
backs in Condor:

the central manager component makes Condor suscep
tible to a single-workstation crash;
the information policy periodically invoked introduces
a potential bottleneck of network traffic while suffering
the effect of using out-of-date state information if the
report period is not fine-tuned;
the location policy is so designed that it is possible for a
task arrived a t an idle workstation to be transferred to
other idle workstations for execution (Section 2), since
the central manager takes the full responsibility of lo-
cating a server workstation.

To remedy the above deficiencies, we eliminate the central
manager, and “configure” the functionality of Negotiator
and Collector into every participating workstation. Specifi-
cally, each participating workstation collects and maintains
state information on its own. Moreover, each workstation
chooses for every arrived task, if the workstation is not idle,
the best server workstation among several candidate work-
stations, and coordinates with other workstations to reduce
the probability of multiple workstations sending their tasks
to the same idle workstation and to distribute tasks as evenly
as possible in the system.

~~

5which is itself a checkpoint file without stack information.

Transfer Po1icy:Upon submission/arrival of a task,
Schedd on the home workstation determines whether or not
the task can be locally executed. That is, the transfer policy
is invoked upon arrival of a task, and hence a task transfer,
if ever takes place, will occur during an ezec system call and
the new address space will be created on the server worksta-
tion. This reduces significantly the process state needed to
be transferred. A task is locally executed on the home work-
station if AvgLoad (the current value of UNIX 1-minute
average load) is less than or equal to 0.3 and the Keyboar-
dIdle time (the smallest keyboard idle time observed for all
terminals) is greater than 15 minutes, and no other tasks
are currently running on the workstation. If the task can-
not be locally executed, a transfer decision is made and the
location policy is invoked to select a server workstation (if
possible) for the task. Also, the workstation re-scans its task
queue periodically, treats each queued Condor task (i.e., the
task which fails to locate a server workstation a t the time
of arrival) as it were newly-arrived, and repeats the transfer
policy.

Iiiforination Po1icy:The state space is divided into sev-
eral regions, and a workstation broadcasts a message, in-
forming all the other workstations of the new state region
it enters whenever its state switches from one region to an-
other. Using such a region-change broadcast pattern, mes-
sage exchange occurs only when the state of a workstation
changes significantly, and thus the communication overheads
introduced are reduced while the state information kept at
each workstation is more likely kept up-to-date. The state
defined in our current version is the combination of three
quantities: AvgLoad, Keyboard Id le , and the State (N e
Task, TaskRunning, Suspended, Vacating, or Killed) of the
workstation, and the state space is divided into two state
regions: runnable and unrunnable. The workstation is said
to be in the runnable state region if AvgLoad 5 0.3, Key-
boa rd Id le > 15 minutes, and State is NoTask. Extension
to multiple state regions is conceptually straightforward.

Locatioii Po1icy:Based on the topological property of the
system, each workstation orders all the other workstations
into a preferred list subject to [9]:

P1 a workstation is the k-th preferred workstation of
one and only one other workstation, where k is some
integer.

P2 if workstation i is the k-th preferred node of workstation
j , then workstation j is also the k-th preferred node of
workstation i .

For example, Fig. 4 gives the preferred list in a &cube sys-
tem. When a workstation is unable to run a task, it will con-
tact the first “runnable workstation” found in its preferred
list, and tries to transfer the task to that workstation. It
is important to note that although the preferred list of each
workstation is generated statically, the actual preference of
the workstation in transferring a task may change dynami-
cally with the state of the workstations in its preferred list.

205

1

Mnchm Boundpry
Pref. Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

node 0 1 2 4 8 6 1 0 1 2 3 5 9 1 4 1 3 1 1 7 1 5
node 1 0 3 5 9 7 1 1 1 3 2 4 8 1 5 1 2 1 0 6 1 4
node 2 3 0 6 10 4 8 14 1 7 11 12 15 9 5 13
node 3 2 1 7 1 1 5 9 1 5 0 6 1 0 1 3 1 4 8 4 1 2
node 4 5 6 0 12 2 14 8 7 1 13 10 9 15 3 11
node 5 4 7 1 1 3 3 1 5 9 6 0 1 2 1 1 8 1 4 2 1 0
node 6 7 4 2 14 0 12 10 5 3 15 8 11 13 1 9
node 7 6 5 3 15 1 13 11 4 2 14 9 10 12 0 8
node 8 9 1 0 1 2 0 1 4 2 4 1 1 1 3 1 6 6 3 1 5 7
node 9 8 1 1 1 3 1 1 5 3 5 1 0 1 2 0 7 4 2 1 4 6
node 10 11 8 14 2 12 0 6 9 15 3 4 7 1 13 6
node 11 10 9 15 3 13 1 7 8 14 2 5 6 0 12 4
node 12 13 14 8 4 10 6 0 15 9 5 2 1 7 11 3
node 13 12 15 9 5 11 7 1 14 8 4 3 0 6 10 2
node 14 16 12 10 6 8 4 2 13 11 7 0 3 5 9 1
node 16 14 13 11 7 9 6 3 12 10 6 1 2 4 8 0

Figure 4: Preferred list in a 4-cube system.

I

m a r w a

(b) Task transfer process

Scrva Wcrlut.cion Submitting Hanc Worksration

Figure 6: (continued) Interactions among daemons in

3.2.1 CollectorCollector is responsible for collecting lo-
cal workload information, broadcasting a region-change mes-
sage whenever necessary, updating the workload information

kof other workstations in its preferred list upon receiving a
broadcast message, and responding to Schedd and Startd
for information requests.
The local task queue, the average workload (in terms of Av-
gLoad, Keyboard Id le , and the T a s k s t a t e of the work-

, station), and the disk/memory space available are mea-
sured upon Collector timeout, or U on receiving a work-
load-update message from the Startd? The parameters mea-
sured are then used to evaluate whether or not a workstation
is runnable. A workstation is evaluated as runnable (i.e.,
Busy = false) if the function

START : (AvgLoad 5 0.3) && KeyboardIdle > 15 minutes
Figure 5: Daemons in Modified Condor.

is true and Taskstate of the workstation is NoTask.

A state-region change message is broadcast to Collectors
on other workstations in the preferred list whenever the
state switches from from runnable to unrunnable (because of
the increase in average workload, return of the workstation
owner, or receipt of a task), or vice versa (S1 in Fig. 6). The
message contains, among other things,

That is, if a workstation’s most preferred workstation gets
unrunnable, this fact will be known t,o the workst,at,ion via a
state-region change broadcast and its second preferred work-
station will become the most preferred. (It will be changed
to the second most preferred whenever the original most pre-
ferred becomes runnable, which will be again informed via a
state-change broadcast.) (11) the hostname, the network address, and the network

address type,
3.2 Daemon Configuration

We come up with three daemons, Collector, Schedd, and
Startd, which reside constantly on each participating work-
station for the decentralized LS mechanism (Fig. 5) . Sim-
ilarly as in Condor, two additional processes, Shadow and
Starter, run on the home workstation and on the server
workstation whenever a task is executed. Note that we
carefully configure the transfer, information, and location
policies only into Schedd, Startd, and Collector, and leave
Shadow and Starter which deal with process transfer, execu-
tion, and checkpoint unchanged for the distributed LS mech-
anism. The functionality of, and the interactions among,

(12) the indicator variable of whether or not a task is
runnable, Busy , along with other workload-related pa-
rameters, AvgLoad, Keyboard Id le , Taskstate,

(13) the operating system, OpSys , and the architecture,
Arch, of the workstation,

(14) the swap space, V i r tua lMemory , available in virtual
memory, and the disk space, Disk, available on the file
system where foreign checkpoint files are stored. Note
that Vi r tua lMei i iory is only calculated a t the time of
state-change broadcasts (but not periodically a t every
timeout), because its calculation is expensive.

‘When a task starts or exits/dies, the Startd notifies the Col-
daemons are depicted in Fig. 6, and are described below. lector to update workload situation.

206

1

(a) Negotiation process

Figure 6: Int.eract,ions among daemons in the distributed mechanism.

(15) a time-stamp.

As will be clearer later in the discussion of Schedd, (13) is
used to verify whether or not a workstation’s OS and archi-
tecture satisfies the task requirement specified by users; (14)
is used to verify whether or not a workstation has enough
memory/disk space for running foreign tasks; and (15) is
used to indicate the degree of a record being obsolete. Upon
receiving a state-change broadcast from one of the Collectors
on other workstations, the machine record corresponding to
the broadcasting workstation in the preferred list is updated.
There are two possible situations Schedd will ask informa-
tion from Collector (S2 in Fig. 6): (i) when Schedd receives
a new task and asks for its own machine record; (ii) when
Schedd decides to transfer the task and asks for the machine
record of the first runnable workstation available in the pre-
ferred list. On the other hand, Startd asks Collector for the
machine context which contains workload-related and mem-
ory/disk space-related parameters (S4 in Fig. 6), when it
wants to check whether a running task should be suspended,
checkpointed, resumed, or vacated. (More on this will be
discussed in Section 3.2.3.)

3.2.2 ScheddSchedd determines whether or not a (local
or remote) task can be executed on the workstation, and, in
the case of not executing an arrived task, initiates the loca-
tion policy to locate a candidate workstation for task trans-
fer. Also, Schedd invokes the location policy periodically for
tasks that did not find their servers upon their arrival and
are currently queued on the workstation.
There are three major events Schedd handles: the arrival of
a task, the receipt of a transfer request, and the periodic
timeout:

Upon arrival of a task:upon receiving a reschedule mes-
sage from the submit program, Schedd gets the local machine
record from Collector (S2 in Fig. 6), evaluates the parame-
ter Busy, and checks whether or not the task requirement

is satisfied. The task requirement includes the system con-
figuration and the disk/memory space needed for executing
the task.

If the task can be executed locally, a Shadow process is
spawned off which contacts contacts the local Startd. Startd
then creates two communication ports, sends the port num-
bers back to Shadow, and spawns off a Starter. Here
Starter inherits the two communication ports and shall ac-
tually execute the task. Shadow and Starter then commu-
nicate through the communication ports, and the task ex-
ecution/checkpoint process proceeds as in Condor. Note
that by carefully “reconfiguring” the daemons, we leave the
“low-level” implementation mechanism for task transfer and
checkpoint unchanged in the distributed LS mechanism.

If the task cannot be executed locally (either Busy is true,
or the task requirement is not satisfied), then Schedd checks
if there is enough swap space for a new Shadow process. If
the swap space is not enough, the task is queued and will be
attempted for execution/transfer upon next scheduled time-
out. If the swap space is sufficient, Schedd gets from Col-
lector the machine record of the first runnable workstation
in the preferred list, and checks whether or not the task re-
quirement can be satisfied on that workstation. If not, the
machine record of the next runnable workstation available
in the preferred list is fetched from Collector and checked
against the task requirement. The process repeats itself un-
til either a target server workstation is found or the preferred
list is exhausted. In the latter case, the task is queued for
lat,er execution/transfer attempts.

If a target server workstation is located, Schedd sends a
transfer request to Schedd on the target server workstation
(S3 in Fig. 6) . Either a transfer-ok or a transfer-not-ok
message will be received from the target server workstation,
depending on whether or not the target workstation is truly
runnable: if a transfer-ok message is received, a Shadow pro-
cess is spawned off on the home workstation which notifies

207

1

the Startd on the target server workstation of its respon-
sibility to execute the task. If the workload situation has
not changed on the target server workstation since its last
region-change broadcast, a startdok message, along with
two communication ports, is received. The communication
and task transfer/execution operations between Shadow and
Starter then proceed as in Condor. If the workload situation
has changed and is not runnable anymore, a s t a r t h o t - o k
message is received, in which case Schedd gets from Collector
the machine record of the next runnable workstation avail-
able in its preferred list, and repeats the transfer-request
process until either a target server workstation is found or
the preferred list is exhausted. On the other hand, if a trans-
fer-not-ok message is received, Schedd gets from Collector
the machine record of the next runnable workstation, and
repeats the transfer-request process as described above.

To deal with a possible machine failure, the ioctl system
call is used to designate the sockets as non-blocking: an
1 / 0 request that cannot be completed is not performed, and
return is made immediately. Moreover, a timer is set for
each connection: if no response has ever come back until
the timer expires, return is also immediately made. In ei-
ther case, Schedd repeats the transfer-request process for the
next runnable workstation available in the preferred list.

Upon receipt of a transfer request:upon receiving a
transfer request, Schedd gets from Collector the local ma-
chine record and evaluates the function Busy. In terms of
the four-component task requirements, Schedd needs only
to check VirtualMemory, because

0 OpSys and Arch are already checked by the home
workstation who initiates the transfer request;

0 The Disk space available under the directory where
checkpoint files are saved will not change if no task is
executing on the workstation. So, i t suffices to assure
the Disk space has not changed by checking if the work-
station is non-Busy;

0 Since VirtualMemory is calculated at the time of
state-region change broadcast, the Vi r tua lMcmory
information collected (via state-change broadcasts) by
the requesting workstation may differ from the actual
V i r tua lMemory information currently kept if either
a broadcast message is lost or not yet received by
the requesting workstation before the transfer request
was made. Hence, V i r tua lMemory needs to be re-
checked.

If Busy is false and Vi r tua lMemory is enough, Schedd
responds with a transfer-ok message. The Shadow process
on the requesting workstation will then contact Start.d on
the server workstation (which honors the transfer request) to
handle the “low-level” mechanism of task execution/transfer
and checkpoint process. Otherwise, the Schedd replies a
tmnsfer-not-ok message.

Upon scheduled t imeout :upon scheduled timeout,
Schedd first prioritizes the tasks currently queued on the lo-
cal workstation based on their user-specified priorit.y, queue-
ing time, and whether or not a task was ever executed.
Higher priority is given to tasks with higher user-specified

priority, longer queueing time and/or tasks which were v*
cated from server workstations because of the return of the
server workstation owner or some abnormal situation on the
server workstation. Schedd then initiates the location p r e
cess for each queued task, starting from the task with the
highest priority.

3.2.3 S t a r t d U p o n being notified by a Shadow process
of the responsibility to execute a task, Startd generates two
communication ports, spawns off a Starter to execute the
task, keeps track of the execution status of the task, and sig-
nals the Starter, whenever necessary, to suspend, resume,
checkpoint, or vacate the executing task. There are five
events Startd will handle: the receipt of a start-task mes-
sage from the Shadow on a requesting workstation, the re-
ceipt of a SIGCHLD signal (at the exit of Starter), the peri-
odic starter timeout, the receipt of a checkpoint-task message
from Shadow on the home workstation, and the receipt of a
killtask message from Schedd on the home workstation.

Upon receipt of a start-task message:upon receiv-
ing a start-task message from a requesting Shadow, Startd
gets from Collector its machine context (S4 in Fig. 6), and
re-evaluates the Busy function. If the Busy function is
false, two communicating ports are created and returned
(along with a startd-ok message) to the Shadow on the
requesting home workstation. Startd then waits for connec-
tion from Shadow to these two ports. When this connection
is made, Startd spawns off a Starter, closes the two commu-
nication ports, changes the Task-state of the workstation
to TaskRunning, and notifies Collector of its state-change
(S5 in Fig. 6; in which case Collector updates workload). If
the Busy is true, a startd-not-ok message is returned.

Upon receipt of a SIGCHLD signa1:upon receiving
a SIGCHLD signal, Startd clears up the checkpoint files in
the directory where the checkpoint files are stored, changes
the Task-state of the workstation to NoTask, and notifies
Collector of its state-change (S5 in Fig. 6).

Upon periodic startd timeout:upon periodic Startd
timeout, Startd gets from Collector the parameters
AvgLoad and KeyboardIdle (specified in the ma-
chine-context,, S4 in Fig. 6) , and properly signals Starter
based on these workload-related parameters to assure that
workstation owners have the workstation resources at their
disposal.

Upon receipt of a checkpoint-task or a kill-task mes-
sage:Upon receiving a checkpoint-task (kill-task) message
from Shadow (Schedd), Startd sends a SIGUSR2 (SIGINT)
signal to Starter, and enters the Checkpointing state.

4 Implementation Issues

In this section, we discuss how we handle some of the imple-
mentation issues, such as where to place the LS mechanism
(inside or outside the OS kernel), how to transfer process
state (virtual memory, open files, and process control blocks)
during task transfer/migration, and how t o support location
transparency and reduce the effects of residual dependency.

208

Where the LS mechanism is located:
We follow Condor’s principles, and implement the LS mech-
anism outside the OS kernel in trusted daemon processes.
Placing the mechanism outside the kernel incurs execution
overhead and latency (e.g., in the form of kernel calls) in
passing statistics (from kernel to daemon processes) and LS
decisions (in the other direction). However, as discussed in
[6], the dominating factor in assessing LS performance lies
more in the global communication overhead and aggregate
resource management than in (small) delays incurred by ker-
nel calls. Moreover, placing the mechanism outside the ker-
nel facilitates later expansion or generalization of our other
LS strategies to deal with large communication latency [lo],
excessive task transfer [ll], and node/link failure [12, 13, 141.
One inherent limitation resulted from placing the LS mech-
anism outside the OS kernel is that inter-process commu-
nication and signal facilities cannot be easily implemented,
and are not supported in the current implementation. we
plan to reconfigure some of the low-level process and mem-
ory management functions into a kernel server that resides
inside the OS kernel to handle IPC and signal facilities.

Approach to transferring process state:Pro-
cess state typically includes the virtual memory, the open
files, message channels, and other kernel states contained in
the process control block. In Condor, the state of a pro-
cess is transferred in the form of checkpoint files. Before a
process is executed for the first time, its executable file is
augmented to a checkpoint file with no stack area, so that
every checkpoint file is henceforth handled in the same way.
Moreover, every process is periodically checkpointed, and a
new checkpoint file is created from pieces of the previous
checkpoint (which contains the text segment) and a core im-
age (which contains the data and stack segments) as follows:
the LS mechanism causes a running task to checkpoint by
sending it the signal SIGTSTP. When a task is linked, a
special version of “crt()” is included which sets up CKPT()
as the SIGTSTP signal handler. Information about all open
files which the process currently has is kept in a table by
the modified version of the open system call routine. When
CKPT() is called, it updates the table of open files by seeking
each one to the current location and recording the file posi-
tion. Next a setjmp is executed to save key register contents
(e.g., stack pointer and program counter) in a global data
area, then the process sends itself a SIGQUIT signal which
results in a core dump. Starter then combines the original
executable file, and the core file to produce a checkpoint file.

When the checkpoint file is restarted, it starts from the spe-
cial “crt()” code, and it will set up the restart() routine as
a SIGUSR2 signal handler with a special signal stack (in
the data segment), then send itself the SIGUSR2 signal.
When restart() is called, it will operate in the temporary
stack area and read the saved stack in from the checkpoint
file, reopen and reposition all files, and execute a longjmp
back to CKPTO. When the restart routine returns, all the
stacks have been restored, and CKPT() returns to the rou-
tine which was active at the time of the checkpoint signal,
not “crt()”.

Location transparency and residual dependency:

Figure 7: The response t ime distribution for A i =
O.l/mins and pi - 0.125/mins, for all i.

Location transparency is one of the most important goals in
implementing load sharing. By transparency, we mean a
process’s behavior should not be affected by its transfer. Its
execution environment should appear the same, it should
have the same access to system resources such as files, and it
should produce exactly the same results as if it had not been
transferred [6, 41. To maintain location transparency, some-
times the home workstation has to provide da ta structure
or functionality for a process after the process is transferred
from the workstation [4]. This need for a home workstation
to continue to provide some services for a process remotely-
executed is termed as residual dependency. In Condor’s and
our implementation, location transparency is achieved at the
expense of residual dependency in the following manner: the
LS mechanism preserves the home workstation’s execution
environment for the remote process by using “remote system
calls” in which requests for file/device access are trapped and
forwarded to the Shadow process on the home workstation.
As was discussed in Section 3, whenever a workstation is ex-
ecuting a task remotely, it also runs a Shadow process on
the home workstation. The Shadow acts as an agent for the
remotely executing task in doing system calls. Specifically,
each task submitted to the LS mechanism is linked with a
special version of the C library. The special version contains
all of the functions provided by the normal C library, but
the system call stubs have also been changed to accomplish
remote system calls. The remote system call stubs package
up the system call number and arguments and send them to
the Shadow via the network. The Shadow, which is linked
with the normal C library, then executes the system call on
behalf of the remotely running task in the normal way. The
Shadow then packages up the results of the system call and
sends them back to the system call stub (in the special C
library on the submitting machine) which then returns its
result to the calling procedure.

5 Experimental Results

209

1

I I I I I I I
I I I I I I I I

Figure 8: Transfer-out ratio with respect to different
pi's, where pi = 2 and pi - 0.125/mins, for all i.

At the time of writing, the LS mechanism is operational on
an experimental basis. We evaluated the LS mechanism by
taking two sets of measurements, and discuss in this section
empirical measurements over a period of one week, including
task response time distribution, the extent to which the LS
mechanism distributes workload, and the frequency of task
transfer.

The performance figures presented are obtained from ex-
periments conducted on 6 SUN SPARCstations intercon-
nected via a lOMbit Ethernet local area network (along with
other workstations not used in this experiment). These
6 workstations were not used by other interactive users
during the period of experimentation. Identical copies of
single-process computation-intensive event-driven simula-
tion tasks are randomly submitted to each workstation i
with interarrival times being exponentially distributed with
X i (l/seconds). The number of simulation runs specified
in a submitted simulation task is used to vary the execu-
tion time of the simulation task, and is "approximated"
to be exponentially distributed with pi (l/runs). A sin-
gle simulation run takes approximately 48 seconds. Also,
we instrumented the LS mechanism to keep track of pro-
cess remote/local execution. First, the period between the
time when a task was submitted and the time when the
corresponding process exited was recorded. Second, when
a process exited, the Total-Tasks counter was incremented,
and the total time during which the process executed was
added to the TotaLCPUtime counter; if the exited pro-
cess has been transferred from elsewhere, the Remote-Tasks
counter was incremented, and its time was added to the Re-
mote-CPUtime counter as well. The ratio of Remote-Tasks
to TotaLTosks gives the task transfer-out ratio,' and t,he
ratio of Remote-CPUtime toTotaLCPUtime gives the per-
centage of remote execution on a workstation.

Fig. 7 gives the response time distribution with X i =

'It is actually the task transfer-in ratio, but this ratio proba-
bilistically equals the task transfer-out ratio in lioniogetieous sya-
tems over the long run.

O.l/mins and p i = O.l/runs = 0.125/mins. Also shown
in Fig. 7 are the two baseline curves corresponding to the
M/M/ l queue (no LS) and the M / M / 6 queue (perfect
LS). The response time distribution under the LS mecha-
nism approach unity much faster than that corresponding
to no LS, justifying that the LS mechanism is effective to
handle temporarily uneven task arrivals in distributed sys-
tems. Table 1 gives numerical results on TotaLCPUtime,
Remote-CPUtime, and percentage of remote execution for
uneven load distributions over a one-week period. As given
in Table 1, remote processes accounted for a b e t 33.03%
(43.76%) of all processing done for X = 0 . 5 ~ (A = 0 . 3 ~) .
In the case of = 0.5p, one workstation executed as much
as 80% of user cycles for remote processes. Moreover, To-
taLCPUtime's are approximately the same over all worksta-
tions (although the local arrival rates Xi's differ), demon-
strating the advantage of the preferred list to evenly dis-
tribute loads in the system over the long run. Fig. 8 gives
the transfer-out ratio with respect to Xi's with p; fixed at
O.l/runs for homogeneous load distribution. More than 20%
of the tasks are executed remotely for X 2 0.0625/mins even
when the load distribution is homogeneous. That is, more
than 20% of the tasks benefit from the LS facility.

6 Conclusion
We discussed the design and implementation of our decen-
tralized LS mechanism based on the Condor software pack-
age. We removed the central manager in Condor, and in-
corporated the functionality of the central manager into ev-
ery participating workstation. Each participating worksta-
tion collects state information on its own via region-change
broadcasts, and makes LS decisions based on the state in-
formation collected. The probability of multiple machines
sending their tasks to the same idle machine is minimized
by using the concept of preferred list in the location policy.
With such a functionality reconfiguation, Condor is more
resilient to single workstation failure.

Special care has been taken to fuse our decentralized LS
policies into the existing Condor software so as to require
as little modification as possible. The remote system call
and process checkpoint facilities in Condor are adopted to
provide location transparency, to preserve the home work-
station's execution environment, and to transfer the state of
a process.

The current implementation based on Condor does not sup-
port applications that use IPCs, signals, and timers. We
plan to reconfigure some of the low-level process and mem-
ory management functions into a kernel server that re-
sides inside the OS kernel to handle IPC and signal facil-
ities. We also plan to incorporate features we proposed in
[IO, 13, 11, 13, 141 into the LS mechanism, and equip the LS
mechanism with the abilities to deal with large communi-
cation latencies, excessive task transfers and task colliiions,
and component failures.

Acknowledgement
The authors would like to thank the developers of the Con-
dor software package for making their sources available via
anonymous ftp from "shorty.cs.wisc.edu."

210

1

http://shorty.cs.wisc.edu

(a) Load distribution: 1 = 0.5p, where X = 0.0125,0.0375,0.0625,0.0625,0.0875,0.1125/&s for workstation 1-6, respectively, and
p = 0.125/mins)

Workstation
1
2

Total CPU time Remote CPU time Percentage remote
3,073 2,019 65.70%
3.015 2.027 67.23%

3 2,987 2,110 70.64%

(b) Load distribution: 1 = 0.3 j~ , where X = 0.0125,0.0125,0.0125,0.0375,0.0375,0.1125/mins for workstation 1-6, respectively, and
p = 0.125/mins)

Table 1: Total C P U t ime, remote CPU time, and percentage of remote execution with respect t o two different

5
6

Total

load distributions.

References

3,098 1,060 34.23%
3,143 17 0.03%
18,358 8,031 43.76%

M. Livny and M. Melman, “Load balancing in horncr
geneous broadcast distributed systems,” Proc. A CM
Comput. Network Performance Symp., pp. 47-55, 1982.

D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adap-
tive load sharing in homogeneous distributed systems,”
IEEE Trans. on Software Engineering, vol. SE-12,
no. 5, pp. 662-675, 1986.

N. G. Shivaratri, P. Krueger, and M. Singhal, “Load dis-
tributing for locally distributed systems,” IEEE Com-
puter, vol. 25, no. 12, pp. 33-44, 1992.

F. Douglis and J. Ousterhout, “Transparent process mi-
gration: design alternatives and the Sprite implemen-
tation,” Software - Practice and Experience, vol. 21,

M. Theimer, K. Lantz, and D. Cheriton, “Preemptable
remote execution facilities for the V-system,” Proc. of
loth Symp. on Operating System Principles, Dec. 1985.

Y. Artsy and R. Finkel, “Designing a process migration
facility: the Charlotte experience,” IEEE Computer,
vol. 22, pp. 47-56, Sept. 1989.

M. Litzkow, M. Livny, and M. Mutka, “Condor - a
hunter of idle workstations,” Proc. of 8th Int’l Conf. on
Distributed Computing Systems, June 1988.

M. Litzkow and M. Livny, “Experience with the Condor
distributed batch systems,” Proc. of IEEE Workshop on
Experimental Distributed Systems, Oct. 1990.

K. G. Shin and Y.-C. Chang, “Load sharing in dis-
tributed real-time systems with state change broad-
casts,” IEEE Trans. on Computers, vol. C-38,

[I11

[12]

[13]

pp. 757-785, Aug. 1991.

[14]

pp. 1124-1142, Aug. 1989.

211

K. G. Shin and C.-J. Hou, “Design and evaluation
of effective load sharing in distributed real-time sys-
tems,” IEEE Trans. on Parallel and Distributed Sys-
tems, vol. 5, July 1994.

C.-J. Hou and I<. G. Shin, “Load sharing with consider-
ation of future task arrivals in heterogeneous distributed
real-time systems,” IEEE Tmns. on Computers, vol. 43,
July 1994.

C.-J. Hou and K. G. Shin, “Incorporation of optimal
tixneouts into distributed real-time load sharing,” IEEE
Trans. on Computers, vol. 43, pp. 528-547, May 1993.

IC. G. Shin and C.-J. Hou, “Evaluation of load sharing
in HARTS with consideration of its communication ac-
tivities,” ACM 1993 Sigmetrics Conf. on Measurement
and Modeling of Computer Systems, pp. 270-271, May
1993. Extended abstract.

Y.-C. Chang and K. G. Shin, “Load sharing in hy-
percube multicomputers in the presence of node fail-
ure,” Proceedings of the 21th International Symposium
on Fault- Tolerant Computing, pp. 188-195, 1991.

1

