
Replication and Allocation of Task Modules in Distributed
Real-Time Systems

ChaeJu Hou

Computer Engineering Division
Dept. of Elect. and Computer Eng.

The University of Wisconsin
Madison, WI 53705- 1691

jhou@ece. wise. edu

ABSTRACT
This paper addresses the problem of replicating and allocat-
ing periodic task modules to processing nodes (PNs) in dis-
tributed real-time systems subject to task precedence and tim-
ing constraints. The probability that all tasks can be com-
pleted before their deadlines - termed as the probability of no
dynamic failure (PND) - is used as the performance-related
reliability measure. Modules which are critical in meeting
task deadlines are then selected using the critical path anal-
ysis. To provide the timing correctness embedded in P N D ,
both original and replicated task modules are not only as-
signed to PNs, but also scheduled on each PN so as to meet
the deadlines of all tasks.

The module allocation scheme uses (1) the branch-and-
bound method to implicitly enumerate all possible allocations
while efjectively pruning unnecessary search paths; and (2)
the module scheduling scheme to schedule the modules as-
signed to each PN. Several numerical ezamples are presented
to illustrate the proposed scheme.

1 Introduction
There has been an increasing need of timely and dependable
services for such embedded real-time systems as aircraft, in-
telligent vehicles, automated factories, and industrial process
controls. Such applications are usually realized by executing
a number of cooperating/communicating tasks before their
deadlines imposed by the corresponding mission/function.
The availability of inexpensive, high-performance processors
and high-capacity memory chips has made distributed com-
puting systems a natural candidate for the realization of
these real-time applications.

One can make the execution of both periodic and aperiodic
tasks not only logically correct but also completed before
their deadlines by (1) partitioning periodic tasks into a set of
communicating modules, (2) statically allocating these mod-
ules (and possibly their replicas) to processing nodes (PNs)
in a distributed system, and (3) dynamically distributing
aperiodic tasks as they arrive according to the load state of
each PN.

Partitioning tasks is usually based on some application-
dependent criterion and the system architecture under con-
sideration, while the dynamic distribution of aperiodic tasks

The work described in this paper was supported in part by the
ONR under Grants N00014-J-92-1080 and N0004-94-1-0229.

Kang G. Shin

Real-Time Computing Laboratory
Dept. of Elect. Eng. and Comp. Science

The University of Michigan
Ann Arbor, MI 48109-2122

kgshin@eecs. umich. edu

0363-8928194 $3.00 0 1994 IEEE
26

is usually treated aa an adaptive load sharing problem. Both
of these are not the intent of this paper; see [l] for an example
of partitioning real-time tasks, and see [2, 3, 41 for examples
of dynamic load sharing in distributed real-time systems. In
this paper, we consider instead the issue of replicating and
allocating periodic task modules to PNs in a distributed sys-
tem 80 as to fully utilize the inherent parallelism, capacity,
and reliability of the system.

The problem of allocating tasks/modules in a distributed sys-
tem has been studied by many researchers with respect to
different objective functions. These objective functions can
be roughly grouped into four categories: (01) minimization
of total computation and communication times in the system
[S, 6, 71; (02) load balancing by minimizing the statistical
variance of processor utilization [8, 91 or by maximizing the
total rewards in the semi-Markov process that models the
computer system [IO]; (03) minimization of maximum com-
putation and communication times on a PN, the objective
function of which was termed the mon'mum turnaround time
in [ll], the bottleneck processor time in [12, 131, and the
system hazard in [14]; (04) maximization of the reliability
function of both PNs and communication links [15].

0 1 and 0 2 are suitable for a distributed system execut-
ing multiple simultaneous non real-time applications, where
maximizing the total throughput or minimizing the average
response time is the main concern. However, for real-time
systems, the timing correctness of each individual task must
be considered, because failure to correctly complete a task
in time could cause a catastrophe. Thus, 03, which is based
on the worst-case behavior, is more suitable for assessing
the timeliness of real-time systems. In this paper, we use
the probability, P N D , that all tasks within a planning cycle
are completed before their deadlines (which was termed in
[16] as the probability of no dynamic failure) as the objec-
tive function. The planning cycle is the time period within
which the task-invocation behavior repeats itself throughout
the entire mission, and thus completely specifies the entire
task system. How to incorporate 0 4 into the probability of
dynamic failure has been treated in [17].

Module allocation schemes must be equipped with the ability
to tolerate node failures by allocating replicated modules to
distinct PNs. The outputs (or the completion notifications)
of the replicas of a module are sent to all of its successor mod-
ules. A module is enabled when at least one replica of each
of its predecessors is completed. If transient or permanent

faults occur to a PN, the replicas of all the modules assigned
to this PN continue to be executed on some other healthy
PNs so that the subsequent modules can be completed in
time. When replicating modules in order to maximize PND
and improve system reliability, one must consider (1) which
modules to be replicated, e.g., those modules whose com-
pletion is critical to the timely completion of tasks; (2) how
many copies of each selected module, i.e., the number of
copies needed for each critical module should be determined
by system capacity, the minimum PND that should be guar-
anteed, and the degree of fault-tolerance achieved; (3) the
assignment and scheduling of the replicas on PNs. Our ob-
jective is to allocate replicated modules to distinct PNs to
provide a guaranteed PND in the presence of node failures
while fully utilizing the inherent parallelism and capacity of
the system.

We first model the task system with a task flow graph (TG)
which describes computation and communication modules as
well as the precedence constraints among them. Second, we
use the critical path analysis to determine the modules that
are critical in completing tasks in time, and hence, should be
replicated. Then, we use the module replication and alloca-
tion scheme to determine the optimal number of each critical
module's replicas subject to a pre-specified PND value, and
to search for the optimal module allocation for all original
and replica modules. The computational complexity is re-
duced by deriving an upper bound of the objective function
with which we determine whether to expand or prune inter-
mediate vertices (corresponding to partial allocations) in the
state-space search tree. On the other hand, because of the
timing aspects embedded in the objective function, the per-
formance of any resulting assignment strongly depends on
how the assigned tasks/modules are scheduled. Thus, when
we evaluate an upper-bound (exact) objective function for
a partial (complete) allocation, we use a module scheduling
scheme (with polynomial time complexity) to schedule all the
modules assigned to a PN so as to minimize the maximum
tardiness of modules subject to precedence constraints.

Ramamritham [18] used a heuristic-directed search technique
with tunable design parameters to (1) determine whether
or not a group of communicating modules should be as-
signed to the same PN, and (2) allocate different groups of
modules t o PNs and schedule them with respect to their
latest-start-times and precedence constraints. As compared
to this work, we use a finer granularity in modeling the
real-time task system. For example, we include probabilis-
tic branches/loops in task graphs and allow communications
between periodic tasks. Although Ramamritham also con-
sidered fault-tolerance via module replication, the degree of
replication is pre-determined in an ad hoc manner without
any rigorous justification. By contrast, we focus on module
replication and allocation in a well-defined analytic frame-
work with PND as the objective function.

The rest of the paper is organized as follows. In Section 2, we
describe how to model real-time task systems. Assumptions
on the distributed system are also stated there. In Section
3, we discuss how to determine the modules that should be
replicated by using the critical path analysis. Section 4 de-
scribes our module replication and allocation scheme. The

objective function P N D (Z) is derived in Section 5 . Section
6 presents demonstrative examples, and the paper concludes
with Section 7.

2 Task and System Models
2.1 The Task System
Real-time tasks are either periodic or non-periodic. A peri-
odic task is invoked at fixed time intervals and constitutes
the base load of the system. Its attributes, such as the re-
quired resources, the execution time, and the invocation pe-
riod, are usually known a priori. A non-periodic task, on the
other hand, is invoked randomly in response to environmen-
tal stimuli, especially to unanticipated abnormal situations.
The main intent of this paper is to address the problem of
replicating and allocating the modules of periodic tasks.

Planning cycle: To analyze the behavior of periodic tasks,
we only need to consider the task behaviors within a specific
period, the task behaviors during which will repeat for the
entire mission lifetime. Such a period is called the planning
cycle of periodic tasks and is defined as the least common
multiple (LCM) L of {p, : i = 1 , 2 , ..., N T } , where p, is the
period of a task T, and NT is the total number of periodic
tasks in the system. That is, the planning cycle is the time
interval [to + kL, to + (k + 1) L) , where t o is the mission start
time, and k is a nonnegative integer.

Attributes and precedence constraints among mod-
ules: Each task can be decomposed into smaller units, called
modules. Each module MI requires e, units of execution time.
The execution time of a module could be its worst-case exe-
cution time or its exact execution time if known. Since ex-
tensive simulations and testing are required before putting
any critical real-time system in operation (e.g., fly-by-wire
computers), the system designer is assumed to have a good,
albeit sometimes incomplete, understanding of either the ex-
act or the worst-case execution time of each module.

The execution order of modules imposes precedence con-
straints among them. These precedence constraints are of
the form M, + M I , meaning that the completion of MI of
a task enables another module MI of the same task to be
ready for execution. On the other hand, tasks communicate
with one another to accomplish the overall control mission.
The semantics of message communication between two coop
erating tasks also impose precedence constraints between the
associated modules of these tasks. This kind of precedence
constraints is also of the form MI -+ MI except that MI and
M I now belong to different tasks.

If M, and MI are assigned to the same PN, communication
between them can be achieved via accessing shared mem-
ory. Overheads of such communications are usually much
smaller than those when M, and MI reside on different PNs.
Any two communicating modules that reside on two different
PNs will incur interprocessor communication (IPC) which
requires extra processing such as packetization and depack-
etization. IPC introduces a communication delay which is a
function of intermodule communication (IMC) volume (mea-
sured in data units) and the link delay between the two com-
municating PNs.

Task Flow Graph (TG): A T G is commonly used to de-

27

T1 VitJ~dSdliasllO
afmriu~t iont ims
p1512

I-]

T1

Figure 1: An example of task flow graph.

scribe the logical structure of modules, and the communi-
cations and precedence constraints among them. A T G is
composed of four types of subgraphs: chain, AND-subgraph,
OR-subgraph, and loop. See [l, 171 for a detailed account
of the four component subgraphs. Here we assume that the
probability for taking a particular branch in an OR-subgraph
or for repeating/exiting the body of a loop is independent of
that for others. These probability values could be set to the
worst-case values and can be obtained from the extensive
simulations and testing - usually required of critical real-
time systems - during the system-design phase. Fig. 1 (a)
shows a simple example of a TG.

Communication primitives: The semantics of the
most general communication primitive, SEND-RECEIVE-
REPLY, can be embedded into precedence relations between
modules. If module Ma of task Ti issues a SEND to task T,,
Ti remains blocked, or cannot execute module Me that fol-
lows Ma until the corresponding REPLY from T, is received.
If the module, M,, responsible for the corresponding commu-
nication activity on T,’s side executes a RECEIVE before the
SEND arrives, T, also remains blocked. For example, the
communication activities between tasks in Fig. 1 (a) can be
embedded into the precedence constraints between modules
as shown in Fig. 1 (b).

2.2 The Distributed System

is expressed as the product of the IMC volume (measured in
data units) and the link delay (measured in time units per
data unit) between the two PNs on which the commnnicat-
ing modules reside.’ The link delay could be the worst-case
communication delay experienced by messages in the under-
lying time-constrained communication subsystem. Here we
assume that the communication subsystem and the underly-
ing protocol support time-constrained communications, and
the worst-case delay experienced by messages is bounded and
predictable. Two examples of such communication subsys-
tems are the described in [19, 201. No restriction is imposed
on the topology of the communication subsystem.

3 Selection of Modules to Replicate
As discussed in Section 1, fault-tolerance can be achieved by
allocating module replicas to distinct PNs. However, it might
be intractable to replicate all the modules due to limited
system resources. Moreover, it might not be necessary to
replicate the modules that are not subject to stringent time
requirements and can tolerate the worst-case recovery delay.
That is, if the PN fails before or when some less time-criticd
modules are executed, we may employ, depending on the
fault type, different methods, like retry, checkpoint, rollback
recovery, and component replacement, to tolerate faults at
the cost of recovery/switching time overhead. Modules which
can tolerate such a recovery delay need not be replicated.

The distributed system considered here consists of K pro-
cessing x d e s (PNs). For ease Of algorithm description, all
PNs are assumed to have the same processing power and the
same set of resources. The time required by an IMC within a
PN is assumed to be negligible, while that between two PNs

specifically, let
start its execution, LC, be the latest completion time of Mi

1 The time for p&etjzatjon and dep&etjatjon is lumped into

be the earliest release time when M~

module execution time.

28

to ensure that all of its succeeding modules will meet their
latest completion times, e, be the execution time of M,, and
t,,, be the worstxase recovery time. If the interval between
the latest completion time, LC, , and the earliest release time,
r , , of a module, MI, is less than or equal to the sum of the
execution time, e,, of M,, and the worst-case error recovery
time t,,,, i.e.,

LC, - r, < e, + t,,,,
then M , cannot be completed in time (even with the use of
recovery/replacement methods) in case of a node failure, and
thus, should be replicated.

The key step lies in how to compute LC, and r, for each
module M,. We use the critical path approach to calcu-
late (1) r , from the invocation time of the task to which
M , belongs and which precedes M,, and (2) LC, from the
deadline of the task to which M, belongs and which succeeds
MI. Specifically, we first “transform” the TG which contains
probabilistic branches/loops into a deterministic one by re-
placing (1) an OR-subgraph with the corresponding AND-
subgraph (i.e., ignoring branching probabilities), and (2) a
loop with the cascaded n ~ , copies of its loop body, where n~
is its maximum loop count. Second, we number all mod-
ules in the (transformed) T G in acyclic order such that if
M , -+ MI then a < j . Then, we use the critical path a p
proach to calculate LC, and 7,. Let LC, be initially set to
the deadline of the task to which M , belongs. Then, modify
LC, as

(3.1)

w

Ihl

Figure 2: A n example showing how ri’s and LCi’s are
computed in the TG given in Fig. 1 (b).

LC, = min{LC,, mp{LC3-eJ : M , + M I } } , i = N-1 , ..., 1,r4 of M4 is calculated as

(3.2)
where N is the number of original modules to be allocated
within a planning cycle. Note that Eq. (3.2) computes back-
ward from I = N - 1 to i = 1, because M N has no successor
by the nature of acyclic order, and thus, the latest comple-
tion time of M N is exactly the deadline of the task it belongs
to. Similarly, the earliest release time, rl, of M , is obtained
by initially setting r , to the invocation time of the task to
which M, belongs. Then, modify r , as

r , = max{r,, max{rJ + el : MI -+ M , } } , 2 < i < N ,
3

(3.3)
where r1 is the invocation time of the task to which M1 be-
longs. All the modules that are subject to the same timing
constraints and satisfy Eq. (3.1) form a critical path. Note
that we do not consider the possible IPC communication
time between two modules, because (1) tr,, is assumed to be
much larger than the IPC time and thus dominate in the ex-
pression of Eq. (3.1), and (2) sequentially-executing modules
subject to the same tight timing constraints (and thus lie on
a critical path) tend to be allocated to the same PN by the
allocation scheme [17], and thus no IPCs are incurred on the
critical path. Also implied in Eqs. (3.1)-(3.3) is that at most
t,,, units of time can be “delayed” along any non-critical
execution path from an entry point to an end point in the
TG. The modules that satisfy Eq. (3.1) are then selected as
the modules that should be replicated. Each module replica
inherits the same execution time and timing/precedence con-
straints as its original.

Fig. 2 shows an example of how 7,’s and LC,’s are calculated
in the T G given in Fig. 1 (b). For example, the release time

and the latest completion t ime, LC12, of A412 is calcu-
lated as

LCl2 = min(LC12, LC13 - e13} = min(10, 12 - 1) = IO.

The execution path Mz -+ M3 -+ M4 --+ MS + Mg -+

Mlo ---* M11 -+ -+ M13 is critical with respect to T3’s
timing constraint, cannot tolerate any recovery delay, and
thus all the modules on this path should be replicated.

4 Module Replication and Allocation
Scheme

The module replication and allocation problem can be for-
mulated as that of maximizing PND(Z) over all possible al-
locations subject to

K

~ z l k = 1, for i E modules not replicated, and
k=l
h’

E Z t k = mm, for i E modules replicated,
k = l

where z,k = 1 if and only if M , is assigned to Nk, and mm
is the number of replicas yet to be determined. The prece-
dence constraints among modules are figured in the calcu-
lation of module release times and latest completion times,
and the timing constraints on modules/tasks are considered

29

when P N D (Z) is evaluated; for example, P N D (Z) = 0 if some
of the tasks miss their deadline under z. The expression for
PND(Z) will be derived in Section 5.

We use a module allocation (MA) scheme to solve the above
formulated problem with a determined value of mm. To get
the optimal assignment and scheduling for both original and
replica modules, and the corresponding optimal objective
value PGD, the M A scheme uses: (1) the branch-and-bound
(BB) method to implicitly enumerate all possible allocations
while effectively pruning unnecessary paths in the search
tree; and (2) the module scheduling (MS) scheme to schedule
the modules assigned to each PN subject to the precedence
constraints and the latest module completion times. The de-
scription and analysis of M S will be given in Section 5.1.
Also, since all replicas of a module inherit the same prece-
dence and timing constraints, and are hence subject to the
same2 module release time and completion time (i.e., latest
completion time - release time 5 e, + t,,,), they will not
be assigned to (and scheduled on) the same P N under an
optimal allocation. This is because a module can be invoked
only after its release time and must be completed by its lat-
est completion time, if some of them were assigned to the
same PN, they will not be able to complete in time, lead-
ing to PND = 0, since the interval between the release time
and the latest completion time is bounded by e; + t,,,. This
ensures that module replicas are allocated to distinct PNs.

To determine m,, we note that the larger m,, the better
fault-tolerance capability for the task system to deal with
node failures. However, excessive replicas may jeopardize
the timely completion of modules due to limited system re-
sources. To determine m, with respect to a pre-specified
P;:, we take the following steps:

Step 1. Initialize m, to be 2.
Step 2. Augment the task flow graph with m, replicas for

each critical module selected for replication. Each mod-
ule replica inherits the same execution time and prece-
denceltiming constraints as its original. Let the aug-
mented task graph be denoted as TG.

Step 3. Use the M A scheme to determine the assignment
and scheduling of all modules in TG, and moreover, the
objective value, P$D, achieved.

Step 4. If P$D > P;:, then mm +- m m + l , and go to Step
2. If P&D = PF:, then stop and mm is the number of
replicas for each selected module. Otherwise, stop and
m, t m, - 1 is the number of replicas that should be
used.

M A scheme: The M A scheme uses the BB method to
enumerate all possible solutions by ‘growing’ the correspond-
ing search tree. Each intermediate (leaf) vertex in the search
tree corresponds to a partial (complete) allocation. The
BB method is composed of two procedures: branching and
bounding. The branching process generates the child vertices
of an intermediate vertex z in the search tree, until an o p
timal solution is completely specified. Usually a dominance
relation is derived to limit the number of child vertices gen-
erated from each intermediate vertex z without eliminating

2without considering possible IPC communication time be-
tween two modules.

any path to an optimal solution. On the other hand, the
bounding process calculates a tight upper bound of the ob-
jective function (UBOF) for each vertex z based on which
one c m decide whether or not z may lead to an optimal solu-
tion. If the UBOF of a vertex E is less than the current best
objective value found in the search process, then z will never
lead to an optimal solution, and should thus be pruned.

The M A scheme works as follows. All modules in the aug-
mented task graph, TG, are numbered in acyclic order. The
scheme begins with a null allocation zo which corresponds to
the root of the search tree, and allocates modules in the or-
der of their acyclic numbering. Let TG(z) denote the set of
modules which are already allocated under z: and A N the
set of active vertices in the search tree to be considered for
expansion. A N is determined by the bounding test. Expand-
ing a vertex z € A N corresponds to allocating the module,
MI, with the smallest acyclic number in TG \ TG(z) to a
PN, where \ denotes the difference of two sets. Only those
PNs which survive the branching test will be considered as
candidates for allocating MI. The dominance relation used
in the branching test is as follows. MI can be invoked after
all its precedence constraints are met and must be completed
by its latest completion time, LC,, to ensure that all its suc-
ceeding tasks meet their deadlines. Hence, if (1) the idle
time of a PN, say Nk, during the interval [r,, LC,] is smaller
than e,, and (2) the module, say M,, scheduled to be exe-
cuted last on Nk in [r,, LC,] under a partial allocation E has
tighter timing constraints than MI (so no preemption on Nk
to ensure the completion of MI before LC,), then allocating
M, to Nk is likely to miss MI’s latest completion time. Thus,
Nk should not be a candidate PN for allocating MI, i.e., fails
the branching test.

The bounding test is then applied to those vertices expanded
from z by allocating MI to one of the candidate PNs. The
UBOF, &D(Y) , of each newly-generated (intermediate) ver-
tex y is calculated by scheduling modules E TG(y) with the
MS scheme described in Section 5.1 and evaluating PN&)
with the expression derived in Section 5.2. If a vertex y has
its P N D (~) greater than the currently best objective function
value P i D , it survives the bounding test, might possibly lead
to the optimal solution, and will be made active (i.e., put into
A N) and considered for vertex expansion in the next stage;
otherwise, it will be pruned. The algorithm terminates when
an optimal solution is found.

The branching and bounding tests used to achieve BB ef-
ficiency were treated in [17]. The interested readers are re-
ferred to [17] for adetailed account of them. The M A scheme
is outlined below.

MA Scheme:

Step 1. Generate the root, 20, of the search tree, which
corresponds to a null allocation. Set A N := (20).

Step 2. Set TG(z0) := 0, zWt := 20, and the objective
function value achieved by zWt, P$D = 0.0 = &D(zo) .

Step 3. While A N # 0 do
/* an optimal allocation has not yet been found */

3TG(2) = TG if I is a complete allocation.

30

Step 3.1. Node Selection Rule:
Step 3.1.1. "Select the vertex z E AN with the

largest P N D ~ Z) .
Step 3.1.2. If P N D (Z) < P A D , terminate M A ,

and zopt is the optimal solution. Otherwise,
set Mi to be the module E TG \ TG(z) with
the smallest acyclic number, and AN := AN\
{z).

Step 3.2. Branching Test:
Step 3.2.1. Conduct the branching test on each

PN. Only those PNs which survive the
branching test will be considered for allocat-
ing Mi.

Step 3.2.2. Expand z by generating its valid
child vertices, each of which corresponds to
allocating Mi to one of the surviving PNs.

Step 3.3. Bounding Test: For each newly generated
vertex y,

Step 3.3.1. Use MS to find an optimal schedule
f?r TG(y) under y and calculate the UBOF,
PN D (Y) .

Step 3.3.2. If &D(Y) 5 PCD, then prune y.
Otherwise, the following two cases are con-
sidered:
Case 1. If y is a partial allocation, then set

AN := AN U {y}, i.e., make y an active
vertex.

Case 2. If y represents a complete assign-
ment, &D(Y) is the actual PND achieved
under y. Since p ~ q (y) > PAD, set
zOpt := y and PAD = P N D (Y) to indicate
that y has now become the best alloca-
tion found thus far.

5 Evaluation of P,vD(x)
We first describe how MS schedules all the modules assigned
to a PN, say Nk, under z to minimize the maximum mod-
ule tardiness subject to task release times and precedence
constraints. By applying MS to each PN, we can obtain a
module schedule under z. Second, we calculate the proba-
bility P(Tt is timely completed under z). P N D (Z) can then
be calculated from P(Tt is timely completed under z), VTt.

5.1 Module Scheduling Scheme
To facilitate the description and analysis of MS, we intro-
duce the following notations:

0 TG,: a component task graph of TG. If TG contains
loops or OR-subgraphs, it will be replaced by a set of
component task graphs without loops and OR-graphs
before applying MS (to be discussed in Section 5.2).
For the time-being, we only need to know that TG,
contains neither loops nor OR-subgraphs.

0 TG,(z): the set of modules E TG, under z.
0 S~(Z) = { M , : Z i k = 1): the set of modules assigned to

C,: the completion time of M,.
0 f,(C,): the cost incurred by completing M, at C,.

Nk under z.

0 8,: the modified execution time of M , , where

if M , is scheduled upon t, i, = {
C, - t, otherwise.

8, is used to include the effect of queueing M , on the
release times of modules that succeed M,.

0 comlJ(z): the IMC time bet. M , and M3 under z.
0 dt3: the IMC volume (measured in data units) between

M, and M,.
0 tmn: the link delay (measured in time units per data

unit) of link lmn.
0 n(k, e): the number of edge-disjoint paths between Nk

and Nt,
0 I (m , n, k, e) : the indicator variable such

that I(m,n, k , e) = 1 if em,, lies on one of the n(k,!)
edge disjoint paths between Nk and Nt.

I(m, n, k, e) . tmn: the delay (in
K K

Ykt = 2
n(k, e) m=l n=l

time units per data unit) bet. Nk and Nt.
0 B: the minimal set of modules that are processed

without any idle time in [r (B) , c (B)) , where r (B) =
minM,EBr,, c(B) = r (B) + e (B) , and e (B) =

0 dg , : the outdegree of M, within a block of modules
C M , E B e l *

under consideration.

Specifically, Isk (z) I modules (possibly belonging to different
tasks) are to be scheduled preemptively on Nk. Each module
M , becomes available upon its release at time t, which is
initially set to the invocation time of the task to which M,
belongs. If M3 -* M, then M , cannot start its execution
before the completion of M,, regardless whether M , and M ,
are assigned to the same PN or not. Execution of a module
may be preempted and then resumed later. Associated with
each M, is a monotone nondecreasing cost function f,(C,).
We want to find a schedule for the modules in Sk(z) such
that fmar(Sk(2)) = maxM,€Sk(=) f,(C,) is minimized. The
schedule with the minimal cost fAar(Sk(Z)) is said to be an
optimal schedule of sk(z).

Before proceeding to describe and analyze MS, we define the
cost function f,(C,):

A

where LC, is the latest completion time of M, with com-
munication times considered now, and C, is the completion
time of M, determined by MS. If C, > LC,, a positive cost
will occur. Thus, with the definition of this cost function,
minimizing the maximum cost function is equivalent to min-
imizing the maximum tardiness of modules in TG,.
To obtain LC,, of M, E TG,, let LC, be initially set to the
deadline of the task to which M, belongs, and then modify
LC, as

LC, = min{LC,, min{LC, - e, - com,,(r) : M , -+ M,}},
3

t = Nc - 1, ..., 1, (5 .2)

31

where the modules are numbered in acyclic order, N, is the
number of modules in TG,, and

com,,(z) =
if M, -+ Nk and M, + Nk under z,
if M, -+ Nk and M, -+ Nt under 2. d,,&C, { O’

When z is a partial allocation and either M, or M, or both
have not yet been assigned, com,,(z) is (optimistically) as-
sumed to be 0.

To obtain r,, of M, E TG,(z), let r, be initially set to the
invocation time of the task to which M, belongs, and then
modify r, as

r, = max{r,, max{r, + 8, + com,,(z) : M, -+ M,}},
3

2 I I Nc, (5.3)

where r1 is the invocation time of the task to which MI
belongs, and i, = max{C, - r,, e , } is the modified execution
time which equals the sum of M,’s execution time, e , , and
M,’s queueing time (if M, is not scheduled to be executed
upon its release). 6, is used to include the effect of queueing
M,’s preceding module, M, , on M, ’s release time.

Note that the modified execution times of all M,’s preceding
modules must be available prior to the calculation of r , . This
is achieved by allocating the modules in the order of their
acyclic numbers. When an intermediate vertex y survives
the bounding test and is put in AN, all modules in TG,(y)
would have been scheduled and their completion times (and
thus modified execution times) would have been determined
in the bounding process in the previous stage (Step 3.3 in the
M A scheme in Section 4). Thus, when z is expanded from
its parent vertex y by adding the new assignment of M,, the
schedules, completion times and modified execution times
of all preceding modules of M, must have been determined.
So, all the 2,’s needed in Eq. (5.3) are known at the time of
calculating TI.

Now, we describe MS, the theoretical base of which is
grounded on the result of [21]. First, we arrange the modules
E &(E) in the order of nondecreasing release times. We then
decompose &(Z) into blocks, where a block B C &(Z) is de-
fined as the minimal set of modules processed without any
idle time from r(B) = minM,EB r, until c(B) = r(B) + e (B) ,
where e (B) = x M , E B e , . That is, each M, B is either
completed no later than r(B) or not released before c (B) .
Obviously, scheduling modules in a block B is irrelevant to
that in other blocks, so we can consider each block separately.
Let dg, denote the outdegree of M, within B, i.e., the number
of modules it4, E B such that M, -+ M,. For each block B,
we first determine the set b {M, : M, E B , dg, = 0 } , i.e.,
modules without successors in B , and then select a module
M , such that

i.e., M, has no successor within B and incurs a minimum
cost if it is completed last in B. (In case of a tie, we choose
the module with the largest acyclic number.) Now, consider
an optimal schedule for the modules in B subject to the

\

0 1 2 3 4 S 6 7 8 9 10 I 1 12 1 3 1 4 IS 16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

mi ac id)

Figure 3: An example showing how the MS scheme
schedules the modules assigned to a P N .

restriction that M, is processed only if no other module is
waiting to be processed. This optimal schedule consists of
two parts:

Schedl: An optimal schedule with the cost fAol(B -
{M,}) for the set B - {M,} whiFh cydd b: decom-
posed into a number of subblocks B I , Bz, ..., Bb.

Sched2: A schedule for M,, which is given by [r (B) , c (B)] -
u ~ = l [t (B ,) , c (B ,)] , where r(B) = minM,EBr. and
c (B) = r(B) + e (B) with e (B) = x M , E B e , .

For this optimal schedule, we have

fAal(B) with the above restriction =

max{fm(c(B)), f k ~ (B - {Mm})} 5 fko=(B)(5.5)
where the last
inequality comes from: (i) fGa=(B) = min maxM,EB f , (C,)
2 minM,EB fl(c(B)) = minM,€8 f,(c(B)) = fm(c(B)) by the
way was constructed from B and Eq. (5.4); (ii) Since
B - {Mi} is a subset of B, fGal(B) 2 f&,(B - {Mt}),
VM,.
It follows from Eq. (5 . 5) that there exists an optimal schedule
in which M, is scheduled only if no other module is waiting

32

to be scheduled. By repeatedly and recursively applying the 5.2 Calculation of PND(Z)
above procedure to each of the subblocks BI, B z , ..., B b , we
obtain an optimal schedule for B . The rationale behind MS
is that a P N is never left idle when there are modules ready
to execute, and by virtue of the cost function defined, it is
always the module Mi with the smallest LC, that will be
executed among all released modules.

We are now in a position to calculate P(Tt is timely com-
pleted under 2). Conceptually, given TG and z, we can
determine the set, SI , (Z) , of modules E TG assigned to Nk
and then use MS to schedule modules in S I , (Z) , V k . The
completion time(s) of the last module(s) in Tt n TG under
these schedules determines whether Tt can be completed in

Fig. 3 gives an illustrative example showing how MS sched-
ules the modules assigned to a PN. t, and LC, , 1 5 i 5 6,
are assumed to have been computed from the entire task
graph and are given in the figure. By ordering the mod-
ules according to their increasing release times, we obtain
one block: B1 = {MI, Mz, M3, M4, M s , M6} from [O , 111 OR-subgraph.

time or not. However, since TG may contain loops and/or
OR-subgraphs, the release times and the latest completion
times of modules needed in Step 3 of MS may not be readily
determined. Moreover, one cannot determine which mod-
ule of T(to execute last if the last component in Tr is an

(i.e., s(B1) = 9, e(&) = 11, and c(B1) = 11). More-

processed only when no other modules are waiting since
Lc6 > LC4 > LC5. B1 - { M e } consists of one sub-

&' = { M 1 l M21 M3' M41 M5) from [0'91' B1r =
I M 3 ? M 4 , M 5 } , and we M4 to be processed last since
Lc4 > Lc3 > Lc5' - consist? Of One subblock:
B1ll = {M17 M Z , M 3 r M 5 } from to' *I' = lM3' M5}'
and we select M3 to be processed last since LC3 > LC5. Now
Bill - { M 3) consists Of two subblocks: Bll l l = * z)
from [0,3] and B l l l ~ = { M 5 } from [4,6]. Blll2 itself r e p
resents an optimal schedule, since Blllz consists of a single
module. For 81111, we have Bllll = { M I , M 2 } and select
MI to be processed last since LCl > L c 2 . The final opti-
mal schedule for Bill is obtained by combining the optimal
schedule for Blll l and B l l l ~ (Schedl) and the schedule for
M3 (Sched2) which consists of [O , 81 - [O , 31 U [4,6]. The
resulting schedule for B1 is depicted in the last row of Fig. 3.

The MS scheme along with the time complexity in each step
is summarized below.

MS Scheme:

Component Graphs: To resolve the above problems, we

ing all the timing and probabilistic properties of TG. We
first calculate the latest completion time, LC, , of MI E TG
using Eq. (5.2), assuming that (Al) Every OR-subgraph fol-
lowing M , , if any, is viewed as an AND-subgraph by ignoring
branching probabilities; (A2) Every loop La following M , , if
any, is replaced by a cascade of n~~ copies of its loop body,
where nL, is the maximum loop count. With A1 and A2,
the LC,'s calculated is the worst-case latest completion time.
Second, we each loop L a E TG with the cascaded
m copies of its loop body with probability (1 - qa)q,"-'>
where 1 5 m 5 n ~ ~ , and qo is the looping-back probability
of L Q . The last

Of M s bears the latest
completion time L c , -1 .e(L,), where e(L,) is the execution
time of the loop body. Also, we represent each OR-subgraph
o b E TG with its n-th branch with probability q b , n , where
1 5 5 n o b , qb,n is the branching probability of the n-th
branch of Ob, and no, is the number of branches in o b .

The TG can then be represented by the set of all possible
combinations - which is termed as the set of component

OR-subgraph o b in TG, then there are a total of n~~ x no,
component graphs of TG, and with probability p c = (1 -
qa)q,"-' . q b , n , the TG is represented by the TG with La
replaced by the cascaded m copies of its loop body and Ob
replaced bY its n-th branch. (One can trivially extend this
to the case where there are more than one loop and/or OR-
subgraph.)
For each component graph, TG,, of TG, we then calculate
the release time, s1, of M , E TG, using Eq. (5.3). Using the
7,'s and LC,'s determined above, we can apply Steps 3-5 in
MS to find the best schedules for all modules in TG,. Note
that in a component graph TG,, the release time, T , , and
the number of times M , is executed are both fixed, making
it Possible to

Calculation of PND(c): We now calculate the probabil-
ity P(T(is timely completed under z), VTc E TG,. Let the
critical time of M , E Tc, D,, be defined as the latest time M,
should be completed for the timely completion of only the

LC, except that the precedence relations, M, + M, when
M, # Tr, are ignored. That is, let D, be initially set to the
deadline of Tr to which M , belongs. Then, D, is modified as:

D, = min{D,, min {D, - e, - com,,(z) : M , -+ M,)) ,

Over, we have B1 = {M4> M 5 7 M 6) and M6 to be must eliminate the loops/OR-subgraphs in TG while retain-

Of M , E La bears the Lc,
while the (nLa - J)-th

Step 1: Compute the latest completion time Lctj 1 5 ' 5 task graphs. For example, if there exists a loop La and an
N , , for TG,. This computation requires O(N:) time.

Step 2: Compute the release time T , for M , E TG,(z) with
respect to their precedence constraints. This computa-
tion, in the worst case, requires O(N:) time.

Step 3: Construct the blocks B1, B Z , ..., Bb of S I , (Z) for
every NI, by ordering the modules E S I , (Z) according
to their nondecreasing release times. This ordering re-
quires O(ISI , (Z)(. l o g (S k (z) l) time, V k .

Step 4: For each block B,, 1 5 i 5 b, update the outdegree,
dg, , ofevery M, E B,. This update requires o(IS~,(z)l~)
time for all B,'s c SI , (Z) .

Step 5: For each block B,, select M , E B, subject to
(5.4), determine the subblocks of B, - {M,}, and

construct the schedule for M , as given in Sched2.
Then, update the dg, of every M, E B, - {Mm} with
respect to the subblock of E, - {M,,,} to which M, be-
longs. By repeatedly applying Step 5 to each of the
subblocks of B, - {M,}, one Can obtain an optimal

tions of Step 5 is bounded by O(lS~,(z)l').

into

schedule. The time complexity for all repeated applica- task Tf . Note that D, can be obtained in the Same as

Since the time complexity associated with each step is poly-
nomial, the MS scheme is a polynomial scheme. MJ ET(

33

i = Nc - l , N c - 2 ,..., 1. (5.6)

Obviously, D, 2 LCi. Also, let

f" {Mi : Mi E TtnTG,,dgi = 0 w.r.t. T'nTG,) (5.7)

be the set of modules without any successor in Tt n TG,.
Then, the probability P(Tt is timely completed under z in
TG,) can be expressed as

P(Tt is timely completed under I in TG,) = n b(Di - Ci),

Mi €?t

(5.8)
where a(-) is the step function, i.e., a(t) = 1 for t >_ 0, and
6(t) = 0 otherwise. Consequently,

P(Tt is timely completed under z) = (5.9)

p, . P(Tt is timely completed under z in TG,),
{ T G)

where pc is the probability that TG is represented by TG,,
and {TG,} is the set of component graphs of TG, and finally

PIVD(Z) = n P(T' is timely completed under z). (5.10)
NT

I= 1

6 Numerical Examples
We randomly generated both system and task parameters
in our numerical experiments. The number of PNs in the
distributed system is varied from 3 to 40, and the network
topology is arbitrarily generated. The link delay, tm,, asso-
ciated with Lm, is exponentially distributed with mean
where F is the mean module execution time. The number of
modules to be allocated is vaned from 4 to 50. The execu-
tion time of a module is exponentially distributed with mean
1.0 unit of time. The IMC volume between two communicat-
ing modules is uniformly distributed over (0,101 data units.
The worst-case recovery time t,,, is exponentially distributed
with mean 1.0 unit of time. Pr: is assumed to be 1 -
The precedence constraints and the timing requirements of
the TG are also randomly generated.

Before running experiments, we eliminated the TGs which
were definitely infeasible. Infeasibility is detected by calcu-
lating release times and latest completion times of all mod-
ules, while ignoring all IPC times. If the interval between
the latest completion time and the release time is less than
the execution time for some module(s) in 4 the component
graphs of a TG, this TG is infeasible, and is not considered
any further. All experiments were performed on a SPARC
station running the SUNOS 4.1.2 operating system.

The proposed scheme strikes a balance between the fault-
tolerance achieved by replicating modules and the system
capacity available for the timely completion of all tasks in
the TG. Consider the example of replicating and allocating
the TG in Fig. 1 (b) to a distributed system represented by a
complete graph of 3 PNs. The worst-case recovery time t,,,
is 1.2 units of time. The modules that should be replicated
are those belonging to T2 and T3, since the execution path
M2 -+ M3 -+ M4 -+ Ma -+ Mg 4 MIO + M11 is critical

I2

w - dl-s.0. d M o . 6 3 4 0 . d4-9.0

w o a e - tims: 1.0
LinL dday: 1.0

Figure 4: (a) The task graph and the system configura-
tion used in Section 6.

subject to T3's deadline and cannot tolerate any recovery de-
lay. The same execution path cannot tolerate any IPC delay
either, and hence, the M A scheme allocates all the modules
that lie on this critical path to the same P N . Moreover, the
system can accommodate up to 2 replicas of each of the mod-
ules on the critical path while ensuring the timely completion
of all tasks. That is, the best degree of module replication
is 2, and the best allocation is to assign modules E TI to
NI, modules E T2 U T3 to N2, and the replicated modules of

Another interesting finding is that heavily communicating
modules may not necessarily be allocated to the same PN.
For example, consider replicating and allocating the TG in
Fig. 4(a) to a distributed system of 4 PNs. The attributes
of the TG are specified in the figure. The only critical path
is M2 -* M3, and thus M2 and M3 are replicated. As shown
in Fig. 4(b), the best degree of module replication is 2, and
the M A scheme allocates MI, Me and M7 to N I ; M4, Ma,
MS and MIO to N2; M2, Ma and Ms to N3, and the replicas
of M2 and M3 to N4 so that all modules meet their latest
completion times. Although the IMC between M, and Ms
is twice more than the others, M4 and M5 are allocated to
different PNs. This is mainly because T2 has a less tight
timing constraint than others and can thus allow IPCs among
its modules. This observation is in sharp contrast to the
common notion that heavily communicating modules should
always be co-allocated [18].

By virtue of the BB method, the M A scheme always yields
the best allocation given both the original and replica mod-
ules. Moreover, as reported in [17], the M A scheme finds
it at tractable computation costs for task systems with less
than 50 modules and/or distributed systems with less than
40 PNs, and usually no more than 9% of the search tree ver-
tices were visited before finding the best allocation for N 2 6
and A' 2 3. This suggests that both the dominance relation

T2 U T 3 to N3.

34

0 1 2 3 4 5 6 7
I 1

MI m6 M)
r1=Q.o *.O n4.0
LCI=Z.O IC6d.O LCl4.0

Nl:

Figure 4: (b) Module replication, allocation and sched-
ule for the configuration in Fig. 5 (a).

and the UBOF derived effectively prune unnecessary search
paths at early stages of the BB process.

7 Conclusion

requirements,” IEEE Trans. on Computers, vol. C-38,
pp. 1110-1123, Aug. 1989.

[4] K. G. Shin and C.-J. Hou, “Analytic models of adaptive
load sharing schemes in distributedreal-time systems,” IEEE
Trans. on Parallel and Distributed Systems, vol. 4, pp. 740-
761, July 1993.

[5] P.-Y. Ma, E. Y. S. Lee, and M. Tsuchiya, “A task allocation
model for distributed computing systems,” IEEE Trans. on
Computers, vol. C-31, pp. 41-47, Jan. 1982.

[6] H. S. Stone, “Multiprocessor scheduling with the aid of
network flow algorithms,” IEEE Trans. on Software Eng.,

[7] V . M. Lo, “Heuristic algorithms for task assignment in dis-
tributed systems,” IEEE Trans. on Computers, vol. c-37,

[8] J. A. Bannister and K. S. Trivedi, “Task allocation in fault-
tolerant distributed systems,” Acta Informatica, vol. 20,

[9] A. N. Tantawi and D. Towsley, “Optimal static load balanc-
ing in distributed computer systems,” Journal of the ACM,
vol. 32, pp. 445-465, Apr. 1985.

[lo] T. C. K. Chou and J. A. Abraham, “Load balancing in dis-
tributed systems,” IEEE Trans. on Software Engineering,

[ll] C. C. Shen and W. H. Tsai, “A graph matching approach
to optimal task assignment in distributed computing sys-
tems using a minimax criterion,” IEEE Trans. on Comput-

vol. SE-3, pp. 85-93, Jan. 1977.

pp. 1384-1397, NOV. 1988.

pp. 261-281,1983.

vol. SE-8, pp. 401-422, July 1982.

ers, vol. 6-34, pp. 197-203, Mar. 1985.

dence relations for distributed real-time systems,” IEEE
Trans. on Computers, vol. 36, pp. 667-679, June 1987.

[13] W. W. Chu and K. K. Leung, “Module replication and as-
signment for real-time distributed processing systems,,, Pro-
ceedings of the IEEE, vol. 75, pp. 547-562, May 1987.

We have addressed the problem of replicating and allocating

ject to precedence and timing constraints, and intermodule
communications. The probability of no dynamic failure is
used as the objective function to ensure all real-time tasks
to be completed by their deadlines. The modules that have

periodic task modules in a distributed real-time system sub- [l2] W. W. Chu and L’ M‘ T‘ ‘ITask and

stringent timing constraints and cannot tolerate a worst-case
recovery delay are selected for replication using the critical
path analysis. The optimal number of replicas of each se-
lected module (with respect to a pre-determined Py;) and
the assignment/scheduling of both original and replica mod-
ules are then determined by the MA scheme. The MA
scheme not only assigns modules to PNs, but also uses the
MS scheme to schedule all modules assigned to each PN.

An interesting finding from our numerical simulations is that
sequentially-executing modules subject to the same timing
constraints are usually chosen to be replicated. Moreover,
these modules also tend to be allocated to the same PN
by the MA scheme. Also, the common notion in general-
purpose distributed systems that heavily communicating
modules should be co-located [18] may not always be a p
plicable to real-time systems. Only in case when there are
enough resources to meet the timing requirements in the TG,
the MA scheme assigns modules to minimize IPCs.

References
[l] D.-T. Peng and K. G. Shin, “Modeling of concurrent task ex-

ecution in a distributed system for real-time control,” IEEE
Trans. on Computers, vol. C-36, pp. 500-516, Apr. 1987.

[2] K. G . Shin and Y.-C. Chang, “Load sharing in distributed
real-time systems with state change broadcasts,” IEEE
Trans. on Computers, vol. C-38, pp. 1124-1142, Aug. 1989.

[3] K. Ramamritham, J. A. Stankovic, and W. Zhao, “Dis-
tributed scheduling of tasks with deadlines and resource

[14] D.-T. Peng and K. G. Shin, “Assignment and scheduling of
communicating periodic tasks in distribu’ed real-time sys-
tems,” Proc. of 9th Int’l Conf. on Distvrbuted Computing
Systems, pp. 190-198, June 1989.

[15] S. M. Shatz and J.-P. Wang, “Model and algorithms for
reliability-oriented task-allocation in redundant distributed-
computer systems,” IEEE Trans. on Reliability, vol. 38,
pp. 16-27, Apr. 1989.

[16] K. G. Shin, C. M. Krishna, and Y. H. Lee, “A unified
method for evaluating real-time computer controllers its a p
plication,” IEEE Trans. on Automatic Control, vol. AC-30,
pp. 357-366, Apr. 1985.

[17] C.-J. Hou and K. G. Shin, “Module allocation with timing
and precedence constraints in distributedreal-time systems,”
IEEE Proc. 13th Real-Time Systems Symposium, pp. 146-
155, Dec. 1992.

[18] K. Ramamritham, “Allocation and scheduling of complex pe-
riodic tasks,’’ IEEE Proc. of 10th Int’l Conf. on Distributed
Computing Systems, pp. 108-115, May 1990.

[19] Q. Zhengand K. G. Shin, “On the abilityof establishingreal-
time channels in point-to-point packet switched network.”
IEEE Transactions on Communications, March 1994.

[20] J. K. Strosniderand T. E. Marchok, “Responsive, determinis-
tic IEEE 802.5 token ring scheduling,” Journal of Real-Time
Systems, vol. 1, pp. 133-158, Sept. 1989.

[21] K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. G. R.
Kan, “Preemptive scheduling of a single machine to min-
imize maximum cost subject to release dates,” Operations
Research, pp. 381-386, March-April 1983.

35

