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Abstract-This paper addresses the problem of designing and 
incorporating a timeout mechanism into load sharing (LS) with 
state-region change broadcasts in the presence of node failures 
in a distributed real-time system. Failure of a node is diagnosed 
by the other nodes through communication timeouts, and the 
timeout period used to diagnose whether a node is faulty or not 
usually depends on the dynamic changes in system load, the task 
attributes at the node, and the state the node was initially in. We 
formulate the problem of determining the “best” timeout period 

for node i as a hypothesis testing problem, and maximize 
the probability of detecting node failures subject to a pre-specified 
probability of falsely diagnosing a healthy node as faulty. 
The parameters needed for the calculation of T!:;, are esti- 
mated on-line by node i using the Bayesian technique and are 
piggy-backed in its region-change broadcasts. The broadcast 
information is then used to determine TL:,. If node n has not 
heard from node a for T!(Jt since its receipt of the latest broadcast 
from node i, it will consider node i failed, and will not consider 
any task transfer to node i until it receives a broadcast message 
from node i again. On the other hand, to further reduce the 
probability of incorrect diagnosis, each node n also determines 
its own timeout period TL;!, and broadcasts its state not only at 
the time of state-region changes but also when it has remained 
within a broadcast interval throughout T’L:,;. 

Our simulation results show that the LS algorithm which com- 
bines the on-line parameter estimation, the timeout mechanism, 
and a few extra timely broadcasts can significantly reduce the 
probability of missing task deadlines, as compared to the other 
algorithms either without any timeout mechanism or with a fixed 
timeout period. 

Index Terms-Deadlines, real-time systems, load sharing, node 
failures, timeout, continuous-time Markov chains, hypothesis test- 
ing, randomization, Bayesian parameter estimation, performance 
evaluation. 

I.  INTRODUCTION 
HE availability of inexpensive, high-performance pro- T cessors and memory chips has made it attractive to 

use distributed computing systems for real-time applications. 
However, tasks may arrive unevenly and randomly at the 
nodes and/or computation power may vary from node to 
node, thus getting some nodes temporarily overloaded while 
leaving others idle or under-loaded. Consequently, some tasks 
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may miss their deadlines even if the overall system has the 
capacity to meet the deadlines of all tasks. Many load sharing 
(LS) algorithms have been proposed to counter this problem, 
especially aiming at minimization of the probability of tasks 
missing their deadlines, which is referred to as the probabiliv 
of dynamic failure, Pdy.iL [l] .  

Upon arrival at a node of a real-time task with laxity 
e,’ real-time LS algorithms determine whether or not the 
node can complete in time the task under some local sched- 
uling discipline. The minimum-laxity-first-served (MLFS) 
discipline is shown in [2] to, on average, outperform others 
in reducing Pdyn,, and is hence commonly used as a local 
scheduling discipline. That is, the cumulative execution time 
(CET) contributed by those tasks with laxity 5 ! on node i 
determines the node’s capability to meet the deadlines of these 
tasks. If a node cannot complete a newly-arrived task in time 
or the deadline of one or more tasks in its queue i s  to be missed 
as a result of inserting the task into its schedule, the node has 
to determine-based on some state information-candidate 
receiver(s) for task transfer(s). 

The state information required for all dynamic LS algo- 
rithms can be collected through periodic exchange of state 
information [3]-[5], biddingktate probing [6]-[ 1 11, or aperi- 
odic state-region change broadcasts [ 121-[ 161. The algorithms 
based on periodic exchange of state information require a good 
or optimal means of determining the period of information 
exchange, since the accuracy of state information when a LS 
decision has to be made depends heavily on this period. On 
the other hand, the algorithms based on biddinghate probing 
generates at least two additional messages per bidding/probing, 
introducing time and communication overheads, and may 
thus be detrimental to the timely completion of real-time 
tasks. Moreover, the performance of these algorithms is very 
sensitive, to the variation of communication delay. 

An algorithm that requires to update the state information 
only in case of state-region changes has the advantage of 
maintaining more up-to-date state information and collecting it 
inexpensively before i t  is needed for a LS decision. However, 
there still remain several potential problems for this kind of 
algorithms as follows. 

The communication overhead may become excessive 
as the system load gets heavy or as the number of 
communicating nodes in the system gets large. 
The state information gathered may still be out-of-date 
if the queueinghask-transfer delay is large. 

’ The laxity of a task is defined as the latest time a task must start execution 
in order to meet its deadline. 
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The performance is susceptible to node failures. If node 
i has been silent (Le., does not broadcast its state-region 
changes) for a long time, other nodes have no way of 
knowing whether this is an indication of node i ’ s  failure 
or a coincidence of task arrival and completion/transfer 
activities alternating on node i. 

Shin and Chang [I41 proposed the concept of the buddy 
sets and the preferred lists to reduce the undesirable effects 
of the first problem. In another paper [16], we proposed 
a decentralized, dynamic LS algorithm which significantly 
alleviates the second problem in the presence of non-negligible 
communication delays. In this paper, we will design a timeout 
mechanism that can be incorporated into LS with aperiodic 
state-region change broadcasts to counter the third problem. 

For LS algorithms using state-region change broadcasts, 
each node i broadcasts a message, informing the other nodes 
in its buddy set of a stage-region change whenever its CET 
crosses a certain broadcast threshold [16]. A timeout mech- 
anism can be incorporated into this kind of LS algorithm as 
follows. Each node 71 makes the transfer and location decisions 
as specified by the LS algorithm. In addition, node n considers 
node ,i failed if it has not heard from node i for the timeout 
period, Tj;t, since its receipt of node i ’s  latest broadcast, and 
will thereafter not send its overflow task(s) to node ,i even 
if node i is observed (through the state information gathered 
in regionxhange broadcasts) to be capable of completing the 
task(s) in time. Obviously, the determination of Tji!+ is crucial 
to the performance of the timeout mechanism, and is the main 
subject of this paper. 

There are two possible scenarios of node 71 not receiving 
any region-change broadcast from node ,i for the period Ti,$: 

S1) node ,i failed sometime after issuing its last broadcast 
message; 

S2) task arrival and completion/transfer activities alternate 
in such a way that the state or CET of node i oscillates 
within two adjacent broadcast thresholds, or remains in 
a broadcastthreshold interval. 

The determination of T,’% thus involves a trade-off between 
the performance improvement gained by reducing Ti:: (thus 
enabling early detection of a node failure) and the performance 
degradation resulting from hasty, incorrect diagnoses. We will 
formulate this problem as a hypothesis testing (HT) problem, 
and determine Ti:\ by maximizing the probability of detecting 
node failures subject to a pre-specified probability of incorrect 
diagnosis. 

To further reduce the probability of incorrect diagnosis, each 
node ‘71 calculates the “best” timeout period for itself as well 
as for other nodes, and broadcasts its state not only at the time 
of state-region changes but also when it has remained within a 
broadcast-threshold interval and has thus been silent for TJ,”,’. 
That is, with a few extra timely broadcasts, the undesirable 
effect of incorrect diagnosis can be reduced while enabling 
fast detection of node failures. 

One factor that complicates the design of a timeout mecha- 
nism is that the task arrival and completion/transfer activities 
on a node (and thus the optimal value of Ti:\) dynamically 
vary with the system load, the task attributes, and the initial 

state of the node. Thus, the calculation of Tji; calls for on-line 
estimation of the parameters related to task attributes on node 
i .  So, the proposed timeout mechanism requires each node 
i to collect statistics, estimate on-line its “composite” (both 
extemal and transferred-in) task arrival rate and distributions 
of task execution time and laxity, and convey the estimated 
parameters to other nodes in its buddy set by piggy-backing 
them in state-region change broadcasts. This information will 
then be used by the other nodes to calculate TJAi. 

The LS algorithm in [16] will be used here as an exam- 
ple to demonstrate how to incorporate the proposed timeout 
mechanism into a LS algorithm with aperiodic state-change 
broadcasts. One can, of course, include this timeout mecha- 
nism in other existing LS algorithms. 

The rest of the paper is organized as follows. Section I1 
outlines the LS algorithm and the proposed timeout mecha- 
nism. Section 111 and IV establishes a theoretical basis for the 
calculation of optimal TJi:. The HT formulation is treated 
in Section 111, while the probability distribution needed in 
the HT formulation is derived in Section IV by applying the 
randomization technique to a continuous-time Markov chain 
which characterizes the state evolution. Section V discusses 
how the parameters needed for the timeout mechanism are 
estimated on-line by using the Bayesian technique. Section 
VI presents and discusses representative numerical examples, 
and the paper concludes with Section VII. 

11. THE PROPOSED ALGORITHM 

We proposed in [16], [17] a decentralized, dynamic LS 
algorithm for distributed real-time systems without consid- 
ering node failures. In this algorithm, we used the concept 
of buddy sets [ 141, time-stamped region-change broadcasts, 
and Bayesian decision theory to minimize the probability of 
transferring an overflow task to an “incapable” (of meeting 
the task deadline) node. In this section, we first state the 
assumptions made about the system under consideration, and 
summarize the proposed LS algorithm for completeness. We 
then incorporate the proposed timeout mechanism in it to 
tolerate node failures. 

We assume that the node clocks in the system are synchro- 
nized to establish a global time-base. A scheme for achieving 
this synchronization was presented in [18]. We also assume 
that the underlying communication subsystem supports reliable 
broadcasting [ 191, [20] so that a nonfaulty node can correctly 
broadcast its state change to all other nonfaulty nodes in the 
system. Finally, each node is assumed to have a constant 
exponential failure rate XF. (This assumption is commonly 
used in reliability evaluation [21], 1221.) 

To facilitate algorithm description and analysis, we intro- 
duce the following notation and assumptions: 

A,: the composite (extemal and transferred-in) task arrival 
rate at node i .  We approximate the composite task arrival 
process to be Poisson, and the validity of this approxima- 
tion will be discussed in Section VI-A. This approximation 
is used to facilitate the derivation of TJL\ and the on- 
line estimation of parameters needed for the calculation 
of Ti:\. 
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{ p i ( j ) ,  1 5 j 5 Emax}: the distribution of execution times 
of both external and transferred-in tasks at node i ,  where 
E,,, is the maximum task execution time measured in 
number of clock ticks. This distribution will be estimated 
on-line by each node i .  
{$ i ( j ) ,  1 I j 5 Lmax}: the distribution of laxities of 
both external and transferred-in tasks at node i measured 
in clock ticks, where L,,, is the maximum laxity.* This 
distribution will also be estimated on-line by each node i .  
CET;: the cumulative task execution time (CET) on node 

TQ = (T~;T,;. . . ;TL,, ,):  the record for task execu- 
tion times of the sorted queue on a node, where Tj 
eie;...ei+l is an execution-time record of tasks with 
laxity j E { 1, . . . , L,,,} currently queued on a node, and 
e; E {O,...,Em,,}, 1 5 k 5 j + 1, is the execution 
time required by,the kth task among those laxity-j tasks 
in the queue. (e; = 0 if there are less than IC laxity-j 
tasks in the queue.) the reason that Tj is expressed in the 
form e{ei is because a node can queue, under 
the MLFS discipline, at most j + 1 tasks with laxity j ,  
in which case all but the last laxity-j task require one 
unit of execution time and there are no tighter-laxity tasks 
queued at the node. 
0;: the observation of CETi made by some node j # i. 
p c ( .  I Oi):  the posterior distribution of CETi given the 
observation Oi. This posterior distribution is constructed 
by each node j # i with the state samples collected via 
region-change broadcasts. 
THk, 1 5 k 5 Kt - 1: the state (CET) thresholds for 
broadcasting region-change messages, where Kt is the 
total number of state regions. 
TJ$: the timeout period; node i will be diagnosed as failed 
if no broadcast message from node i has been received for 
this period since the receipt of its latest broadcast. 

2.  

- 

A. LS With Region-Change Broadcasts 

For completeness the operations of a node’s task scheduler 
which employs the LS algorithm described in [16], [17] are 
given in Fig. 1. Upon amval of a task with laxity e at node 
ri ,  the node checks whether or not it can complete the task 
in time under the MLFS scheduling discipline. If it can, the 
task is queued at node n. If the task cannot be completed in 
time locally by node n or some of existing guarantees are 
to be violated as a result of inserting the newly-arrived task 
into the node’s schedule, node n looks up the list of best 
LS decisions, and chooses-based on the current observation 
about other nodes’ states, 0, and the laxity of the task(s) to 
be transferred-the best candidate receiver(s) in a small set of 
nodes in its physical proximity called a buddy set. (If multiple 
tasks have to be transferred out, the observation about other 
nodes will be updated each time a LS decision is made.) The 
observation, 0, about other nodes is made via region-change 
broadcasts with time-stamped messages. The list of best LS 

’We may include non real-time tasks in the task set by choosing L,,,, to 
be one time unit larger than the actual maximum laxity of real-time tasks and 
assuming that all non real-time tasks have laxity L,,,,,. 

decisions is updated periodically based on the state samples 
gathered via region-change broadcasts and Bayesian decision 
analysis, each of which is sketched below. 

Buddy Sets: Each node communicates with, maintains the 
state information of, and transfers overflow tasks to, the nodes 
in its buddy set only. The communication overheads resulting 
from broadcastshask transfers are thus reduced. On the other 
hand, to share loads system-wide, the buddy sets overlap with 
one another so that it is possible for a node to transfer its 
overflow task(s) to some other node(s) not in its own buddy 
set. That is, the overflow tasks within one buddy set are shared 
by capable nodes in the system, instead of overloading a few 
nodes within one buddy set [14]. 

Region-Change Broadcasts: the Kt state regions defined 
by Kt - 1 thresholds, TH1, THz,. . . ,  THK,-1, are used to 
characterize the workload of each node. Each node‘i broadcasts 
a time-stamped message, informing all the other nodes in 
its buddy set of its state-region change and all its on-line 
estimated parameters, whenever its CET crosses THzk for 
some k ,  where 1 5 k 5 - l.3 The state information 
kept at each node is thus up-to-date as long as the broadcast 
delay is not significant. 

Bayesian Analysis: The state information collected through 
region-change broadcasts may become outdated due to the 
delay in collecting it. That is, a node’s observation Oi may be 
different from CETi at the time of making a LS decision. In 
[16], we countered this problem by using Bayesian decision 
analysis. Each broadcast message from node i is time-stamped 
and contains the information of 1) the node number i ,  2 )  
CET;, and 3 )  the time t o  when this message is sent. When 
the message broadcast by node i arrives at node n, node a’s 
CET, at to  can be recovered by node n. Node n can also trace 
back to find its observation 0; about node i at time t o .  This 
observation Oi is what node n thought (observed) about node 
i when node a actually has CET,. 0;’s along with CETi’s are 
used by node n to computehpdate periodically the posterior 
distribution, p c ( .  I Oi) ,  of CET, given the observation 
Oi. (See (16) for a detailed account of this operation.) Any 
inconsistency between CETi and 0; is characterized by this 
probability distribution. Besides, CET; sent by node i at time 
to  is transformed into node n’s new observation, Oi, about 
node i at the time node n receives this message, according 
to the rule4 that 0; = k if THk 5 CETi < THk+1, 
0 5 k < Kt - 1, where THoA = 0 and THK,A = 00. 

The only effect of the region-change broadcast delay is that 
the broadcast messages may not get delivered immediately 
and may thus become obsolete upon arrival at their receiver 
nodes. The correctness of all samples gathered is, however, 
not affected by the broadcast delay. Revise: Bayesian analysis 
To make a LS decision, node n-instead of hastily believing 
in its observation Oi about node %--estimates CETi based 
on its (perhaps outdated) observation and determines node i ’ s  
capability of completing a task with laxity C in time, Le., node 

3The reason for not broadcasting the change of state region when a node’s 
load crosses an odd-numbered threshold is to reduce the network traffic 
resulting from broadcasts. 

The reason for discretizing CET, with 0, is to reduce the size of the 
observation space. 
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A t  each node n: 
When a task T, with execution t ime E; and laxity ei arrives at  node n: 

determine the position, j,, i n  the task queue Qt such tha t  t jp- l  5 ti 5 ejp; 

if current-time + E k  2 e; then 

receiver-node := ta  ble-lookup(Q:observation, ti :laxity); 
transfer task T, to receiver-node; 

begin 

end 
else 
begin 

queue task Ti a t  position j,; 
for k = jp + l,length(Q) 

begin 
if current-time + xfz: Et 2 t k  then 
begin 

receiver-node := table_lookup(Q:observation, tk:laxity); 
dequeue and transfer Tk t o  receiver-node; 

end 
end 

begin /* region-change broadcasts: THI,. . , THK*-I are thresholds */ 
if current-CET crosses THZk,  15 k 5 [: 2 1 - 1, then 

broadcast (1) time-stamped CET,’s, and (2) A,, { p , , ( j ) } ,  {@,(k)} t o  all the other 

calculate TS’ and reset timeout-clock,; 
nodes in i t s  buddy set; 

end 
end 

(A,,, { p , , ( j ) } ,  { p , ( k ) } )  = parameter-update(Ei, ti, ti:interarrival-time); 

When a broadcast message arrives f rom node i: 
update observation o f  node 2’s state, 0;; 
if node i is disabled then 

else 

calculate Tb,f’ using A;, {pi(j)} and {pi(k)}. and reset t imeout-clocki; 

enable node i; 

record (Oi, CET,) pair needed for Bayesian decision analysis; 

A t  every clock tick: 
current-CET := current-CET - 1; 
if (current-CET crosses T H z ~ ,  1 5 k _< - 1) or (timeout-clock, expires) then 

begin 
broadcast (1) time-stamped CET,’s, and (2) A,, { p , , ( j ) } ,  and {@,(k)} t o  all the other 

calculate TZ’ and reset timeout-clock,; 
nodes in  its buddy set; 

end 
if t imeout-clocki expires then 

disable node i; 

A t  every T, clock ticks: /* table update */ 
update the table o f  loss-minimizing decisions by Bayesian decision analysis; 

tThe task queue Q is ordered by task laxities. 

Fig. 1. Operations of the task scheduler on each node. 

TI, chooses the node i with the largest value of 
e 

P(CJ% I c I Oi) = C p c ( k l O , )  
k=O 

as the node for an overflow task with laxity C to be transferred 
to. 

B. Incorporation of the Emeout Mechanism into LS 
As mentioned in Section I, there are two possible scenarios, 

S1 and S2, that node i may not broadcast any state-region 
change for a long time. The occurrence of S1 is determined 

by the failure rate of node a ,  while S2 is determined by the 
task arrival, completion, or transfer activities on node a ,  all 
of which dynamically change with the composite task arrival 
rate, the attributes of tasks arriving at node i ,  and node 2’s 
initial state node. Some simple techniques could be used to 
determine whether S1 or S2 occurs: node n may determine 
whether node i failed or not by probing it at the time of 
making a LS decision, but in such a case, it has to wait 
for node a’s response before making the LS decision. This 
could introduce unacceptably long delays to those tasks to be 
transferred, the negative effect of which increases significantly 
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with communication delay [IO]. On the other hand, node 
n may arbitrarily choose a fixed timeout period a priori. 
In this case, node n runs the risk of I )  hastily and falsely 
diagnosing a healthy node as failed if the timeout period 
chosen is too small and 2) failing to detect node failures in 
a timely manner if the chosen period is too large. Actually, 
as will be demonstrated in Section VI, the best value of Ti:; 
varies drastically with the attributes of tasks arriving at node 
%, and the state node i was initially in. (We will compare the 
performance of using the best Titi calculated against that of 
using some pre-specified timeout period in Section VI-D.) This 
calls for a timeout mechanism which dynamically adjusts Ti:: 
based on the attributes of the tasks arriving at node i and the 
state of node i at the time of its last broadcast. 

The timeout mechanism to be incorporated into LS is 
composed of the following submechanisms. 

On-Line Parameter Estimation: Node i records on-line the 
inter-arrival time, the required execution time, and the laxity of 
each task upon its arrival, and applies the Bayesian technique 
to estimate the task parameters: Xi ,  (pi(j), 1 5 .j 5 Emax}, 

and ( $ i ( j ) .  1 5 j 5 Lmax}. Application of the Bayesian 
technique to estimate these parameters will be discussed in 
Section V. 
Determination of Timeout Periods and Detection of Node Fail- 
ures: Upon receiving a message broadcast by node 2,  node n 
uses the task parameters and TQ contained in the message to 

calculate TjAi. A theoretical basis for determining Ti2 will 
be established in Sections 111 and IV by using the hypothesis 
testing (HT) and randomization techniques. Conceptually, the 
problem of determining Ti$ is first formulated as a HT 
problem by making a trade off between S1 and S2. Then, 
the key expression needed in the HT formulation, Le., the 
probability distribution that no message has been received 
from node i within time t given that node i is operational 
is derived by first modeling the state evolution of node i 
as a continuous-time Markov chain and then applying the 
randomization technique on the constructed Markov chain to 
derive the distribution of interest. 

Node n considers node i failed if it has not heard from 
node i (via region-change broadcasts) for Ti:\ since node 
i ’ s  latest broadcast, and will not transfer any overflow tasks 
to node i until it receives a broadcast message from node i 
again. Whenever a failed node i is recovered, it broadcasts its 
recovery to all the other nodes in its buddy set. Upon receiving 
such a broadcast message, node n will consider node i capable 
of receiving tasks if the subsequent region-change broadcasts 
indicate so. On the other hand, node n also calculates its own 
timeout period TJ,”t’ at the time of broadcasting a state-region 
change. If node n has remained within a broadcastthreshold 
interval and has been silent for Ti::, it broadcasts an extra 
message to inform other nodes of its fault-free (or “I am 
alive”) status. 

- 

I )  on-line estimation of Xi,  (&(j),l 5 j 5 La,}, and 

2) node i ’ s  sorted task queue, TQ, which is contained in 

In Section 11, we discussed how the on-line estimated param- 
eters are broadcast. Estimation of Xi,  @ i ( j ) ’ s ,  and p;(j)’s is 
the subject of Section V. 

The problem of determining TJA\ is formulated as a HT 
problem. The probability distribution needed to solve the HT 
problem is then derived using the randomization technique in 
Section V. 

Recall that Titi is the timeout period after which node i will 
be diagnosed as failed by node n # i if no broadcast message 
from node i has been received since the last broadcast. As 
mentioned earlier, there are two possible scenarios, S1 and 
S2, that no broadcast message from node i will be received 
by node ri within Titi. The determination of Ti:; requires 
to make a trade-off between these two possibilities, and can 
thus be formulated as a HT problem with two hypotheses. 
Specifically, let Ob(t)  E (0, l} indicate whether or not a 
broadcast message from node i is received within time t ,  and 
let Tnb be the random variable representing the time to node 
i ’ s  next broadcast. We have two hypotheses; 

( p i ( j ) , I  I j 5 Emax}; 

the most-recently-received broadcast message. 

Ho: node i is operational Ob(t)  N po ,  
HI: node i is faulty Ob@) N p l ,  

where N denotes that pa and pl are the pdf of Ob@) under 
the hypothesis Ho and H I ,  respectively. p o  and p l  can be 
expressed as 

p o ( O b ( t )  = 0) = P(no message has been received 
from node i within t I node i is operational) 
= P(T,b 2 t I node i is operational), 

po(Ob(t)  = 1) = P(T,b < t I node i is operational) 

p l (Ob( t )  = 0) = 1, and p l (Ob( t )  = 1) = 0. 

= 1 - po(Ob( t )  = O ) ,  

Also, the probability that Ho or H1 is true without conditioning 
on any observation can be expressed as T O  = e -XFt  or 
T I  = I - e-’Ft, respectively. 

Now, a decision S(Ob(t)) E (0, l} must be made on which 
hypothesis must be accepted based on the observation Ob(t). 
Two types of error may be encountered: ( I )  false-alarm, or 
Ha is falsely rejected, the probability of which is denoted 
by Pp(6); (2) miss, or H I  is falsely denied, the probability 
of which is denoted by PM(S).  The corresponding defection 
probability is P,(S) = 1 - Phf(S). A criterion for designing 
a test for Ho versus H1, called the Neyman-Pearson criterion 
[23], is to place a bound on the false-alarm probability and then 
to minimize the miss probability subject to this constraint; that 
is, the Neyman-Pearson design criterion is 

max 6 P,(S) subject to Pp(S) 5 O h t ,  (3.1) 

where a h t  is the significance level of the hypothesis test. 111. DETERMINATION OF THE OF’TIMAL TIMEOUT PERIOD Specifically, let the decision S( .) be 
In this section and the next section, we will establish a 

theoretical basis for the determination of Ti::. To do this, we ~(ob(t)) { i; if TI - p ~ ( O b ( t ) )  2 TO . ~ o ( O b ( t ) ) ,  (3.2) 
need: otherwise, 
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where the maximum a posteriori (MAP) probability is used to 
determine whether to accept H1 or not. Then, P F ( ~ )  can be 
expressed as 

P F ( ~ )  = P(accept HllHo is true) = Eo( S(Ob( t ) ) )  

= P"(TlTl(Ob(t)) 2 T o T o ( O q f ) ) )  

= P(To.Po(Ob(t)) I ..l.pl(Ob(t))).po(Ob(t)) 

(3.3) = P(po(Ob( f )  = 0) 5 -) . p o ( O b ( f )  = 0). 

O b ( t ) E { O , l )  
T1 

TO 

where Eo(.) and Po(.) denote the expectation and the probabil- 
ity under Ho,  and the last equality comes from P(~o.p~(l) 5 
r1 . pl (1)) = 0. Similarly, Po (6) can be expressed as 

P D ( 6 )  = El( b(Ob( t ) ) )  
= Pl(T1 .Pl(Ob(t)) 2 T o  'PO(Ob(t)))  

= P p o ( O b ( t )  = 0) 5 - ( TO 7T1 1 (3.4) 

If the expression of p o ( O b ( t )  = 0) = P(T& 2 t I node 7 is 
operational) can be derived as a function of t ,  then the best 
T$)t under the Neyman-Pearson criterion is the minimum t 
such that both 

Tl 

no 
p o ( O b ( f )  = 0) I afLt and p o ( O b ( t )  = 0) 5 - = ex''t - 1 

(3.5) 
are satisfied, in which case Po(b) = 1 and P F ( ~ )  5 rniri{cuht, 

1. p A F t  - 1 

Iv. DERIVATION OF P(T,,b 2 
We now use the randomization technique [24]-[26] to cal- 

culate P(Tnb 2 t l node s i  is operational). Since this technique 
can be applied only to a finite state-space continuous-time 
Markov chain, we model the state evolution of a node as 
such. We first describe how the system model is constructed. 
Then, we derive P(T,b 2 t I node i is operational) using the 
randomization technique. 

NODE i IS OPERATIONAL) 

A. System Model 

The state/CET evolution of a node is modeled as a 
continuous-time Markov chain { X ( t ) ,  t 2 0) on a finite state 
space S. Transitions in the Markov chain are characterized 
by the generator matrix Q = (qzJ) ,  where q,,, 0 5 2 , 3  5 N ,  
is the transition rate from state i to state 3 .  The parameters 
needed in the model are A,, { p z ( j ) ,  1 5 5 E,,,,,}, and 
{ c z ( k ) .  1 5 k 5 L,,,}, all of which are estimated on-line by 
each node i and piggy-backed in region-change broadcasts to 
the other nodes in its buddy set. 

We characterize the CET evolution caused by task accep- 
tance/completion under the non-preemptive MLFS discipline. 
With a minor modification, our model can also be applied to 
the case when the loading state is queue length. To construct 
a continuous-time Markov chain on a finite state space, we 
approximate the deterministic consumption of CET on node 
i (at a pace of 1 per unit time) as an Erlang distribution 
with rate K and shape parameter K .  The Erlang distribution 
becomes exact (Le., deterministic with rate 1) as K + 3c'. 

We choose K such that P(T,b 2 t I node i is operational) 
obtained from the corresponding M [ ' l / l E ~ / l  model is very 
close to that obtained from M [ i ] / E ~ + l / l  model. In Section 
VI-B, K 2 5 is shown to satisfy the above criterion for all 
combinations of task attributes studied. Each accepted/queued 
task contributes K m  service stages with probability pi  (m,), 
1 I m I E,,,,, and each service stage is consumed at (an 
exponential) rate K .  

Definition of State: The state of node i is, defined as & = 
(Ho;H1: H 2 : .  . . ;  HL,, ,) ,  where Hj A hihi. ..h:+l is a 
sequence of .j + 1 numbers with hi E {O;..,KE,,,} 
representing the number of service stages contributed by the 
kth laxity-j task in the node's queue. Hj can be viewed as a 
record of all laxity-j tasks currently queued on node i. Since 
all laxity-j tasks queued on node i must start execution by their 
laxity, there are at most j + 1 laxity-j tasks that can be queued 
on node i (in which case all but, perhaps, the last task require 
1 unit of execution time). Moreover, let c j  A 11; denote 
the total number of service stages contributed by all laxity-j 
tasks, l a s t (Hj )  denote the index of the last nonzero entry in 
H j ,  and the equation found at the bottom of the page denote 
the laxity of the task currently under service, where 

For example, consider a system model with L,,, = 
3,E,,, = 2 ,  and K = 4. Ln,,((0:40;000; 1000)) = 
3 indicates that the task currently being served has 3 
time units of laxity and one remaining service stage. 
L,,,((0:00:440:8000)) = 2 indicates that the task to be 
served next is the one with two time units of laxity and four 
service stages if there are no new laxity-I task arrivals before 
the next state transition. 

Under the nonpreemptive MLFS discipline, the state & has 
the following properties. 

P1: hi  E N is an integer multiple of K except for perhaps 
hi,  the number of service stages contributed by the laxity-) 
task currently under service. 
P2: The size of the state space is bounded by nf.=.sx 
(KE,,, + l)(E,,, + 1)' and thus is finite. 

-1, if = Q :  
minimum F s.t. n:i;(l - A > ( C ~ ) )  x a > ( c J )  = 1, 

the only index I s.t. h: 6 (0) U { K m  : 1 5 m 5 E,,,}. 
if H # 0. and hi E (0) U ( K m  : 1 5 m 5 E,,,) VI; 

if H # 0. and 3)  s.t. h i  6 (0) u { K m  : 1 5 m 5 E,,,,,} 
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P3: Since a task with laxity j is acceptedlqueued only if 
the CET contributed by both the tasks with laxity 5 j - 1 
and the task currently under service is no greater than j 
units of time, we have c7 > 0 only if 

.?-I 

K.I  2 cn. VJ E  now(^) + 1. ~ r n a , ] ,  
n=O 

or, 
i - 1  

n = O  

Note that cLnow(E)  > 0 by the definition of L,,,,(H) 
(except for the case of E = 0). 
P4: Since every laxity-j task queued on node % must be 
able to start execution by its laxity, the number of service 
stages queued “in front of’ it must be 5 K j ,  i.e., 

7-1 l a s t ( H , ) - f  

For example, consider again the system model with 
L,,, = 3, E,,, = 2 ,  and K = 4. The state (0;10;440; 
8000) is allowed, while (0; 10;480;4000) is not, because 
the task with 3 time units of laxity and 4 service stages 
(represented by the underlined number 4) in the latter state 
violates P3 and P4. The state (0;48;000;8000) is allowed, 
while (0;48;000; 1000) is not, because in the latter state 
the task with 3 time units of laxity (represented by 1 )  is 
currently in service, and thus, the task with 1 time unit 
of laxity and 8 service stages (represented by 8) cannot 
be queued. 

As indicated in P2, the size of the state space is bounded 
and is actually much less than the given bound because of P1 
and P3-P4. It, however, grows significantly as L,,,, or E,,, 
or K increases, but as will be clearer later in this section, 
the generator matrix Q of the corresponding Markov chain 
is very sparse, so one can exploit the sparseness of Q - 
e.g., use the modified SERT algorithm proposed in [25j - 
to economically store sparse matrices, and to alleviate the 
computational difficulty. 

Determination of Transition Rates: There are two task ac- 
tivities that cause state transitions: one is task acceptance by 
node 2, and the other is CET consumption by node 1 .  The 
task transfers resulted from the acceptance of a newly-arrived 
task under the MLFS scheduling discipline are figured in task 
acceptance. (Recall that some tasks originally queued on the 
node may have their laxities missed as a result of inserting a 
newly-arrived task into the sorted task queue, and must thus 
be transferred out.) 
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The Transition Caused by Task Acceptunce: First, we con- 
sider the transition resulted from task acceptance. Assume that 
the system is in state E ,  and will make a transition to state 

45 (H;); 13;:.  . . ; H i : .  . . 1 HLrn,,) upon acceptance of a 
task with laxity e and execution time m, where 1 5 5 L,,, 
and 1 5 rri 5 E,,,. Then 

1) c5 = c j  (or equivalently, H i  = H j ) ,  1 5 j 5 C - 1, i.e., 
the CET contributed by tasks with laxity 5 e - 1 will 
not be affected by the acceptance of a task with laxity C; 

2) If: equals H i ,  perhaps with the last few entries (e+ 1 5 
.J’ 5 Lma,) replaced by 0 (so c5 5 That is, the 
tasks originally queued with laxity > e may ,have to 
be transferred out because of the insertion of a newly- 
arrived task. 

3) The number of nonzero entries in Ht is not greater 
than P, and Hi = h: . . .h~a,5t(No K7n 0 . .  .0 ,  i.e., Hi 
consists of the nonzero entries in Hp followed by the 
number K m  (and possibly a few 0’s to make the number 
of entries equal to P + 1). 

4) The corresponding transition rate (under the nonpreemp- 
tive policy) is 

q H . H ; , ,  ”) 
=X;l;i(C)p; ( , / r / , )  . Cllr:ckC(:t(I;) 

L niax n 
t@....O(C‘) 

{corrip(Ht. H i )  . Task _Not-Transfer ( t )  
t = i + 1  

+ (1 - cornp( Ht , H:) )  . Task-Transfer ( t ) } ,  (4.1) 

where Check-Cet(I;), zero(C), cornp(Ht, H i ) ,  
Task-Not-Transfer(t), and Task-Transfer(t) are 
expressed at the bottom of the next page. 

The physical meanings of (4.1) are given below. 
a) The first factor Az&(P)pi(7n) is the arrival rate of tasks 

with B time units of laxity and m units of execution 
time on node %. 

b) The second factor Check-Cet(P) accounts for the fact 
that a newly-arrived task with laxity I;  will be queued1 
accepted on node i only if one of the following two 
conditions holds: 
i) the CET contributed by tasks with laxity 5 C is less 

than or equal to e, Le., KC 2 zfzo cj, if the laxity 
of the currently executing task 5 e;  or 

ii) the CET contributed by the tasks with laxity 5 I ;  
and the task currently under service is 5 e if the 
laxity of the currently executing task > P (i.e., no 
preemption). 

c) The last factor accounts for the possible task transfers 
caused by the acceptance of the arrived task. Since only 
tasks with laxity > C will be affected by the insertion 
of the newly-arrived task with laxity e. n is performed 
from t = t+l to t = L,,, except for those t’s with ct = 
0. The transition could occur with rate A&(!)pi(m) if, 
in addition to the conditions in Check-Cet(P), one of the 
following conditions holds, Vt E [P + 1, L,,,]: 
i) Ht = Hi and all tasks queued with laxity t can 

still be completed in time after the insertion of the 
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arrived task, i.e., K t  2 E::: ci + E ~ ~ ~ ( H t ) ’ - l  h, 
if the laxity of the currently executing task 5 t ,  or, 

laxity of the currently executing task > t. 
ii) Hl equals Ht except with the last ( la s t (Ht )  - 

last (Hi))  entries replaced by zero, i.e., a number 
( last(Ht)  - l a s t (Hl ) )  of tasks with laxity t must 
be transferred out. For example, if t > Lnow(E), 
exactly i tasks with laxity t have to be transferred out 

K t  and e: + > Kt  hold. The 
cases with t < Lnow(ff) and t = Lnow(g)  can be 
similarly reasoned about. 

The Transitions Caused by CET Consumption: The deter- 
ministic consumption of CET at a pace of 1 per unit time is 
approximated as a K-Erlang distribution with rate K .  Besides, 
at the end of each time unit (Le., at the end of every K service 
stages), all laxities have to be decremented by 1 to account for 
the fact that the laxity of a task is measured w.r.t. the current 
time. Specifically, the system makes a transition from H to 

t -1  l a s t ( H * ) - l  h, t + hf”’o*(g) if the Kt  2 c,=o c: + C,=l 

if and only if both x::: c; + x:?:(Ht)-z-l h; I 
l a s t ( H t ) - z  ht 

= (Hh; H i ; .  . . ; H i ; .  . . ; HLmax), with transition rate 

where 
1) if (hf - 1 )  $Z { K m  : 1 I m 5 E,,,} U{0}, 

The last nonzero transition rate is 

L , m  G 

The model constructed above is a continuous-time Markov 
chain, because 1) the residence time at each state is 
exponentially distributed, and 2) the next state the system 
will visit depends only on the current state and the task 
acceptancekompletion activities occurred during the residence 
at the current state. The sparseness of Q comes from the 
fact that all the other entries (except for the transition 
rates in (4.1)-(4.3)) in Q are zero. For example, the 
only possible transitions from state (0; 10;400;4800) in the 
system model with L,,, = 3, E,,, = 2, and K = 4 
are to (0;40;480;0000), (0; 14;400;4000), (0; 18;000;4000), 
(0; 10;440;4000), (0; 10;480;0000), and (0; 10;400;4800) with 
transition rate K ,  A 2 p z ( 1 ) f i t ( 1 ) ,  X,yz(2)&(1), Az~2(1)fiz(2)9 
XZP2(2)l j2(2)’  and - (K+ Clg,nz<2 AzPz(nL)@z(e))> respec- 
tively. The transition (0; 10;400;4800) -+ (0; 10;400;4840) is 
not possible, because the newly-arrived task with laxity P = 3 
(represented by the underlined 4) will not be accepted (Le., 
Check-Cet(P) = 0, because xi=, cJ > KI) .  The transition 
(0; 10;400;4800) --t (0; 10;480;4000) is not possible either, 

Task&-Transfer ( t )  A 

Task -Transfer ( t )  A 
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(040,400,1400) Q 
Accep.ncc of a tsk wirh 1 umt of ~ X ~ C U U O O  

umc and 2 umts of lixlty 

(A~cepmee of lhLs t s k  UYJ- the ongmdly 
q w d  tsk with 1 units of txecuow ume 
md 2 umu of Iauty to be Vansferred out.) Acceplanee of a tsk with 

and 3 untw of Iauty Wlth I "Ut of sxcLuu00 

7hs events caresponding to "mpmce of a teak with 1 umt of I m t y "  
IS nd p a b l e .  bceause the number of service stages to be oonsumed 
before the SSWYIES of rhc n e w l y - m v d  tnrk (if accepted) IS 5, whch 
IS g r a m  than the lauty (4 Sewice rupes) d the tsk. 

Fig. 2. 
model with L,,, = 3, E,,, = 2 ,  and li = 4. 

Possible state transitions from state (0; 40: 000: 1400) in a system 

of X ( t )  visits IC times the states in S, out of n state changes. 
For example, ~ j ( n , n  + 1) is the probability that Y always 
stays in S, while there are n state changes. Then, P(Tnb 2 tl 
node i is operational and was in S, during the last broadcast), 
1 < j 5 is the probability that the underlying Markov 
chain always stays in S,, no matter how many state changes 
have occurred in [0, t ] .  Thus, 

P(Tnb 2 t (  node i is operational and was in 
S, during the last broadcast) 

= 
03 

~ , ( n ,  n + 1) P ( n  state changes in time t )  
n = O  
00 

= r3 (n ,  n + 1) . e-.'t(At)n/n! (4.4) 
n = O  

where A is the rate of the Poisson process obtained after the 
randomization. 

The error, e,, resulting from the truncation of the infinite 
sum in (4.4) can be easily bounded as 

00 

because the task queued with 3 time units of laxity and 4 
service stages (represented by the underlined 4) must also be 
transferred (in addition to the task with 3 units of laxity and 8 

e ,  = e - A t ( A t ) 7 L / n ! .  r j (n ,n  + 1) 5 1 
n=m+l 

m 

service stages) after inserting the newly-arrived task. Similarly, - e-At(At)"/n!.  (4.5) 
the only possible transitions from state (0;40;000; 1400) n = O  
are to (4;00;400;0000), (0;40;400; 1400), (0;40;800; lOOO), 
(0;40;000; 1440), (0;40; 000; 1480), and (0;40;000;1400) with 

Xz~2(2)fit(3), and - (K  + Cll,<z 2 5 t j 3  h ( m ) f i z ( [ ) ,  
respectively (Fig. 2). The transition (0;40;000; 1400) + 
(0;44;000; 1400) is not possible, because the task currently 
under service has laxity 3 (Le., L,,, ((0;40;000;1400)) = 3 
), and the newly-arrived task with e = 1 (represented by the 
underlined 4) will not be accepted under a nonpreemptive 

transition rate K ,  AzPz(l)fiz(2), &Pz(2)i%(2)9 &Pz(l)$t(3), 

policy (].e., E:=, e,+ h f n ~ w ( H )  > Ke).  

B. Probability Calculation with the Randomization Technique 

We now use the randomization technique to calculate the 
probability that a node does not broadcast any message in 
[ O , t ] ,  given it is operational in [ O , t ] .  This technique was 
introduced in [24]-[26] as a method for computing transient 
probabilities of Markov processes with finite state spaces, and 
is summarized in the Appendix. 

Recall that in the proposed LS algorithm, a node's states are 
divided into Kt disjoint subsets: [0, T H l ] ,  (TH1,  T H 2 ] ,  . . ., 
( T H K , - ~ ,  co), where T H k ,  1 < IC < Kt-1 are the thresholds 
of the node's CET. A node will broadcast to other nodes its 
change of state region whenever its state/CET crosses even- 
numbered thresholds, T H Z 3 ,  1 < J < [%] - 1. We thus 
define S, = {a : K . TH2(3-1)  5 Ctr",X(CrL: h;) < 
K . TH2,) as the j t h  broadcast state region, where THO a 0, 
the expression h; is the number of service stages 
contributed by laxity-n tasks (i.e., en), and the expression 
between inequalities C,"z;X (E;:: h;) is simply the total 
number of service stages queued on the node. 

Let T, (n ,  I C ) ,  0 5 k 5 n + 1, be the probability that the dis- 
crete-time Markov chain, Y ,  obtained after the randomization 

The 5 in (4.5) results from the inequality T, (n ,  n + 1) < 1. 
The value of m can be determined a priori for any given error 
tolerance. 

r3(n.IC) (and r,(n,n + l), in particular) can be easily 
calculated using the recursive approach proposed in [27] (and 
later studied in depth in [28]). That is, let r,(n, k , H )  be the 
probability that the underlying Markov chain Y are IC times 
in S, out of TL state changes and the state visited in the last 
transition is state If. rJ (n ,  I C ,  E) depends on 

r,(n - l , l c  - l,E),V& E S, if If E S,, since we have 
to increment the number of states E S, visited by one for 
the previous state change from 5 to H ;  

$! S,, since the number of 
states E S, visited remains the same for the current state 
change from to E. 

~ , ( n  - 1, I C , & )  V H  E S ,  if 

so, 

(4.6) 

where P is the transition matrix of Y ,  and the initial conditions 
are 

1, if H E S, and is the state 

0, otherwise, 
representation of TQ, - 

(4.7) 
{ ',a) = 

T J ( 0 ,  OlH) = 0, 

where (4.7) comes from the fact that given the CET was in S, 
during the last broadcast, the node must be initially in a state 
E S,, and the IC within the expression of T, (n ,  I C ,  If) must be 
2 1. Finally, ~,(n, lc)  = ~ H E S ~ J ( n , I C , I f ) .  - 
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Since we are interested in obtaining r,(n, n + l), we need 
only to compute r,(n,n + l,E),b'H E S,, as r,(n,n + 
1, H )  = 0, b'E 6 S,. Thus, (4.6) reduces to 

r , ( n , n + l , H ) =  r , ( n - l , n . ~ ) . p E i H ~ ~ ~ ~ J .  
_ I _  

- H E S ,  

V. PARAMETER ESTIMATION 

One key issue in applying the timeout mechanism is the 
on-line estimation of Xi ,  { & ( j ) } ,  and { p i ( j ) } .  All on-line 
estimated parameters will then be piggy-backed in region- 
change broadcasts to other nodes. We discuss in this section 
how each node collects samples and makes on-line estimation 
of these parameters. 

A. On-Line Estimation of Composite Task Arrival Rate 

The composite task arrival process at a node is composed of 
external task arrivals and transferred-in task arrivals, the latter 
of which is itself a composite process of transferred-in tasks 
from different nodes (see Fig. 3). One difficulty in estimating 
the composite task arrival rate is that the transferred-in task 
arrival process (and thus the composite arrival process) is not 
Poisson even if the external task arrival process is Poisson. 
This is because: 

R l .  The probability of sending a task to (or receiving a 
task from) a node depends on the state of both nodes, 
making the splitting process non-Poisson. 
R2. Task transmission times may not be exponentially 
distributed, making the process of transferred-in tasks non- 
Poisson. 

Furthermore, even if we assume the composite arrival 
process to exhibit behaviors similar to a Poisson process, 
the transferred-in task arrival rate from a node is not known 
due to the dynamic change of the system state, which calls 
for on-line estimation of the composite arrival rate. 

Bayesian estimation is used for on-line computation of the 
composite task arrival rate on a node. We approximate the 
composite task arrival process to be Poisson (in spite of R1 
and R2) when the external task arrival process is Poisson. 
The rationale behind this approximation is the general result 
of renewal theory [29]: the superposition of increasingly many 
component processes (Le., a reasonably large number of nodes) 
yields (in the limit) a Poisson process. To validate this Poisson 
approximation, we ran simulations, collected task inter-arrival 
times on-line under the proposed LS mechanism, and used 
two statistical testing methods, Kolmogorov-Smirnov and chi- 
square tests. The simulation results in Section VI-A show this 

approximation to be acceptable for those systems that are not 
very heavily loaded and composed of 2 12 nodes. We will 
also consider in Section VI-D the case of hyperexponential 
task inter-arrival times which represents a system, potentially 
with bursty task arrivals, and examine to what extent Bayesian 
estimation remains effective. 

Bayesian estimation works as follows [30]. Each node 
1) monitors and records its task inter-arrival times contin- 

2) uses the noninformative distribution gl(Xi) = const, 
and f ( t l X i )  = Xie -x t t  as its prior distribution and 
likelihood function, respectively, 

3) computes the posterior distribution given the time sam- 
ple t k  with 

uously, 

4) uses the posterior distribution f ( X 2 l t k )  for the current 
sample t k  as the prior, gk+l(Xi), for the next time 
sample t k + l .  

To make the method computationally manageable, it is 
desirable that both prior and posterior distributions belong 
to the same family of distributions. The major advantage of 
using a conjugate prior distribution in estimating A; (or any 
other parameters) is that if the prior distribution of X i  belongs 
to this family, then for any sample size n and any values of 
the observed inter-arrival times, the posterior distribution of A, 
also belongs to the same family. Consequently, the calculation 
of (5.1) reduces essentially to updating the key parameters of 
a conjugate distribution. The interested readers are referred to 
[30] for a detailed account of this. 

For the composite arrival rate A; with an exponential 
sampling function, one can show that the yydistribution 

, for X > 0, 
0, otherwise. 

p" A"- 1, -px  

is its conjugate prior distribution, where r ( a )  is the gamma 
function such that r ( a )  = ( a  - l)! if cy is integer. Specifically, 
given S(X;ln = 1,P = t l )  as the prior yydistribution, and 
given N s  inter-arrival time samples, t l ,  . . . . t ~ ~ ,  the posterior 
y-distribution of A; becomes: 

We use the mean of A, w.r.t. the posterior distribution as the 
estimated value which can be expressed in terms of the time 
samples only, Le., 

(5.2) 

Thus, the load information provided by the N s  inter- 
arrival-time samples latest collected can be easily abstracted 
by updating the key parameters in the conjugate distribution. 
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B. On-Line Estimation of p ;  ( j )  and I;i (j) 

The other parameters needed for the timeout mechanism 
are { I ; i ( j ) ,  1 i j F Lmax}, and { p i ( j ) , 1  5 j I Emax}. The 
estimation techniques used to determine { & ( j ) }  and { p i ( j ) }  
are virtually the same, so we will henceforth concentrate on 

We treat each task arrival as an experiment whose outcome 
belongs to one of L,,, mutually exclusive and exhaustive 
categories, and fi i( j)  as the probability that the outcome 
belongs to the j t h  category (1 5 j 5 I,,,,,). Note that 

$ i ( j )  = 1. Suppose NS independent experiment out- 
comes are available. Let I.' = (Yl,. . . , YL ,,,=, ), where 3 
denotes the number of outcomes that belong to category j 
among these N s  outcomes. Then the likelihood function is 
a multinomial distribution with parameters Ns and p i  = 

(p;(l),pi(2),...,p;(L,,,,)) (Le., see (5.3)atthebottomofthe 
page). The conjugate family of distributions for the parameter 
p with a multinomial likelihood function is the Dirichlet 
distribution with parametric vector a = (a1 , n 2 :  . . . ~ a~,,,) 
(i.e., see the second equation at the bottom of the page) where 
(YO = CfzY ai. Specifically, each node assumes the non- 
informative distribution as the prior distribution of p ,  e.g., 
the prior distribution of f is the Dirichlet distribution with 
t r j  = 1, 1 5 j I L,,,. After collecting Ns samples (i.e., 
after NS task arrivals), and computing (y1, yz, . . . , y ~ " , ~ ~ ) ,  the 
posterior distribution of p i ,  is updated as 

{ P i  (.i) }. 

We then use the mean of p i  w.r.t. the posterior distribution as 
the estimated value, i.e., for 1 5 j 5 I,,,,, 

(5.4) 

Again, the information provided by the tnost recent NS 
task arrivals can be abstracted from the posterior distribution 
simply by updating the parameters. 

VI. NUMERICAL EXAMPLES 

The proposed timeout mechanism is evaluated in the fol- 

1 )  Validation of the Poisson approximation of the compos- 
ite task arrival process. which facilitates 

lowing sequence: 

2) Discussion on the parameters consideredharied in per- 
formance evaluation. 

3) Discussion on TdA\ (a) w.r.t. task attributes, and (b) w.r.t. 
the state in which a node was during its latest broadcast. 

4) Performance evaluation: we first discuss the perfor- 
mance metrics used and their significance in real-time 
applications. Second, we comparatively evaluate a) LS 
with no timeout mechanism, b) LS with fixed timeouts, 
c) LS with the calculated best timeouts, and d) LS with 
immediate detection of each node failure upon its occur- 
rence. Then, we study the negative impact of statistical 
fluctuation in extemal task arrivals on the proposed LS 
algorithm (Bayesian estimation in particular). 

A. On the Poisson Approximation of Composite Task Arrivals 

The composite task arrival rate is estimated on-line under 
the assumption that the composite task arrival process can 
be approximated to be Poisson.' This approximation is con- 
jectured to become more realistic as the system size increases 
andor as the system load gets lighter for the following reasons. 

1) the superposition of increasingly many component pro- 
cesses yields (in the limit) a Poisson process. That is, 
as the system size gets larger, a node's state (CET) 
becomes less dependent on other nodes, the task transfer- 
out process at a node depends less on other nodes' states, 
and thus, the renewal assumption gets closer to reality. 

2) In the case of Poisson extemal task arrivals, as the task 
transfer-out ratio gets small, so does the "disturbance" to 
the (originally) Poisson external arrival process caused 
by task transfers. 

The validity of this approximation is checked by comparing the 
hypothesized exponential distribution and the sample cumula- 
tive distribution function. Given an estimate of the composite 
task arrivals being Poisson with arrival rate X = 

the Kolmogorov-Smimov (K-S) test and the chi-square test 
are used to determine if t l ,  . . . , t ,  represent random samples 
from an exponential distribution. 

For completeness, we summarize below the steps of the 
K-S test used and discuss the data obtained from event-driven 
simulations. The chi-square test yields results very similar to 
the K-S test, thus we omit its details of verification steps 
and only summarize the results at the end of this section. 

E+ both ,=1 

'The same assumption was also used in [lo!, [14] without any justification. 
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System size N ,  Average system load X 
8 0.2 

0.4 
0.6 
0.8 

IO 0.2 
0.4 
0.6 
0.8 

12 0.2 

~ 

539 

Critical value D 
0.084 
0.127 
0.187 
0.289 
0.076 
0.092 
0.121 
0.203 
0.063 

(The interested readers are referred to [31] and [32] for a 
detailed account of the Kolmogorov-Smimov test and the chi- 
square test, respectively.) We first ran simulations and collect 
interarrival times on-line until k = 100 samples are obtained 
on each node. Second, we construct the sample (or empirical) 
distribution function Fk( t )  which is defined as the proportion 
of the observed samples which are less than or equal to t ,  i.e., 
let t ( l )  < t ( z )  . . . < t ( k )  be the values of the order statistics 
of the sample, then 

0, t < ql) :  
i / k ,  t ( ; )  5 t < t ( ; + l ) ,  2 = 1, ' .  . ~ k - 1. 
1, t = t @ ) .  

F k ( t )  = 

(6.1) 
Now we are interested in testing the following two hypotheses: 

HO : t l ,  t 2 ,  . . . , t k  is a random sample drawn from an 
exponential distribution with parameter A, i.e., F ( t )  
plimk.-, F k ( t )  = Fx( t ) ,  where plim denotes "proba- 
bilistic limit"; 
H I :  Ho is not true; where F x ( t )  = 1 - e-" is the 
hypothesized exponential distribution. The test statistic D 
for the K-S test is defined as the maximum difference 
between F k ( t )  and Fx( t ) ,  Le., 

{ 

D = SUP IFk(t) - Fx(t))l  
--co<t<cc 

0.4 
0.6 
0.8 

If D is large or large differences exist between F ( t )  and 
FA('x(t), then we will reject the null hypothesis, Ho. To judge 
whether or not D is large enough to justify rejecting Ho, we 
compare D with the critical values D* of the K-S test [31], 
[33]. For example, as the sample size k < 40, D* can be 
calculated as (= 0.136 in our case) with the significance 
level ( i k S  = O . O L 6  If D > D*, we reject Ho; otherwise, we 
accept Ho at the significance level a k S .  

It turns out that in the case of Poisson extemal task arrivals, 
we have D < D* = 0.136 in the K-S test for all combinations 
of task attributes7, when the number of nodes in the system 
2 12, andor the average task transfer-out ratio < 0.25 -this 
is always true in our simulations when the average external 
task arrival rate Xrzt = & 5 0.8. Similarly, we 
have in the chi-square test, x2(obs)  < ~ ~ ( 0 . 0 5 )  = 7.81 
(i.e., HO is accepted) under the conditions specified above, 
where ~ ' ( o b s ) ,  as D does in Kolmogorov-Smimov test, 
measures the deviation of the empirical distribution from the 
hypothesized distribution, and ~ ~ ( 0 . 0 5 )  is the corresponding 
critical value at the significance level of 0.05. See Tables I- 
A and I-B for numerical examples. Since both conditions are 
satisfied for the proposed LS algorithm, the approximation of 
exponential interarrival times is acceptable at the significance 
level f f k s  = 0.05 for the case of Poisson extemal task arrivals. 

A 

0.087 
0.104 
0.130 

B. Parameters ConsidereNaried 

The performance of 1,s algorithms depends on a large 
number of parameters which are classified into the following 
four groups. 

' o h s  is the probability that Ho is falsely rejected. 
'See the next subsection on the parameters varied. 

16 0.2 0.056 
~~ 

0.6 
0.8 

~ ~~ 

0.101 
0.117 

10 

12 

16 

~~ 

0.8 8.06 
0.2 4.68 
0.4 6.35 
0.6 7.42 
0.8 8.26 
0.2 3.79 
0.4 4.23 
0.6 5.07 
0.8 6.12 
0.2 2.86 
0.4 3.57 

0.4 I 6.49 
0.6 I 7.93 

I 

0.6 I 4.35 
0.8 I 5.78 

I I 

(a) With the Kolmogorov-Smirnov test: if D < D' = 0.136, then 
the approximation is valid for the significance level 0.05. (b) With the chi- 
square test: if \'((ohs) = c::, + < \2 (0 .06)  = 7.81, then the 
approximation is valid for the significanLe level 0.05. Note that 7 1 ,  and 0, are 
obtained as follows. We first break up the domain of interarrival times (Le., 
(0. 'x)) into C = 3 categories. Under the assumption that Xc-" governs 
interamval times, we determine the number, T I < ,  of t , ' s  that are expected to 
fall into category i .  Second, we count the number, 0,. of the k=100 time 
samples obtained from the simulation which actually fall into category i .  

Parameters ofthe distributed system, such as the number 
of nodes in the system Nn,  the size of buddy set, node 
failure rate AF, node recovery rate p ~ ,  and the commu- 
nication delay which consists of task-transmission delay 
and mediumqueueing delay. 
Parameters of the (node-level) system model, such as the 
shape parameter K used to approximate the determinis- 
tic CET consumption as a K-Erlang distribution. 
Characteristic parameters of the task set, such as the 
external task arrival rate the laxity distribution of 
extemal tasks, and the distribution of execution time 
required by extemal tasks, on each node i .  For all 
results presented below, we use {el. . . . , ek}{pel _..,  p , ,  1 
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to denote the task set in which an external task re- 
quires execution time ei with probability pe, . \J i .  If 
peq = p Mei ,  then {pe l  . p e , ,  . . .  ,p,,} is condensed to 
p .  Similarly, { l ~ ,  P 2 ,  . . . & } { l j y ,  ,..., l j 6 n  1 is used to 
describe the laxity distribution of external tasks. 

4) Design parameters of the proposed LS algorithm, 
such as the number, Kt, and values of thresholds, 
T H I  ~ . . . THE(,  -1 used as reference points for broad- 
casts. 

Both 16-node and 64-node regular’systems are used in 
our simulations. The size of buddy set is chosen to be 12, 
because increasing it beyond 10 was shown in [14] to be 
ineffective. Both node failure and recovery rates are assumed 
to be exponential with AF varying from 10W2 to IO-‘ and 
LLF being fixed at 10-l. Broadcast messages compete with 
task transfers for the communication medium. No priority 
mechanism regulates the transmission over the medium (Le., 
a FCFS rule is assumed). The task-transmission delay is 
varied from 10% to 50% of the corresponding task execution 
time. The broadcast-message-transmission delay is assumed 
to be negligible.’The queueing delay which is experienced 
by both broadcast messages and transferred tasks and which 
dynamically changes with system traffic is modeled as a 
linear function of the number of taskdmessages queued in 
the medium. The shape parameter K is chosen to be 5, 
since P(T,b 2 ti node is operational) thus derived is almost 
indistinguishable from that derived with K 2 6 (Fig. 4). 

The simulation was carried out for both exponential and 
hyperexponential task arrivals while varying the external task 
arrival rate per node, from 0.2 to 0.9, the ratio of 
y(1 5 j 5 k - 1) from 2 to 5 ,  and the ratio of of 
(1 5 ;j 5 n - 1) from 2 to 4. The case with hyperexponential 
interarrival times represents a system potentially with bursty 
task arrivals, and is used to investigate the impact of statistical 
fluctuation in task arrivals on the performance. The squared 
coefficient of variation of hyperexponential arrivals ( C Y 2 )  
is varied from 1 to 91. For convenience, all time-related 
parameters are expressed in units of average task execution 
time. 

The design parameters, Kt and THk’s,  may affect the 
accuracy of the posterior CET distributions, y c ( .  IO;), given 
the observation 0;. It is, however, difficult to objectively deter- 
mine an optimal combination of these design parameters that 
give accurate posterior distributions while incurring the least 
communication overhead. We already discussed one method 
in [ 161 that determines the design parameters. Although the 
set of parameters obtained through this method may not be 
globally optimal, our simulations have shown them to yield 
good results, as compared to other existing LS algorithms. The 
interested readers are referred to [ 161 for a detailed account of 
this. For the performance study described below, we tuned 

( 2  

* A  system i s  regular if the degrees of all nodes are identical. 
’The information about the environment in which the task will execute, e.g., 

the task owner’s current working directory, the privilegedattributes inherited 
by the task, VO buffers and messages, etc., i s  transferred to the remote node. 
The physical transfer of task may thus require tens of communication packets, 
while a region-change broadcast would in all likelihood needs at most one 
packet. 

0-0 stage-1.0 
*.-..-* Slage-2.0 

0- - -0 staged0 
+ ......+ stage-3.0 

..-..-= stage-5.0 

30 

time (in unit of mean execution time) 

Fig. 4. P(T,,,, 2 t I node / is operational) derived w.r.t. shape parameter 
I<. A ,  = 0.8,  ET = {O.i.0.8.1.2.1.6}0 25  (mean ET = l . O ) ,  and 
L = { l . O . 2 . 0 . 3 . 0 ) ~ .  Node i has 4 state regions with each interval equal to 
1 (except for the last interval), i t . ,  SI = [O. 2.01, S2 = (2.0.  xj. The state 
of node i i s  CET = 1.0 in the last broadcast. 

3 

the design parameters using the method in [16] for each 
combination of system configuration and task set. 

We present only those results that we believe are the most 
relevant, interesting, and/or representative. In spite of a large 
number of possible combinations of parameters, the results are 
found to be quite robust in the sense that the conclusion drawn 
from the performance curves for a task set with the given 
task execution and laxity distributions and a given system 
configuration is valid over a wide range of combinations of 
execution time and laxity distributions. 

C. Discussion of 

increases as p o ( O b ( t )  = 0) = P(T,b 2 tI node i is 
operational) for a given t increases. Figs. 5 ,  6, and 7 illustrate 
how po(Ob(t)  = 0) (and thus, Ti::) varies markedly with the 
task arrival rate, the state of node i at the time of its latest 
broadcast, and the length of broadcast intervals, respectively. 

As the composite task arrival rate increases, a node tends to 
cross its broadcast thresholds more often if there is a threshold 
nearby and to the right of the node’s current state. Thus, in 
Fig. 5 ,  the increase in A, yields a smaller po(Ob( t )  = 0) for 
a given t (e.g., the more likely a broadcast message is issued 
within time t ) .  Similarly, as evidenced in the curves labeled 
as “initial state = 2.0” in Fig. 6 or in the curves labeled as 
“init. state = 5.0” in Fig. 7, the closer the initial state of a 
node is to a broadcast threshold, the more likely the node’s 
state will cross the threshold, thus increasing the possibility of 
a region-change broadcast. 

One interesting observation in Fig. 6 is that the probability 
of a node with initial state 4.0-5.0 broadcasting within time 1 
is smaller than that of a node with initial state 0.0-1.0, when 
t 5 5 (units of mean execution time), but becomes greater 
when t > 5. This is because a node with initial state 4.0-5.0 
will not accept most of its arrived tasks and tends to consume 
its CET. On the other hand, task acceptance and completion 
activities may alternate on a node with initial state 0.0-1.0. 
Consequently, it is more likely for a node with initial state 
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A -. - A  rate0.2 
0 ,--..-o rate0.4 
+.,....+ rate0.6 
*-• rate0.8 

Fig. 5.  P(Trlb 2 t I node z is operational) w. r. t. task arrival rate A, .  
E T = { 0 . 1 . 0 . S . 1 . 2 . 1 . G } ~ . ~ ~ , L = { 1 . 0 . 2 . 0 . 3 . 0 } ~ , a n d l i = ~ . N o d e i  
has 4 state regions determined by TH1 = 1.0, TH2 4 2.0, and T H s  = 3.0. 
SI = [O. 2.01, SI' = (2.0.00). The state of node i is CET = 1.0 in the last 
broadcast. 

A-A initial stale=0.0 
A -.-A initialstate=l.O 
O . - - . . - O  initial state2.0 

0-0 initialstue4.0 
%- - -% initial stats5.0 

. . . . . initial s t a t e 3 . 0  

time (in unit of mean execution time) 

Fig. 6. P(T,b 2 t I node z is operational) w. r. t. the initial state node i 
is in. X = 0.6, ET = {0.4,0.8.1.2,1.6}0.25, L = {1.0.2.0,3.0}1, and 
li = 5. Node i has 4 state regions determined by TH1 = 1.0, T H 2  2 2.0, 
and T H 3  = 3.0. S1 = [0,2.0], SZ = (2.0.00). 

4.0-5.0 to reach the broadcast threshold after it consumes all 
its CET (e.g., after 5 units of mean execution time). 

Fig. 7 also demonstrates how the size of each broadcast 
interval affects po(Ob( t )  = 0). As shown in the curves labeled 
"init. state = 1.0" in Fig. 7, the larger the broadcast interval is, 
the less likely a node's state will cross any broadcast threshold, 
thus resulting in a higher po(Ob( t )  = 0) for a given t. 

Since po(Ob( t ) )  varies drastically with the task attributes 
and the initial state of a node, the on-line calculation of Ti:\ is 
very important to the design of a timeout mechanism. Tables I1 
and I11 give some numerical values of Tjii for different task 
attributes, confidence intervals a h t ,  and node failure rates XF. 

D. Performance Evaluation 

Performance Measures of Interest: Instead of using the 
mean task response time as a performance metric, we use 
two measures that are more relevant to fault-tolerant real-time 
performance. 

The probability of dynamic failure, P+ : the probability 
of tasks failing to complete before their deadlines. This 
measure is the key performance metric for the evaluation 
of LS algorithms for real-time applications. 
The probability of false alarm, PF: the probability of 
falsely diagnosing a healthy node as failed. Since each 
node will refrain itself from sending tasks to the falsely- 
diagnosed nodes (as well as to the truly failed nodes), PF 
is a measure in incorrectly limiting the LS capacity of a 
system. That is, a larger I'F will leave a node with fewer 
candidate nodes for task transfers, thus deteriorating the 
LS performance. 

Performance comparison among LS with different time- 
out periods: Using trace-driven simulations, we comparatively 
evaluate the performance improvement achievable with the 
on-line calculated best timeout mechanism. We compare the 
proposed LS algorithm with the best timeout period against 
the case of using a fixed timeout period where a node n ( 1 )  
considers node i failed if it has not heard from node i for Tj2ed 
and ( 2 )  broadcasts its fault-free status if it has been silent 
for Tt2ed, where TA2ed is a constant selected independently 
of node i's task attributes and state. We also compare the 
proposed timeout mechanism with two baseline mechanisms. 
The first baseline assumes no timeout mechanism, while the 
second is an ideal case where (1) each node immediately 
detects the failure of another node upon its occurrence and 
( 2 )  no false alarm occurs. 

For each combination of task set and system configuration, 
the simulation ran until it reached a 95% level of confidence 
in the numerical results for a maximum error of 2% within the 
specified probability (Pdyn or PF). The number of simulation 
runs needed to achieve the above confidence level is calculated 
by the Student-t test under the assumption that the parameter 
of interest is normally-distributed with unknown mean and 
variance. 

Fig. 8 and Figs. 9-1 1 plot the curves of PF and the curves 
of PdYn for LS with different timeout periods w.r.t. different 
combinations of XF and system size N,, respectively. From 
these figures, we make the following observations. 

In general, PF decreases as (1) task arrivals/transfers get 
more frequent (i.e., as the system load increases), and ( 2 )  
the timeout periods get larger. Thus, in Fig. 8 the case 
of Tt2cd = 20 performs best w.r.t. PF for medium to 
heavy system loads (Atz'  2 0.6, where 5 < Ti:\ < 20 
as listed in Table 111). For light to medium system loads 
(0.2 5 AtZ t  < 0.6), the case of Ti:\ performs best w.r.t. 
PF, because usually Td:\ > 20 (Table 111). 
The assumed 5% chance of incorrect diagnosis (aht = 
0.05 in the HT formulation) is reduced with a few extra, 
timely messages broadcast by each node to inform other 
nodes of its fault-free status after a silence for T,'i\. 
The case with the on-line calculated Ti:\ outperforms all 
the other fixed-timeout cases tested in reducing P d y n  over 
a wide range of system load. The case with TfJed = 20 
is inferior to that with Ti;\ for medium to heavy system 
loads due to its inability of early detection of a node 
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0.03 

0.02 

0.0, 

0.00 

TH,=2.0, init. state=l.O 
TH2=3.0, init. state=l.O 
TH+O, init. state=l.O 
TH+O, init. state=5.0 
%=3.0, imt. slated.0 
TH2=4.0, init. state=5.0 

I I ' . l  , I I I 
P . 1  I I I 

I I - -  '& I I I 

1 1 1 1  '. I e.-..-* LSwithTw=5 

I I I I I I I  

- - $-\A- ~ 1 \1- -1- - 1 -  -1- -- 

A -.-A LSwithT,=20 
I I +-.&.* I I I - - 7 - - 1 - - 1 - - 1 - ::=*=:*- -- 

- - , - - , - - , - - , - - , - - , - - r - - -  o - - - o  LSwi&&T!E I I I I I ' & . - , I  

I 1 1  ' 1 ' * 

time (in un~t  of mean execution time) 

Fig. 7. 

I< = 5 .  Node i has 4 state regions determined by T H I  = i T H 2 ,  T H 2 ,  and T H 3  = gTH2.  
P(T,,t, 2 t I node i is operational) w. r. t .  the length of broadcast interval. X = 0.6, E T  = {0.4,0.6,1.2.1.6}0 2 5 .  L = { 1 . 0 . 2 . 0 , 3 . 0 } ~ ,  1 and 

failure, thus increasing the possibility of sending overflow 
tasks to a failed node. The case with TtJed = 5 is inferior 
to that with TJAi because of the undesirable effects 
of false diagnosis (i.e., deterioration of LS capacity). 
Frequent 'I am alive' messages in case of Ti:; also 
consume communication bandwidth and compete with 
transferred tasks and/or regular broadcast messages for 
the use of communication medium when the system 
load ranges from medium to heavy. Thus, there is a 
definite performance advantage with on-line parameter 
estimation of task attributes and calculation of TJ$. 
The performance with Ti$ is, however, worse than the 
ideal case with immediate and perfect detection of node 
failures due to the fact that node n might keep sending its 
overflow task to a failed node i during the period between 
the occurrence of node 2's failure and its detection by 
node n. 
A smaller Tk2ed is preferable as the system becomes more 
prone to node failures, especially for medium to heavy 
system loads (i.e., external task arrival rate 2 0.5). For 
example, the case of Tfised = 5 outperforms the case 
of Tfized = 20 in a more error-prone system (Fig. 10) 
as external task arrival rate 2 0.6. The performance 
improvement of frequent timeouts is, however, not as 
pronounced for a reliable system (Fig. 9). This can be 
explained by the fact that as the nodes in a system become 
more prone to node failures, the performance deterioration 
caused by false diagnoses will get better compensated by 
the performance improvement due to early detection of 
node failures. 
As shown in Fig. 10, vs. Fig. 11. the effects of false 
diagnoses become less pronounced for the case with a 
smaller T;2cd (e.g., = 5) as the system size gets 
large. This is due to the fact that a larger system has a 
larger processing capacity and is thus more resilient to the 
deterioration of LS capacity caused by false diagnoses. 

Impact of Statistical Fluctuation in Task Arrivals on the 
Effectiveness of Bayesian Estimation: One issue in using 
Bayesian estimation is to what extent the proposed timeout 

A -.-A *......* 
o.-..--o 
0- - -0 
X-X 

LS 
LS 
Ls 
Ls 
Ls 

with no timcoul 
withT-5 
with T-20 

with perfect timeout 
withbcstT, 

tuk srrivd rate 

Fig. 9. Performance comparison w.r.t. Pdyn for different timeout periods 
in a reliable 16-node (AVn = 16) system. Local task attributes for node 
i :  E T  = { 0 . 4 . 0 . 8 , 1 . 2 , 1 . 6 } 0 , ~ ~ ,  L = {1.0,2.0,3.0}1,  and IC = 5. 
XF. = p~ = 0.1, and " h t  = 0.05. The task-transfer delay is assumed 
to be 10% of the execution time of the transferred task. Each node has 4 
state regions determined by TH1 = 1.0, TH2 = 2.0, and T H 3  = 3.0. 

3 

SI = [0,2.0], s2 = (2 .0,co) .  
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XF = XF = 1 0 - 2  X~ = 10-3 X~ = 10-3 
0 9.1 11.4 15.6 17.2 

1.0 8.0 9.9 14.4 15.7 
2.0 3.4 3.4 5.3 5.3 
3.0 4.8 4.8 7.1 7.1 

TABLE I1 
BEST TIMEOUT PERIODS W.T.t. THE INITIAL STATE, a h t ,  AND A > .  A, = 0.6, AND ET = {0.4,0.8,1.2,1.6}0 2 5 .  NODE 
1 HAS 4 STATE REGIONS DETERMINED BY TH1 = 1.0, TH2 = 2.0, AND TH3 = 3.0. SI = (0,2.0],  S2 = (2.0,oo). 

A - - . - A  LSwithnotimcmt 
* . . . . . . e  LSwithT,& 
o.--..-o LSwithT,,-20 
0- - -0 LSwithbcstT, 
x-x LS withpcrfccttimcout 

tmk anival ratc 

Fig. 10. Performance comparison w.r.t. Pdyn for different timeout periods 
in a noisy 16-node (Y, = 16) system. Local task attributes for node 
I :  ET = {0.4,0.6.1.2,l.G}o25, L = {1.0.2.0.3.0}1, and li = 5. 
XF. = l o - > ,  p~ = 0.1, and nhr = 0.05. The task-transfer delay is assumed 
to be 10% of the execution time of the transferred task. Each node has 4 
state regions determined by T H 1  = 1.0, T H z  = 2.0, and TH:% = 3.0. 
s, 
mechanism remains effective when the attributes of tasks 
arriving at a node randomly fluctuate. We examined this effect 
on the estimation of composite task arrival rates by simulating 
different task sets with hyperexponential external task inter- 
arrival times. Hyperexponential task arrivals represent a 
system potentially with bursty arrivals, and the degree of 
statistical fluctuation over a short period is modeled by varying 
the coefficient of variation (CV)  of the inter-arrival times. 
Specifically, let Tt be the variable of task inter-arrival time. 
By Chebyshev’s inequality, 

3 

= [0,2],  s> = ( 2 . 0 ) .  

cv2 
P(lTt - E(Tt)l 2 JLE(Tt)) I -: 

ri 

Le., the smaller GV2, the less likely Tt will deviate from 
its mean. Fig. 12 shows the simulation results under a heavy 
system load & = Atz‘ = 0.8 (where the performance is 
most sensitive to the variation of CV) with the window of 
the sample size N s  = 30. Also shown in Fig. 12 are the 
curves for the case with no timeout mechanism and the case 

A -,-A 
*......* 
o.-..-o 

0- - -0 
x-x 

LS with no tuneout 

LS w~th T,p5 
LS wtth T,820 
LS with tes t  T, 
LS Wlth pcrfect tmeout 

tu* arrival rate 

Fig. 11. Performance comparison w.r.t. I‘dyn for different timeout periods 
in a noisy 64-node (‘V,! = 64) system. Local task attributes for node 
i :  ET = {0.4.0.8.1.2.1.G}0.25, L = {1.0.2.0,3.0}1, and li = 5. 
AF = l o p 2 ,  I L F  = 0.1, and o h t  = 0.05. The task-transfer delay is assumed 
to be 10% of the execution time of the transferred task. Each node has 4 
state regions determined by T H 1  = 1.0, T H 2  = 2.0, and TH3 = 3.0. 

3 

s1 = [0.2.0], sp = ( 2 . 0 , s ) .  

with immediate, perfect detection of node failures. As CV gets 
larger, the sample-mean based estimate deviates more from the 
true composite arrival rate X i  due to the fact that the variability 
effect of task burstiness cannot be completely smoothed out. 
This accounts, in part, for the performance degradation of 
the proposed LS algorithm. However, the proposed timeout 
mechanism remains effective for all the task sets tested. For 
example, in Fig. 12, the performance of LS with Ti$ is still 
25% better than LS without any timeout mechanism. This 
suggests that within a wide range of task burstiness, the X i  
obtained from Bayesian estimation, although it might deviate 
from the true Xi, is good for the calculation of Titi. 

VII. CONCLUDING REMARKS 

We have proposed a timeout mechanism which, when there 
are node failures, can be incorporated into LS with aperiodic 
state-change broadcasts. By 1) on-line collection/estimation 
of parameters relevant to task attributes, and 2) calculat- 
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Fig. 12. Pc{y,z vs. C1. of external task interarrival times in a 
16-node (-Y = 16) system. Local task attributes for node i :  
ET = {0.-2.O.S.1.2.1.6}"2;, L = { 1 . 0 , 2 . 0 . 3 . 0 ) ~ ,  and li = 5. 
XI. = lo-' and pf . '  = 0.1. The task-transfer delay is akumed to be IO% 
of the execution time of the transferred task. Each node has 4 state regions 
determined by T H 1  = 1.0,  TH' = 2.0, and T H : ,  = 3.0.  SI = [0.2.0], 
S n  = ( 2 . O . x ) .  

ing-based on the observation and the estimated task attributes 
in the latest broadcast-the best timeout period used to diag- 
nose a silent node as failed, the probability of dynamic failure 
can be significantly reduced, as compared to LS without any 
timeout mechanism or with a fixed timeout mechanism. 

The validity of all approximations/assumptions used has 
been checked with simulations. For example, the Poisson 
approximation of composite task arrivals, which was used in 
this paper to facilitate the on-line estimation of parameters 
and the construction of node-level system model (and has also 
been used without justification in other LS algorithms, e.g., 
[14], [lo], [ 1 l]), were checked with the Kolmogorov-Smimov 
test. Our simulation results have indicated that this approxi- 

2.0 3.4' 
2 3.0 2 4.8' 

0 11.4 
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3.0 8.2 
4.0 9.5 
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0 11.4 
1 .o 9.9 
2.0 10.4 
3.0 14.4 
4.0 16.6 
5.0 18.1 

2 6.0 2 19.2 

mation holds at the significance level of 0.05 for a system 
with a reasonably large, (e.g., 2 12) number of nodes and 
with a small (e.g., 5 0.25) average task transfer-out ratio. 
The negative impact of statistical fluctuation in task arrivals 
on the proposed timeout mechanism (in particular, Bayesian 
estimation) is also shown to be tolerable within a wide range 
of task arrival burstiness; for example, the performance of 
LS with TJii is still 25% better than LS without a timeout 
mechanism. 

Optimizing the trade-offs involved with the timeout mecha- 
nism is an interesting design problem of its own. For example, 
there is a trade-off between the potential performance improve- 
ment gained by reducing the broadcastthreshold interval and 
the performance deterioration resulting from the traffic over- 
head of region-change broadcasts. This kind of optimization 
is a matter of our future inquiry. 

- 
0 8  

a of S as 0 .1; .  . . N .  Let A= maxOsL<,v qi, then there exists a 
discrete-time Markov chain {Yn ~ n = 0 , l .  . . .} and a Poisson 
process { N ( t ) ,  t 2 0} with rate A, which are independent of 
each other, such that the process { Y N ! ~ ~ ,  t 2 0} has the same 
finite dimensional distributions as, and is thus probabilistically 
identical to, { X ( t ) :  t 2 O}. In the equivalent process, the 
transition rate from state i is A, but only the fraction q ; / A  
of transitions are real and the remaining fraction 1 - % 
are fictitious transitions. In other words, { X ( t ) , t  2 0) can 
be considered as a process which spends a time with an 
exponential rate A in state i and then makes a transition to 
state :j with probability Ft j ,  where 

APPENDIX A 
1-97 i f j = i ,  

PZJ = u, (1)  I ,1 .' if .j # i .  
SUMMARY O F  RANDOMIZATION TECHNIQUE 

We summarize some important results of the randomization 
technique. 

Consider a continuous-time Markov chain { X ( t ) , t  2 0} 
with generator matrix Q on a finite state space S of size 
N + 1. For notational convenience, we enumerate the elements 

The transient probabilities, P ( X ( t )  = z), 0 5 z 5 N ,  of 
the continuous-time Markov chain { X ( t ) , t  2 0) can now 
be easily obtained by conditioning on N (  t ) ,  the number of 
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transitions in (0, t ] ,  i.e., 

P ( X ( t )  = 2 )  = P(YN@) = 2 )  
00 

= P(YN(,) = i 1 N ( t )  = n)  ' P ( N ( t )  = n)  

= P(Y, = i )ePAt(At) , /n! .  ( 2 )  

n=O 
00 

n = O  

In other words, a continuous-time Markov chain { X ( t ) ,  t 2 
0} on a finite state space S, after its randomization, can be 
viewed as a discrete-time Markov chain, {Y,, n = 0 , l .  ...}, 
subordinated to a Poisson process { N ( t ) ,  t 2 0}, and thus 
the transient probabilities can be easily computed using the 
discrete-time Markov chain.. 

APPENDIX B 
LIST OF SYMBOLS 

Notation used throughout the paper 

Pdyn : the probability of dynamic failure, or the probability 
of a task failing to complete before its deadline. 
Xi :  the exponential composite task arrival rate at node i .  
{ p i ( j ) ,  1 5 j 5 E,,,}: the distribution of composite task 
execution times on node i ,  where E,,, is the maximum 
task execution time measured in clock ticks. 
{ & ( j ) ,  1 5 j 5 Lma,}: the distribution of composite task 
laxities on node i measured in clock ticks, where L,,, is 
the maximum laxity. 
CETi: the cumulative task execution time (CET) on node i .  
TQ = ( T I :  T2; ...I TL,,,): the description of the sorted task 

queue on a node, where T,=eie$...ei+l is a record of tasks 
with laxity j E { 1, . . . , L,,,} currently queued on a node, 
and e; E (0 , .  . . , E,,,}, 1 5 k 5 j+l, is the time required 
to execute the k-th laxity-j task in the queue. 
0;: observation of CETi made by some node j # i .  
p c ( .  I Oi) :  the posterior distribution of CETi given the 
observation 0,. 
T H k ,  1 5 k 5 Kt - 1: the state (CET) thresholds for 
broadcasting region--change messages, where Kt is the 
number of state regions. 
T,': : the timeout period; node i will be diagnosed as failed 
if no broadcast message from node i has been received for 
this period since its latest broadcast. XF: the exponential 
failure rate of a node. Ob(t): the indicator variable for the 
event that a broadcast message is received within time t. 
Tnb: the random variable representing the time to node i ' s  
next broadcast (measured relative to the time of node i ' s  
last broadcast). 

- 
A "  

Notation used in Section III  

HO (HI): the hypothesis that node i is operational (faulty). 

PO @I): the probability density function of Ob(t) under the 
hypothesis of HO (H1) .  
S(Ob(t)) E { O , l } :  the decision function of whether to 
accept HO or H I  based on Ob@). 
PF(S):  the probability that HO is falsely rejected. 
Plv(S): the probability that HI is falsely rejected. 
Qht:  the significance level used in the hypothesis test. 

Notation used in Section IV 

{ X ( t ) ,  t 2 O}: the continuous-time Markov chain on a 
finite state-space S, which models the state evolution of 
a node. 
Q = (yi j ) :  the generator matrix of the continuous-time 
Markov chain { X ( t ) , t  2 0}, where yi,, 0 5 i , j  5 N ,  is 
the transition rate from state i to state j and IS1 = N + 1. 
Note that 4;; = - cj=O,jzi q ; j =  - qi, and 0 5 q; 5 00. 

K :  the rate and the shape parameter K of the Erlang 
distribution which models the deterministic consumption of 
CET on node i .  
H = ( H o ;  H I ;  H2: ...; HL,,,): the state of a node, where 
Hj=hih; ... hi+, is a sequence of j + 1 numbers with 
hi E (0 , .  . . , KE,,,}. hi represents the number of service 
stages contributed by the k-th laxity-j task in the node 
queue. 
c j=  E",'=', hi: the total number of service stages contributed 
by all laxity-j tasks. 
last(H,):  the index of the last nonzero entry in H j ,  or, 
equivalently, the number of nonzero h i 7 s  in Hj.  
Lnow(H): the laxity of the task currently in service. 
q E , H ; , K m :  the rate of the transition from H to 
caused by queueing a newly-arrived task with e time units 
of laxity and m units of execution time. 
q H , a ; , - , :  the rate of the transition from H to caused 
by the consumption of 1 service stage of the task with laxity 
e. 
{Yn, 71 = 0,1,  . . .}: the discrete-time Markov chain 
abstracted from the continuous-time Markov chain 
{ X ( t )  t 2 0} by randomization. 
P = (Pi,): is the transition matrix of the discrete-time 
Markov chain {Y,, n = 0 , 1 , .  . .}. 
{ N ( t ) ,  t 2 0): the Poisson process abstracted from the 
continuous-time Markov chain { X ( t ) ,  t 2 0) by randomiza- 
tion, such that { YN(t),  t 2 0) is probabilistically identical 

A: the rate of the Poisson process { N ( t ) ,  t 2 O}. 
S,: the j-th state broadcast region. Sj = { H  : K . 

r j (n ,  k), 0 5 k 5 n+ 1: the probability that {Y,} visits the 
states in S, k times out of n state changes. 
r,(n, k , l 3 ) :  the probability that {Y,} stays in Sj IC times 
out of n state changes and the state visited during the last 
transition is state a. 

n 

A 

n 

to { X ( t ) , t  2 O}. 

T H q - 1 )  5 C,L_"1"" {E;=': h;} < K .  T H 2 j )  

Notation used in Section V 

f ( t  I X i )  = X,e-'Xt: the likelihood function of interarrival 
T O  ( T I ) :  the unconditional probability that HO (HI) is true. times given A;. 



546 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 5, MAY 1994 

f(x; I t k ) :  the posterior distribution of X i  given the sample 
of interarrival time t k .  

G(X I  CY,^): the y-distribution of X i  with parameters X and 

Ns:  the size of statistical samples used to estimate A;, 

Y = (Yl, ..., YL,,, ): the vector recording the numbers of 
laxity-j tasks in N s  task arrivals, where Yj denotes the 
number of laxity-j tasks in NS arrivals. 
p i :  p i  = (pi(l),pi(Z),...,p;(L,,,)) is the vector of 
probabilistic parameters to be estimated. 
f(y I N s , p i ) :  the likelihood function of Y among Ns  
outcomes given pi. 
D(pi I a): the Dirichlet distribution of p i  with parameter 

P. 

{6i ( j )  1, or {pi ( j )  1. 

a = (W,Q2,...,QLma,). 

Notation used in Section VI 

F k  ( t ) :  the empirical distribution function of task interarrival 
times defined as the proportion of the observed samples 
which are 5 t .  Fx( t )  = 1 - e-x t :  the hypothesized 
exponential distribution. 
D: the test statistic for the Kolmogorov-Smirnov test. 
Q k s  : the significance level used in the Kolmogorov-Smirnov 
test, Le., the probability that the test falsely rejects the 
hypothesized distribution. 
Nn: the number of nodes in the system. 

X e z t :  the average external task arrival rate. It is an index 
of system load. 
p ~ :  the exponential node recovery rate. 
{ e l ,  ..., e k } { p e l  ,,_,, p , ,  >:  the execution time distribution of 
extemal tasks, i.e., an external task requires e; units of 
execution time with probability p,, in the task set. 
{!.I, l 2 ,  ..., ln}{$el ,pu,  ,..,, pen 1: the laxity distribution of ex- 
ternal tasks, Le., an external task has .!!; time units of laxity 
with probability p e ,  in the task set. 
Tf<iCd: a fixed timeout period used by node i in the 
simulation. 
CV: the coefficient of variation of the hyperexponential 
interarrival times of extemal tasks (used in the simulation). 

the external task arrival rate at node i .  
~ 
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