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Abstract  
In recent years a number of load sharing (LS) mechanisms 
have been proposed or implemented to fully utilize system re- 
sources. We design and implement a decentralized LS  mech- 
anism based on the Condor package, and give in this paper 
a description of our design and implementation approoches. 
Two important features of the design are the use of region- 
change broadcasts in the information policy to provide each 
workstation with timely state information at the minimum 
communication cost, and the use of preferred list in the loca- 
tion policy to avoid task collisions. With these two features, 
we remove the centml manager workstation in Condor, con- 
figure its functionalities into each participating workstation, 
and thus enhance the capability to tolerate single worksto- 
tion failure and the reliability of Condor. We also discuss 
the ezperiments we conduct on the LS mechanism and the 
observations we obtained from empirical data. 

1 Introduct ion 
The availability of inexpensive, high-performance proces- 
sors and memory chips has spurred considerable interest in 
distributed systems. However, since jobs may arrive un- 
evenly and randomly a t  the workstations and/or computa- 
tion power may vary from workstation to  workstation, some 
workstations may get overloaded while others are left idle or 
under-loaded. Livny and Melman [I] showed that in a net- 
work of autonomous workstations, with a large probability, 
a t  least one workstation is idle while many jobs are being 
queued at other workstations. Consequently, some jobs may 
suffer extremely long response time while leaving the system 
capacity under-utilized. Thus, an effective “load sharing” 
(LS) method is called for to enable idle/underloaded work- 
stations to share the loads of overloaded ones. 

As was discussed in [2, 31, a LS mechanism can be de- 
signed by developing the transfer policy which determines 
when to transfer a job, the information policy which deter- 
mines how workstations communicate with one another to 
exchange state information, and the location policy which 
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determines where to  transfer the job. On the other hand, 
implementation issues commonly considered include where 
to place the LS mechanism (i.e., inside or outside the OS 
kernel), how to  transfer process state (virtual memory, open 
files, process control blocks) during job transfer/migration, 
how to  support LS transparency, and how to  reduce the 
effect of residual dependency’ [4]. A few LS mechanisms 
have been proposed and implemented, e.g., the V-system 
[SI, the Sprite OS [4], the Charlotte OS [6], and the Con- 
dor software package [7, 81. They are designed with different 
policies for transferring jobs/processes, collecting workload 
statistics used for LS decisions, and locating target work- 
stations. They are implemented with different strategies to  
detach a migrant process from its source environment, trans- 
fer it with its context (the per-process data  structures held 
in the kernel), and attach it to a new environment on the 
destination workstation. 

In this paper, we design and implement, based on the Condor 
software package, a decentralized LS mechanism with each 
LS policy carefully re-designed. As reported in [7, 81, Con- 
dor is a software package for executing long running tasks on 
workstations which would otherwise be idle. It is designed 
for a workstation environment in which the workstation’s re- 
sources are guaranteed to  be available to  the owner of the 
workstation. The r e w n  for choosing Condor as our “base 
system” is because Condor is implemented entirely outside 
the OS kernel and at the user level. This eliminates the need 
access/change the internals of OS. On the other hand, there 
are several design drawbacks of Condor package: Condor 
uses a central manager workstation to allocate queued tasks 
to  idle workstations; that is, the location policy is entirely 
realized by the central manager. This centralized component 
makes the LS mechanism susceptible to  single workstation 
failures. Another drawback is that Condor uses a periodic 
information policy; that is, each workstation reports period- 
ically to the central manager regarding its (workload) state 
and task-queueing situation. This makes the central man- 
ager a potential bottleneck of network traffic from time to 
time. The determination of a reporting period also becomes 
crucial to the LS performance, and has to  be traded off be- 

‘residual dependency is defined as the need for the source work- 
station to maintain data structures or provide functionality for a 
remote process. 
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tween the communication overhead introduced by frequent 
reporting and the possibility of using out-of-date state in- 
formation resulting from infrequent reporting. Hence, we 
enhance the reliability by configuring and dispatching the 
functions of the central manager workstation to multiple 
workstations, and “transforming” Condor to  a decentralized 
LS mechanism. 

Two important design issues must be considered in achiev- 
ing the above goal. First, each workstation has to  col- 
lect/maintain elaborate and timely state information on its 
own in the decentralized mechanism, and hence a policy is 
needed to  provide each workstation with updated state in- 
formation a t  the minimum communication overheads. Sec- 
ondly, each workstation has to  determine, for each task, 
the best target workstation if there are several workstations 
available, and more importantly, each workstation has to re- 
duce the possibility of multiple workstations sending their 
tasks to  the same idle workstation. We deal with the former 
issue by using region-change broadcasts as the information 
policy, and the latter issue by using the preferred lists in our 
location policy. Both strategies will be detailed in Section 3. 

The rest of the paper is organized as follows. In Section 
2, we give an overview of Condor software package and dis- 
cuss how Condor daemons collaborate t o  manage the task 
queue and locates target idle workstations. In Section 3, 
we present our decentralized LS mechanism. In particular, 
we discuss the transfer, information, and location policies 
used in our LS mechanism. Then, we discuss how to get rid 
of the central manager by reconfiguring Condor component 
daemons. In Section 4, we highlight the implement,at.ion fea- 
tures adopted in the decentralized mechanism. In Section 
5, we present empirical measurements, including the per- 
formance improvement resulted from LS, and the extent to 
which the LS mechanism distributes workload. This paper 
concludes with Section 6. 

2 Overview of Condor Software Package 
In this section, we summarize the functionality of, and the 
interactions among, Condor’s daemons. Especially, the task 
distribution process is described in a step-by-step manner. 

As shown in Fig. 1, there are two daemons, Negotiator and 
Collector, running on the central manager workstation. In 
addition, there are two other daemons, Schedd and Startd, 
running on each participating workstation. Whenever a task 
is executed, two additional processes, Shadow and St,arter, 
shall run on the submitting workstation and on the executing 
workstation, respectively (whether or not t>hese t,wo w0rkst.a- 
tions are actually identical). 

The Condor task relocation mechanism works as follows 
(Fig. 2). A user invokes a submit program to submit a 
task. The  submit program takes the task description file, 
constructs the corresponding data  struchres, and sends a 
reschedule message to Schedd on the home workstation. 
Schedd then asks Negotiator on the central manager work- 
station to  relocate tasks to idle workstations by sending a 
reschedule message to Negotiator (S1 in Fig. 2). 

Upon receiving a reschedule message from any of Scliedds 
on the participating workstations, or upon periodic sched- 

Figure 1: Daemons in Condor. 

ule timeout, Negotiator gets from Collector a list of machine 
records which contains the workload and task queue of all 
participating workstations (S2 in Fig. 2). Collector receives 
periodically from Schedd and Startd on each participating 
workstation updated information of task queue and work- 
load, respectively (S3 in Fig. 2), and updates accordingly 
its list of machine records. 

After receiving the list of machine records, Negotiator first 
prioritizes the participating workstations: the priority of a 
workstation is incremented by the number of individual users 
with tasks queued on that workstation, and decremented by 
the number of tasks which are submitted to  that workstation 
and are currently running (either remotely or locally). Ne- 
gotiator then contacts each workstation with queued tasks, 
one at a time, starting with the workstation with the high- 
est priority, and inquires to relocate the task(s) queued on 
the workstation. If the swap space on the workstation be- 
ing inquired is enough for Shadow processes’, the worksta- 
tion supplies Negotiator with the information on the required 
OS, architecture, and the task size, of a queued task, with 
which Negotiator finds a server workstation for the task. A 
workstation is qualified as a server if (i) both its CPU and 
keyboards are idle; (ii) i t  satisfies the task requirement spec- 
ified; and (iii) no other task is currently running on it. The  
negotiation process will be repeated for each queued task3 
until either Negotiator finds for all queued tasks their server 
workstations, or no server can be located (S4 in Fig. 2). At 
the end of the negotiation process, Negotiator sends back 
the updated record of machine priorities t o  Collector (S5 in 
Fig. 2). 

For each server located, the task transfer process is collabw 
rated on by (a) Negotiator on the central manager worksta- 
tion, (b) Schedd and Shadow process on the home worksta- 
tion, and (c) Startd and Starter on the server workstation in 
the following steps: Negotiator sends a permission message 

2As will be discussed below, each executing task will have as- 
sociated Shadow processes running on the home workstation. 

3The Lasks in a local queue are also prioritized with respect to 
the user-specified priority and the order in which they are queued. 
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(a) Negotiation process 

Figure 2: Interactions among Condor daemons. 

(b) Task transfer process 

Figure 2: (continued) Interactions among Condor dae- 

followed by the name of the server workstation to  Schedd 
on the home workstation (S6 in Fig. 2). Schedd on the 
home workstation then spawns off a Shadow process which 
connects to Startd on the located server workstation (S7 in 
Fig. 2) and will henceforth take care of remote system calls‘ 
from the server workstation. 

Startd on the server workstation, upon being notified by 
Shadow on the home workstation of the task transfer de- 
cision, re-evaluates its workload situation and amount of 
memory space available. If the situation has not changed 
since the last time Startd reported to  the central manager, 
Startd creates two communication ports, and sends the port 
numbers back to  Shadow. Shadow acknowledges the receipt 
of the port numbers. Startd then spawns off a Starter pro- 
cess (which inherits these communication ports and is re- 
sponsible for executing the task), and notifies Collector on 
the central manager of the workload change in the server 
workstation. Startd henceforth keeps track of Taskstate 
of Starter, and signals Starter t o  suspend, checkpoint, or 
vacate the executing process whenever necessary t o  ensure 
that workstation owners have the workstation resources at 
their disposal. For example, if during the execution of a task 
(i.e., Task-state is TaskRunning), and if either the average 
workload increases (e.g., AvgLoad > 0.3 ) or the worksta- 
tion owner returns (e.g., KeyboardIdle < 5 minutes), then 
a SIGUSRl (suspend) signal is sent to  Starter, Taskstate 
enters the Suspend state, and Starter will temporarily sus- 
pend the task. If the task has been suspended for more than 
a certain period (e.g., 10 minutes), a SIGTSTP (vacate) 
signal is sent to Starter, Startd enters the Checkpointing 
state, and Starter will abort the task and return the latest 
checkpoint file to Shadow on the home workstation. Fig. 3 
gives a complete description of how Startd keeps track of the 
execution status of Starter and the associated Taskstate 
transition process. 

The newly-spawned Starter is responsible for (a) getting 

*More on remote system calls will be elaborated in Section 4. 
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3.1 LS Policies Used 
A v & d  0.3 &i& KsyboudIdb > 
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h e  now discuss how to incorporate our proposed LS policies 
JobRunning 

saad SIoURSl to S~uta 
into Condor to achieve the above objective: 

Figure 3: Task-state transit ion process. 

the executable5 and other relevant process information from 
Shadow via either NFS or RPC whichever available and 
spawning off a child process to execute the task; (b) com- 
municating (via remote system calls) with Shadow on the 
home workstation for environments/devices-related opera- 
tions; and (c) suspending, resuming, or checkpointing the 
executing process upon being requested by Startd (Fig. 3). 
Both Starter and Shadow exit when the task completes/stops 
execution. 

3 Design of a Distributed Mechanism 
Based on Condor 

As mentioned in Section 1, there are several design draw- 
backs in Condor: 

the central manager component makes Condor suscep 
tible to a single-workstation crash; 
the information policy periodically invoked introduces 
a potential bottleneck of network traffic while suffering 
the effect of using out-of-date state information if the 
report period is not fine-tuned; 
the location policy is so designed that it is possible for a 
task arrived a t  an idle workstation to be transferred to 
other idle workstations for execution (Section 2), since 
the central manager takes the full responsibility of lo- 
cating a server workstation. 

To remedy the above deficiencies, we eliminate the central 
manager, and “configure” the functionality of Negotiator 
and Collector into every participating workstation. Specifi- 
cally, each participating workstation collects and maintains 
state information on its own. Moreover, each workstation 
chooses for every arrived task, if the workstation is not idle, 
the best server workstation among several candidate work- 
stations, and coordinates with other workstations to reduce 
the probability of multiple workstations sending their tasks 
to  the same idle workstation and to distribute tasks as evenly 
as possible in the system. 

~~ 

5which is itself a checkpoint file without stack information. 

Transfer Po1icy:Upon submission/arrival of a task, 
Schedd on the home workstation determines whether or not 
the task can be locally executed. That  is, the transfer policy 
is invoked upon arrival of a task, and hence a task transfer, 
if ever takes place, will occur during an ezec system call and 
the new address space will be created on the server worksta- 
tion. This reduces significantly the process state needed to 
be transferred. A task is locally executed on the home work- 
station if AvgLoad (the current value of UNIX 1-minute 
average load) is less than or equal to 0.3 and the Keyboar- 
dIdle time (the smallest keyboard idle time observed for all 
terminals) is greater than 15 minutes, and no other tasks 
are currently running on the workstation. If the task can- 
not be locally executed, a transfer decision is made and the 
location policy is invoked to  select a server workstation (if 
possible) for the task. Also, the workstation re-scans its task 
queue periodically, treats each queued Condor task (i.e., the 
task which fails to locate a server workstation a t  the time 
of arrival) as it were newly-arrived, and repeats the transfer 
policy. 

Iiiforination Po1icy:The state space is divided into sev- 
eral regions, and a workstation broadcasts a message, in- 
forming all the other workstations of the new state region 
it enters whenever its state switches from one region to an- 
other. Using such a region-change broadcast pattern, mes- 
sage exchange occurs only when the state of a workstation 
changes significantly, and thus the communication overheads 
introduced are reduced while the state information kept at  
each workstation is more likely kept up-to-date. The state 
defined in our current version is the combination of three 
quantities: AvgLoad,  Keyboard Id le ,  and the State ( N e  
Task, TaskRunning, Suspended, Vacating, or Killed) of the 
workstation, and the state space is divided into two state 
regions: runnable and unrunnable. The  workstation is said 
to be in the runnable state region if AvgLoad  5 0.3, Key- 
boa rd Id le  > 15 minutes, and State is NoTask. Extension 
to multiple state regions is conceptually straightforward. 

Locatioii Po1icy:Based on the topological property of the 
system, each workstation orders all the other workstations 
into a preferred list subject to [9]: 

P1 a workstation is the k-th preferred workstation of 
one and only one other workstation, where k is some 
integer. 

P2 if workstation i is the k-th preferred node of workstation 
j ,  then workstation j is also the k-th preferred node of 
workstation i .  

For example, Fig. 4 gives the preferred list in a &cube sys- 
tem. When a workstation is unable to run a task, it will con- 
tact the first “runnable workstation” found in its preferred 
list, and tries to transfer the task to that workstation. It 
is important to note that although the preferred list of each 
workstation is generated statically, the actual preference of 
the workstation in transferring a task may change dynami- 
cally with the state of the workstations in its preferred list. 

205 

1 



Mnchm Boundpry 
Pref. Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

node 0 1 2  4 8 6 1 0 1 2  3 5 9 1 4 1 3 1 1  7 1 5  
node 1 0 3 5 9 7 1 1 1 3  2 4 8 1 5 1 2 1 0  6 1 4  
node 2 3 0 6 10 4 8 14 1 7 11 12 15 9 5 13 
node 3 2 1 7 1 1  5 9 1 5  0 6 1 0 1 3 1 4  8 4 1 2  
node 4 5 6 0 12 2 14 8 7 1 13 10 9 15 3 11 
node 5 4 7 1 1 3  3 1 5  9 6 0 1 2 1 1  8 1 4  2 1 0  
node 6 7 4 2 14 0 12 10 5 3 15 8 11 13 1 9 
node 7 6 5 3 15 1 13 11 4 2 14 9 10 12 0 8 
node 8 9 1 0 1 2  0 1 4  2 4 1 1 1 3  1 6  6 3 1 5  7 
node 9 8 1 1 1 3  1 1 5  3 5 1 0 1 2  0 7 4 2 1 4  6 
node 10 11 8 14 2 12 0 6 9 15 3 4 7 1 13 6 
node 11 10 9 15 3 13 1 7 8 14 2 5 6 0 12 4 
node 12 13 14 8 4 10 6 0 15 9 5 2 1 7 11 3 
node 13 12 15 9 5 11 7 1 14 8 4 3 0 6 10 2 
node 14 16 12 10 6 8 4 2 13 11 7 0 3 5 9 1 
node 16 14 13 11 7 9 6 3 12 10 6 1 2 4 8 0 

Figure 4: Preferred list in a 4-cube system. 

I 

m a r  w a  

(b) Task transfer process 

Scrva Wcrlut.cion Submitting Hanc  Worksration 

Figure 6: (continued) Interactions among daemons in 

3.2.1 CollectorCollector is responsible for collecting lo- 
cal workload information, broadcasting a region-change mes- 
sage whenever necessary, updating the workload information 

kof other workstations in its preferred list upon receiving a 
broadcast message, and responding to Schedd and Startd 
for information requests. 
The local task queue, the average workload (in terms of Av- 
gLoad,  Keyboard Id le ,  and the T a s k s t a t e  of the work- 

, station), and the disk/memory space available are mea- 
sured upon Collector timeout, or U on receiving a work- 
load-update message from the Startd? The  parameters mea- 
sured are then used to evaluate whether or not a workstation 
is runnable. A workstation is evaluated as runnable (i.e., 
Busy  = false) if the function 

START : (AvgLoad 5 0.3) && KeyboardIdle > 15 minutes 
Figure 5: Daemons in Modified Condor. 

is true and Taskstate of the workstation is NoTask. 

A state-region change message is broadcast to Collectors 
on other workstations in the preferred list whenever the 
state switches from from runnable to unrunnable (because of 
the increase in average workload, return of the workstation 
owner, or receipt of a task), or vice versa (S1 in Fig. 6). The 
message contains, among other things, 

That is, if a workstation’s most preferred workstation gets 
unrunnable, this fact will be known t,o the workst,at,ion via a 
state-region change broadcast and its second preferred work- 
station will become the most preferred. (It will be changed 
to the second most preferred whenever the original most pre- 
ferred becomes runnable, which will be again informed via a 
state-change broadcast.) (11) the hostname, the network address, and the network 

address type, 
3.2 Daemon Configuration 

We come up with three daemons, Collector, Schedd, and 
Startd, which reside constantly on each participating work- 
station for the decentralized LS mechanism (Fig. 5 ) .  Sim- 
ilarly as in Condor, two additional processes, Shadow and 
Starter, run on the home workstation and on the server 
workstation whenever a task is executed. Note that we 
carefully configure the transfer, information, and location 
policies only into Schedd, Startd, and Collector, and leave 
Shadow and Starter which deal with process transfer, execu- 
tion, and checkpoint unchanged for the distributed LS mech- 
anism. The functionality of, and the interactions among, 

(12) the indicator variable of whether or not a task is 
runnable, Busy ,  along with other workload-related pa- 
rameters, AvgLoad,  Keyboard Id le ,  Taskstate, 

(13) the operating system, OpSys ,  and the architecture, 
Arch, of the workstation, 

(14) the swap space, V i r tua lMemory ,  available in virtual 
memory, and the disk space, Disk, available on the file 
system where foreign checkpoint files are stored. Note 
that Vi r tua lMei i iory  is only calculated a t  the time of 
state-change broadcasts (but not periodically a t  every 
timeout), because its calculation is expensive. 

‘When a task starts or exits/dies, the Startd notifies the Col- 
daemons are depicted in Fig. 6, and are described below. lector to update workload situation. 
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(a) Negotiation process 

Figure 6: Int.eract,ions among daemons in the  distributed mechanism. 

(15) a time-stamp. 

As will be clearer later in the discussion of Schedd, (13) is 
used to  verify whether or not a workstation’s OS and archi- 
tecture satisfies the task requirement specified by users; (14) 
is used to  verify whether or not a workstation has  enough 
memory/disk space for running foreign tasks; and (15) is 
used to indicate the degree of a record being obsolete. Upon 
receiving a state-change broadcast from one of the Collectors 
on other workstations, the machine record corresponding to 
the broadcasting workstation in the preferred list is updated. 
There are two possible situations Schedd will ask informa- 
tion from Collector (S2 in Fig. 6): (i) when Schedd receives 
a new task and asks for its own machine record; (ii) when 
Schedd decides to transfer the task and asks for the machine 
record of the first runnable workstation available in the pre- 
ferred list. On the other hand, Startd asks Collector for the 
machine context which contains workload-related and mem- 
ory/disk space-related parameters (S4 in Fig. 6), when it 
wants to check whether a running task should be suspended, 
checkpointed, resumed, or vacated. (More on this will be 
discussed in Section 3.2.3.) 

3.2.2 ScheddSchedd determines whether or not a (local 
or remote) task can be executed on the workstation, and, in 
the case of not executing an arrived task, initiates the loca- 
tion policy to locate a candidate workstation for task trans- 
fer. Also, Schedd invokes the location policy periodically for 
tasks that did not find their servers upon their arrival and 
are currently queued on the workstation. 
There are three major events Schedd handles: the arrival of 
a task, the receipt of a transfer request, and the periodic 
timeout: 

Upon arrival of a task:upon receiving a reschedule mes- 
sage from the submit program, Schedd gets the local machine 
record from Collector (S2 in Fig. 6), evaluates the parame- 
ter Busy, and checks whether or not the task requirement 

is satisfied. The task requirement includes the system con- 
figuration and the disk/memory space needed for executing 
the task. 

If the task can be executed locally, a Shadow process is 
spawned off which contacts contacts the local Startd. Startd 
then creates two communication ports, sends the port num- 
bers back to Shadow, and spawns off a Starter. Here 
Starter inherits the two communication ports and shall ac- 
tually execute the task. Shadow and Starter then commu- 
nicate through the communication ports, and the task ex- 
ecution/checkpoint process proceeds as in Condor. Note 
that by carefully “reconfiguring” the daemons, we leave the 
“low-level” implementation mechanism for task transfer and 
checkpoint unchanged in the distributed LS mechanism. 

If the task cannot be executed locally (either Busy is true, 
or the task requirement is not satisfied), then Schedd checks 
if there is enough swap space for a new Shadow process. If 
the swap space is not enough, the task is queued and will be 
attempted for execution/transfer upon next scheduled time- 
out. If the swap space is sufficient, Schedd gets from Col- 
lector the machine record of the first runnable workstation 
in the preferred list, and checks whether or not the task re- 
quirement can be satisfied on that workstation. If not, the 
machine record of the next runnable workstation available 
in the preferred list is fetched from Collector and checked 
against the task requirement. The process repeats itself un- 
til either a target server workstation is found or the preferred 
list is exhausted. In the latter case, the task is queued for 
lat,er execution/transfer attempts. 

If a target server workstation is located, Schedd sends a 
transfer request to Schedd on the target server workstation 
(S3 in Fig. 6 ) .  Either a transfer-ok or a transfer-not-ok 
message will be received from the target server workstation, 
depending on whether or not the target workstation is truly 
runnable: if a transfer-ok message is received, a Shadow pro- 
cess is spawned off on the home workstation which notifies 
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the Startd on the target server workstation of its respon- 
sibility to  execute the task. If the workload situation has 
not changed on the target server workstation since its last 
region-change broadcast, a startdok message, along with 
two communication ports, is received. The communication 
and task transfer/execution operations between Shadow and 
Starter then proceed as in Condor. If the workload situation 
has changed and is not runnable anymore, a s t a r t h o t - o k  
message is received, in which case Schedd gets from Collector 
the machine record of the next runnable workstation avail- 
able in its preferred list, and repeats the transfer-request 
process until either a target server workstation is found or 
the preferred list is exhausted. On the other hand, if a trans- 
fer-not-ok message is received, Schedd gets from Collector 
the machine record of the next runnable workstation, and 
repeats the transfer-request process as described above. 

To deal with a possible machine failure, the ioctl system 
call is used to  designate the sockets as non-blocking: an 
1 / 0  request that cannot be completed is not performed, and 
return is made immediately. Moreover, a timer is set for 
each connection: if no response has ever come back until 
the timer expires, return is also immediately made. In ei- 
ther case, Schedd repeats the transfer-request process for the 
next runnable workstation available in the preferred list. 

Upon receipt of a transfer request:upon receiving a 
transfer request, Schedd gets from Collector the local ma- 
chine record and evaluates the function Busy. In terms of 
the four-component task requirements, Schedd needs only 
to  check VirtualMemory, because 

0 OpSys and Arch are already checked by the home 
workstation who initiates the transfer request; 

0 The Disk space available under the directory where 
checkpoint files are saved will not change if no task is 
executing on the workstation. So, i t  suffices to assure 
the Disk space has not changed by checking if the work- 
station is non-Busy; 

0 Since VirtualMemory is calculated at  the time of 
state-region change broadcast, the Vi r tua lMcmory  
information collected (via state-change broadcasts) by 
the requesting workstation may differ from the actual 
V i r tua lMemory  information currently kept if either 
a broadcast message is lost or not yet received by 
the requesting workstation before the transfer request 
was made. Hence, V i r tua lMemory  needs to  be re- 
checked. 

If Busy is false and Vi r tua lMemory  is enough, Schedd 
responds with a transfer-ok message. The  Shadow process 
on the requesting workstation will then contact Start.d on 
the server workstation (which honors the transfer request) to 
handle the “low-level” mechanism of task execution/transfer 
and checkpoint process. Otherwise, the Schedd replies a 
tmnsfer-not-ok message. 

Upon scheduled t imeout :upon scheduled timeout, 
Schedd first prioritizes the tasks currently queued on the lo- 
cal workstation based on their user-specified priorit.y, queue- 
ing time, and whether or not a task was ever executed. 
Higher priority is given to  tasks with higher user-specified 

priority, longer queueing time and/or tasks which were v* 
cated from server workstations because of the return of the 
server workstation owner or some abnormal situation on the 
server workstation. Schedd then initiates the location p r e  
cess for each queued task, starting from the task with the 
highest priority. 

3.2.3 S t a r t d U p o n  being notified by a Shadow process 
of the responsibility to execute a task, Startd generates two 
communication ports, spawns off a Starter to execute the 
task, keeps track of the execution status of the task, and sig- 
nals the Starter, whenever necessary, to  suspend, resume, 
checkpoint, or vacate the executing task. There are five 
events Startd will handle: the receipt of a start-task mes- 
sage from the Shadow on a requesting workstation, the re- 
ceipt of a SIGCHLD signal (at the exit of Starter), the peri- 
odic starter timeout, the receipt of a checkpoint-task message 
from Shadow on the home workstation, and the receipt of a 
killtask message from Schedd on the home workstation. 

Upon receipt of a start-task message:upon receiv- 
ing a start-task message from a requesting Shadow, Startd 
gets from Collector its machine context (S4 in Fig. 6), and 
re-evaluates the Busy function. If the Busy function is 
false, two communicating ports are created and returned 
(along with a startd-ok message) to the Shadow on the 
requesting home workstation. Startd then waits for connec- 
tion from Shadow to  these two ports. When this connection 
is made, Startd spawns off a Starter, closes the two commu- 
nication ports, changes the Task-state of the workstation 
to  TaskRunning, and notifies Collector of its state-change 
(S5 in Fig. 6; in which case Collector updates workload). If 
the Busy is true, a startd-not-ok message is returned. 

Upon receipt of a SIGCHLD signa1:upon receiving 
a SIGCHLD signal, Startd clears up the checkpoint files in 
the directory where the checkpoint files are stored, changes 
the Task-state of the workstation to  NoTask, and notifies 
Collector of its state-change (S5 in Fig. 6). 

Upon periodic startd timeout:upon periodic Startd 
timeout, Startd gets from Collector the parameters 
AvgLoad and KeyboardIdle (specified in the ma- 
chine-context,, S4 in Fig. 6 ) ,  and properly signals Starter 
based on these workload-related parameters to  assure that 
workstation owners have the workstation resources at their 
disposal. 

Upon receipt of a checkpoint-task or a kill-task mes- 
sage:Upon receiving a checkpoint-task (kill-task) message 
from Shadow (Schedd), Startd sends a SIGUSR2 (SIGINT) 
signal to  Starter, and enters the Checkpointing state. 

4 Implementation Issues 

In this section, we discuss how we handle some of the imple- 
mentation issues, such as where to place the LS mechanism 
(inside or outside the OS kernel), how to  transfer process 
state (virtual memory, open files, and process control blocks) 
during task transfer/migration, and how t o  support location 
transparency and reduce the effects of residual dependency. 
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Where the LS mechanism is located: 
We follow Condor’s principles, and implement the LS mech- 
anism outside the OS kernel in trusted daemon processes. 
Placing the mechanism outside the kernel incurs execution 
overhead and latency (e.g., in the form of kernel calls) in 
passing statistics (from kernel to  daemon processes) and LS 
decisions (in the other direction). However, as discussed in 
[6], the dominating factor in assessing LS performance lies 
more in the global communication overhead and aggregate 
resource management than in (small) delays incurred by ker- 
nel calls. Moreover, placing the mechanism outside the ker- 
nel facilitates later expansion or generalization of our other 
LS strategies to deal with large communication latency [lo], 
excessive task transfer [ll], and node/link failure [12, 13, 141. 
One inherent limitation resulted from placing the LS mech- 
anism outside the OS kernel is that inter-process commu- 
nication and signal facilities cannot be easily implemented, 
and are not supported in the current implementation. we 
plan to reconfigure some of the low-level process and mem- 
ory management functions into a kernel server that resides 
inside the OS kernel to handle IPC and signal facilities. 

Approach to transferring process state:Pro- 
cess state typically includes the virtual memory, the open 
files, message channels, and other kernel states contained in 
the process control block. In Condor, the state of a pro- 
cess is transferred in the form of checkpoint files. Before a 
process is executed for the first time, its executable file is 
augmented to  a checkpoint file with no stack area, so that 
every checkpoint file is henceforth handled in the same way. 
Moreover, every process is periodically checkpointed, and a 
new checkpoint file is created from pieces of the previous 
checkpoint (which contains the text segment) and a core im- 
age (which contains the data and stack segments) as follows: 
the LS mechanism causes a running task to checkpoint by 
sending it the signal SIGTSTP. When a task is linked, a 
special version of “crt()” is included which sets up CKPT() 
as the SIGTSTP signal handler. Information about all open 
files which the process currently has is kept in a table by 
the modified version of the open system call routine. When 
CKPT() is called, it updates the table of open files by seeking 
each one to  the current location and recording the file posi- 
tion. Next a setjmp is executed to save key register contents 
(e.g., stack pointer and program counter) in a global data 
area, then the process sends itself a SIGQUIT signal which 
results in a core dump. Starter then combines the original 
executable file, and the core file to  produce a checkpoint file. 

When the checkpoint file is restarted, it  starts from the spe- 
cial “crt()” code, and it will set up the restart() routine as 
a SIGUSR2 signal handler with a special signal stack (in 
the data segment), then send itself the SIGUSR2 signal. 
When restart() is called, it will operate in the temporary 
stack area and read the saved stack in from the checkpoint 
file, reopen and reposition all files, and execute a longjmp 
back to  CKPTO. When the restart routine returns, all the 
stacks have been restored, and CKPT() returns to the rou- 
tine which was active at  the time of the checkpoint signal, 
not “crt()”. 

Location transparency and residual dependency: 

Figure 7: The response t ime distribution for A i  = 
O.l/mins and pi - 0.125/mins, for all i. 

Location transparency is one of the most important goals in 
implementing load sharing. By transparency, we mean a 
process’s behavior should not be affected by its transfer. Its 
execution environment should appear the same, it should 
have the same access to  system resources such as files, and it 
should produce exactly the same results as if it had not been 
transferred [6, 41. To maintain location transparency, some- 
times the home workstation has to provide da ta  structure 
or functionality for a process after the process is transferred 
from the workstation [4]. This need for a home workstation 
to continue to provide some services for a process remotely- 
executed is termed as residual dependency. In Condor’s and 
our implementation, location transparency is achieved at the 
expense of residual dependency in the following manner: the 
LS mechanism preserves the home workstation’s execution 
environment for the remote process by using “remote system 
calls” in which requests for file/device access are trapped and 
forwarded to  the Shadow process on the home workstation. 
As was discussed in Section 3, whenever a workstation is ex- 
ecuting a task remotely, it  also runs a Shadow process on 
the home workstation. The Shadow acts as an agent for the 
remotely executing task in doing system calls. Specifically, 
each task submitted to  the LS mechanism is linked with a 
special version of the C library. The special version contains 
all of the functions provided by the normal C library, but 
the system call stubs have also been changed to  accomplish 
remote system calls. The remote system call stubs package 
up the system call number and arguments and send them to  
the Shadow via the network. The Shadow, which is linked 
with the normal C library, then executes the system call on 
behalf of the remotely running task in the normal way. The 
Shadow then packages up  the results of the system call and 
sends them back to  the system call stub (in the special C 
library on the submitting machine) which then returns its 
result to  the calling procedure. 

5 Experimental Results 
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Figure 8: Transfer-out ratio with respect to different 
pi's, where pi = 2 and pi - 0.125/mins, for all i. 

At the time of writing, the LS mechanism is operational on 
an experimental basis. We evaluated the LS mechanism by 
taking two sets of measurements, and discuss in this section 
empirical measurements over a period of one week, including 
task response time distribution, the extent to  which the LS 
mechanism distributes workload, and the frequency of task 
transfer. 

The performance figures presented are obtained from ex- 
periments conducted on 6 SUN SPARCstations intercon- 
nected via a lOMbit Ethernet local area network (along with 
other workstations not used in this experiment). These 
6 workstations were not used by other interactive users 
during the period of experimentation. Identical copies of 
single-process computation-intensive event-driven simula- 
tion tasks are randomly submitted to each workstation i 
with interarrival times being exponentially distributed with 
X i  (l/seconds). The  number of simulation runs specified 
in a submitted simulation task is used to vary the execu- 
tion time of the simulation task, and is "approximated" 
to  be exponentially distributed with pi (l/runs). A sin- 
gle simulation run takes approximately 48 seconds. Also, 
we instrumented the LS mechanism to  keep track of pro- 
cess remote/local execution. First, the period between the 
time when a task was submitted and the time when the 
corresponding process exited was recorded. Second, when 
a process exited, the Total-Tasks counter was incremented, 
and the total time during which the process executed was 
added to  the TotaLCPUtime counter; if the exited pro- 
cess has been transferred from elsewhere, the Remote-Tasks 
counter was incremented, and its time was added to the Re- 
mote-CPUtime counter as well. The ratio of Remote-Tasks 
to  TotaLTosks gives the task transfer-out ratio,' and t,he 
ratio of Remote-CPUtime toTotaLCPUtime gives the per- 
centage of remote execution on a workstation. 

Fig. 7 gives the response time distribution with X i  = 

'It is actually the task transfer-in ratio, but this ratio proba- 
bilistically equals the task transfer-out ratio in lioniogetieous sya- 
tems over the long run. 

O.l/mins and p i  = O.l/runs = 0.125/mins. Also shown 
in Fig. 7 are the two baseline curves corresponding to  the 
M/M/ l  queue (no LS) and the M / M / 6  queue (perfect 
LS). The response time distribution under the LS mecha- 
nism approach unity much faster than that corresponding 
to  no LS, justifying that the LS mechanism is effective to  
handle temporarily uneven task arrivals in distributed sys- 
tems. Table 1 gives numerical results on TotaLCPUtime, 
Remote-CPUtime, and percentage of remote execution for 
uneven load distributions over a one-week period. As given 
in Table 1, remote processes accounted for a b e t  33.03% 
(43.76%) of all processing done for X = 0 . 5 ~  (A = 0 . 3 ~ ) .  
In the case of = 0.5p, one workstation executed as much 
as 80% of user cycles for remote processes. Moreover, To- 
taLCPUtime's are approximately the same over all worksta- 
tions (although the local arrival rates Xi's differ), demon- 
strating the advantage of the preferred list to evenly dis- 
tribute loads in the system over the long run. Fig. 8 gives 
the transfer-out ratio with respect to  Xi's with p; fixed at 
O.l/runs for homogeneous load distribution. More than 20% 
of the tasks are executed remotely for X 2 0.0625/mins even 
when the load distribution is homogeneous. That  is, more 
than 20% of the tasks benefit from the LS facility. 

6 Conclusion 
We discussed the design and implementation of our decen- 
tralized LS mechanism based on the Condor software pack- 
age. We removed the central manager in Condor, and in- 
corporated the functionality of the central manager into ev- 
ery participating workstation. Each participating worksta- 
tion collects state information on its own via region-change 
broadcasts, and makes LS decisions based on the state in- 
formation collected. The probability of multiple machines 
sending their tasks to  the same idle machine is minimized 
by using the concept of preferred list in the location policy. 
With such a functionality reconfiguation, Condor is more 
resilient to  single workstation failure. 

Special care has been taken to  fuse our decentralized LS 
policies into the existing Condor software so as to  require 
as little modification as possible. The remote system call 
and process checkpoint facilities in Condor are adopted to  
provide location transparency, to  preserve the home work- 
station's execution environment, and to  transfer the state of 
a process. 

The current implementation based on Condor does not sup- 
port applications that use IPCs, signals, and timers. We 
plan to  reconfigure some of the low-level process and mem- 
ory management functions into a kernel server that re- 
sides inside the OS kernel to  handle IPC and signal facil- 
ities. We also plan to  incorporate features we proposed in 
[IO, 13, 11, 13, 141 into the LS mechanism, and equip the LS 
mechanism with the abilities to  deal with large communi- 
cation latencies, excessive task transfers and task colliiions, 
and component failures. 
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(a) Load distribution: 1 = 0.5p, where X = 0.0125,0.0375,0.0625,0.0625,0.0875,0.1125/&s for workstation 1-6, respectively, and 
p = 0.125/mins) 

Workstation 
1 
2 

Total CPU time Remote CPU time Percentage remote 
3,073 2,019 65.70% 
3.015 2.027 67.23% 

3 2,987 2,110 70.64% 

(b) Load distribution: 1 = 0.3 j~ ,  where X = 0.0125,0.0125,0.0125,0.0375,0.0375,0.1125/mins for workstation 1-6, respectively, and 
p = 0.125/mins) 

Table 1: Total C P U  t ime,  remote CPU time, and percentage of remote execution with respect t o  two different 

5 
6 

Total 

load distributions. 
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