
Replication and Allocation of Task Modules in Distributed 
Real-Time Systems 

ChaeJu Hou 

Computer Engineering Division 
Dept. of Elect. and Computer Eng. 

The University of Wisconsin 
Madison, WI 53705- 1691 

jhou@ece. wise. edu 

ABSTRACT 
This paper addresses the problem of replicating and allocat- 
ing periodic task modules to processing nodes (PNs) in dis- 
tributed real-time systems subject to task precedence and tim- 
ing constraints. The probability that all tasks can be com- 
pleted before their deadlines - termed as the probability of no 
dynamic failure (PND) - is used as the performance-related 
reliability measure. Modules which are critical in meeting 
task deadlines are then selected using the critical path anal- 
ysis. To provide the timing correctness embedded in P N D ,  
both original and replicated task modules are not only as- 
signed to PNs, but also scheduled on each PN so as to meet 
the deadlines of all tasks. 

The module allocation scheme uses (1) the branch-and- 
bound method to implicitly enumerate all possible allocations 
while efjectively pruning unnecessary search paths; and (2) 
the module scheduling scheme to schedule the modules as- 
signed to each PN. Several numerical ezamples are presented 
to illustrate the proposed scheme. 

1 Introduction 
There has been an increasing need of timely and dependable 
services for such embedded real-time systems as aircraft, in- 
telligent vehicles, automated factories, and industrial process 
controls. Such applications are usually realized by executing 
a number of cooperating/communicating tasks before their 
deadlines imposed by the corresponding mission/function. 
The availability of inexpensive, high-performance processors 
and high-capacity memory chips has made distributed com- 
puting systems a natural candidate for the realization of 
these real-time applications. 

One can make the execution of both periodic and aperiodic 
tasks not only logically correct but also completed before 
their deadlines by (1) partitioning periodic tasks into a set of 
communicating modules, (2) statically allocating these mod- 
ules (and possibly their replicas) to processing nodes (PNs) 
in a distributed system, and (3) dynamically distributing 
aperiodic tasks as they arrive according to the load state of 
each PN. 

Partitioning tasks is usually based on some application- 
dependent criterion and the system architecture under con- 
sideration, while the dynamic distribution of aperiodic tasks 
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is usually treated aa an adaptive load sharing problem. Both 
of these are not the intent of this paper; see [l] for an example 
of partitioning real-time tasks, and see [2, 3, 41 for examples 
of dynamic load sharing in distributed real-time systems. In 
this paper, we consider instead the issue of replicating and 
allocating periodic task modules to  PNs in a distributed sys- 
tem 80 as to fully utilize the inherent parallelism, capacity, 
and reliability of the system. 

The problem of allocating tasks/modules in a distributed sys- 
tem has been studied by many researchers with respect to 
different objective functions. These objective functions can 
be roughly grouped into four categories: (01) minimization 
of total computation and communication times in the system 
[S, 6, 71; (02) load balancing by minimizing the statistical 
variance of processor utilization [8, 91 or by maximizing the 
total rewards in the semi-Markov process that models the 
computer system [IO]; (03) minimization of maximum com- 
putation and communication times on a PN, the objective 
function of which was termed the mon'mum turnaround time 
in [ll], the bottleneck processor time in [12, 131, and the 
system hazard in [14]; (04) maximization of the reliability 
function of both PNs and communication links [15]. 

0 1  and 0 2  are suitable for a distributed system execut- 
ing multiple simultaneous non real-time applications, where 
maximizing the total throughput or minimizing the average 
response time is the main concern. However, for real-time 
systems, the timing correctness of each individual task must 
be considered, because failure to correctly complete a task 
in time could cause a catastrophe. Thus, 03, which is based 
on the worst-case behavior, is more suitable for assessing 
the timeliness of real-time systems. In this paper, we use 
the probability, P N D ,  that  all tasks within a planning cycle 
are completed before their deadlines (which was termed in 
[16] as the probability of no dynamic failure) as the objec- 
tive function. The planning cycle is the time period within 
which the task-invocation behavior repeats itself throughout 
the entire mission, and thus completely specifies the entire 
task system. How to incorporate 0 4  into the probability of 
dynamic failure has been treated in [17]. 

Module allocation schemes must be equipped with the ability 
to tolerate node failures by allocating replicated modules to 
distinct PNs. The outputs (or the completion notifications) 
of the replicas of a module are sent to all of its successor mod- 
ules. A module is enabled when at least one replica of each 
of its predecessors is completed. If transient or permanent 



faults occur to  a PN, the replicas of all the modules assigned 
to  this PN continue to be executed on some other healthy 
PNs so that the subsequent modules can be completed in 
time. When replicating modules in order to maximize PND 
and improve system reliability, one must consider (1) which 
modules to  be replicated, e.g., those modules whose com- 
pletion is critical to  the timely completion of tasks; (2) how 
many copies of each selected module, i.e., the number of 
copies needed for each critical module should be determined 
by system capacity, the minimum PND that should be guar- 
anteed, and the degree of fault-tolerance achieved; (3) the 
assignment and scheduling of the replicas on PNs. Our ob- 
jective is to  allocate replicated modules to distinct PNs to 
provide a guaranteed PND in the presence of node failures 
while fully utilizing the inherent parallelism and capacity of 
the system. 

We first model the task system with a task flow graph (TG) 
which describes computation and communication modules as 
well as the precedence constraints among them. Second, we 
use the critical path analysis to  determine the modules that 
are critical in completing tasks in time, and hence, should be 
replicated. Then, we use the module replication and alloca- 
tion scheme to  determine the optimal number of each critical 
module's replicas subject to  a pre-specified PND value, and 
to search for the optimal module allocation for all original 
and replica modules. The computational complexity is re- 
duced by deriving an upper bound of the objective function 
with which we determine whether to  expand or prune inter- 
mediate vertices (corresponding to  partial allocations) in the 
state-space search tree. On the other hand, because of the 
timing aspects embedded in the objective function, the per- 
formance of any resulting assignment strongly depends on 
how the assigned tasks/modules are scheduled. Thus, when 
we evaluate an upper-bound (exact) objective function for 
a partial (complete) allocation, we use a module scheduling 
scheme (with polynomial time complexity) to  schedule all the 
modules assigned to  a PN so as to  minimize the maximum 
tardiness of modules subject to  precedence constraints. 

Ramamritham [18] used a heuristic-directed search technique 
with tunable design parameters to  (1) determine whether 
or not a group of communicating modules should be as- 
signed to the same PN, and (2) allocate different groups of 
modules t o  PNs and schedule them with respect to  their 
latest-start-times and precedence constraints. As compared 
to  this work, we use a finer granularity in modeling the 
real-time task system. For example, we include probabilis- 
tic branches/loops in task graphs and allow communications 
between periodic tasks. Although Ramamritham also con- 
sidered fault-tolerance via module replication, the degree of 
replication is pre-determined in an ad hoc manner without 
any rigorous justification. By contrast, we focus on module 
replication and allocation in a well-defined analytic frame- 
work with PND as the objective function. 

The rest of the paper is organized as follows. In Section 2, we 
describe how to  model real-time task systems. Assumptions 
on the distributed system are also stated there. In Section 
3, we discuss how to  determine the modules that should be 
replicated by using the critical path analysis. Section 4 de- 
scribes our module replication and allocation scheme. The 

objective function P N D ( Z )  is derived in Section 5 .  Section 
6 presents demonstrative examples, and the paper concludes 
with Section 7. 

2 Task and System Models 
2.1 The Task System 
Real-time tasks are either periodic or non-periodic. A peri- 
odic task is invoked at  fixed time intervals and constitutes 
the base load of the system. Its attributes, such as the re- 
quired resources, the execution time, and the invocation pe- 
riod, are usually known a priori. A non-periodic task, on the 
other hand, is invoked randomly in response to  environmen- 
tal stimuli, especially to  unanticipated abnormal situations. 
The main intent of this paper is to  address the problem of 
replicating and allocating the modules of periodic tasks. 

Planning cycle: To analyze the behavior of periodic tasks, 
we only need to  consider the task behaviors within a specific 
period, the task behaviors during which will repeat for the 
entire mission lifetime. Such a period is called the planning 
cycle of periodic tasks and is defined as the least common 
multiple (LCM) L of {p, : i = 1 , 2 ,  ..., N T } ,  where p, is the 
period of a task T, and NT is the total number of periodic 
tasks in the system. That is, the planning cycle is the time 
interval [ to  + kL, to  + (k + 1 ) L ) ,  where t o  is the mission start 
time, and k is a nonnegative integer. 

Attributes and precedence constraints among mod- 
ules: Each task can be decomposed into smaller units, called 
modules. Each module MI requires e, units of execution time. 
The execution time of a module could be its worst-case exe- 
cution time or its exact execution time if known. Since ex- 
tensive simulations and testing are required before putting 
any critical real-time system in operation (e.g., fly-by-wire 
computers), the system designer is assumed to have a good, 
albeit sometimes incomplete, understanding of either the ex- 
act or the worst-case execution time of each module. 

The execution order of modules imposes precedence con- 
straints among them. These precedence constraints are of 
the form M, + M I ,  meaning that the completion of MI of 
a task enables another module MI of the same task to  be 
ready for execution. On the other hand, tasks communicate 
with one another to accomplish the overall control mission. 
The semantics of message communication between two coop  
erating tasks also impose precedence constraints between the 
associated modules of these tasks. This kind of precedence 
constraints is also of the form MI -+ MI except that MI and 
M I  now belong to different tasks. 

If M, and MI are assigned to  the same PN, communication 
between them can be achieved via accessing shared mem- 
ory. Overheads of such communications are usually much 
smaller than those when M, and MI reside on different PNs. 
Any two communicating modules that reside on two different 
PNs will incur interprocessor communication (IPC) which 
requires extra processing such as packetization and depack- 
etization. IPC introduces a communication delay which is a 
function of intermodule communication (IMC) volume (mea- 
sured in data units) and the link delay between the two com- 
municating PNs. 

Task Flow Graph (TG): A T G  is commonly used to de- 
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Figure 1: An example of task flow graph. 

scribe the logical structure of modules, and the communi- 
cations and precedence constraints among them. A T G  is 
composed of four types of subgraphs: chain, AND-subgraph, 
OR-subgraph, and loop. See [l, 171 for a detailed account 
of the four component subgraphs. Here we assume that the 
probability for taking a particular branch in an OR-subgraph 
or for repeating/exiting the body of a loop is independent of 
that for others. These probability values could be set to the 
worst-case values and can be obtained from the extensive 
simulations and testing - usually required of critical real- 
time systems - during the system-design phase. Fig. 1 (a) 
shows a simple example of a TG. 

Communication primitives: The semantics of the 
most general communication primitive, SEND-RECEIVE- 
REPLY, can be embedded into precedence relations between 
modules. If module Ma of task Ti issues a SEND to task T,, 
Ti remains blocked, or cannot execute module Me that fol- 
lows Ma until the corresponding REPLY from T, is received. 
If the module, M,,  responsible for the corresponding commu- 
nication activity on T,’s side executes a RECEIVE before the 
SEND arrives, T, also remains blocked. For example, the 
communication activities between tasks in Fig. 1 (a) can be 
embedded into the precedence constraints between modules 
as shown in Fig. 1 (b). 

2.2 The Distributed System 

is expressed as the product of the IMC volume (measured in 
data units) and the link delay (measured in time units per 
data unit) between the two PNs on which the commnnicat- 
ing modules reside.’ The link delay could be the worst-case 
communication delay experienced by messages in the under- 
lying time-constrained communication subsystem. Here we 
assume that the communication subsystem and the underly- 
ing protocol support time-constrained communications, and 
the worst-case delay experienced by messages is bounded and 
predictable. Two examples of such communication subsys- 
tems are the described in [19, 201. No restriction is imposed 
on the topology of the communication subsystem. 

3 Selection of Modules to Replicate 
As discussed in Section 1, fault-tolerance can be achieved by 
allocating module replicas to distinct PNs. However, it might 
be intractable to replicate all the modules due to limited 
system resources. Moreover, it might not be necessary to 
replicate the modules that are not subject to stringent time 
requirements and can tolerate the worst-case recovery delay. 
That is, if the PN fails before or when some less time-criticd 
modules are executed, we may employ, depending on the 
fault type, different methods, like retry, checkpoint, rollback 
recovery, and component replacement, to tolerate faults at 
the cost of recovery/switching time overhead. Modules which 
can tolerate such a recovery delay need not be replicated. 

The distributed system considered here consists of K pro- 
cessing x d e s  (PNs). For ease Of algorithm description, all 
PNs are assumed to have the same processing power and the 
same set of resources. The time required by an IMC within a 
PN is assumed to be negligible, while that between two PNs 

specifically, let 
start its execution, LC, be the latest completion time of Mi 

1 The time for p&etjzatjon and dep&etjatjon is lumped into 

be the earliest release time when M~ 

module execution time. 
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to ensure that all of its succeeding modules will meet their 
latest completion times, e, be the execution time of M,, and 
t,,, be the worstxase recovery time. If the interval between 
the latest completion time, LC, , and the earliest release time, 
r , ,  of a module, MI, is less than or equal to  the sum of the 
execution time, e,, of M,, and the worst-case error recovery 
time t,,,, i.e., 

LC, - r, < e, + t,,,, 
then M ,  cannot be completed in time (even with the use of 
recovery/replacement methods) in case of a node failure, and 
thus, should be replicated. 

The key step lies in how to compute LC, and r, for each 
module M,. We use the critical path approach to calcu- 
late (1) r ,  from the invocation time of the task to which 
M ,  belongs and which precedes M,, and (2)  LC, from the 
deadline of the task to  which M, belongs and which succeeds 
MI. Specifically, we first “transform” the TG which contains 
probabilistic branches/loops into a deterministic one by re- 
placing (1) an OR-subgraph with the corresponding AND- 
subgraph (i.e., ignoring branching probabilities), and (2) a 
loop with the cascaded n ~ ,  copies of its loop body, where n~ 
is its maximum loop count. Second, we number all mod- 
ules in the (transformed) T G  in acyclic order such that if 
M ,  -+ MI then a < j .  Then, we use the critical path a p  
proach to  calculate LC, and 7,. Let LC, be initially set to 
the deadline of the task to which M ,  belongs. Then, modify 
LC, as 

(3.1) 

w 

Ihl 

Figure 2: A n  example showing how ri’s and  LCi’s are  
computed in the TG given in Fig. 1 (b). 

LC, = min{LC,, mp{LC3-eJ : M ,  + M I } } ,  i = N-1 ,  ..., 1,r4 of M4 is calculated as 

(3.2) 
where N is the number of original modules to be allocated 
within a planning cycle. Note that Eq. (3.2) computes back- 
ward from I = N - 1 to i = 1, because M N  has no successor 
by the nature of acyclic order, and thus, the latest comple- 
tion time of M N  is exactly the deadline of the task it belongs 
to. Similarly, the earliest release time, rl, of M ,  is obtained 
by initially setting r ,  to  the invocation time of the task to 
which M, belongs. Then, modify r ,  as 

r ,  = max{r,, max{rJ + el : MI -+ M , } } ,  2 < i < N ,  
3 

(3.3) 
where r1 is the invocation time of the task to which M1 be- 
longs. All the modules that are subject to the same timing 
constraints and satisfy Eq. (3.1) form a critical path. Note 
that we do not consider the possible IPC communication 
time between two modules, because (1) tr,, is assumed to be 
much larger than the IPC time and thus dominate in the ex- 
pression of Eq. (3.1), and (2) sequentially-executing modules 
subject to the same tight timing constraints (and thus lie on 
a critical path) tend to  be allocated to the same PN by the 
allocation scheme [17], and thus no IPCs are incurred on the 
critical path. Also implied in Eqs. (3.1)-(3.3) is that at  most 
t,,, units of time can be “delayed” along any non-critical 
execution path from an entry point to  an end point in the 
TG. The modules that satisfy Eq. (3.1) are then selected as 
the modules that should be replicated. Each module replica 
inherits the same execution time and timing/precedence con- 
straints as its original. 

Fig. 2 shows an example of how 7,’s and LC,’s are calculated 
in the T G  given in Fig. 1 (b). For example, the release time 

and  the latest completion t ime, LC12, of A412 is calcu- 
lated as 

LCl2 = min(LC12, LC13 - e13} = min(10, 12 - 1)  = IO. 

The execution path Mz -+ M3 -+ M4 --+ MS + Mg -+ 

Mlo ---* M11 -+ -+ M13 is critical with respect to  T3’s 
timing constraint, cannot tolerate any recovery delay, and 
thus all the modules on this path should be replicated. 

4 Module Replication and Allocation 
Scheme 

The module replication and allocation problem can be for- 
mulated as that of maximizing PND(Z) over all possible al- 
locations subject to 

K 

~ z l k  = 1, for i E modules not replicated, and 
k=l 
h’ 

E Z t k  = mm, for i E modules replicated, 
k = l  

where z,k = 1 if and only if M ,  is assigned to  Nk,  and mm 
is the number of replicas yet to  be determined. The prece- 
dence constraints among modules are figured in the calcu- 
lation of module release times and latest completion times, 
and the timing constraints on modules/tasks are considered 
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when P N D ( Z )  is evaluated; for example, P N D ( Z )  = 0 if some 
of the tasks miss their deadline under z. The expression for 
PND(Z) will be derived in Section 5. 

We use a module allocation (MA) scheme to solve the above 
formulated problem with a determined value of mm. To get 
the optimal assignment and scheduling for both original and 
replica modules, and the corresponding optimal objective 
value PGD, the M A  scheme uses: (1) the branch-and-bound 
(BB) method to implicitly enumerate all possible allocations 
while effectively pruning unnecessary paths in the search 
tree; and (2) the module scheduling (MS) scheme to schedule 
the modules assigned to each PN subject to the precedence 
constraints and the latest module completion times. The de- 
scription and analysis of M S  will be given in Section 5.1. 
Also, since all replicas of a module inherit the same prece- 
dence and timing constraints, and are hence subject to the 
same2 module release time and completion time (i.e., latest 
completion time - release time 5 e, + t,,,), they will not 
be assigned to (and scheduled on) the same P N  under an 
optimal allocation. This is because a module can be invoked 
only after its release time and must be completed by its lat- 
est completion time, if some of them were assigned to the 
same PN, they will not be able to complete in time, lead- 
ing to PND = 0, since the interval between the release time 
and the latest completion time is bounded by e; + t,,,. This 
ensures that module replicas are allocated to distinct PNs. 

To determine m,, we note that the larger m,, the better 
fault-tolerance capability for the task system to deal with 
node failures. However, excessive replicas may jeopardize 
the timely completion of modules due to limited system re- 
sources. To determine m, with respect to a pre-specified 
P;:, we take the following steps: 

Step 1. Initialize m, to be 2. 
Step 2. Augment the task flow graph with m, replicas for 

each critical module selected for replication. Each mod- 
ule replica inherits the same execution time and prece- 
denceltiming constraints as its original. Let the aug- 
mented task graph be denoted as TG. 

Step 3. Use the M A  scheme to determine the assignment 
and scheduling of all modules in TG, and moreover, the 
objective value, P$D, achieved. 

Step 4. If P$D > P;:, then mm +- m m + l ,  and go to Step 
2. If P&D = PF:, then stop and mm is the number of 
replicas for each selected module. Otherwise, stop and 
m, t m, - 1 is the number of replicas that should be 
used. 

M A  scheme: The M A  scheme uses the BB method to 
enumerate all possible solutions by ‘growing’ the correspond- 
ing search tree. Each intermediate (leaf) vertex in the search 
tree corresponds to a partial (complete) allocation. The 
BB method is composed of two procedures: branching and 
bounding. The branching process generates the child vertices 
of an intermediate vertex z in the search tree, until an o p  
timal solution is completely specified. Usually a dominance 
relation is derived to limit the number of child vertices gen- 
erated from each intermediate vertex z without eliminating 

2without considering possible IPC communication time be- 
tween two modules. 

any path to an optimal solution. On the other hand, the 
bounding process calculates a tight upper bound of the ob- 
jective function (UBOF) for each vertex z based on which 
one c m  decide whether or not z may lead to an optimal solu- 
tion. If the UBOF of a vertex E is less than the current best 
objective value found in the search process, then z will never 
lead to an optimal solution, and should thus be pruned. 

The M A  scheme works as follows. All modules in the aug- 
mented task graph, TG, are numbered in acyclic order. The 
scheme begins with a null allocation zo which corresponds to 
the root of the search tree, and allocates modules in the or- 
der of their acyclic numbering. Let TG(z) denote the set of 
modules which are already allocated under z: and A N  the 
set of active vertices in the search tree to be considered for 
expansion. A N  is determined by the bounding test. Expand- 
ing a vertex z € A N  corresponds to allocating the module, 
MI, with the smallest acyclic number in TG \ TG(z) to a 
PN, where \ denotes the difference of two sets. Only those 
PNs which survive the branching test will be considered as 
candidates for allocating MI. The dominance relation used 
in the branching test is as follows. MI can be invoked after 
all its precedence constraints are met and must be completed 
by its latest completion time, LC,, to ensure that all its suc- 
ceeding tasks meet their deadlines. Hence, if (1) the idle 
time of a PN, say Nk, during the interval [r,, LC,] is smaller 
than e,, and (2) the module, say M,, scheduled to be exe- 
cuted last on Nk in [r,, LC,] under a partial allocation E has 
tighter timing constraints than MI (so no preemption on Nk 
to ensure the completion of MI before LC,), then allocating 
M, to Nk is likely to miss MI’s latest completion time. Thus, 
Nk should not be a candidate PN for allocating MI, i.e., fails 
the branching test. 

The bounding test is then applied to those vertices expanded 
from z by allocating MI to one of the candidate PNs. The 
UBOF, &D(Y) ,  of each newly-generated (intermediate) ver- 
tex y is calculated by scheduling modules E TG(y) with the 
MS scheme described in Section 5.1 and evaluating PN&) 
with the expression derived in Section 5.2. If a vertex y has 
its P N D ( ~ )  greater than the currently best objective function 
value P i D ,  it survives the bounding test, might possibly lead 
to the optimal solution, and will be made active (i.e., put into 
A N )  and considered for vertex expansion in the next stage; 
otherwise, it will be pruned. The algorithm terminates when 
an optimal solution is found. 

The branching and bounding tests used to achieve BB ef- 
ficiency were treated in [17]. The interested readers are re- 
ferred to [17] for adetailed account of them. The M A  scheme 
is outlined below. 

MA Scheme: 

Step 1. Generate the root, 20, of the search tree, which 
corresponds to a null allocation. Set A N  := (20). 

Step 2. Set TG(z0) := 0, zWt := 20, and the objective 
function value achieved by zWt, P$D = 0.0 = &D(zo) .  

Step 3. While A N  # 0 do 
/* an optimal allocation has not yet been found */ 

3TG(2) = TG if I is a complete allocation. 
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Step 3.1. Node Selection Rule: 
Step 3.1.1. "Select the vertex z E AN with the 

largest P N D ~ Z ) .  
Step 3.1.2. If P N D ( Z )  < P A D ,  terminate M A ,  

and zopt is the optimal solution. Otherwise, 
set Mi to  be the module E TG \ TG(z) with 
the smallest acyclic number, and AN := AN\ 
{z). 

Step 3.2. Branching Test: 
Step 3.2.1. Conduct the branching test on each 

PN. Only those PNs which survive the 
branching test will be considered for allocat- 
ing Mi.  

Step 3.2.2. Expand z by generating its valid 
child vertices, each of which corresponds to 
allocating Mi to  one of the surviving PNs. 

Step 3.3. Bounding Test: For each newly generated 
vertex y,  

Step 3.3.1. Use MS to find an optimal schedule 
f?r TG(y) under y and calculate the UBOF, 
PN D ( Y )  . 

Step 3.3.2. If &D(Y) 5 PCD,  then prune y. 
Otherwise, the following two cases are con- 
sidered: 
Case 1. If y is a partial allocation, then set 

AN := AN U {y}, i.e., make y an active 
vertex. 

Case 2. If y represents a complete assign- 
ment, &D(Y)  is the actual PND achieved 
under y. Since p ~ q ( y )  > PAD, set 
zOpt := y and PAD = P N D ( Y )  to indicate 
that y has now become the best alloca- 
tion found thus far. 

5 Evaluation of P,vD(x) 
We first describe how MS schedules all the modules assigned 
to a PN,  say Nk, under z to  minimize the maximum mod- 
ule tardiness subject to task release times and precedence 
constraints. By applying MS to  each PN, we can obtain a 
module schedule under z. Second, we calculate the proba- 
bility P(Tt  is timely completed under z). P N D ( Z )  can then 
be calculated from P(Tt  is timely completed under z), VTt. 

5.1 Module Scheduling Scheme 
To facilitate the description and analysis of MS, we intro- 
duce the following notations: 

0 TG,: a component task graph of TG. If TG contains 
loops or OR-subgraphs, it will be replaced by a set of 
component task graphs without loops and OR-graphs 
before applying MS (to be discussed in Section 5.2). 
For the time-being, we only need to know that TG, 
contains neither loops nor OR-subgraphs. 

0 TG,(z): the set of modules E TG, under z.  
0 S~(Z) = { M ,  : Z i k  = 1): the set of modules assigned to 

C,: the completion time of M,. 
0 f,(C,): the cost incurred by completing M, at  C,. 

Nk under z. 

0 8,: the modified execution time of M , ,  where 

if M ,  is scheduled upon t, i, = { 
C, - t, otherwise. 

8, is used to  include the effect of queueing M ,  on the 
release times of modules that succeed M,.  

0 comlJ(z): the IMC time bet. M ,  and M3 under z. 
0 dt3: the IMC volume (measured in data units) between 

M, and M,.  
0 tmn: the link delay (measured in time units per data 

unit) of link lmn. 
0 n(k, e):  the number of edge-disjoint paths between Nk 

and Nt, 
0 I ( m ,  n, k, e) :  the indicator variable such 

that I(m,n, k , e )  = 1 if em,, lies on one of the n(k,!) 
edge disjoint paths between Nk and Nt. 

I(m, n, k, e )  . tmn: the delay (in 
K K  

Ykt = 2 
n(k, e )  m=l n=l 

time units per data unit) bet. Nk and Nt. 
0 B: the minimal set of modules that are processed 

without any idle time in [ r ( B ) , c ( B ) ) ,  where r (B)  = 
minM,EBr,, c(B)  = r ( B )  + e ( B ) ,  and e ( B )  = 

0 dg , :  the outdegree of M, within a block of modules 
C M , E B e l *  

under consideration. 

Specifically, Isk (z)  I modules (possibly belonging to  different 
tasks) are to be scheduled preemptively on Nk. Each module 
M ,  becomes available upon its release at  time t, which is 
initially set to the invocation time of the task to  which M, 
belongs. If M3 -* M, then M ,  cannot start its execution 
before the completion of M,,  regardless whether M ,  and M ,  
are assigned to the same PN or not. Execution of a module 
may be preempted and then resumed later. Associated with 
each M, is a monotone nondecreasing cost function f,(C,). 
We want to find a schedule for the modules in Sk(z) such 
that fmar(Sk(2)) = maxM,€Sk(=) f,(C,) is minimized. The 
schedule with the minimal cost fAar(Sk(Z)) is said to be an 
optimal schedule of sk(z). 

Before proceeding to describe and analyze MS, we define the 
cost function f,(C,): 

A 

where LC, is the latest completion time of M, with com- 
munication times considered now, and C, is the completion 
time of M, determined by MS. If C, > LC,, a positive cost 
will occur. Thus, with the definition of this cost function, 
minimizing the maximum cost function is equivalent to min- 
imizing the maximum tardiness of modules in TG,. 
To obtain LC,, of M, E TG,, let LC, be initially set to the 
deadline of the task to which M, belongs, and then modify 
LC, as 

LC, = min{LC,, min{LC, - e, - com,,(r)  : M ,  -+ M,}}, 
3 

t = Nc - 1, ..., 1, (5 .2 )  
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where the modules are numbered in acyclic order, N, is the 
number of modules in TG,, and 

com,,(z) = 
if M, -+ Nk and M, + Nk under z, 
if M, -+ Nk and M, -+ Nt under 2. d,,&C, { O’ 

When z is a partial allocation and either M, or M, or both 
have not yet been assigned, com,,(z) is (optimistically) as- 
sumed to be 0. 

To obtain r,, of M, E TG,(z), let r, be initially set to the 
invocation time of the task to which M, belongs, and then 
modify r, as 

r, = max{r,, max{r, + 8, + com,,(z) : M, -+ M,}}, 
3 

2 I I Nc, (5.3) 

where r1 is the invocation time of the task to which MI 
belongs, and i, = max{C, - r,, e , }  is the modified execution 
time which equals the sum of M,’s execution time, e , ,  and 
M,’s queueing time (if M, is not scheduled to be executed 
upon its release). 6, is used to include the effect of queueing 
M,’s preceding module, M, , on M, ’s release time. 

Note that the modified execution times of all M,’s preceding 
modules must be available prior to the calculation of r , .  This 
is achieved by allocating the modules in the order of their 
acyclic numbers. When an intermediate vertex y survives 
the bounding test and is put in AN, all modules in TG,(y) 
would have been scheduled and their completion times (and 
thus modified execution times) would have been determined 
in the bounding process in the previous stage (Step 3.3 in the 
M A  scheme in Section 4). Thus, when z is expanded from 
its parent vertex y by adding the new assignment of M,, the 
schedules, completion times and modified execution times 
of all preceding modules of M, must have been determined. 
So, all the 2,’s needed in Eq. (5.3) are known at the time of 
calculating TI. 

Now, we describe MS, the theoretical base of which is 
grounded on the result of [21]. First, we arrange the modules 
E &(E) in the order of nondecreasing release times. We then 
decompose &(Z) into blocks, where a block B C &(Z) is de- 
fined as the minimal set of modules processed without any 
idle time from r(B) = minM,EB r, until c(B) = r(B) + e ( B ) ,  
where e ( B )  = x M , E B e , .  That is, each M, B is either 
completed no later than r(B) or not released before c ( B ) .  
Obviously, scheduling modules in a block B is irrelevant to 
that in other blocks, so we can consider each block separately. 
Let dg, denote the outdegree of M, within B, i.e., the number 
of modules it4, E B such that M, -+ M,. For each block B,  
we first determine the set b {M, : M, E B ,  dg, = 0 } ,  i.e., 
modules without successors in B ,  and then select a module 
M ,  such that 

i.e., M, has no successor within B and incurs a minimum 
cost if it is completed last in B.  (In case of a tie, we choose 
the module with the largest acyclic number.) Now, consider 
an optimal schedule for the modules in B subject to the 

\ 
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Figure 3: An example showing how the MS scheme 
schedules the modules assigned to a P N .  

restriction that M, is processed only if no other module is 
waiting to be processed. This optimal schedule consists of 
two parts: 

Schedl: An optimal schedule with the cost fAol(B - 
{M,}) for the set B - {M,} whiFh cydd b: decom- 
posed into a number of subblocks B I ,  Bz,  ..., Bb. 

Sched2: A schedule for M,, which is given by [ r (B) ,  c ( B ) ] -  
u ~ = l [ t ( B , ) , c ( B , ) ] ,  where r(B) = minM,EBr. and 
c ( B )  = r(B) + e ( B )  with e ( B )  = x M , E B e , .  

For this optimal schedule, we have 

fAal(B) with the above restriction = 

max{fm(c(B)), f k ~ ( B  - {Mm})} 5 fko=(B)(5.5) 
where the last 
inequality comes from: (i) fGa=(B) = min maxM,EB f , (C, )  
2 minM,EB fl(c(B)) = minM,€8 f,(c(B)) = fm(c(B)) by the 
way was constructed from B and Eq. (5.4); (ii) Since 
B - {Mi} is a subset of B, fGal(B) 2 f&,(B - {Mt}), 
VM,. 
It follows from Eq. ( 5 . 5 )  that there exists an optimal schedule 
in which M, is scheduled only if no other module is waiting 
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to  be scheduled. By repeatedly and recursively applying the 5.2 Calculation of PND(Z) 
above procedure to  each of the subblocks BI, B z ,  ..., B b ,  we 
obtain an optimal schedule for B .  The rationale behind MS 
is that a P N  is never left idle when there are modules ready 
to execute, and by virtue of the cost function defined, it is 
always the module Mi with the smallest LC, that will be 
executed among all released modules. 

We are now in a position to  calculate P(Tt is timely com- 
pleted under 2). Conceptually, given TG and z, we can 
determine the set, SI , (Z) ,  of modules E TG assigned to  Nk 
and then use MS to  schedule modules in S I , ( Z ) ,  V k .  The 
completion time(s) of the last module(s) in Tt n TG under 
these schedules determines whether Tt can be completed in 

Fig. 3 gives an illustrative example showing how MS sched- 
ules the modules assigned to  a PN. t, and LC, ,  1 5 i 5 6, 
are assumed to  have been computed from the entire task 
graph and are given in the figure. By ordering the mod- 
ules according to  their increasing release times, we obtain 
one block: B1 = {MI, Mz, M3, M4, M s ,  M6} from [ O ,  111 OR-subgraph. 

time or not. However, since TG may contain loops and/or 
OR-subgraphs, the release times and the latest completion 
times of modules needed in Step 3 of MS may not be readily 
determined. Moreover, one cannot determine which mod- 
ule of T( to execute last if the last component in Tr is an 

(i.e., s(B1) = 9, e(&) = 11, and c(B1) = 11). More- 

processed only when no other modules are waiting since 
Lc6 > LC4 > LC5. B1 - { M e }  consists of one sub- 

&' = { M 1 l  M21 M3' M41 M5) from [0'91' B1r = 
I M 3 ?  M 4 ,  M 5 } ,  and we M4 to be processed last since 
Lc4 > Lc3 > Lc5' - consist? Of One subblock: 
B1ll = {M17  M Z ,  M 3 r  M 5 }  from to' *I' = lM3'  M5}' 
and we select M3 to  be processed last since LC3 > LC5. Now 
Bill - { M 3 )  consists Of two subblocks: Bll l l  = * z )  
from [0,3] and B l l l ~  = { M 5 }  from [4,6]. Blll2 itself r e p  
resents an optimal schedule, since Blllz consists of a single 
module. For 81111, we have Bllll = { M I , M 2 }  and select 
MI to  be processed last since LCl > L c 2 .  The final opti- 
mal schedule for Bill is obtained by combining the optimal 
schedule for Blll l  and B l l l ~  (Schedl) and the schedule for 
M3 (Sched2) which consists of [ O ,  81 - [ O ,  31 U [4,6]. The 
resulting schedule for B1 is depicted in the last row of Fig. 3. 

The MS scheme along with the time complexity in each step 
is summarized below. 

MS Scheme: 

Component Graphs: To resolve the above problems, we 

ing all the timing and probabilistic properties of TG. We 
first calculate the latest completion time, LC, ,  of MI E TG 
using Eq. (5.2), assuming that (Al) Every OR-subgraph fol- 
lowing M , ,  if any, is viewed as an AND-subgraph by ignoring 
branching probabilities; (A2) Every loop La following M , ,  if 
any, is replaced by a cascade of n~~ copies of its loop body, 
where nL, is the maximum loop count. With A1 and A2, 
the LC,'s calculated is the worst-case latest completion time. 
Second, we each loop L a  E TG with the cascaded 
m copies of its loop body with probability (1 - qa)q,"-'> 
where 1 5 m 5 n ~ ~ ,  and qo is the looping-back probability 
of L Q .  The last 

Of M s  bears the latest 
completion time L c ,  -1  .e(L,), where e(L,) is the execution 
time of the loop body. Also, we represent each OR-subgraph 
o b  E TG with its n-th branch with probability q b , n ,  where 
1 5 5 n o b ,  qb,n is the branching probability of the n-th 
branch of Ob, and no, is the number of branches in o b .  

The TG can then be represented by the set of all possible 
combinations - which is termed as the set of component 

OR-subgraph o b  in TG, then there are a total of n~~ x no, 
component graphs of TG, and with probability p c  = (1 - 
qa)q,"-' . q b , n ,  the TG is represented by the TG with La 
replaced by the cascaded m copies of its loop body and Ob 
replaced bY its n-th branch. (One can trivially extend this 
to the case where there are more than one loop and/or OR- 
subgraph.) 
For each component graph, TG,, of TG, we then calculate 
the release time, s1, of M ,  E TG, using Eq. (5.3). Using the 
7,'s and LC,'s determined above, we can apply Steps 3-5 in 
MS to find the best schedules for all modules in TG,. Note 
that in a component graph TG,, the release time, T , ,  and 
the number of times M ,  is executed are both fixed, making 
it Possible to 

Calculation of PND(c): We now calculate the probabil- 
ity P(T( is timely completed under z), VTc E TG,. Let the 
critical time of M ,  E Tc, D,, be defined as the latest time M, 
should be completed for the timely completion of only the 

LC, except that the precedence relations, M, + M, when 
M, # Tr, are ignored. That is, let D, be initially set to  the 
deadline of Tr to  which M ,  belongs. Then, D, is modified as: 

D,  = min{D,, min {D,  - e, - com,,(z) : M ,  -+ M,)) ,  

Over, we have B1 = {M4> M 5 7  M 6 )  and M6 to be must eliminate the loops/OR-subgraphs in TG while retain- 

Of M ,  E La  bears the Lc, 
while the (nLa - J)-th 

Step 1: Compute the latest completion time Lctj  1 5 ' 5 task graphs. For example, if there exists a loop La and an 
N , ,  for TG,. This computation requires O(N:)  time. 

Step 2: Compute the release time T ,  for M ,  E TG,(z) with 
respect to  their precedence constraints. This computa- 
tion, in the worst case, requires O(N:)  time. 

Step 3: Construct the blocks B1, B Z ,  ..., Bb of S I , ( Z )  for 
every NI, by ordering the modules E S I , ( Z )  according 
to  their nondecreasing release times. This ordering re- 
quires O(ISI , (Z)(  . l o g ( S k ( z ) l )  time, V k .  

Step 4: For each block B,, 1 5 i 5 b,  update the outdegree, 
dg, ,  ofevery M, E B,. This update requires o(IS~,(z)l~) 
time for all B,'s c SI , (Z) .  

Step 5: For each block B,, select M ,  E B, subject to 
(5.4), determine the subblocks of B, - {M,}, and 

construct the schedule for M ,  as given in Sched2. 
Then, update the dg, of every M, E B, - {Mm} with 
respect to the subblock of E, - {M,,,} to which M, be- 
longs. By repeatedly applying Step 5 to each of the 
subblocks of B, - {M,}, one Can obtain an optimal 

tions of Step 5 is bounded by O(lS~,(z)l'). 

into 

schedule. The time complexity for all repeated applica- task Tf .  Note that D, can be obtained in the Same as 

Since the time complexity associated with each step is poly- 
nomial, the MS scheme is a polynomial scheme. MJ ET( 
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i = Nc - l , N c  - 2 ,..., 1. (5.6) 

Obviously, D, 2 LCi. Also, let 

f" {Mi : Mi E TtnTG,,dgi = 0 w.r.t. T'nTG,) (5.7) 

be the set of modules without any successor in Tt n TG,. 
Then, the probability P(Tt is timely completed under z in 
TG,) can be expressed as 

P(Tt is timely completed under I in TG,) = n b(Di  - Ci),  

Mi €?t 

(5.8) 
where a(-) is the step function, i.e., a( t )  = 1 for t >_ 0, and 
6( t )  = 0 otherwise. Consequently, 

P(Tt is timely completed under z) = (5.9) 

p, . P(Tt is timely completed under z in TG,), 
{ T G )  

where pc is the probability that TG is represented by TG,, 
and {TG,} is the set of component graphs of TG, and finally 

PIVD(Z) = n P(T' is timely completed under z). (5.10) 
NT 

I= 1 

6 Numerical Examples 
We randomly generated both system and task parameters 
in our numerical experiments. The number of PNs in the 
distributed system is varied from 3 to 40, and the network 
topology is arbitrarily generated. The link delay, tm,,  asso- 
ciated with Lm, is exponentially distributed with mean 
where F is the mean module execution time. The number of 
modules to be allocated is vaned from 4 to 50. The execu- 
tion time of a module is exponentially distributed with mean 
1.0 unit of time. The IMC volume between two communicat- 
ing modules is uniformly distributed over (0,101 data units. 
The worst-case recovery time t,,, is exponentially distributed 
with mean 1.0 unit of time. Pr:  is assumed to be 1 - 
The precedence constraints and the timing requirements of 
the TG are also randomly generated. 

Before running experiments, we eliminated the TGs which 
were definitely infeasible. Infeasibility is detected by calcu- 
lating release times and latest completion times of all mod- 
ules, while ignoring all IPC times. If the interval between 
the latest completion time and the release time is less than 
the execution time for some module(s) in 4 the component 
graphs of a TG, this TG is infeasible, and is not considered 
any further. All experiments were performed on a SPARC 
station running the SUNOS 4.1.2 operating system. 

The proposed scheme strikes a balance between the fault- 
tolerance achieved by replicating modules and the system 
capacity available for the timely completion of all tasks in 
the TG. Consider the example of replicating and allocating 
the TG in Fig. 1 (b) to a distributed system represented by a 
complete graph of 3 PNs. The worst-case recovery time t,,, 
is 1.2 units of time. The modules that should be replicated 
are those belonging to T2 and T3, since the execution path 
M2 -+ M3 -+ M4 -+ Ma -+ Mg 4 MIO + M11 is critical 

I2 

w - dl-s.0. d M o . 6 3 4 0 .  d4-9.0 

w o a e  - tims: 1.0 
LinL dday: 1.0 

Figure 4: (a) The  task graph and the system configura- 
tion used in Section 6. 

subject to T3's deadline and cannot tolerate any recovery de- 
lay. The same execution path cannot tolerate any IPC delay 
either, and hence, the M A  scheme allocates all the modules 
that lie on this critical path to the same P N .  Moreover, the 
system can accommodate up to 2 replicas of each of the mod- 
ules on the critical path while ensuring the timely completion 
of all tasks. That is, the best degree of module replication 
is 2, and the best allocation is to assign modules E TI to 
NI, modules E T2 U T3 to N2, and the replicated modules of 

Another interesting finding is that heavily communicating 
modules may not necessarily be allocated to the same PN. 
For example, consider replicating and allocating the TG in 
Fig. 4(a) to a distributed system of 4 PNs. The attributes 
of the TG are specified in the figure. The only critical path 
is M2 -* M3, and thus M2 and M3 are replicated. As shown 
in Fig. 4(b), the best degree of module replication is 2, and 
the M A  scheme allocates MI, Me and M7 to N I ;  M4, Ma, 
MS and MIO to N2; M2, Ma and Ms to N3, and the replicas 
of M2 and M3 to N4 so that all modules meet their latest 
completion times. Although the IMC between M, and Ms 
is twice more than the others, M4 and M5 are allocated to 
different PNs. This is mainly because T2 has a less tight 
timing constraint than others and can thus allow IPCs among 
its modules. This observation is in sharp contrast to the 
common notion that heavily communicating modules should 
always be co-allocated [18]. 

By virtue of the BB method, the M A  scheme always yields 
the best allocation given both the original and replica mod- 
ules. Moreover, as reported in [17], the M A  scheme finds 
it at tractable computation costs for task systems with less 
than 50 modules and/or distributed systems with less than 
40 PNs, and usually no more than 9% of the search tree ver- 
tices were visited before finding the best allocation for N 2 6 
and A' 2 3. This suggests that both the dominance relation 

T2 U T 3  to N3. 
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Figure 4: (b) Module replication, allocation and sched- 
ule for the configuration in Fig. 5 (a). 

and the UBOF derived effectively prune unnecessary search 
paths at  early stages of the BB process. 

7 Conclusion 

requirements,” IEEE Trans. on Computers, vol. C-38, 
pp. 1110-1123, Aug. 1989. 
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Trans. on Parallel and Distributed Systems, vol. 4, pp. 740- 
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[5] P.-Y. Ma, E. Y. S. Lee, and M. Tsuchiya, “A task allocation 
model for distributed computing systems,” IEEE Trans. on 
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tolerant distributed systems,” Acta Informatica, vol. 20, 

[9] A. N. Tantawi and D. Towsley, “Optimal static load balanc- 
ing in distributed computer systems,” Journal of the ACM, 
vol. 32, pp. 445-465, Apr. 1985. 

[lo] T. C. K. Chou and J. A. Abraham, “Load balancing in dis- 
tributed systems,” IEEE Trans. on Software Engineering, 
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to optimal task assignment in distributed computing sys- 
tems using a minimax criterion,” IEEE Trans. on Comput- 
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pp. 1384-1397, NOV. 1988. 

pp. 261-281,1983. 

vol. SE-8, pp. 401-422, July 1982. 

ers, vol. 6-34, pp. 197-203, Mar. 1985. 

dence relations for distributed real-time systems,” IEEE 
Trans. on Computers, vol. 36, pp. 667-679, June 1987. 

[13] W. W. Chu and K. K.  Leung, “Module replication and as- 
signment for real-time distributed processing systems,,, Pro- 
ceedings of the IEEE, vol. 75, pp. 547-562, May 1987. 

We have addressed the problem of replicating and allocating 

ject to  precedence and timing constraints, and intermodule 
communications. The probability of no dynamic failure is 
used as the objective function to ensure all real-time tasks 
to be completed by their deadlines. The modules that have 

periodic task modules in a distributed real-time system sub- [l2] W. W. Chu and L’ M‘ T‘ ‘ITask and 

stringent timing constraints and cannot tolerate a worst-case 
recovery delay are selected for replication using the critical 
path analysis. The optimal number of replicas of each se- 
lected module (with respect to  a pre-determined Py; )  and 
the assignment/scheduling of both original and replica mod- 
ules are then determined by the MA scheme. The MA 
scheme not only assigns modules to PNs, but also uses the 
MS scheme to schedule all modules assigned to each PN. 

An interesting finding from our numerical simulations is that 
sequentially-executing modules subject to the same timing 
constraints are usually chosen to be replicated. Moreover, 
these modules also tend to be allocated to the same PN 
by the MA scheme. Also, the common notion in general- 
purpose distributed systems that heavily communicating 
modules should be co-located [18] may not always be a p  
plicable to real-time systems. Only in case when there are 
enough resources to meet the timing requirements in the TG, 
the MA scheme assigns modules to minimize IPCs. 
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