
1076 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 9, SEPTEMBER 1994

Load Sharing with Consideration of Future Task
Arrivals in Heterogeneous Distributed

Real-Time Systems
Chao-Ju Hou, Member, IEEE, and Kang G . Shin, Fellow, IEEE

Abstract- In a heterogeneous distributed real-time system,
some nodes may experience more task arrivals than others, or
tasks arrived at some nodes may have tighter laxities than those
arrived at other nodes. In such an environment, transferring an
unguaranteed task at a node to another node currently with the
most abundant resources is not necessarily the best decision.
We propose a new load sharing (LS) algorithm for real-time
applications which takes into account the effect of future task
arrivals on locating the best receiver for each unguaranteed task.

Upon arrival of a task at a node, the node first checks whether
or not it can complete the task in time using the minimum-
laxity-first-served discipline. If the node cannot guarantee the
arrived task or some of existing guarantees were to be invalidated
as a result of inserting the task into its queue, then the node
must locate a remote node to which each unguaranteed task will
be transferred. The proposed LS algorithm minimizes not only
the probability of transferring an unguaranteed task 7 to an
incapable node with Bayesian analysis, but also the probability
that a remote node fails to guarantee 7 because of future arrivals
of tighter-laxity tasks with queueing analysis. All parameters
needed for a node’s LS decision are collectdestimated on-
line using time-stamped region-change broadcasts and Bayesian
estimation. By using time-stamped region-change broadcasts,
the collected state information, albeit obsolete, can be used to
estimate other nodes’ states. Use of Bayesian estimation makes
the proposed LS algorithm adaptive to dynamically varying
workloads with little computational overhead.

Our simulation results show that the proposed LS algorithm
outperforms other existing LS algorithms in minimizing the
probability of 1) dynamic failure, 2) task collisions, and 3)
excessive task transfers. The performance improvement by the
proposed policy over others becomes more pronounced as the
degree of system heterogeneity increases.

Index Terms- Deadlines, real-time systems, load sharing, lo-
cation policy, queueing analysis, Bayesian parameter estimation,
performance evaluation.

Manuscript received January 9, 1992; revised May 17, 1993. This work
was supported in part by the NSF under Grant DMC-8721492 and the ONR
under Contract N00014-92-J- 1080. An earlieer version of this paper appeared
in the Proceedings of the IEEE 13th Real-Time Systems Symposium, 1992, pp.
146-155.

C.J . Hou is with the Department of Electrical and Computer Engineering,
University of Wisconsin at Madison, Madison, WI 53706-1691 USA; e-mail:
jhou@ece.wisc.edu.

K. G . Shin is with the Real-Time Computing Laboratory, Department
of Electrical Engineering and Computer Science, The University of
Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122 USA; e-mail:
kgshin@alps.eecs.umich.edu.

IEEE Log Number 9401 105.

I. INTRODUCTION

HE availability of inexpensive, high-performance pro- T cessors and memory chips has made it attractive to
use distributed computing systems for real-time applications.
However, tasks may arrive unevenly at the nodes in the system
and/or the processing power may vary from node to node,
thus overloading some nodes temporarily while leaving others
idle or underloaded. Consequently, some tasks may miss their
deadlines even if the overall system has the capacity to meet
the deadlines of all tasks. Many load sharing (LS) algorithms
have been proposed to counter this problem, especially aiming
at minimization of the probability of tasks missing their
deadlines, which is referred to as the probability of dynamic
failure, I‘dyn [2], [3]. Upon arrival at a node of a real-time
task with laxity (where the laxity is defined as the latest time
a task must start its execution in order to meet its deadline),
the node determines whether or not it can guarantee (complete
in time) the task under some local scheduling discipline.

The minimum-laxity-first-served (MLFS) discipline is
shown in [4] to, on average, outperform others in reducing
I‘dyn, and is hence commonly used as the local scheduling
discipline. If a node cannot guarantee a task or some of
its existing guarantees are to be invalidated as a result
of inserting the task into its schedule, it has to determine
candidate receiver(s) for the task(s) to be transferred. Two
issues need to be considered when choosing the receiver of an
unguaranteed task 7: a) the probability of transferring 7 to an
“incapable node” must be minimized. By “incapable node,”
we mean a node whose resource surplus is not sufficient to
complete 7 in time; b) excessive task transfers resulting from
task collisions must be avoided. A task collision is said to
occur if the guarantee of one or more tasks queued at a node
are to be invalidated due to the arrival of a new tighter-laxity
task. Eager et al. [5] referred to the policy which determines
whether or not real-time tasks can be guaranteed locally as the
transfer policy, and the policy which chooses the best receiver
of 7 as the location policy.

Most previous work concentrates on (a), and chooses the
most desirable receiver based on the state information col-
lected from periodic/aperiodic state broadcasts [1 I, [6]-[9]
or state probinghidding [lo]-[121. Moreover, implied in this
work (perhaps except for [I l l , [12]) is the assumption of
homogeneous workload distribution among nodes. Under such
an assumption, a node which has the most resource surplus or

0018-9340/94$04.00 0 1994 IEEE

mailto:jhou@ece.wisc.edu
mailto:kgshin@alps.eecs.umich.edu

HOU AND SHIN: LOAD SHARING WITH CONSIDERATION OF FUTURE TASK ARRIVALS 1077

can complete 7 in time is chosen as the receiver of 7 without
considering future task arrivals. This assumption does not
always hold, because the distribution that governs task arrivals
at different nodes may vary greatly over time and thus the
workload distribution is not homogeneous among the nodes.
In such a case, whether or not those LS algorithms developed
for homogeneous real-time systems will also offer satisfactory
performance for heterogeneous systems is questionable. For
example, a node with a large composite task arrival rate may
become easily overloaded/incapable as a result of a high local
arrival rate or the simultaneous transfer of tasks from multiple
nodes to the same node. Transferring an “overflow” task 7
to such a node may not be a good decision, even if the node
were idlehnderloaded at the time of locating the receiver of
7. Those tasks subsequently arrived at the node may have to
be transferred as a result of its acceptance of 7, which may
result in excessive task transfers. Moreover, this node may
also have to transfer 7 again due to the subsequent arrival
of a tighter-laxity task under the MLFS scheduling discipline.
(Tighter-laxity tasks arrived after the arrival of 7 but prior to
its execution may invalidate the guarantee of 7.)

For the reasons above, we must consider the following two
issues in guaranteeing tasks on a heterogeneous system.

G1) Minimization of the probability of transferring an
unguaranteed task 7 to an incapable node, i.e., the
receiver of 7 is one of those nodes which are ob-
servedestimated to have sufficient resource surplus to
guarantee 7.

G2) Avoidance of task collisions and/or excessive task
transfers, and minimization of the possibility of
a task’s guarantee being invalidated due to future
tighter-laxity task arrivals.

Note that G2 need not be considered in homogeneous systems
since the possibility of a task’s guarantee being invalidated by
future task arrivals is the same for all candidate receivers. The
performance of LS can, however, be improved significantly by
incorporating G2 into LS decisions for heterogeneous systems.
Consideration of G2 is thus the main theme of this paper.

The idea of not necessarily transferring a job to the station
currently with the most resource surplus was first proposed by
Yum and Schwartz [13, 141 for routing messages in computer
communication networks. Stankovic and Ramamritham [11,
121 considered the effect of future task arrivals on the guaran-
tee of transferred-in tasks by (1) exchanging the information
containing the percentage of free time among the nodes during
the next window, the length of which is a tunable design
parameter, and (2) using many parameters computedestimated
on-line to determine whether tasks will be transferred or not.
They used heuristics and/or exhaustive search for on-line
estimatioddetermination of parameters, and the effectiveness
of their approach was evaluated via simulation of a small, six-
node system without analytic modeling. By contrast, we shall
take G2 into account using a well-defined analytic framework,
and the parameters needed for 6 2 are updated on-line with
Bayesian estimation theory.

In another paper [11, we proposed a decentralized, dynamic
LS algorithm which achieves G1 in the presence of nonneg-

ligible communication delays by using the concept of buddy
sets and region-change broadcasts [SI, and Bayesian decision
theory. The LS algorithm proposed in [l] will be used as an
example of taking G2 into account. Likewise, one can include
6 2 in other existing LS algorithms.

The rest of the paper is organized as follows. Section I1
outlines the proposed LS algorithm, and formally defines G1
and G2 to be considered for guaranteeing real-time tasks.
Section I11 gives a brief description of how G1 can be achieved
in the presence of nonnegligible communication delays [11.
The way each node broadcasts its time-stamped state and on-
line estimated parameters (needed for G2) is also discussed in
Section 111. Section IV addresses the theoretical basis for G2.
Section V discusses how the parameters needed for G2 are
estimated on-line using Bayesian estimation theory. Section
VI presents representative numerical examples, and the paper
concludes with Section VII.

IT. THE PROPOSED ALGORITHM

In this section, we outline the proposed algorithm, and
formally define the two issues, G1 and G2, in guaranteeing
real-time tasks. The operations of a node’s task scheduler
which employs the proposed algorithm are sketched in Fig.
1. To facilitate problem formulation and analysis, we define
the following notation.

{pi(j), j = 1,. . . , Emax}: the distribution of composite
(both external and transferred) task-execution time on
node i , where E,, is the maximum task-execution time.
This distribution will be estimated on-line by each node i.
{ a (j) , j = 1,. . . , L,,}: the distribution of composite
task laxity on node i , where L,,, is the maximum laxity.
This distribution will also be estimated on-line by each
node a.
CETi(1): the cumulative execution time (CET) on node
i contributed by tasks with laxity 5 e under the MLFS
discipline .
Oi (e): the observation about CETi (e) made by some node

p c , (. I Oi(C)): the posterior distribution of CETi(l)
given the observation Oi (e). This posterior distribution is
constructed by each node j # i with the state samples col-
lected via time-stamped region-change broadcasts. More
on this will be discussed in Section 111.
Vi,[: the event that future tighter-laxity task arrivals at
node i do not invalidate the existing guarantee of a task
with laxity C.
Gi,e: the event that a task with laxity C can be guaranteed
by node i even in the presence of future tighter-laxity
task arrivals.

j # i.

-

The proposed LS algorithm which achieves both G1 and
G2 works as follows: upon arrival of a task with laxity d
at node n, the node checks whether or not it can complete
the task in time under the MLFS scheduling discipline, i.e.,
CETn(d) 5 d. If it can, the task is accepted and queued
at node n for execution. If the task cannot be guaranteed
locally or some of existing guarantees are to be invalidated by
inserting the task into the node’s schedule, the node looks up

1078 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 9, SEPTEMBER 1994

At each node n:
When a task Ti with execution t ime Ei and laxity ti arrives at node n:

determine the position, jp, in the task queue Qtsuch that

if current-time + E?=:' E L 2 fi then
5 fi 5 f j , ;

begin
receiver-node := table-lookup(Q:observation. .fi:laxity)#;
transfer task Ti t o receiver-node;
change the recorded Ei t o zero;

end
else
begin

queue task Ti a t position j,;
for k = j, + l,length(Q)

if current-time +
begin

El 2 f k then

receiver-node := table-lookup(Q:observation, &:laxity);
dequeue and transfer Tk to receiver-node;
change E k t o 0, and modify {pi(j)}; /* Section 5 */

begin

end
end

if current-CET crosses T H a k , 1 5 k 5 [$I - 1, then
/* region-change broadcasts: TH1,. e , THK-~ are thresholds */
broadcast (1) timestamped CETn(l)'s, L E [0, Lma,], and (2) An, {pn(j)}.
and {pn(k)} to all the other nodes in i ts buddy set;

end
(An, {pn(j)}. {&(k)}) = parameterdpdatc(Ei, .ti, ti:interarrival-time);
/* Section' 5 */

When a broadcast message arrives from node i, 1 5 i 5 N:
update observation of node i's state. Oi(f), f E (0, Lmor];

record (Oi(!), CEX(L)),I E [0, L,,,] pair needed for

record A i , {pi(j)}, and {fii(k)};
constructing probability distributions;

A t every clock tick:
current-CET := current-CET - 1;
if current-CET crosses TH2k. 1 5 k 5 [$I - 1 then

/* region-change broadcasts*/
broadcast (1) time-stamped CET,(!)'s, L E [O,Lmaz], and (2) An, {pn(j)}, and I
{ f i , (L) } t o all the other nodes in i ts buddy set;

A t every T, clock ticks: /* probability and table update */
update the probability distributions and the table of loss-minimizing

decisions;

tThe task queue Q is ordered by task laxities.
ttablelookup is where the proposed location policy takes effect. The theoretical base ia discussed in Section 3
and 4.

Fig. 1 . Operations of the task scheduler on each node.

the list of best LS decisions and chooses-based on the current
observation about other nodes' states, 0, and the laxity of the
task(s) to be transferred-the best candidate receiver(s)' in a
small set, called a buddy set, of nodes in its physical proximity.

' If multiple tasks have to be transferred out (as a result of their guarantees
being invalidated by the insertion of the newly arrived task), the observation
about other nodes will be updated before making successive LS decisions. That
is, if an unguaranteed task with laxity 4 and execution time m is transferred

candidate nodes for other tasks to be transferred.

The list of LS decisions is updated periodically based on both
Bayesian and queueing analyses as described below.

~~~~~i~~ ~ ~ ~ l ~ ~ i ~ :  is used to minimize the probability 
of transferring an unguaranteed task 7 with laxity e to an 
incapable node i given the observation at the time of locating 
the receiver Of 7* The state through 
state broadcasting/probing may become outdated due to the 

may be different from CETi( l )  at the time of making a LS 
to node i, then CET,(C) will be updated as CET,(C) + before choosing in it. That is, a node's observation 'i(') 



HOU AND SHIN: LOAD SHARING WITH CONSIDERATION OF FUTURE TASK ARRIVALS 1079 

decision. We countered this problem in [l], [8] by using buddy 
sets, time-stamped region-change broadcasts, and Bayesian 
decision analysis, all of which are summarized in Section 
I11 for completeness. Each node broadcasts a time-stamped 
message, informing all the nodes in its buddy set of a state- 
region change and all its on-line estimated parameters. Upon 
receiving a broadcast message from node i, each node in node 
i ’ s  buddy set updates its observation of node i ,  and records the 
statistical samples which will be used to constructlupdate the 
posterior distribution, p c e  (. 1 Oi(!)), with Bayesian analysis. 
Each node estimates node i’s true state based on its (perhaps 
outdated) observation via this posterior distribution of CET; ( e )  
given O;( l ) .  That is, each node-instead of hastily believing 
its observation about node i, Oi ([)-estimates CETi (a) based 
on Oi([), and determines node i ’ s  LS capability via p c , ( .  1 
O i ( l ) ) .  The sufficient condition for node i to be capable 
of guaranteeing a task with laxity i! is CET;(!!) 5 C, the 
probability of which can be calculated as: 

e 
P(CET4.e) i e) = C P C , ( k :  I Oi(C)). 

k=O 

Queueing Analysis: is used to minimize the probability of a 
task 7 ’ s  guarantee being deprived by subsequent tighter-laxity 
task arrivals during the period between the transfer (to node 
i) and the execution or the laxity of 7, whichever occurs first. 
We calculate this probability by: 

P(Vi,e I CET;(C) I l )  
r 

= 1 P(Vji,e I CETi( t )  = k) -Pc , ( k  I a(!>), 
k=O 

where pc,(IC I O;(e))  is constructed in G1, and P(Vi,e 1 
CETi(!!) = I C )  relates the effect of future tighter-laxity task 
arrivals to the guarantee of 7 with laxity e. After 7 is 
transferred to node i ,  it has to wait for the execution of all the 
tasks which constitute CET;(!!). Tag these tasks as “primary” 
tasks. During the execution of primary tasks, “secondary” 
tighter-laxity tasks may arrive, and have to be executed (or 
transferred out if they cannot be guaranteed by node i) before 
7. Similarly, there may be more tighter-laxity task arrivals 
during the execution of “secondary” tighter-laxity tasks, and 
so on. Let X denote the total execution time contributed by 
the tighter-laxity tasks arrived at node i after the transfer of 
7 but prior to the execution, or the laxity, of 7, whichever 
occurs first. 7 will be guaranteed by node i in the presence 
of future task arrivals if X I C - CETi(t). We will derive 
~ ( V i , p  1 C E T ~ ( C )  = IC) in Section IV using queueing 
analysis. 

The parameters needed in calculating P(Vi,e I CETi(t)  5 
!) are the composite task arrival rate Xi, the distribution of 
task-execution time { p i ( . ) } ,  and the distribution of task laxity 
{&(.)} on node i. Since the system state changes dynamically 
with time, these parameters have to be measuredestimated on- 
line by node i, and piggybacked in region-change broadcast 
messages to node n. Each node i records the interarrival 
time, the execution time, and the laxity of each task upon 
its arrival, and applies Bayesian estimation to determine the 

composite task arrival rate and the distributions of task- 
execution time and task laxity. Bayesian parameter estimation 
will be discussed in Section V. 

111. STATE ESTIMATION WITH OUTDATED INFORMATION 
We proposed in [l] a decentralized, dynamic LS algorithm 

that achieves G1 by using the buddy sets, time-stamped 
region-change broadcasts, and Bayesian decision analysis. We 
summarize below the strategies used to achieve G1 for com- 
pleteness and will incorporate 6 2  in the proposed algorithm 
in Section IV. 

Buddy Sets: Each node communicates with, maintains the 
state information of, and transfers unguaranteed tasks to, the 
nodes in its buddy set only. The communication overheads 
resulting from broadcastshsk transfers are thus reduced. 

Time-Stamped Region-Change Broadcasts: The K state re- 
gions defined by K - 1 thresholds, TH1,  T H 2 , .  . . , T H x - 1 ,  
are used to characterize the workload of each node. Each node 
z broadcasts a time-stamped message, informing all the other 
nodes in its buddy set of its state-region change and all its on- 
line estimated parameters, whenever its CET crosses TH2k for 
some k, where 1 5 IC 5 - 1. The state information kept at 
each node is thus up-to-date as long as the broadcast delay is 
not significant. The reason for not broadcasting the change of 
state region whenever a node’s load crosses an odd-numbered 
threshold is to reduce the network traffic resulting from region- 
change broadcasts. Moreover, the reason for not combining 
two adjacent state regions into one and then broadcasting the 
change of state region whenever a node’s CET crosses any 
threshold is to include finer state information in each broadcast 
and thus construct more accurate posterior distributions. 

Bayesian Decision Analysis: To achieve G1 in the presence 
of nonnegligible communication delays, each node has to 
estimate node i ’ s  capability based on the (perhaps obso- 
lete) observation O,(t) through the posterior distribution of 
CET, (.e), p c ,  (. 1 Oz). p c ,  (. I 0,) is constructedhpdated with 
Bayesian analysis as follows. Each time-stamped broadcast 
message contains two sets of information: 

1) Node number i, GET,(!!), and the time to when this 

2) On-line estimated task characteristics: A,, { p , ( j ) ,  0 5 

When the message broadcast by node i arrives at node n, 
node z’s CET,(l)  at t o ,  can be recovered by node 71. Node 
n can also trace back to find its observation about node 2, 
O,(C), at time t o .  This observation O,(C) is what node n 
thought (observed) about node i when node i actually has 
CETz(!). O,(C)’s along with CET,([)’s are used by node n 
to computehpdate the posterior distribution, p c ,  (. I O,(l)) ,  
given the observation O,(f?), once every Tp units of time. Any 
inconsistency between CET, (!) and node n’s observation of 
CET,(!), O,(C), is captured by this probability distribution. 
Besides, CETz(P) sent by node i at time t o  is transformed into 

message was sent. 

J’ i Emax}, and {P,(k),I I IC 5 

’This information is used to calculate the criterion for G2, which will be 
discussed in Section IV. 



10x0 IEEE TRANSACTIONS ON COMPUTERS. VOL. 43. NO. 9. SEPTEMBER 1994 

node 71’s new observation3, Ot(P),  about node 1 at the time 
node n receives this message by the rule that (I,(!) = k if 
THk 5 CET,(P) < THk+lr k 2 0, and T H O  A 0. 

The only effect of the region-change broadcast delay is 
that messages may not arrive at a node immediately after 
their broadcast and may thus become obsolete upon their 
arrival at other nodes. The correctness of all samples gathered 
is, however, not affected by the broadcast delay. The unde- 
sirable effects of the delay in broadcasting region-change 
messagedtransfening tasks are thus eliminated by using these 
posterior distributions. Another advantage of using Bayesian 
analysis is that the resulting algorithm is very robust (as 
compared to the other algorithms reported in 181, [15], [16]) 
to the variation of tunable design parameters, such as the 
number and values of thresholds, TH1,. .. , T H K - I ,  and the 
probability update interval Tp. See [ 11 for a detailed account. 

Iv. CONSIDERATION OF FUTURE TASK ARRIVALS 

In case of heterogeneous task arrivals (e.g., different task 
arrival rates, distributions of task laxity, or distributions of 
task execution time) under the MLFS scheduling policy, 
transferring an unguaranteed task of laxity C to the node with 
the least CET may not be a good choice if that node happens to 
have a large composite task arrival rate or most tasks arrived at 
that node happen to have tighter laxities than the transferred- 
in task. Task collisions may thus occur and excessive task 
transfers may ensue. The main intent of G2 is to alleviate this 
problem. 

In this section, we will establish a theoretical basis for G2. 
The parameters needed for G2 are Xi ,  {& ( j ) .  1 5 j 5 L,,,}, 
{ p i ( j ) , O  5 j 5 E,,,}, and p , ~ , ( .  I O;(C) ) ,  which we assume 
are all available at node n, in which there is an unguaranteed 
task 7 of laxity ! to transfer. In Section 111, we discussed 
how (i) these on-line estimated parameters are broadcast, (ii) 
observations about node i, O;(!), 1 5 5 E,,,, are updated, 
and (iii) the posterior distribution of CETi(L), p ~ , ( .  1 Oi(C)), 
given the observation Oi (e) is computedhpdated. Estimation 
of X i ,  &(j)’s, and p i ( j ) ’ s  will be discussed in Section V. 

Recall that Gi,t denotes the event that an unguaranteed task 
7 with laxity C is estimated to be guaranteed by node i in 
the presence of future task arrivals, and vi,[, the event that 
future tighter-laxity task arrivals at node i will not invalidate 
the guarantee of 7. So, 

I ’ (G , t  I a(q) 
m 

= E[ P( CETj(C) 5 C )  . P(V;,p I CETi(P) = I C )  ] 
k=O 

x PCl(k  I a(!)) 
P(Vi,P I CETi(C) = k )  . pct(IC I O i ( ! ) ) .  

e 
= 

k=O 

the receiver of an unguaranteed task 7, the following two 
conditions may occur: 

C1) Tighter-laxity tasks may arrive after: the arrival of 7 
at node i ,  and have to be executed before 7 under the 
MLFS policy, thus increasing CETi(l!). 

C2) The tasks constituting CETi(!) and/or some tighter- 
laxity tasks arrived later than 7 may get their existing 
guarantees invalidated due to the subsequent tighter- 
laxity task arrivals, and thus have to be transferred. 

C2 violates the work conservation law commonly assumed 
in queueing analysis. To remedy this violation, we take into 
account the effect of C2 on CETi(e) by adding pi(0) in the 
distribution of execution time, { p ; ( j ) ,  1 5 j 5 Emax}. That is, 
when collecting statistics for the execution time distribution, 
each node i considers and records those tasks arrived at node 
i but eventually transferred out of node i as having null 
execution time, i.e., p,(O) is the fraction of tasks arrived at 
node ,i that will eventually be transferred out. Moreover, each 
future tighter-laxity task arrived at node i is estimated4 to 
contribute j units of execution time with probability p i ( , j ) ,  
0 5 j 5 E,,,, and must be executed before 7, where ;j = 0 
represents the case when the guarantee of a task is deprived 
by subsequent tighter-laxity task arrivals. For example, in Fig. 
2(a), the task 7 ( 5 , 3 )  with execution time 3 and laxity 5 cannot 
be guaranteed upon its arrival, and is thus treated by node i 
(in collecting its statistics) as a task 7*(5!0) with execution 
time 0 and laxity 5. 

With this modification to pi(j)’s, work conservation, which 
states that no tasks depart from node i before they are 
completely served, can be virtually retained in the subsequent 
derivation. Those tasks which have their guarantees invalidated 
by tighter-laxity task arrivals are viewed as receiving zero 
unit of service time before they are transferred out of node i .  
On the other hand, because of this modification, our analysis 
does not model exactly the original queueing system of 
interest. However, since one cannot exactly predict the order 
of future task arrivals and their attributes and thus cannot 
know precisely whether or not a task will be transferred 
out of the task queue, one has to resort to some statistical 
measure (e.g., p i (0 ) )  to take into account the effect of tasks 
being kicked out of the queue on calculating the distribution 
of X .  Moreover, as our simulation results in Section VI- 
B indicate, the performance of the proposed LS algorithm 
does significantly improve (by almost an order of magnitude) 
in reducing P,+,, even with the approximate analysis. This 
is because the approximate distribution of X suffices to be 
used as an index of the likelihood of future tighter-laxity task 
arrivals at a node and its corresponding effect on the node’s 
LS capability. 

Now, we want to derive P(Vi,e I GET;(!) = k )  subject 
to C1. Recall that X represents the total execution time 

(4’ * 4Since we cannot reallv know the uarticular laxitv and service reuuirements 
of future task arrivals in a dynamically changing distributed system with LS, 
we resort to the statistical measures, p , ( j ) ‘ s  and b , ( j ) ’ s ,  based on the data 
eatheredestimated from the DdSt to reuresent the attributes of future task 

The key = k). 
Given C E T ; ( l )  5 P at the time (Say, time 0) Of locating 

here is how to derive P(vi.f I 
- -  

arrivals on node i .  p , ( j ) ’ s  reflect whether node i tends to receive long or 
short tasks; ~ , ( J ) ’ S  reflect whether node I tends to receive tight or loose 3The reason for transforming C E T , ( ( )  into O , ( O  is Lo reduce the size of 

the observation space. tasks. 



HOU AND SHIN: LOAD SHARING WITH CONSIDERATION OF FUTURE TASK ARRIVALS I081 

w x  
Actunl order d service undcr MLPS discipline 

Actual order of service under MLFS dkipliic 

we order of servke that may be used In the derivation of P(X <= x) 
V(2,l) is executed flrst after CFL1(13)) 

Another order dservh that may be used In the derlvatlon d P ( X  e x) 
(l'(4.3) is executed first after CETK13)) 

(a) (b) 

Fig. 2. (a) Future tighter-laxity task arrivals seen by a task 7 with C = 13. A task T with laxity .I' and execution time y is written as T(.r.y).This 
example shows 1) the independence of S from the execution order of tasks; 2) the definition and property of the ET period. (b) Future tighter-laxity 
task arrivals seen by a task 7 with ( = 13. 

contributed by tighter-laxity task arrivals at node i since time 
0 or 7 ' s  arrival but prior to 7 ' s  execution (Fig. 2). If the 
distribution of X is known, then one can compute 

P(Vi,ilCETi(C) = k )  = P ( X  5 C - k ) .  (4.2) 

Since 1 )  node i stays busy (and cannot start execution of 7) 
as long as there are tasks with laxity i. C queued in front of 
it, and 2 )  thc property of work conservation has been virtually 
retained with the way of collecting/estimating pi(j)'s, e.g., 
no task will leave the system without getting serviced (but 
possibly with their null service time, the probability of which 
is estimated to be p i ( ( ) ) ) ,  we have virtually transformed the 
original system into a work-conserving one, and thus can 
use the well-known result of work-conserving systems [ 171, 
[ 181, which states the amount of work present in a work- 
conserving system does not depend on the service order of 
the customers. In our context, the amount of work seen by 7 
prior to its execution, which is the sum of CET;(i!) at time 
0 ( A  in  (4.2)) and X ,  is independent of the service order of 
the tasks constituting IC and X .  Fig. 2 shows two examples 
of this independence. Note that in Fig. 2 a task with laxity n: 
and execution time y is expressed as T ( z ,  y); the black blocks 
represent the tighter-laxity tasks arrived after the arrival of 7 
but prior to the execution of 7; the other blocks represent the 
tighter-laxity tasks queued before the arrival of 7. 

With the observation that the amount of work, CETi(i!) 
at time 0 (Le., at time IC in (4.2) plus X is independent of 

the execution order of tasks constituting IC and X ,  we can 
permute the execution order of tasks with laxity 5 I on node 
A so that those tasks contributing to CETz(P) may be executed 
first (Figs. 2 and 3) .  Then, we condition X on the number 
of tighter-laxity arrivals during CETz(i!). Let S(l) denote 
the set of tighter-laxity tasks arrived during CET,(P). Each 
task z,L E S(') will contribute to X with tighter-laxity task 
arrivals during its execution. Denote the set of these arrivals 
as Sg! .  Furthermore, each task 7, E S z  will also contribute 
to X with subsequent tighter-laxity task arrivals during its 
execution, which are represented by and so on. This 
relation holds recursively for all m, and n. We can thus view 
each tighter-laxity task arrived during CET, ( e )  as essentially 
generating its own execution time (ET) period. Examples of 
the ET period are shown in Figs. 2 and 3.  Fig. 4 lists the 

sT,,L (1) ,I,,, , I,, ~ -, . By the Markovian property5 
of the task arrival process, all ET periods have the same 
distribution. We characterize the ET period by its cumulative 
density function (CDF), G(t ) ,  t 2 0, whose expression can 
be derived using the above recursive relation and will be 
discussed in the next subsection. Then, we have 

P ( X  5 z I CET;(C) = I C )  

5Validity of this approximation about composite task arrivals at each node 
will be discussed in Section V. 



1082 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 9, SEYEMBER 1994 

=-: t 

(b) 

Fig. 3. 
tasks with laxity 5 13 on node z prior to the execution of task 7. 

ET periods for Fig. 2. Y-axis indicates the CETcontnbuted by those 

where G ( J ) ( a )  is the CDF of the j-fold convolution of 
~ ' ( z )  2 q, and A h  = ~ f i , ( n )  is the arrival rate 
of tasks with laxity 5 i! - 1. The first factor inside the braces 
is the probability of j task arrivals with laxity < l within 
CETz(i!) = k, and the second factor, G ( J ) ( z ) ,  is the probability 
distribution of the sum of j ET periods. 

A. Expression for G ( t )  
G( t )  is the CDF of the ET period generated by a tighter- 

laxity task arrived during CETZ(l) .  By work conservation and 
the fact that a nonzero ET period continues to exist as long 
as there are unfinished tighter-laxity tasks arrived after the 
beginning of the ET period (e.g., S$J,l,Tm2,. .,Tmt-l), G ( t )  
has the same distribution as the well-known busy period of an 
MIGI1 queue. (A busy period is defined to begin with the 
service (or equivalently, arrival) of a customer at an idle node 
and end when the node becomes idle again.) So, G( t )  can be 

corresponding to the order of service in Fig. 2(a). (a)  s25& ,..., 7,,-, 

(b) S$z,7, ,,,.,, corresponding to the order of service in Fig. 2(b). 

Fig. 4. ,Tm2 , . . . 
~ 

corresponding to the order of service in Fig. 3. 

Fig. 5. 
Task execution time is exponentially distributed with I .O. 

P ( S  5 2 I C E T , ( I )  = I;) for different values of 1.. A,, = 0.SA. 

readily expressed as [19]: 

where b(") ( t )  is the n-fold convolution of b ( t ) ,  and b( t )  is 
the probability density function (PDF) of task-execution time 
expressed as a continuous-time function, Le., 

j = O  

here 6( .) is the impulse function. 
Equation (4.4) is an explicit expression of G(t )  in terms 

of known (or on-line estimated) quantities. The problem that 
arises in the infinite summation of both (4.4) and (4.3) can be 
solved by properly truncating high-order terms, and the error 
thus induced can be bounded by some predetermined value. 

Figs. 5 and 6 give two numerical examples of P ( X  5 3: I 
CETi(C) = k) ,  the former fixes z at 2 and the latter fixes k 
at 3. As expected, P ( X  5 2 I CETi(C) = k )  decreases for a 
fixed z, as the composite arrival rate of tighter-laxity tasks (Ah) 

and/or the CET contributed by the queued tighter-laxity tasks 
(k) increases. Also, P ( X  5 3: 1 CETi(C) = k )  increases with 
an increase in z (or a decrease in Ah) for a fixed IC. Each node 
TI can (1) use Eqs. (4.1)-(4.3) to compute the probability that 



HOU AND SHIN: LOAD SHARING WITH CONSIDERATION OF FUTURE TASK ARRIVALS 1083 

I I 
1 I I 

I I I I 

,’- I 
,..#” I 

A,..... 

0- - -0 

+ -.-+ . .-..-. .-. 
e......o 
0- - -0 ~~ 

-.-. IwC=O.8 ..-..-. rc=a9 

ntC=O.l 
ntc = 0.2 
rue I 0.3 
ntc = 0.4 

r.(c = 0.6 
raw = 0.7 

&=as 

an unguaranteed task T with laxity C is guaranteed by node 
i with consideration of node 2’s future task arrivals, based on 
node 71’s observation about node i, Oi( l ) ,  and (2)  choose the 
node 1: with the largest P(Gi,e I Oi(e)) when transferring 7. 

V. PARAMETER ESTIMATION 

One key issue in applying the proposed adaptive LS algo- 
rithm is the on-line estimation of the composite task arrival 
rate, Xi, the distribution of composite task laxity, {$ ; ( j ) } ,  and 
the distribution of composite task execution time, { p ; ( j ) } .  All 
on-line estimated parameters will then be conveyed to other 
nodes via region-change broadcasts. We discuss in this section 
how each node collects samples and makes on-line estimation 
of these parameters. 

A. On-Line Estimation of Composite Task Arrival Rate 

The composite task arrival process at a node is composed 
of the local (external) task arrivals and transferred-in task 
arrivals, the latter of which is itself a composite process of 
local and transferred-in tasks from different nodes (see Fig. 
7). One difficulty in estimating the composite task arrival rate 
is that the transferred-in task arrival process (and thus the 
composite amval process) may not be Poisson even if the 
local task-amval process is Poisson. This i s  because (Rl) 
the probability of sending a task to (or receiving a task 
from) a node depends on the state of both nodes, making 
the splitting process non-Poisson, and (R2) task-transmission 
times may not be exponentially distributed, making the process 
of transferred-in tasks non-Poisson. Furthermore, even if we 
assume the composite arrival process to exhibit behaviors 
similar to a Poisson process, the transferred-in task arrival 
rate from a node is not known due to the dynamic change 
of system state, which calls for the on-line estimation of the 
composite arrival rate. 

Bayesian estimation is used for the on-line computation of 
the composite task arrival rate on a node. We consider the case 

of Poisson external task arrivak6 We further appro.ximate the 
composite task arrival process to be Poisson (in spite of R1 and 
R2). This approximation rests on a general result of renewal 
theory which states that the superposition of increasingly 
many component processes (Le., a reasonably large number 
of nodes) yields (in the limit) a Poisson process. We also ran 
simulations, collected task interarrival times on-line under the 
proposed LS algorithm, and used the Kolmogorov-Smimov 
test to verify whether or not the Poisson approximation is 
valid. The simulation results show that for a light to medium 
loaded system of size >_ 12, this approximation holds. More 
on this will be discussed in Section V. 

Bayesian estimation works as follows [20]. Each node: 
1) monitors and records its task interarrival times contin- 

2 )  uses the noninformative distribution gl(X;) = const, 
and f ( t  I X i )  = Xie-’lt as its prior distribution and 
likelihood function, respectively, 

3) computes the posterior distribution given the time sam- 
ple t k  with 

uously, 

4) uses the posterior distribution f ( X i  I t k )  for the current 
time sample t k  as the prior gk+l (Xi )  for the next time 
sample t k + 1 .  

To make the above method computationally manageable, it 
is desirable that both prior and posterior distributions belong 
to the same family of distributions. The major advantage of 
using a conjugate prior distribution in estimating X i  (or any 
other parameters) is that if the prior distribution of X i  belongs 
to this family, then for any sample size NS and any values of 
the observed interarrival times, the posterior distribution of X i  
also belongs to the same family. Consequently, the calculation 
of (5.1) reduces essentially to updating the key parameters of 
a conjugate distribution. The interested readers are referred to 
[20] for a detailed account of this. 

For the composite arrival rate A; with an exponential 
sampling function, one can show that the y-distribution 

, for X > 0, 
otherwise. 

is its conjugate prior distribution, where r ( a )  is the gamma 
function such that r ( a )  = ( a -  l)! if CY is integer. Specifically, 
given B(Xi I a = 1,b = t l )  as the prior y-distribution, and 
given NS interarrival time samples, t l ,  . . . , tN , ,  we have the 
posterior y-distribution of A; as 

We use the mean of A; w.r.t. the posterior distribution as the 
estimated value which can be expressed in terms of the time 

6We will later in the simulation consider the case of hyperexponential 
task interarrival times which represents a system potentially with bursty 
task arrivals, and investigatc to what extent the proposed algorithm remains 
effective. 



1084 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 9. SEPTEMBER 1994 

Tasks trmsferred to other nod= 
c 

Fig. 7. A generic queueing model for each node. 

samples only, i.e., posterior distribution of p is updated as 

' QL,,, + YL",,, )) 

We then use the mean of p w.r.t. the posterior distribution as 
the estimated value, i.e., for 1 I j I Lm,, Thus, the load information provided by latest Ns interarrival- 

time samples can be easily abstracted by updating the key 
parameters in the conjugate distribution. 

Thus, the information provided by the most recent Ns task ar- 
rivals can be abstracted from the posterior distribution simply 
by updating the parameters. 

B. On-Line Estimation of pi(j) and p i ( j )  

The other parameters needed for the proposed LS algorithm 
are {& ( j ) } ,  and { p i ( j ) } .  The estimation techniques used to 
determine (6; (j) 1 and ( p i  ( j )  } are virtually the same; we will 
henceforth concentrate on {& ( j ) } .  

We treat each task arrival as an experiment whose outcome VI. NUMERICAL EXAMPLES 

belongs to one of L,,, mutually exclusive and exhaustive cat- 
egories, and @i(j) as the probability that the outcome belongs 

The performance of the proposed LS algorithm is evaluated 
according to the following sequence: 

to the j th category (1 I j I L,,,), where xf:r & ( j )  = 1. 
Suppose Ns independent experiment outcomes are available. 
Let Y = (YI! . . . ! YL,,,), where y3 denotes the number of 
outcomes that belong to category j among these NS outcomes. 
Then the likelihood function is a multinomial distribution with 
parameters NS and p = (p;(l)>p;(2) ,... !pi(Lmax)), i.e., see 
(5.3) at the bottom of the page. The conjugate family of dis- 
tributions for the parameter p; with a multinomial likelihood 
function is the Dirichlet distribution with parametric vector 
Q = (al!az,...,~~ ), Le., see (5.4) at the bottom of the 
page, where a0 = xy2x ai. Specifically, each node assumes 
the noninformative distribution as the prior distribution of p. 
e.g., the prior distribution of p is the Dirichlet distribution 
with aj = 1, 1 5 j 5 L,,,. After collecting NS samples (Le., 
after N s  task arrivals), and computing (yl, y2! . . . ! y~,,,~~), the 

' 

Validation of the Poisson approximation of the composite 
task arrival process which was made to facilitate the 
on-line estimation of task arrival rates. 
Discussion of the parameters consideredvaried in perfor- 
mance evaluation of LS algorithms. 
Performance evaluation. We first discuss the performance 
metrics used and their significance. Second, we analyze 
the effect of considering 6 2  on the performance of LS 
algorithms. Then, we comparatively evaluate 1) no load 
sharing, 2)  the focused addressing algorithm [ l l ] ,  [12], 
3) the proposed LS algorithm, and 4) perfect information 
LS. Finally, we study the impact of statistical fluctuation 
in task arrivals (by use of hyperexponential external task 
arrivals in the simulation) on the performance of the 
proposed algorithm. 



HOU AND SHIN: LOAD SHARING WITH CONSIDERATION OF FUTURE TASK ARRIVALS 1085 

A. On the Poission Assumption of Composite Task Arrivals 

The on-line estimation of the composite task arrival rate 
is done under the assumption that the composite task arrival 
process can be approximated to be Poisson.’ This assump- 
tion is conjectured to become more realistic as the system 
size increases and/or as the system load gets lighter for the 
following reasons: 

1) The superposition of increasingly many component pro- 
cesses yields (in the limit) a Poisson process. That is, 
as the system size gets larger, a node’s state (CET) 
becomes less dependent on other nodes, the task transfer- 
out process at a node depends less on other nodes’ states, 
and thus, the renewal assumption gets closer to reality. 

2 )  In the case of Poisson external task arrivals, when the 
task transfer-out ratio is small, so is the “disturbance” to 
the (originally) Poisson arrival process caused by task 
transfers. 

The validity of this approximation is checked by comparing the 
hypothesized exponential distribution and the sample cumula- 
tive distribution function. Given an estimate of the composite 
task arrivals being Poisson with arrival rate X = 

Kolmogorov-Smimov goodness-of-fit test is used to determine 
if t l ,  . . . , t, represent a random sample from an exponential 
distribution. 

For completeness, we summarize below the steps of the Kol- 
mogorov-Smimov test used and discuss the data obtained from 
event-driven simulations. The interested readers are referred to 
[22]  for a detailed account of the Kolmogorov-Smimov test. 
We first run simulations and collect interarrival times on-line 
until k = 100 samples are obtained on each node. Second, we 
construct the sample (or empirical) distribution function Fk(t)  
that is defined as the portion of the observed samples that are 
less than or equal to 1, i.e., let t(l) < t ~ )  . f .  < t ( k )  be the 
values of the order statistics of the sample, then 

*. the 

0, t < t ( 1 ) .  

F k ( t )  = ~ / k ,  t(,) 5 t < t ( ,+l) ,  2 = 1,. , . , k  - 1. (6.1) r 1, t = t ( k ) .  

Now we are interested in testing the following two hypotheses: 
Ho: t l r t 2 , . . .  . t k  is a random sample drawn from an 

exponential distribution with parameter A, i.e., F ( t )  !? 
plimk,,Fk(t) = Fx(t) ,  where plim denotes “prob- 
abilistic limit”; 

H I :  Ho is not true; 
where Fx(t)  = 1 - exp(-At) is the hypothesized exponential 
distribution. The test statistic D for the Kolmogorov-Smirnov 
test is defined as the maximum difference between Fk(t)  and 
Fx(t) ,  i.e., 

If D i s  large, there are large differences between F ( t )  and 
Fx( t ) ,  and the null hypothesis is rejected. To judge whether 
or not D is large enough to justify rejecting Ho,  we compare D 
with the critical value D* [22] of the Kolmogorov-Smimov 

7The same assumption was also used in [8], [21] without any justification. 

TABLE I 
VALIDATION OF THE POISSON ASSUPTION: IF D < D* = 0.136, THEN 

THE ASSUMPTION IS VALID FOR THE SIGNIFICANCE LEVEL 0.05 

test. For example, as the sample size k > 40, D* can be 
calculated as 1.36 (= 0.136 in our case) at the significance 
level cy = 0.05, where a is the probability that HO is falsely 
rejected. If D > D*, we reject Ho; otherwise, we accept HO 
at the significance level a. 

It turns out that in the case of Poisson external task arrivals, 
we have for all combinations of task attributes8, D < D* = 
0.136 (i.e., HO is accepted) when the number of nodes in 
the system 2 12, and/or the average task transfer-out ratio 
< 0.25-this is always true in our simulations when the 
average external task arrival rate = k Apxt 5 0.8. 
See Table I for a typical numerical example. Since both 
of the above conditions are satisfied for the proposed LS 
algorithm, the approximation of exponential interarrival times 
is acceptable at the significance level a = 0.05 for the case 
of Poisson external task arrivals. 

A 

B. Parameters ConsidereMaried 

The performance of LS algorithms depends on a large 
number of parameters which are classified into the following 
three groups. 

1) System parameters, such as the number, N ,  of nodes 
in the system, the degree of system heterogeneity, and 
the communication delay which consists of task-transfer 
and medium-queueing delays. The former delay depends 
on the capacity of the communication network and the 
size of the transferred task, while the latter dynamically 
changes with the system load. 

2 )  Characteristic parameters of the task set, such as the 
external task arrival rate, A?” the laxity distribution 
of extemal tasks, and the distribution of execution time 
required by external tasks, on each node. For all results 
presented below, we use {el, e2 , .  . . , ek}{qel  , 4 e 2  ,..., q e k l  
to denote the task set in which an external task re- 
quires execution time ei with probability qe,,  V i .  If 
qe, = q Ve,, then {Pel , q e 2 , .  . . , q e c }  is condensed to 
q. Similarly, {Cl1 CZ,  . . C,} iQtl ,._., B p n  1 is used to 
describe the laxity distribution of external tasks. 

‘ S e e  the next subsection on the parameters varied. 



I086 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 9, SEPTEMBER 1994 

3)  Design parameters of the proposed LS algorithm, 
such as the number, K ,  and values of thresholds, 
T H 1 , .  . . , T H x - ~ ,  and the posterior probability update 
interval Tp. 

A 16-node ( N  = 16) regular’ system is used in our 
simulations. The size of buddy set is chosen to be 12, because 
increasing it beyond 10 was shown to be ineffective [8]. The 
numerical experiments on the degree of system heterogeneity 
were conducted by dividing nodes into K ,  groups; the nodes 
in each group g, 1 5 g 5 K,, have an external task 
arrival rate such that = T and &xz=lXyt  = 

Xext. The performance of the proposed LS algorithm was 
simulated while varying K,  from 2 to 6, and r from 2 to 4. 
Region-change broadcasts compete with task transfers for the 
communication medium. No priority mechanism regulates the 
transmission over the medium (Le., a FCFS rule is assumed). 
The task-transfer delay is varied from 10% to 50% of the 
execution time of each task being transferred. The broadcast- 
message-transmission delay is assumed to be negligible. The 
information about the environment in which the task will 
execute, e.g., the task owner’s current working directory, the 
privileges/attributes inherited by the task, I/O buffers and 
messages, etc., is transferred to the remote candidate node. 
The physical transfer of a task may thus require tens of com- 
munication packets, while a region-change broadcast would in 
all likelihood need at most one packet. The medium-queueing 
delay which is experienced by both broadcast messages and 
transferred tasks and which dynamically changes with system 
load and traffic is modeled as a linear function of the number 
of taskdmessages queued for the particular medium. 

The simulation was carried out for both exponential and hy- 
perexponential task arrivals while varying the average external 
task arrival rate per node, z, from 0.2 to 0.9, the ratio of 
‘3+1 (1 5 j 5 k - 1) from 2 to 10, and the ratio of of 

e3 e ,  
(1 5 j 5 n - 1) from 2 to 6. The case with hyperexponential 
interarrival times represents a system potentially with bursty 
task arrivals, and is used to study the impact of statistical 
fluctuation in task arrivals on the LS performance. The squared 
coefficient of variation of hyperexponential arrivals (CV’) 
is varied from 1 to 64. For convenience, all time-related 
parameters are reportedexpressed in units of average task 
execution time. 

The design parameters, K ,  THk’s ,  and Tp, may affect the 
accuracy of posterior distributions which were used for G1 and 
G2. It is, however, difficult to objectively determine an optimal 
combination of these design parameters that give accurate 
posterior distributions while incurring the least communica- 
tion overhead. We already discussed one method in [ l ]  that 
determines the design parameters. For each task set and each 
system configuration, we fix all but one design parameter of 
interest at a time, and obtain performance figures as a function 
of this parameter from which its optimal value can then be 
determined. Next, we vary another parameter of interest while 
keeping the first parameter fixed at its “optimal” value and the 
rest of the parameters fixed at their originally chosen values. 
This process was repeated until all parameters are varied. Since 

N e x t  

9 - 

a different order of examining parameters may lead to different 
parameter values, we choose the one which yields the smallest 

Although the set of parameters obtained through the above 
method may not be globally optimal, our simulations have 
shown them to yield good results, as compared to other 
existing LS algorithms. Moreover, the proposed LS algorithm 
was shown to be robust to the variation of these parameters, 
an important advantage coming from 1) the use of Bayesian 
analysis and 2) the use of threshold values as reference points 
for broadcasting messages, rather than for transferring tasks. 

We shall present only those results that are the most relevant, 
interesting, and/or representative. In spite of a large number 
of possible combinations of parameters, the results are found 
to be quite robust in the sense that the conclusion drawn from 
the performance curves for a task set with the given external 
task execution and laxity distributions and a given system 
configuration is valid over a wide range of combinations of 
external task execution time and laxity distributions. 

Pdyn.  

C. Pet$ormance Evaluation 

Performance Measures of Interest: Instead of using the 
mean task response time as the performance metric, we use 
three measures which are relevant to real-time performance: 

The probability of dynamic failure, Pdyn: Since failure 
to complete a real-time task before its deadline could 
cause a disaster in real-time systems, this measure is the 
key performance metric for the evaluation of real-time 
systems. 
Maximum system utilization, L: the system utilization 
is defined as the ratio of the external exponential task 
arrival rate (z) to the system service rate, under the 
assumption that both task laxity and execution time are 
exponentially distributed. The service rate is normal- 
ized to 1 in our numerical results, and thus the system 
utilization simply becomes G. Since Pdyn  increases 
with system load, there exists an upper bound or L, 
termed as maximum system utilization A,,,, below which 
Pdyn 5 c can be guaranteed for some prespecified E > 0. 
This is the highest frequency of task activations allowed 
for a specified Pdyn .  
The task transfer-out ratio, y: is defined as the ratio of 
transferred tasks to composite (both local and transferred) 
tasks. This is a measure of traffic overhead due to task 
transfers. 
The frequency of task collision, ftc: is defined as the 
fraction of transferred tasks that are not guaranteed (under 
the MLFS scheduling policy) on remote nodes after their 
transfer. This is a measure of the capability of the LS 
algorithms in reducing the possibility of task re-transfers. 

Esfects of G2 on the Pet$ormance of LS Algorithms: We 
now analyze the performance improvement achievable by 
considering 62,  and compare the performance of the proposed 
LS policy with others using trace-driven simulations. For 
each combination of task set and system configuration, the 
simulation ran until it reached a 95% level of confidence in 

- 

9 A  system is said to be regular if all node degrees are identical. the results for a maximum error of 1) 2% of the specified 



HOU AND SHIN: LOAD SHARING WITH CONSlDERATlON OF FUTURE TASK ARRIVALS 1087 

TABLE I1 
f r c  OF THE PROPOSED APPROACH WITH AND WITHOUT 6 2  FOR A TASK 

& E T =  { 0 . 4 , 0 . 8 , 1 . 2 , 1 . 6 ) ~ ~ 5 , A N ~ L =  {1 .2 ,3}1 /3  

The task transfer delay is assumed to be 10% of task execution time. 

Fig. 8. P,],.,, of the proposed LS approach with and without G2 for a task 
set with ET = { 0 . 4 . 0 . 8 , 1 . 2 , 1 . 6 ~ ~ . ~ ~ ~ ,  and L = {1 ,2 ,3}1 ,3 .  The task 
transfer delay is assumed to be IO%, of task execution time. 

probability if P d y n  is the measure of interest, and 2) 5% of the 
ratio or frequency if the task transfer-out ratio or the frequency 
of task collision is the measure. The number of simulation runs 
needed to achieve the above confidence level is calculated by 
the Student4 test under the assumption that the parameter to 
be calculated is normally-distributed with unknown mcan and 
variance. 

Fig. 8 plots the performance of the proposed LS policy 
with and without consideration of G2 for different degrees 
of system heterogeneity. When 2 0.4 and as the degree 
of system heterogeneity increases, one can make a substantial 
performance gain with G2. In other words, inclusion of 6 2  
in a LS algorithm avoids the possibility of transferring tasks 
to those nodes which tend to become overloaded or receive 
tighter-laxity tasks. This, in turn, reduces the possibility of task 
collisions and task re-transfers (and thus Pdyn).  See Table I1 
for numerical examples of ftc for the proposed algorithm. 

Taking 6 2  into account is not restricted to the proposed 
LS algorithm; it can also be incorporated into other existing 
LS algorithms. For example, a parallel state-probing approach 
can be modified to reduce Pdyn as follows. Each node collects 
and estimates A;, {pi(j), 0 I j 5 E,,,}, and { f i i (k ) ,  1 5 
k 5 L,,,} on-line as discussed in Section V. A node with 
an unguaranteed task probes a predetermined number" of 
nodes in parallel. A probed node i sends the probing node, 
in addition to its CET, the estimated A;, pi(j)'s, and $ i ( k ) ' s .  
After receiving this information, the probing node considers 
G2 and chooses the most capable receiver. Fig. 9 depicts 

"This has been set to 5 in our simulations based on the finding in [ 5 ] .  

A -.-A 
o.-..-o 
+.-..-+ 
9-9 
x-x 

Fig. 9. Payn of the parallel state probing with and without 62 for a task set 
w i t h E T  = {0.4,0.8.1.2,1.6}0.~5,andL={1,2,3}1/3.Thetasktransfer 
delay is assumed to be 10% of task execution time. 

"l.L.pD, . , , , , , . 1 

A -.-A . -.-. 
0 -.-D . -.-. 
0-0 
*-* 

A-? .+Amnlh  

Fig. 10. Performance comparison w.rt. I'dyn among different LS ap- 
proaches for a 16-node system with a task set ET = {0.4,0.8,1.2,1.6)0 2 5 ,  

L = { 1.2.3)  113. The task transfer delay is assumed to be 10% of task 
execution time. 

the performance of the parallel state-probing approach with 
and without consideration of G2. Again, the performance 
improvement made by G2 becomes substantial as the degree 
of system heterogeneity increases. 

Pe$ormance Comparison Among DifferentLS Algorithms: 
The proposed LS algorithm is comparatively evaluated against 
a simplified version of the focused addressing approach in [ 1 I], 
[12]. It differs slightly from that of [ l l] ,  [12] in the way a node 
chooses the focused node. The authors of [ll],  [12] used the 
percentage of free time during the next window (which is a 
design parameter) and many other parameters-that peed to be 
estimatedtuned-to determine the focused node or the node to 
which the task must be transferred again. By contrast, we use 
the observed CET of other nodes to determine the receiver of 
each unguaranteed task. 

We also compare the proposed LS algorithm with two 
baseline schemes. The first baseline scheme assumes no load 
sharing, while the second is an ideal scheme where each node 
has complete information on all the other nodes without any 
overheaddelay in collecting it. 

Figs. 10-12 show the performance curves of different LS 
algorithms for different task attributes. Three task sets are con- 



1088 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 9. SEPTEMBER 1994 

. -.-. . $. -. 
0 -.-0 . -.-. 
1-. 

0-0 

Fig. 1 1 .  Performance comparison (w.r.t. I 'dyn)  among different LS ap- 
proaches for a 16-node system with a task set ET = {0.027,0.2'i,2.7}1/3, 
L = {1.2,3}1/3.  The task transfer delay is assumed to be 10% of task 
execution time. 

. -.-. . -.-. 
0 -.-0 . -.-. .-. 
0-0 

Fig. 12. Performance comparison (w.r.t. Pc,sr,) of different LS approaches 
for a 16-node system with a task set ET = (0.4.O.S.1.2.1.6}0.~~, 
L = { 1}1,  The task transfer delay is assumed to be 10% of task execution 
time. 

" C U  taccshlipr 

Fig. 13. 
and the focused addressing approach in a 16-node system with 
ET = { 0 . 4 , 0 . ~ , 1 . 2 , 1 . ~ } ~ . ~ ~ .  L 1 { 1 . 2 . 3 } 1 , 3 .  

Effect of task transfer delay on PclIn for the proposed approach 
= 0.8. 

sidered: (I) ET = {0.4,0.8,1.2,1.6}0.2~, L = {1,2,3}1/3; 
(11) ET = {0.027,0.27,2.7}1/3, L = { l ,2 ,3} l /3;  and (111) 
ET = {0.4,0.8,1.2,1.6}0.25, L = {1}1. The average external 
task arrival rate is varied from 0.2 to 0.9. Fig. 13 shows 
the effect of task-transfer delay on the performance of different 
LS algorithms. For clarity, only the performance curves corre- 
sponding to ( K n ,  r )  = (1,l) are shown for no LS and perfect 
LS. From these curves, one can observe that the proposed 
LS algorithm outperforms the focused addressing approach 
in minimizing Pdyn, especially when 1) the distribution of 
external task laxity is tight, 2 )  the spectrum of task execution 
time is wide, 3 )  the degree of system heterogeneity is large, 
and 4) the task-transfer delay is significant. The superiority 
of the proposed LS policy under condition 1) comes from 
the fact that an unguaranteed task with tight laxity cannot 
tolerate the possibility of being transferred to an incapable 
node or a node which will become incapable in near future. 
(Note that the proposed LS algorithm deliberately eliminates 
such a possibility.) Under condition 2),  a node easily becomes 
incapable with the arrival of even a single task which has a 
tight laxity and requires a large execution time. This makes 
the consideration of future task arrivals crucial in locating 

G u " e e d  pob.bilily d 6yrum* failwe 

Fig. 14. 
time and laxity are exponentially distributed. 

vs. 6 .  External task arrivals are Poisson. Both task execution 

the receiver of each unguaranteed task. The performance 
improvement under 3 )  and 4) results from the consideration 
of G2 and G1, respectively. 

Fig. 14 shows the plot of maximum system utilization 
Aext versus F. This relates the worse-case achievable Pllyn to 
the frequency of task activations. One important result from 
these curves is that with the clever usehnterpretation of state 
information/statistical samples, we do not have to sacrifice 
Aext for lower Pdynr which is in contrast to the common 
notion of trading system utilization for real-time performance. 
Moreover, the proposed algorithm outperforms the focused ad- 
dressing algorithm, and the performance superiority becomes 
more visible as the degree of system heterogeneity increases. 

Table 111 gives numerical results of task transfer-out ratio y 
for different LS algorithms. From this table, we observe that 
y for the proposed LS approach is smaller than that for the 
focused addressing. This indicates the ability of the proposed 
LS algorithm in avoiding task transfers to 1) incapable nodes 
as a result of using out-of-date state information, and 2) 

- 

- 



HOU AND SHIN: LOAD SHARING WITH CONSIDERATION OF FUTURE TASK ARRIVALS 1089 

Task set I1 1 0.398 0.416 I 0.304 

TABLE 111 
PERFORMANCE COMPARISON (W.r.t. TASK TRANSFER O U ~ A T I O )  OF 

LS algorithm I Focused Addressing I Proposed Algorithm I Perfect LS 

DIFFERENT L s  APPROACHFq FOR A I~-NoDE SYSTEM A,,, = 0.6 

f K . r )  I (1.1) 1 (8.2) I (1.1) I (8.2) I 11.1) I (8.2) 

0.311 I 0.276 0.294 
Task set 111 I 0.355 0.392 1 0.321 I 0.347 1 0.286 1 0.312 

The task transfer delay is assumed to be 10% of task execution time. 

capable nodes that may easily bccomc incapable as a result of 
future task amvals. The performance improvement becomes 
more pronounced as the tightness of task laxity distribution 
and/or the degree of system heterogeneity increases. 

Effect of Statistical Fluctuation in Task Arrivals on the 
Proposed Scheme: One issue in using a Bayesian estimation 
model is to what extent the proposed LS scheme remains 
effective when the attributes of tasks arrived at a node ran- 
domly fluctuate. We study this effect on the estimation of 
composite task arrival rates by simulating different task sets 
with hyperexponential extemal task interarrival times. This 
represents a system potentially with bursty task arrivals, and 
the degree of statistical fluctuation over a short period is 
modeled well by varying the coefficient of variation (CV) of 
the hyperexponential extemal task interarrival times.' ' Fig. 
15 shows the simulation results under heavy system load 
(Aext = 0.8, where the LS performance is most sensitive 
to the variation of CV) with the window of the sample size 
N s  = 30. From Fig. 15, we draw the following conclusions: 
as thc variance of task interarrival times (CV) becomes greater, 
the sample-mean based estimate gets worse. This is because 
the variability effect due to task burstiness cannot be totally 
smoothed out. This accounts, in part, for the performance 
degradation of the proposed algorithm. Another reason for 
performance degradation is due to the capacity limit of the 
distributed system; that is, the system inherently cannot guar- 
antee simultaneously bursty time-constrained task arrivals. 
The proposed scheme remains effective (despite its gradual 
degradation) up to CV = 7.42 (or CV2 = 55) beyond which it 
reduces essentially to the scheme without the use of Bayesian 
estimation. This suggests that within a wide range of statistical 
fluctuation in task arrival pattems, parameter estimates based 
on the Bayesian technique suffice to serve as an index of the 
tendency of future task arrivals on a node. 

~ 

V I I .  CONCLUSION 

We proposed a new LS algorithm for real-time applications 
by considering the effects of future task arrivals on locating 
the best receiver for each unguaranteed task. The proposed LS 
algorithm minimizes not only the probability of transferring 
an unguaranteed task 7 to an incapable node. but also the 
probability of the chosen remote node failing to guarantee 7 
because of the node's future arrivals of tighter-laxity tasks. 
Consideration of future task arrivals signiticantly improves 

" Let TI be the task interarrival time. By Chebyshev's inequality, 
P ( (  T/ - E(T1) I 2 J J E ( T / ) )  5 $: 

i.e., the smaller CV', the less likely TI will deviate from its mean. 

the performance of LS (in minimizing Pdyn) when system 
workloads are unevenly distributed among nodes. 

All parameters needed in the LS decision 
process-observatiodestimation of other nodes' states, 
composite task arrival rates of other nodes, and task execution 
time and task laxity distributions of other nodes-are 
collectedestimated on-line using time-stamped region-change 
broadcasts and Bayesian estimation theory. This makes the 
proposed algorithm 1) less sensitive to communication delays 
and 2) adaptive to dynamically varying workloads with little 
computational overhead. 

The Poisson approximation of composite task 
arrivals-which has been used without justification in 
other LS algorithms (e.g., [SI, [21])-has been carefully 
checked by the Kolmogorov-Smimov goodness-of-fit t a t .  
Our simulation results have indicated that this assumption 
holds for a system with a reasonably large (212) number of 
nodes andor with a small (50.25) average task transfer-out 
ratio. The negative impact of statistical fluctuation in task 
arrivals on the proposed approach with use of Bayesian 
estimation is also shown to be acceptably low over a wide 
range of bursty task arrivals (e.g., up to CV2 = 55, where 
CV is the coefficient of variation of external task interarrival 
times used in the simulation). 

APPENDIX 
LIST OF SYMBOLS 

{ p z ( j ) , j  = 1, . . . , Emax}: the distribution of compositeI2 
task execution time on node i, where E,,, is the maximum 
task execution time. This distribution will be estimated 
on-line by each node i. 
{ & ( j ) , j  = 1.. . . , LmaX}: the distribution of composite task 
laxity on node i ,  where L,,, is the maximum laxity. This 
distribution will also be estimated on-line by each node i. 
CET. ( t ) :  the cumulative execution time (CET) on node 
z contributed by tasks with laxity 5 k! under the MLFS 
discipline. 
O,(k!): the observation about GETz(C) made by some node 
j # 2. 

both external and transferred 



1090 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 9, SEPTEMBER 1994 

pc, (. I Oi(!)): the posterior distribution of CETi(!) given 
the observation Oi(!). This posterior distribution is con- 
structed by each node j # i with the state samples collected 
via time-stamped region-change broadcasts. 
VQ:  the event that future tighter-laxity task arrivals at node 
i do not invalidate the existing guarantee of a task with 
laxity C. 
Gi,[: the event that a task with laxity e can be guaranteed 
by node i even in the presence of future tighter-laxity task 
arrivals. 
X i :  the exponential composite task arrival rate at node i. 
yl( X i )  = const: the noninformative distribution which 
serves as the prior distribution in Bayesian estimation. 
f ( t  1 Ai) = X i e P A L t :  the likelihood function of interarrival 
times given Xi .  
f (x i  I t k ) :  the posterior distribution of X i  given the sample 
of interarrival time t k .  

G(X I a,@): the y-distribution of X i  with parameters a and 

Ns:  the size of statistical samples used to estimate Xi, 

Y = (Yl, . . . , YL,,,): the vector recording the numbers of 
laxity-j tasks in N s  task arrivals, where Yj denotes the 
number of laxity-j tasks in N s  arrivals. 
p: p = (pi(l)?pi(2), . . . ,pi(Lmax)) is the vector of proba- 
bilistic parameters to be estimated. 
f (y  I Ns,p): the likelihood function of Y among NS 
outcomes given p. 
D(p I a):  the Dirichlet distribution of p with parameter 

Fk ( t ) :  the empirical distribution function of task interarrival 
times defined as the proportion of the observed samples 
which are 5 t.  
F,+(t) = 1 - e p A t :  the hypothesized exponential distribution. 
Dks : the test statistic for the Kolmogorov-Smimov test. 
ff ks: the significance level used in the Kolmogorov-Smimov 
test, i.e., the probability that the test falsely rejects the 
hypothesized distribution. 
Xyt: the external task arrival rate at node i .  
Xext: the average external task arrival rate. It is an index 
of system load. 
K,: the number of heterogeneous groups in the system. 
T,: the ratio of external task arrival rates between two 
“adjacent” groups, i.e., # = T,. 

CV: the coefficient of &ation of the hyper-exponential 
interarrival times of external tasks (used in the simulation). 

- 

P. 

{fii(j)), or { P i ( j ) ) .  

ff = (Ql,  a 2 ,  ‘ ‘ . , C1Lmax). 

- 

REFERENCES 

K. G.  Shin and C.-J. Hou, “Design and evaluation of effective load 
sharing in distributed real-time systems,” IEEE Trans. Parallel Distrib. 
Syst., vol. 5, no. 7, pp. 704-719, July 1994. 
C. M. Krishna and K. G. Shin, “Performance measures for multiproces- 
sor controllers,” Petjormance ’83, A. K. Agrawala and S. K. Tripathi, 
Eds. 
K. G. Shin, C. M. Krishna, and Y. H. Lee, “A unified method for 
evaluating real-time computer controllers and its application,” fEEE 
Trans. Automat. Contr., vol. AC-30, pp. 357-366, Apr. 1985. 
J. Hong, X. Tan, and D. Towsley, “A performance analysis of minimum 
laxity and earliest deadline scheduling in a real-time system,” IEEE 
Trans. Comput., vol. 38, no. 12, pp. 1736-1744, Dec. 1989. 

Amsterdam: North-Holland, 1983, pp. 229-250. 

D. L. Eager, E. D. Lazowska and J. Zahorjan, “Adaptive load sharing 
in homogeneous distributed systems,” IEEE Trans. Software Eng.. vol. 
SE-12, no. 5, pp. 662-675, Dec. 1986. 
J .  A. Stankovic, “Simulation of three adaptive, decentralized controlled, 
job scheduling algorithms,” Comput. N e w . ,  vol. 8, pp. 199-217, 1984. 
-, “An application of Bayesian decision theory to decentralized 
control of job scheduling,” IEEE Trans. Comput., vol. C-34. no. 2, pp. 
117-130, Feb. 1985. 
K. G. Shin and Y.-C. Chang, “Load sharing in distributed real-time 
systems with state change broadcasts,” IEEE Trans. Comput., vol. 38, 
no. 8, pp. 1124-1 142, Aug. 1989. 
__, “Load sharing in hypercube multicomputers for real-time ap- 
plications,” presented at the 4th Conf: Hypercube, Concurrent Comput., 
and Applicat., 1989. 
J. F. Kurose and R. Chipalkatti, “Load sharing in soft real-time dis- 
tributed computer systems,” IEEE Trans. Comput., vol. 36, no. 8, pp. 
993-999, Aug. 1987. 
J. A. Stankovic, K. Ramamritham, and S. Chang, “Evaluation of a 
flexible task scheduling algorithm for distributed hard real-systems,” 
IEEE Trans. Comput., vol. ‘2-34, no. 12, pp. 1130-1 141, Dec. 1985. 
K. Ramamritham, J.  A. Stankovic, and W. Zhao. “Distributed sched- 
uling of tasks with deadlines and resource requirements,” IEEE Trans. 
Comput., vol. 38, no. 8, pp. I 1  10-1 141, Aug. 1989. 
T. P. Yum and M. Schwartz, “The join-biased-queue rule and its 
application to routing in computer communication networks,” f E E E  
Trans. Commun., vol. COM-29, no. 4, pp. 505-511, Apr. 1981. 
T. P. Yum and H.-C. Lin, “Adaptive load balancing for parallel queues 
with traffic constraints,” fEEE Trans. Commun., vol. COM-32, no. 12, 
pp. 1339-1342, Dec. 1984. 
R. Mirchandaney, D. Towsley and J. A. Stankovic, “Adaptive load 
sharing in heterogeneous systems,” in IEEE Proc. 9th Int. Conf: on 
Distrib. Comput. Syst., 1989, pp. 298-306. 
S. Pulidas, D. Towsley, and J. A. Stankovic, “Embedding gradient 
estimators in load balancing algorithms,” in IEEE Proc. 8th Int. Con5 
Distrib. Comput. Syst., 1988, pp. 482490.  
L. Kleinrock, Queueing Systems. Volume I :  Theory. New York: John 
Wiley, 1975. 
D. Gross and C. Hams, Fundamentals of Queueing Theory, second ed. 
New York: John Wiley, 1985. 
S. M. Ross, Stochastic Processes. 
M. H. DeGroot, “Optimal Statistical Decisions. New York: Mcgraw- 
Hill, 1970. 
R. Mirchandaney, D. Towsley, and J. A. Stankovic, “Analysis of the 
effect of delays on load sharing,” IEEE Trans. Comput., vol. 38, no. 1 I ,  

New York: John Wiley, 1983. 

pp. 3513-1525, Nov. 1989. - 
M. H. DeGroot, “Probability and Statistics, second ed. Reading, MA: 
Addison-Wesley, 1986. 

Chao-Ju Hou (S’88-M’94) was bom in Taipei, 
Taiwan, Republic of China. She received the B.S.E. 
degree in Electrical Engineering in 1987 from Na- 
tional Taiwan University, the M.S.E. degree in Elec- 
trical Engineering and Computer Science (EECS), 
the M.S.E. degree in Industrial and Operations En- 
gineering, and the Ph.D. degree in EECS, all from 
The University of Michigan, Ann Arbor, in 1989, 
1991, and 1993, respectively. 

She is currently an assistant professor in the 
Dept. of Electrical and Computer Engineering at 

the University of Wisconsin, Madison. Her research interests are in the 
areas of distributed and fault-tolerant computing, real-time computing, real- 
time communications, queueing systems, estimation and decision theory, 
and performance modeling/evaluation. She is the recipient of Woman in 
Science Initiative Award, Chancellor’s Faculty Enhancement Fund, from the 
University of Wisconsin-Madison, 1993-1995. She is a member of IEEE 
Computer Society, ACM Sigmetrics, and Society of Woman Engineer. 

Kang G. Shin (S’75-M’78-SM’83-F92) for photograph and biography, 
please see p. 1025 in this issue of this TRANSACTIONS. 


