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Abstract 
SPIDER is a network adapter that provides scalable 

communication support for  point-to-point distributed 
systems. The device exports an efficient interface to  
the host processor, provides transparent support f o r  de- 
pendable, time-constrained communication, and han- 
dles packet routing and switching. The communication 
suppori provided by SPIDER exploits concurrency be- 
tween the independent data channels feeding the point- 
to-point network, and offers flexible and transparent 
hardware mechanisms. SPIDER allows the host to  ex- 
ercise fine-grain control over its operation, enabling 
the latter to  monitor and influence data transmission 
and reception efficiently. In the current implemen- 
tation, SPIDER interfaces to  the Ironics IV-3207, a 
VMEbus-based 68040 card and will be controlled b y  x -  
kernel, a communication executive allowing the flexible 
composition of communication protocols. 

1 Introduction 
Traditionally, parallel computers and distributed 

systems have been employed in disparate application 
domains. Parallel computing has been motivated pri- 
marily by the need for high-performance scientific 
computing, resulting in regular interconnection net- 
works and tightly-coupled processing elements. Dis- 
tributed systems, on the other hand, arose from the 
need for connectivity, communication, and resource 
sharing between network-based machines. This pa- 
per presents SPIDER (Scalable Point-to-point Inter- 
face DrivER), a network adapter that combines the 
protocol support and media access of distributed sys- 
tems with the low-level packet routing and switching 
schemes of the point-to-point, parallel computing do- 
main. 

In recent years distributed computing has emerged 
as a scalable and cost-effective solution to many classes 
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of applications with widely-varying characteristics and 
resource requirements. Technological advances in 
VLSI, networking, and operating systems have ex- 
panded the domain of distributed computing, facilitat- 
ing the merger of the seemingly disparate disciplines of 
parallel computing and distributed computing. Faster 
networks now allow distributed systems to employ 
mechanisms previously applied only to tightly-coupled 
parallel machines, including system-wide shared mem- 
ory and a finer grain of computation. . In  addition, 
parallel programming abstractions are now being ap- 
plied across a wide variety of distributed computing 
platforms. 

It is also becoming commonplace to use digital com- 
puters for real-time applications such as fly-by-wire, 
industrial process control, computer-integrated man- 
ufacturing, and medical life-support systems. These 
applications impose stringent timing and dependabil- 
ity requirements on the computer system, since a dis- 
ruption of service caused by a physical failure or in- 
adequate response time can result in a catastrophe. 
Commonly, dependability is provided by incorporat- 
ing some form of redundancy into the system. One 
technique replicates critical software components on a 
collection of nodes that fail independently [ 5 ] .  Coor- 
dinating this software replication necessitates timely 
and dependable communication between nodes. 

Point-to-point networks, with their multiplicity 
of processors and internode routes, provide a natu- 
ral platform for applications that require both high 
performance and dependability [18]. Many parallel 
computers connect the processing elements with a 
point-to-point network [7,9,11,20] to provide scalable 
communication bandwidth to applications. However, 
these networks often consist of short links, such as on- 
board wires or ribbon cables, with no need for higher- 
level error control. Centralized hardware and software 
can make parallel machines vulnerable to single-point 
failures. For example, the message-driven processor 
(MDP) [9] for the J-machine is a chip that connects 
to a 3D-mesh network. With 64 nodes on a board and 
multiple boards in a chassis, a single board failure can 
disrupt several processing elements. 
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A network of physically-distributed computers of- 
fers the advantage of independent processor and link 
failures. Each node can erect firewalls against failures 
by employing protection boundaries. Communication 
protocols, tailored to the delay and error characteris- 
tics of the network media, mediate between communi- 
cating entities. However, in many distributed systems 
nodes interface to the communication fabric through 
only one or two ports 10,16,24]. In this configuration, 

For example, the Nectar communication accelerator 
board (CAB) [24] for heterogeneous distributed com- 
puting supports one bidirectional port into the net- 
work, and thus, a single failure can isolate a node. 

Combining the high connectivity of point-tupoint , 
parallel machines with the communication protocols 
of distributed systems results in a hybrid environment 
well suited to both real-time and non-real-time ap- 
plications. SPIDER is a front-end hardware module 
designed to provide communication in this compos- 
ite domain. SPIDER supports protocol processing 
through a low overhead interface to the host proces- 
sor, while handling low-level routing and switching 
and providing transparent hardware support for de- 
pendable, time-constrained communication. 

The following section presents a brief design 
overview of SPIDER. Section 3 describes the device’s 
interface to the controlling host processor, while Sec- 
tion 4 discusses SPIDER’S flexible control close to the 
physical links. Section 5 describes how the internal 
operation of the device supports predictable, depend- 
able communication between nodes. The paper con- 
cludes by presenting our current hardware and soft- 
ware platform and outlining our short-term and long- 
term goals. 

2 Design Overview 
The boundary between hardware and software in 

the communication subsystem determines the func- 
tionality, and hence the complexity, of the adapter. 
Many intelligent, complex adapters reduce the load on 
the host significantly, but sacrifice flexibility regard- 
ing communication protocols and buffer management 
strategies. Instead of implementing a specific proto- 
col in VLSI [6], SPIDER provides hardware support 
without precluding higher-level host policies. 

While this flexibility could be achieved through a 
pure software implementation, hardware support pro- 
vides several advantages. In point-to-point systems 
with a high degree of connectivity, servicing the mul- 
tiple incoming and outgoing channels entirely in soft- 
ware imposes substantial overhead; this alone could 
overload a conventional processor during peak loads. 
Instead, SPIDER pushes software control as close to 
the links as possible by dedicating a small processor 
to each channel. 
2.1 Architecture 

Designed to reside on the memory bus of the host 
processor, SPIDER has direct access to the host mem- 
ory and provides the host processor with memory- 
mapped access to the control interface. User appli- 
cations may run on this host or on another processor 

one or two media fai I ures can partition the network. 

that uses the host, coupled with SPIDER, as a ded- 
icated communication engine. While the host is re- 
sponsible for the presentation, session, and transport 
layers, SPIDER handles the data link and physical 
layers, as well as part of the network layer. A col- 
lection of SPIDERS can form point-to-point networks 
with a variety of topologies, including rings, meshes, 
and irregular configurations. 

Much of the design of SPIDER centers around pro- 
viding fair and efficient coordination of the multiple, 
independent data channels. As shown in Figure 1, 
SPIDER manages bidirectional communication with 
up to six neighboring nodes, with two virtual chan- 
nels on each unidirectional link. The programmable 
routing controller (PRC) , a 187-pin custom integrated 
circuit designed using the Epoch silicon compiler, is 
the main component of SPIDER [12]. The 12 PRC 
TXs provide low-level control of packet transmission 
while the 12 microprogrammable PRC RXs coordi- 
nate packet reception, as well as low-level routing and 
switching. The PRC TXs and PRC RXs serve as 
small, custom processors that implement the low-level 
drivers controlling the actual transmitter and receiver 
devices on the network interface (NI). To maximize 
flexibility, each PRC RX has a 128-word control store 
to which the host downloads microcode during system 
initialization. 

The PRC devices reserve access to outgoing chan- 
nels (NI TXs) via an on-chip reservation status unit. 
The NI performs the media access control on six pairs 
of AMD TAXI chips [2], where each TAXI TX/RX 
pair provides bidirectional communication with an ad- 
jacent node. A TAXI transmitter accepts injected 
data from two PRC TXs and each TAXI receiver de- 
livers data to two PRC RXs, providing two virtual 
channels for each physical, unidirectional link. The 
NI TX and NI RX control units perform the neces- 
sary interleaving of channels to and from the physical 
link, on a byte-by-byte basis. 

The host can influence operation in the PRC RX 
through notification FIFOs, addressable as part of 
SPIDER’S memory-mapped control interface. These 
FIFOs provide bidirectional information exchange be- 
tween a PRC RX and the host. The host controls 
channel reservations for any packet stored in the host 
memory by assigning the outgoing packet to a partic- 
ular PRC TX. The host transmits a packet by feeding 
this PRC TX with page tags, each of which includes 
the address of an outgoing page and the number of 
words on the page. Likewise, the host provides each 
PRC RX with pointers to free pages in the memory, 
for use by arriving packets. The control interface also 
provides read access to an event queue that logs page- 
level activities in the PRC. 

2.2 Basic Operation 
To illustrate the interaction between the host, 

SPIDER, and the network, consider how a message 
is handled as it travels from the source node, through 
an intermediate node, and to the destination node. 
Transmission: When an application requests that 
the host transmit a message to another node, the host 
disassembles the message into one or more packets, 
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Figure 1: SPIDER architecture 

where each packet consists of one or more (possibly 
non-contiguous) 64-word pages. Using the control in- 
terface, the host then instructs the appropriate PRC 
TX to transmit these pages. The PRC TX uses the 
memory interface to fetch the data on each page. Data 
is initially fetched from the host memory in cache lines 
and converted to words as the packet travels from 
the host memory interface to the PRC TX. During 
the data transfer from the memory interface to the 
PRC TX, the PRC transparently accumulates a 32- 
bit cyclic redundancy code (CRC). After sending the 
last data word of the packet, the PRC TX transmits 
a 32-bit timestamp, read from a counter on the PRC, 
followed by the CRC. The PRC TX transmits each of 
these words to the NI a byte a t  a time. 
Cut-through: Packet reception begins when data ar- 
rives in a TAXI RX in the network interface (NI). The 
NI RX initially forwards data to its associated PRC 
RX, until the PRC RX has received enough header 
bytes to make a routing decision for the packet. If the 
packet is destined for a subsequent node, the PRC RX 
can try to send the packet directly to the next node 
by reserving an NI TX. If the PRC RX is able to es- 
tablish a cut-through [7,19], the PRC RX then sends 
the data it has accumulated to that transmitter and 
reconfigures the NI RX to forward data directly to the 
reserved NI TX, bypassing the PRC entirely. When 
the packet has cleared the node, the NI RX automat- 
ically reconfigures itself to forward the next packet to 
its associated PRC RX. 
Reception/Buffering: When a packet buffers at the 
local node, however, the PRC RX simply collects the 
bytes from the NI, reaccumulating the CRC while 
transferring each word of the packet to the memory 
interface. These words are assembled into cache lines 
and written into pages in the host memory. The PRC 
event queue logs the arrival of each page, noting the 
address and size. At the end of the final page of the 
packet, the PRC RX appends a receive timestamp to 

1 Network Interface 

the packet and logs a packet-arrival event indicating 
the outcome of the CRC check. If the packet has 
reached its destination, the host reassembles the pages 
into a packet and the packets into a message. Other- 
wise, the host schedules the packet for transmission to 
the subsequent node in its route. 

3 Host Interface 
The management of several, concurrently active, 

data channels has implications for protocol process- 
ing, buffer management, packet scheduling, and inter- 
rupt handling. The host must be able to handle a 
higher frequency of events, maintain distinct schedul- 
ing queues for each channel, and service each channel 
in a fair and efficient manner. Although it is possible 
to construct a point-to-point distributed system us- 
ing replicated communication hardware at  each node, 
cost and performance considerations necessitate an in- 
tegrated, low overhead design for the communication 
adapter. 

While SPIDER could provide separate memory and 
control ports for each channel, this would require repli- 
cating bus arbitration logic for each channel, resulting 
in more expensive hardware and increased bus load- 
ing. Instead, the PRC multiplexes the 24 independent 
channels, allowing SPIDER to provide a single, shared 
port to the host. This interleaving of channels signif- 
icantly reduces the pin-out of the PRC, allowing an 
integrated, single-chip solution. 
3.1 Packet Transfer 

Information structures facilitating efficient host- 
SPIDER coordination, such as the event queue and 
the page tag queues, have been moved into SPIDER. 
SPIDER imposes few restrictions on packet format or 
size since it sees a packet only as a collection of one 
or more pages. This minimizes data copying over- 
head and host memory fragmentation. Consistency of 
packet data between SPIDER and the host is ensured 
by holding the host bus when transferring a cache line 
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and trusting the host not to alter pages that it cur- 
rently has allocated to SPIDER. These pages can be 
partially filled and need not be contiguous in memory, 
similar to MBUFs and MBUF clusters [22]. 

To transmit a packet, the host creates the header 
on a separate page, leaving the data pages untouched, 
and feeds the page tags to the page tag queue for the 
PRC TX selected by the routing algorithm. Generat- 
ing the header on a separate page avoids unnecessary 
data copying, thus keeping the overhead of network 
data transfer low [4,10]. The first page tag for a packet 
can specify a number of words to be excluded from 
the CRC calculation; subsequent modification of these 
words by other nodes does not invalidate the original 
CRC checksum. As SPIDER fetches and transmits 
individual pages, it logs events in the event queue in- 
dicating the transmission of each page and of the en- 
tire packet. The host can respond to these events by 
providing the PRC TXs with additional page tags or 
updating state information for this packet. 

In order to receive a packet, the host fills addresses 
of free pages in host memory into a single page tag 
queue shared by all PRC RXs. As individual pages 
are received and placed in host memory, SPIDER logs 
events corresponding to the reception of each page and 
of the entire packet. The host responds to these events 
by providing additional free pages for the PRC RXs 
and updating the appropriate state information. The 
event queue contains the information necessary for the 
host to reconstruct the packet from the arriving pages. 

3.2 Page-Level Flow Control 
SPIDER enables the host to employ different packet 

scheduling algorithms, and use arbitrary data struc- 
tures for scheduling messages and packets. The page 
tag queues for outgoing channels are fed from these 
host-managed scheduling queues. The command set 
exported by SPIDER allows the host to directly influ- 
ence data transfer on each of the active data channels. 
The host can efficiently assess the status of all the 
page tag queues simultaneously. In addition, the event 
queue logs SPIDER’S use of pages for both transmis- 
sion and reception, providing necessary feedback to 
the host to influence packet scheduling and free-list 
maintenance. Using this feedback the host can exer- 
cise pagelevel control over the rate at which data is 
fed into these channels. 

An arriving packet can cut through an intermedi- 
ate node if the next link in the route is free, thus 
avoiding buffering and subsequent processing at that 
node. If busy outgoing channels prevent an imme- 
diate cut-through, SPIDER may begin buffering the 
packet. If the link becomes free during this buffering, 
the host can reschedule the partially-arrived packet 
for transmission. Such partial cut-throughs [l, 191 can 
potentially improve performance for large packets by 
overlapping the forwarding of buffered pages with the 
arrival of subsequent pages of the packet. SPIDER 
facilitates partial cut-throughs by maintaining page- 
level information in the event and page tag queues. 

With several data channels to service, the host 
could easily be overwhelmed by interrupts alone. 
SPIDER incorporates mechanisms to minimize the 

number and frequency of interrupts delivered to the 
host. Further, the host can amortize the cost of field- 
ing an interrupt by reading the entire event queue 
during each interrupt or polling cycle. The host can 
parse the events registered in the event queue into 
several internal event queues, possibly corresponding 
to different priorities. These events can be handled 
at a later time, enabling the host to keep the inter- 
rupt service routines short. Interrupt masking can be 
employed to disable non-essential interrupts if polling 
SPIDER would be more cost-effective. Coupled with 
parsing the entire SPIDER event queue into internal 
event queues, this also reduces the number of context 
switches caused by interrupts. 

4 Routing and Switching 
While the host manages communication at the page 

level, SPIDER coordinates the fine-grain interaction 
between incoming and outgoing channels. The virtual 
channel abstraction transcends the multiple protocol 
layers in the device, allowing host operations at the 
control interface to influence routing and switching 
operations at the links. SPIDER’S flexibility enables 
the host to dynamically tailor routing and switching 
schemes according to prevailing network conditions 
and communication requirements. 
4.1 Network Interface 

Communication in point-to-point networks requires 
multiplexing incoming traffic to the multiple outge  
ing links. Many routers for point-to-point, paral- 
lel machines employ some type of crossbar intercon- 
nect [7,20,28]. As a result, multicomputer routing 
chips are often pin-limited [l]. Instead, SPIDER uses 
a demand-slotted, time-division multiplexed bus to 
connect the incoming and outgoing channels. The 
demand-slotted bus prevents idle channels from in- 
terfering with active devices. This facility can prove 
helpful in dissipating congestion and traffic hot-spots 
by maximizing bus utilization. Fair arbitration pre- 
vents any one channel from stalling packets on other 
channels. 

The SPIDER network bus allows a single transac- 
tion to spawn transmissions on several links simultane- 
ously. When forwarding data, a master device on the 
bus can specify one or more NI TXs as slaves, pro- 
viding multicast support on the byte level. Using this 
facility, an arriving packet can spawn multiple copies 
at each hop on its route, allowing SPIDER to sup- 
port efficient broadcast and multicast algorithms [17]. 
The host processor can utilize this multicast facility 
to support efficient group communication, useful for 
establishing consensus amongst cooperating software 
on different nodes. 

The bus interface defines a simple protocol for ad- 
dressing and accessing the NI devices. Effectively, the 
NI  is a plug-replaceable module that handles low-level 
flow control and the multiplexing of virtual channels 
to physical links. Insulating the rest of SPIDER from 
the low-level media access control [lo] allows SPIDER 
to interface to various communication fabrics. Other 
NI designs can change the granularity of network flow 
control or the interleaving of PRC channels to the 
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physical links. With different multiplexing control, 
each PRC can support up to twelve neighbors with a 
single virtual channel per link, up to six neighbors with 
a pair of virtual channels per link, or other combina- 
tions. These virtual channels can be used for deadlock- 
free wormhole routing [8,25] or to partition various 
types of traffic onto different virtual networks. 

4.2 Microprogrammability 
Routers for parallel point-t-point networks typi- 

cally employ a single routing and switching scheme 
implemented in hardware. For example, the TRC [7j 
and the MDP [9] perform e-cube routing with worm- 
hole switching, while the Chaos router [20] uses a type 
of deflection routing with virtual cut-through switch- 
ing. Earlier systems often implemented packet switch- 
ing with some form of static routing. The various 
routing and switching schemes have different charac- 
teristics, in terms of latency, deadlock-avoidance, and 
predictability. 

The microprogrammable PRC RXs allow SPIDER 
to download algorithms for a wide variety of routing 
and switching combinations. Based on the header of 
an arriving packet, a PRC RX can select the next node 
in the packet’s route and choose whether to buffer, 
stall, forward, or drop the packet. The micropro- 
grammable PRC RXs allow the PRC to support cir- 
cuit switchin , packet switching, virtual cut-through 
switching (197, and wormhole switching [7]. The no- 
tification FIFOs provide a rendezvous point between 
each PRC RX and the host, and are used to diagnose 
and respond to dynamic conditions, such as conges- 
tion or faulty links. This enables the host to tailor 
routing and switching policies to application require 
ments and the state of the network. With different 
microcode, SPIDER can implement various routing 
algorithms [13], including adaptive and nonminimal 
schemes. 

Since each PRC RX has its own microcode control 
store, each incoming virtual channel can impose its 
own set of routing and switching policies. For exam- 
ple, real-time messages generally use packet switching 
and static routing for predictable performance [18], al- 
though best-effort packets can improve their average 
latency by using cut-through switching and adaptive 
routing. Carrying these two types of traffic on differ- 
ent virtual channels allows real-time communication 
to coexist with non-real-time packets without sacrific- 
ing the performance of either class. 

Programmable routing allows SPIDER to handle 
irregular network topologies. Parallel computers typ- 
ically have a regular interconnection topology, con- 
ducive to scientific computation. However, distributed 
systems often operate with irregular topologies, such 
as wide-area networks or distributed control systems. 
A regular mesh network may not be suitable for a 
system coordinating manufacturing on a factory floor. 
Even when a regular topology is appropriate, broken 
communication links can render the system temporar- 
ily inoperable if the router cannot avoid the down 
links. The microcoded algorithms in the PRC RXs 
enable arriving packets to circumvent faulty links and 
nodes. 

5 Time-Constrained Communication 
The design of SPIDER emphasizes support for de- 

pendability and predictability without tying the host 
to a particular strategy. To make a system depend- 
able, some form of redundancy is usually incorporated 
into the system. This redundancy can be achieved 
by replicating critical software on groups of nodes [5 , 
able communication. To support software replica- 
tion, SPIDER supports efficient group communication 
through its multicast facility, and fault-tolerant rout- 
ing through the microprogrammable PRC RXs. In ad- 
dition, SPIDER provides transparent error detection 
and bounded communication delays. 
5.1 Dependability 

Providing dependability in a system with unreli- 
able communication media requires some form of error 
control. In many cases, packet type dictates the error 
control strategy. Certain high-priority messages with 
short deadlines might need to mask errors entirely, 
while periodic sensor readings could be discarded if 
found to be erroneous. SPIDER’S design, therefore, 
provides efficient error detection while relegating er- 
ror recovery to the higher-level protocols. 

Error detection is usually provided through the 
calculation and transmission of a CRC with each 
packet [3]. Software CRC calculations provide the 
highest degree of flexibility and also detect errors in- 
troduced during the transfer of packets between the 
network interface and main memory. This calculation, 
however, requires host access to the entire packet on 
both transmission and reception. Allowing the net- 
work interface hardware to calculate the CRC can 
virtually eliminate this cost, as the calculation can 
be made by the hardware during the transfer of the 
packet to and from the network interface. This is the 
approach taken by the Nectar CAB [24] and After- 
burner [lo]. But whereas these designs manage a sin- 
gle bidirectional port into the network, SPIDER must 
handle twelve. 

To avoid replicating hardware, the PRC uses a sin- 
gle 32-bit parallel CRC generator to compute the CRC 
for every outbound packet. A single checker accumu- 
lates the CRC for incoming packets en route to the 
memory interface. The outcome of the CRC check is 
logged in the PRC event queue as part of the event 
indicating packet reception. Since many routing algo- 
rithms may wish to modify the header of a packet in 
the PRC RX, SPIDER allows a portion of the packet 
to be excluded from CRC calculations. The micro- 
programmable PRC RXs can then enforce additional 
error detection or correction on the routing header. 

SPIDER’S error detection allows the system to di- 
agnose faulty links by logging CRC errors on channels. 
After higher-level fault diagnosis, individual nodes can 
propagate this information to their PRC R X s  through 
the notification FIFOs, allowing future packets to cir- 
cumvent the faulty link. 
5.2 Predictability 

Real-time applications mandate predictable sys- 
tem operation. Higher-level protocols for predictable 
packet scheduling depend on a global time base and 

but this requires the provision of timely and depen d - 
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bounded communication delays 181. A global time 

well as many consensus protocols. While many paral- 
lel machines distribute a single clock to the processing 
elements [9,23], the potential distance separating the 
nodes of a distributed system causes clock skews that 
make this approach infeasible. Distributed systems, 
therefore, must have some means of keeping the local 
clock of each node within some allowable skew. This 
can be done in software, hardware, or a combination 
of both [26]. 

Hybrid algorithms using a combination of hard- 
ware and software can keep the local clocks of a 
distributed system synchronized, while using simpler 
hardware and providing tighter bounds than software 
algorithms. SPIDER provides hardware support for 
such algorithms by timestamping each packet upon 
transmission and reception, using timestamp registers 
that are readable and writable by the host. By affix- 
ing timestamps close to the physical links, SPIDER 
provides an extremely accurate measure of when an 
outgoing packet completes injection and when an in- 
coming packet completes reception at a node. This al- 
lows the host to provide tighter bounds on clock skews 
between nodes. 

A distributed system cannot be predictable with- 
out some bound on communication delays. Therefore, 
SPIDER is designed to bound low-level communica- 
tion delays. Access to interfaces in SPIDER is gov- 
erned by fair, demand-slotted arbitration [21], and all 
of the interfaces are designed to avoid blocking. This 
allows SPIDER to guarantee that all channels can ac- 
cess the memory within certain bounds. Although the 
bandwidth provided to a particular channel can vary 
dynamically with the load, the worst-case is known 
and deterministically bounded. 

base is necessary for any deadline- 6 ased scheduling, as 

6 Conclusion 
SPIDER manages several concurrent data channels 

in a fair and efficient manner, while minimizing inter- 
action with the host. The PRC TXs and PRC RXs 
serve as small, dedicated processors implementing low- 
level drivers controlling the network interface. The 
microprogrammable PRC RXs allow SPIDER to pro- 
vide this fine-grain control without tying the host to a 
single routing and switching scheme. SPIDER’S flex- 
ible design enables experimentation with a variety of 
existing and future communication protocols in point- 
to-point distributed systems. 

The PRC has been designed in a 0.8pm process us- 
ing Cascade Design Automation’s Epoch Silicon Com- 
piler and functionally simulated using Verilog-XL. The 
chip currently has 187 pins and measures 1.30 by 
1.34 centimeters. It operates asynchronously on the 
memory and control interfaces, while the NI runs at 
25 MHz. The SPIDER design interfaces to the Ironics 
IV-3207 E5], a VMEbus-based 68040 card, through a 
daughter oard interface to the processor memory bus. 
An IV-3207 card, coupled with the SPIDER daugh- 
terboard, can serve as a network-based uniprocessor 
handling both application and communication tasks 
or as a dedicated communication processor for a mul- 
tiprocessor. 

SPIDER will initially provide communication sup- 
port for the Hexagonal Architecture for Real- 
Time Systems (HARTS) [27], a point-to-point, dis- 
tributed system targeted for real-time applications. 
pSOS+ [29], a commercial real-time executive, pro- 
vides system support to application threads within a 
node while 2-kernel [14] coordinates communication 
between nodes. We are extending x-kernel to support 
point-to-point communication and real-time protocols 
using SPIDER. This platform allows investigation 
of software paradigms for managing time-constrained 
communication in point-to-point, distributed systems. 

Our goal in designing SPIDER was to provide sup- 
port for predictable, dependable communication while 
retaining the flexibility to experiment with a variety of 
existing and future communication protocols over sev- 
eral network topologies and under a variety of traffic 
characteristics. With SPIDER, we demonstrate that 
this goal can be met through a low overhead, inte- 
grated solution which supports, but does not dictate, 
higher-level host policies. 
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