
I

SPIDER: Flexible and Efficient Communication Support
for Point-t 0-Point Distributed Systems *

James Dolter, Stuart Daniel, Ashish Mehra, Jennifer Rexford,
Wu-chang Feng, and Kang Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI. 48109-2122

Abstract
SPIDER is a network adapter that provides scalable

communication support for point-to-point distributed
systems. The device exports an efficient interface to
the host processor, provides transparent support f o r de-
pendable, time-constrained communication, and han-
dles packet routing and switching. The communication
suppori provided by SPIDER exploits concurrency be-
tween the independent data channels feeding the point-
to-point network, and offers flexible and transparent
hardware mechanisms. SPIDER allows the host to ex-
ercise fine-grain control over its operation, enabling
the latter to monitor and influence data transmission
and reception efficiently. In the current implemen-
tation, SPIDER interfaces to the Ironics IV-3207, a
VMEbus-based 68040 card and will be controlled b y x -
kernel, a communication executive allowing the flexible
composition of communication protocols.

1 Introduction
Traditionally, parallel computers and distributed

systems have been employed in disparate application
domains. Parallel computing has been motivated pri-
marily by the need for high-performance scientific
computing, resulting in regular interconnection net-
works and tightly-coupled processing elements. Dis-
tributed systems, on the other hand, arose from the
need for connectivity, communication, and resource
sharing between network-based machines. This pa-
per presents SPIDER (Scalable Point-to-point Inter-
face DrivER), a network adapter that combines the
protocol support and media access of distributed sys-
tems with the low-level packet routing and switching
schemes of the point-to-point, parallel computing do-
main.

In recent years distributed computing has emerged
as a scalable and cost-effective solution to many classes

*The work reported in this paper was supported in part by
the National Science Foundation under Grant MIP-9203895.
Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not
necessarily reflect the view of the NSF.

of applications with widely-varying characteristics and
resource requirements. Technological advances in
VLSI, networking, and operating systems have ex-
panded the domain of distributed computing, facilitat-
ing the merger of the seemingly disparate disciplines of
parallel computing and distributed computing. Faster
networks now allow distributed systems to employ
mechanisms previously applied only to tightly-coupled
parallel machines, including system-wide shared mem-
ory and a finer grain of computation. . In addition,
parallel programming abstractions are now being ap-
plied across a wide variety of distributed computing
platforms.

It is also becoming commonplace to use digital com-
puters for real-time applications such as fly-by-wire,
industrial process control, computer-integrated man-
ufacturing, and medical life-support systems. These
applications impose stringent timing and dependabil-
ity requirements on the computer system, since a dis-
ruption of service caused by a physical failure or in-
adequate response time can result in a catastrophe.
Commonly, dependability is provided by incorporat-
ing some form of redundancy into the system. One
technique replicates critical software components on a
collection of nodes that fail independently [5] . Coor-
dinating this software replication necessitates timely
and dependable communication between nodes.

Point-to-point networks, with their multiplicity
of processors and internode routes, provide a natu-
ral platform for applications that require both high
performance and dependability [18]. Many parallel
computers connect the processing elements with a
point-to-point network [7,9,11,20] to provide scalable
communication bandwidth to applications. However,
these networks often consist of short links, such as on-
board wires or ribbon cables, with no need for higher-
level error control. Centralized hardware and software
can make parallel machines vulnerable to single-point
failures. For example, the message-driven processor
(MDP) [9] for the J-machine is a chip that connects
to a 3D-mesh network. With 64 nodes on a board and
multiple boards in a chassis, a single board failure can
disrupt several processing elements.

514
1063-6927194 $03.00 0 1994 IEEE

I

A network of physically-distributed computers of-
fers the advantage of independent processor and link
failures. Each node can erect firewalls against failures
by employing protection boundaries. Communication
protocols, tailored to the delay and error characteris-
tics of the network media, mediate between communi-
cating entities. However, in many distributed systems
nodes interface to the communication fabric through
only one or two ports 10,16,24]. In this configuration,

For example, the Nectar communication accelerator
board (CAB) [24] for heterogeneous distributed com-
puting supports one bidirectional port into the net-
work, and thus, a single failure can isolate a node.

Combining the high connectivity of point-tupoint ,
parallel machines with the communication protocols
of distributed systems results in a hybrid environment
well suited to both real-time and non-real-time ap-
plications. SPIDER is a front-end hardware module
designed to provide communication in this compos-
ite domain. SPIDER supports protocol processing
through a low overhead interface to the host proces-
sor, while handling low-level routing and switching
and providing transparent hardware support for de-
pendable, time-constrained communication.

The following section presents a brief design
overview of SPIDER. Section 3 describes the device’s
interface to the controlling host processor, while Sec-
tion 4 discusses SPIDER’S flexible control close to the
physical links. Section 5 describes how the internal
operation of the device supports predictable, depend-
able communication between nodes. The paper con-
cludes by presenting our current hardware and soft-
ware platform and outlining our short-term and long-
term goals.

2 Design Overview
The boundary between hardware and software in

the communication subsystem determines the func-
tionality, and hence the complexity, of the adapter.
Many intelligent, complex adapters reduce the load on
the host significantly, but sacrifice flexibility regard-
ing communication protocols and buffer management
strategies. Instead of implementing a specific proto-
col in VLSI [6], SPIDER provides hardware support
without precluding higher-level host policies.

While this flexibility could be achieved through a
pure software implementation, hardware support pro-
vides several advantages. In point-to-point systems
with a high degree of connectivity, servicing the mul-
tiple incoming and outgoing channels entirely in soft-
ware imposes substantial overhead; this alone could
overload a conventional processor during peak loads.
Instead, SPIDER pushes software control as close to
the links as possible by dedicating a small processor
to each channel.
2.1 Architecture

Designed to reside on the memory bus of the host
processor, SPIDER has direct access to the host mem-
ory and provides the host processor with memory-
mapped access to the control interface. User appli-
cations may run on this host or on another processor

one or two media fai I ures can partition the network.

that uses the host, coupled with SPIDER, as a ded-
icated communication engine. While the host is re-
sponsible for the presentation, session, and transport
layers, SPIDER handles the data link and physical
layers, as well as part of the network layer. A col-
lection of SPIDERS can form point-to-point networks
with a variety of topologies, including rings, meshes,
and irregular configurations.

Much of the design of SPIDER centers around pro-
viding fair and efficient coordination of the multiple,
independent data channels. As shown in Figure 1,
SPIDER manages bidirectional communication with
up to six neighboring nodes, with two virtual chan-
nels on each unidirectional link. The programmable
routing controller (PRC) , a 187-pin custom integrated
circuit designed using the Epoch silicon compiler, is
the main component of SPIDER [12]. The 12 PRC
TXs provide low-level control of packet transmission
while the 12 microprogrammable PRC RXs coordi-
nate packet reception, as well as low-level routing and
switching. The PRC TXs and PRC RXs serve as
small, custom processors that implement the low-level
drivers controlling the actual transmitter and receiver
devices on the network interface (NI). To maximize
flexibility, each PRC RX has a 128-word control store
to which the host downloads microcode during system
initialization.

The PRC devices reserve access to outgoing chan-
nels (NI TXs) via an on-chip reservation status unit.
The NI performs the media access control on six pairs
of AMD TAXI chips [2], where each TAXI TX/RX
pair provides bidirectional communication with an ad-
jacent node. A TAXI transmitter accepts injected
data from two PRC TXs and each TAXI receiver de-
livers data to two PRC RXs, providing two virtual
channels for each physical, unidirectional link. The
NI TX and NI RX control units perform the neces-
sary interleaving of channels to and from the physical
link, on a byte-by-byte basis.

The host can influence operation in the PRC RX
through notification FIFOs, addressable as part of
SPIDER’S memory-mapped control interface. These
FIFOs provide bidirectional information exchange be-
tween a PRC RX and the host. The host controls
channel reservations for any packet stored in the host
memory by assigning the outgoing packet to a partic-
ular PRC TX. The host transmits a packet by feeding
this PRC TX with page tags, each of which includes
the address of an outgoing page and the number of
words on the page. Likewise, the host provides each
PRC RX with pointers to free pages in the memory,
for use by arriving packets. The control interface also
provides read access to an event queue that logs page-
level activities in the PRC.

2.2 Basic Operation
To illustrate the interaction between the host,

SPIDER, and the network, consider how a message
is handled as it travels from the source node, through
an intermediate node, and to the destination node.
Transmission: When an application requests that
the host transmit a message to another node, the host
disassembles the message into one or more packets,

575

f Programmable Routing Controller

Cache

To Host IJZ Interface

Control I I

- -

Figure 1: SPIDER architecture

where each packet consists of one or more (possibly
non-contiguous) 64-word pages. Using the control in-
terface, the host then instructs the appropriate PRC
TX to transmit these pages. The PRC TX uses the
memory interface to fetch the data on each page. Data
is initially fetched from the host memory in cache lines
and converted to words as the packet travels from
the host memory interface to the PRC TX. During
the data transfer from the memory interface to the
PRC TX, the PRC transparently accumulates a 32-
bit cyclic redundancy code (CRC). After sending the
last data word of the packet, the PRC TX transmits
a 32-bit timestamp, read from a counter on the PRC,
followed by the CRC. The PRC TX transmits each of
these words to the NI a byte a t a time.
Cut-through: Packet reception begins when data ar-
rives in a TAXI RX in the network interface (NI). The
NI RX initially forwards data to its associated PRC
RX, until the PRC RX has received enough header
bytes to make a routing decision for the packet. If the
packet is destined for a subsequent node, the PRC RX
can try to send the packet directly to the next node
by reserving an NI TX. If the PRC RX is able to es-
tablish a cut-through [7,19], the PRC RX then sends
the data it has accumulated to that transmitter and
reconfigures the NI RX to forward data directly to the
reserved NI TX, bypassing the PRC entirely. When
the packet has cleared the node, the NI RX automat-
ically reconfigures itself to forward the next packet to
its associated PRC RX.
Reception/Buffering: When a packet buffers at the
local node, however, the PRC RX simply collects the
bytes from the NI, reaccumulating the CRC while
transferring each word of the packet to the memory
interface. These words are assembled into cache lines
and written into pages in the host memory. The PRC
event queue logs the arrival of each page, noting the
address and size. At the end of the final page of the
packet, the PRC RX appends a receive timestamp to

1 Network Interface

the packet and logs a packet-arrival event indicating
the outcome of the CRC check. If the packet has
reached its destination, the host reassembles the pages
into a packet and the packets into a message. Other-
wise, the host schedules the packet for transmission to
the subsequent node in its route.

3 Host Interface
The management of several, concurrently active,

data channels has implications for protocol process-
ing, buffer management, packet scheduling, and inter-
rupt handling. The host must be able to handle a
higher frequency of events, maintain distinct schedul-
ing queues for each channel, and service each channel
in a fair and efficient manner. Although it is possible
to construct a point-to-point distributed system us-
ing replicated communication hardware at each node,
cost and performance considerations necessitate an in-
tegrated, low overhead design for the communication
adapter.

While SPIDER could provide separate memory and
control ports for each channel, this would require repli-
cating bus arbitration logic for each channel, resulting
in more expensive hardware and increased bus load-
ing. Instead, the PRC multiplexes the 24 independent
channels, allowing SPIDER to provide a single, shared
port to the host. This interleaving of channels signif-
icantly reduces the pin-out of the PRC, allowing an
integrated, single-chip solution.
3.1 Packet Transfer

Information structures facilitating efficient host-
SPIDER coordination, such as the event queue and
the page tag queues, have been moved into SPIDER.
SPIDER imposes few restrictions on packet format or
size since it sees a packet only as a collection of one
or more pages. This minimizes data copying over-
head and host memory fragmentation. Consistency of
packet data between SPIDER and the host is ensured
by holding the host bus when transferring a cache line

576

I

and trusting the host not to alter pages that it cur-
rently has allocated to SPIDER. These pages can be
partially filled and need not be contiguous in memory,
similar to MBUFs and MBUF clusters [22].

To transmit a packet, the host creates the header
on a separate page, leaving the data pages untouched,
and feeds the page tags to the page tag queue for the
PRC TX selected by the routing algorithm. Generat-
ing the header on a separate page avoids unnecessary
data copying, thus keeping the overhead of network
data transfer low [4,10]. The first page tag for a packet
can specify a number of words to be excluded from
the CRC calculation; subsequent modification of these
words by other nodes does not invalidate the original
CRC checksum. As SPIDER fetches and transmits
individual pages, it logs events in the event queue in-
dicating the transmission of each page and of the en-
tire packet. The host can respond to these events by
providing the PRC TXs with additional page tags or
updating state information for this packet.

In order to receive a packet, the host fills addresses
of free pages in host memory into a single page tag
queue shared by all PRC RXs. As individual pages
are received and placed in host memory, SPIDER logs
events corresponding to the reception of each page and
of the entire packet. The host responds to these events
by providing additional free pages for the PRC RXs
and updating the appropriate state information. The
event queue contains the information necessary for the
host to reconstruct the packet from the arriving pages.

3.2 Page-Level Flow Control
SPIDER enables the host to employ different packet

scheduling algorithms, and use arbitrary data struc-
tures for scheduling messages and packets. The page
tag queues for outgoing channels are fed from these
host-managed scheduling queues. The command set
exported by SPIDER allows the host to directly influ-
ence data transfer on each of the active data channels.
The host can efficiently assess the status of all the
page tag queues simultaneously. In addition, the event
queue logs SPIDER’S use of pages for both transmis-
sion and reception, providing necessary feedback to
the host to influence packet scheduling and free-list
maintenance. Using this feedback the host can exer-
cise pagelevel control over the rate at which data is
fed into these channels.

An arriving packet can cut through an intermedi-
ate node if the next link in the route is free, thus
avoiding buffering and subsequent processing at that
node. If busy outgoing channels prevent an imme-
diate cut-through, SPIDER may begin buffering the
packet. If the link becomes free during this buffering,
the host can reschedule the partially-arrived packet
for transmission. Such partial cut-throughs [l, 191 can
potentially improve performance for large packets by
overlapping the forwarding of buffered pages with the
arrival of subsequent pages of the packet. SPIDER
facilitates partial cut-throughs by maintaining page-
level information in the event and page tag queues.

With several data channels to service, the host
could easily be overwhelmed by interrupts alone.
SPIDER incorporates mechanisms to minimize the

number and frequency of interrupts delivered to the
host. Further, the host can amortize the cost of field-
ing an interrupt by reading the entire event queue
during each interrupt or polling cycle. The host can
parse the events registered in the event queue into
several internal event queues, possibly corresponding
to different priorities. These events can be handled
at a later time, enabling the host to keep the inter-
rupt service routines short. Interrupt masking can be
employed to disable non-essential interrupts if polling
SPIDER would be more cost-effective. Coupled with
parsing the entire SPIDER event queue into internal
event queues, this also reduces the number of context
switches caused by interrupts.

4 Routing and Switching
While the host manages communication at the page

level, SPIDER coordinates the fine-grain interaction
between incoming and outgoing channels. The virtual
channel abstraction transcends the multiple protocol
layers in the device, allowing host operations at the
control interface to influence routing and switching
operations at the links. SPIDER’S flexibility enables
the host to dynamically tailor routing and switching
schemes according to prevailing network conditions
and communication requirements.
4.1 Network Interface

Communication in point-to-point networks requires
multiplexing incoming traffic to the multiple outge
ing links. Many routers for point-to-point, paral-
lel machines employ some type of crossbar intercon-
nect [7,20,28]. As a result, multicomputer routing
chips are often pin-limited [l]. Instead, SPIDER uses
a demand-slotted, time-division multiplexed bus to
connect the incoming and outgoing channels. The
demand-slotted bus prevents idle channels from in-
terfering with active devices. This facility can prove
helpful in dissipating congestion and traffic hot-spots
by maximizing bus utilization. Fair arbitration pre-
vents any one channel from stalling packets on other
channels.

The SPIDER network bus allows a single transac-
tion to spawn transmissions on several links simultane-
ously. When forwarding data, a master device on the
bus can specify one or more NI TXs as slaves, pro-
viding multicast support on the byte level. Using this
facility, an arriving packet can spawn multiple copies
at each hop on its route, allowing SPIDER to sup-
port efficient broadcast and multicast algorithms [17].
The host processor can utilize this multicast facility
to support efficient group communication, useful for
establishing consensus amongst cooperating software
on different nodes.

The bus interface defines a simple protocol for ad-
dressing and accessing the NI devices. Effectively, the
NI is a plug-replaceable module that handles low-level
flow control and the multiplexing of virtual channels
to physical links. Insulating the rest of SPIDER from
the low-level media access control [lo] allows SPIDER
to interface to various communication fabrics. Other
NI designs can change the granularity of network flow
control or the interleaving of PRC channels to the

577

physical links. With different multiplexing control,
each PRC can support up to twelve neighbors with a
single virtual channel per link, up to six neighbors with
a pair of virtual channels per link, or other combina-
tions. These virtual channels can be used for deadlock-
free wormhole routing [8,25] or to partition various
types of traffic onto different virtual networks.

4.2 Microprogrammability
Routers for parallel point-t-point networks typi-

cally employ a single routing and switching scheme
implemented in hardware. For example, the TRC [7j
and the MDP [9] perform e-cube routing with worm-
hole switching, while the Chaos router [20] uses a type
of deflection routing with virtual cut-through switch-
ing. Earlier systems often implemented packet switch-
ing with some form of static routing. The various
routing and switching schemes have different charac-
teristics, in terms of latency, deadlock-avoidance, and
predictability.

The microprogrammable PRC RXs allow SPIDER
to download algorithms for a wide variety of routing
and switching combinations. Based on the header of
an arriving packet, a PRC RX can select the next node
in the packet’s route and choose whether to buffer,
stall, forward, or drop the packet. The micropro-
grammable PRC RXs allow the PRC to support cir-
cuit switchin , packet switching, virtual cut-through
switching (197, and wormhole switching [7]. The no-
tification FIFOs provide a rendezvous point between
each PRC RX and the host, and are used to diagnose
and respond to dynamic conditions, such as conges-
tion or faulty links. This enables the host to tailor
routing and switching policies to application require
ments and the state of the network. With different
microcode, SPIDER can implement various routing
algorithms [13], including adaptive and nonminimal
schemes.

Since each PRC RX has its own microcode control
store, each incoming virtual channel can impose its
own set of routing and switching policies. For exam-
ple, real-time messages generally use packet switching
and static routing for predictable performance [18], al-
though best-effort packets can improve their average
latency by using cut-through switching and adaptive
routing. Carrying these two types of traffic on differ-
ent virtual channels allows real-time communication
to coexist with non-real-time packets without sacrific-
ing the performance of either class.

Programmable routing allows SPIDER to handle
irregular network topologies. Parallel computers typ-
ically have a regular interconnection topology, con-
ducive to scientific computation. However, distributed
systems often operate with irregular topologies, such
as wide-area networks or distributed control systems.
A regular mesh network may not be suitable for a
system coordinating manufacturing on a factory floor.
Even when a regular topology is appropriate, broken
communication links can render the system temporar-
ily inoperable if the router cannot avoid the down
links. The microcoded algorithms in the PRC RXs
enable arriving packets to circumvent faulty links and
nodes.

5 Time-Constrained Communication
The design of SPIDER emphasizes support for de-

pendability and predictability without tying the host
to a particular strategy. To make a system depend-
able, some form of redundancy is usually incorporated
into the system. This redundancy can be achieved
by replicating critical software on groups of nodes [5 ,
able communication. To support software replica-
tion, SPIDER supports efficient group communication
through its multicast facility, and fault-tolerant rout-
ing through the microprogrammable PRC RXs. In ad-
dition, SPIDER provides transparent error detection
and bounded communication delays.
5.1 Dependability

Providing dependability in a system with unreli-
able communication media requires some form of error
control. In many cases, packet type dictates the error
control strategy. Certain high-priority messages with
short deadlines might need to mask errors entirely,
while periodic sensor readings could be discarded if
found to be erroneous. SPIDER’S design, therefore,
provides efficient error detection while relegating er-
ror recovery to the higher-level protocols.

Error detection is usually provided through the
calculation and transmission of a CRC with each
packet [3]. Software CRC calculations provide the
highest degree of flexibility and also detect errors in-
troduced during the transfer of packets between the
network interface and main memory. This calculation,
however, requires host access to the entire packet on
both transmission and reception. Allowing the net-
work interface hardware to calculate the CRC can
virtually eliminate this cost, as the calculation can
be made by the hardware during the transfer of the
packet to and from the network interface. This is the
approach taken by the Nectar CAB [24] and After-
burner [lo]. But whereas these designs manage a sin-
gle bidirectional port into the network, SPIDER must
handle twelve.

To avoid replicating hardware, the PRC uses a sin-
gle 32-bit parallel CRC generator to compute the CRC
for every outbound packet. A single checker accumu-
lates the CRC for incoming packets en route to the
memory interface. The outcome of the CRC check is
logged in the PRC event queue as part of the event
indicating packet reception. Since many routing algo-
rithms may wish to modify the header of a packet in
the PRC RX, SPIDER allows a portion of the packet
to be excluded from CRC calculations. The micro-
programmable PRC RXs can then enforce additional
error detection or correction on the routing header.

SPIDER’S error detection allows the system to di-
agnose faulty links by logging CRC errors on channels.
After higher-level fault diagnosis, individual nodes can
propagate this information to their PRC R X s through
the notification FIFOs, allowing future packets to cir-
cumvent the faulty link.
5.2 Predictability

Real-time applications mandate predictable sys-
tem operation. Higher-level protocols for predictable
packet scheduling depend on a global time base and

but this requires the provision of timely and depen d -

578

bounded communication delays 181. A global time

well as many consensus protocols. While many paral-
lel machines distribute a single clock to the processing
elements [9,23], the potential distance separating the
nodes of a distributed system causes clock skews that
make this approach infeasible. Distributed systems,
therefore, must have some means of keeping the local
clock of each node within some allowable skew. This
can be done in software, hardware, or a combination
of both [26].

Hybrid algorithms using a combination of hard-
ware and software can keep the local clocks of a
distributed system synchronized, while using simpler
hardware and providing tighter bounds than software
algorithms. SPIDER provides hardware support for
such algorithms by timestamping each packet upon
transmission and reception, using timestamp registers
that are readable and writable by the host. By affix-
ing timestamps close to the physical links, SPIDER
provides an extremely accurate measure of when an
outgoing packet completes injection and when an in-
coming packet completes reception at a node. This al-
lows the host to provide tighter bounds on clock skews
between nodes.

A distributed system cannot be predictable with-
out some bound on communication delays. Therefore,
SPIDER is designed to bound low-level communica-
tion delays. Access to interfaces in SPIDER is gov-
erned by fair, demand-slotted arbitration [21], and all
of the interfaces are designed to avoid blocking. This
allows SPIDER to guarantee that all channels can ac-
cess the memory within certain bounds. Although the
bandwidth provided to a particular channel can vary
dynamically with the load, the worst-case is known
and deterministically bounded.

base is necessary for any deadline- 6 ased scheduling, as

6 Conclusion
SPIDER manages several concurrent data channels

in a fair and efficient manner, while minimizing inter-
action with the host. The PRC TXs and PRC RXs
serve as small, dedicated processors implementing low-
level drivers controlling the network interface. The
microprogrammable PRC RXs allow SPIDER to pro-
vide this fine-grain control without tying the host to a
single routing and switching scheme. SPIDER’S flex-
ible design enables experimentation with a variety of
existing and future communication protocols in point-
to-point distributed systems.

The PRC has been designed in a 0.8pm process us-
ing Cascade Design Automation’s Epoch Silicon Com-
piler and functionally simulated using Verilog-XL. The
chip currently has 187 pins and measures 1.30 by
1.34 centimeters. It operates asynchronously on the
memory and control interfaces, while the NI runs at
25 MHz. The SPIDER design interfaces to the Ironics
IV-3207 E5], a VMEbus-based 68040 card, through a
daughter oard interface to the processor memory bus.
An IV-3207 card, coupled with the SPIDER daugh-
terboard, can serve as a network-based uniprocessor
handling both application and communication tasks
or as a dedicated communication processor for a mul-
tiprocessor.

SPIDER will initially provide communication sup-
port for the Hexagonal Architecture for Real-
Time Systems (HARTS) [27], a point-to-point, dis-
tributed system targeted for real-time applications.
pSOS+ [29], a commercial real-time executive, pro-
vides system support to application threads within a
node while 2-kernel [14] coordinates communication
between nodes. We are extending x-kernel to support
point-to-point communication and real-time protocols
using SPIDER. This platform allows investigation
of software paradigms for managing time-constrained
communication in point-to-point, distributed systems.

Our goal in designing SPIDER was to provide sup-
port for predictable, dependable communication while
retaining the flexibility to experiment with a variety of
existing and future communication protocols over sev-
eral network topologies and under a variety of traffic
characteristics. With SPIDER, we demonstrate that
this goal can be met through a low overhead, inte-
grated solution which supports, but does not dictate,
higher-level host policies.

References
P I S. Abraham and K. Padmanabhan, “Constraint

based evaluation of multicomputer networks,” in
International Conference on Parallel Processing,
pp. 1-521-1-525, 1990.

Am79168/Am79169 TAXl“- t75 Technical Man-
ual, Advanced Micro Devices, ban-O.lm-1/93/0
17490a edition.

G. Albertengo and R. Sisto, “Parallel CRC gen-
eration,” IEEE Micro, pp. 63-71, October 1990.

D. Banks and M. Prudence, “A high-performance
network architecture for a PA-RISC worksta-
tion,” IEEE Journal on Selected Areas in Com-
munications, vol. 11, no. 2, pp. 191-202, February
1993.

M. Chereque, D. Powell, P. Reynier, and J. Vo-
iron, “Active replication in Delta-4,” in Proc.
Int’l Symp. on Fault-Tolerant Computing, pp. 28-
37, 1992.

G. Chesson, “XTP/PE overview,” in Conference
on Local Computer Networks, October 1988.

W. J . Dally and C. L. Seitz, “The torus routing
chip,” Journal of Distributed Computing, vol. 1,
no. 3, pp. 187-196, 1986.

W. J. Dally and C. L. Seitz, “Deadlock-free mes-
sage routing in multiprocessor interconnection
networks,” IEEE P a n s . Computers, vol. C-36,
no. 5, pp. 547-553, May 1987.

[9] W. J. Dally et al., “Design and implementa-
tion of the message-driven processor ,” in Proc.
Brown/MIT Conference on Advanced Research in
VLSI and Parallel Systems, pp. 5-25, 1992.

[lo] C. Dalton, G.~Watson, D. Banks, C. Calamvokis,
A. Edwards, and J. Lumley, “Afterburner, IEEE
Network Magazine, pp. 36-43, July 1993.

579

[ll] A. L. Davis, “Mayfly: A general-purpose, scal-
able, parallel processing architecture,” Lisp and
Symbolic Computation, vol. 5, no. 1/2, pp. 7-47,
May 1992.

[12] J . Dolter, A Programmable Routing Controller
Supporting Multi-mode Routing and Switching in
Distributed Real- Time Systems, PhD thesis, Uni-
versity of Michigan, September 1993.

[13] S. Felperin, L. Gravano, G. Pirarre, and
J . Sanz, “Routing techniques for massively par-
allel communication,” Proceedings of the IEEE,
vol. 79, no. 4, pp. 488-503, April 1991.

[14] N. C. Hutchinson and L. L. Peterson, “The z-
Kernel: An architecture for implementing net-
work protocols,” IEEE Trans. Software Engineer-
ing, vol. 17, no. 1, pp. 1-13, January 1991.

[15] IV-3207 VMEbus Single Board Computer and
Multiprocessing Engine User’s Manual, Ironics
Incorporated, 1991 edition.

[16] H . Kanakia and D. R. Cheriton, “The VMP
network adapter board (NAB): high-performance
network communication for multiprocessors,”
Proceedings of the SIGCOMM Symposium, pp.

[17] D. D. Kandlur and K. G. Shin, “Reliable broad-
cast algorithms for HARTS,” ACM Trans. Com-
puter Systems, vol. 9, no. 4, pp. 374-398, Novem-
ber 1991.

[18] D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-
time communication in multi-hop networks,” in
Proc. Int. Conf. on Distributed Computer Sys-
tems, pp. 300-307, May 1991.

[19] P. Kermani and L. Kleinrock, “Virtual cut-
through: A new computer communication
switching technique,” Computer Networks, vol. 3,
no. 4, pp. 267-286, September 1979.

[20] S. Konstantinidou and L. Snyder, “Chaos router:
Architecture and performance,’’ in Proc. Int ’I
Symposium on Computer Architecture, pp. 212-
221, May 1991.

[21] A. Kovaleski, S. Ratheal, and F. Lombardi, “An
architecture and interconnection scheme for time-
sliced buses in real-time processing,” Proc. Real-
Time Systems Symposium, pp. 20-27, 1986.

[22] S. J . Leffler, M. K. McKusick, M. J . Karels, and
J . S. Quarterman, The Design and Implementa-
tion of the 4.3BSD Uniz Operating System, Ad-
dison Wesley, May 1989.

[23] C. Leiserson, Z . Abuhamdeh, D. Douglas,
C. Feynman, M. Ganmukhi, J . Hill, W. D. Hillis,
B. Kuszmaul, M. St. Pierre, D. Wells, M. Wong,
S.-W. Yang, and R. Zak, “The network architec-
ture of the connection machine CM-5,” in Sym-
posium on Parallel Algorithms and Architectures,
pp. 272-285, June 1992.

175-187, August 1988.

[24] 0. Menzilcioglu and S. Schlick, “Nectar CAB:
A high-speed network processor,’’ in Proc. Int.
Conf. on Distributed Computer Systems, pp. 508-
515, May 1991.

[25] L. Ni and P. McKinley, “A survey of worm-
hole routing techniques in direct networks,’’ IEEE
Computer, pp. 62-76, February 1993.

[26] P. Ramanathan, K. G. Shin, and R. W. But-
ler, “Fault-tolerant clock synchronization in dis-
tributed systems,” IEEE Computer, pp. 33-42,
October 1990.

[27] K. G. Shin, “HARTS: A distributed real-time ar-
chitecture,” IEEE Computer, vol. 24, no. 5, pp.
25-35, May 1991.

[28] Y. Tamir and G. Frazier, “Dynamically-allocated
multi-queue buffers for VLSI communication
switches,” IEEE Trans. Computers, vol. 41, no.
6, pp. 725-737, June 1992.

[29] L. M. Thompson, ‘ ‘ F g pSOS+ for embedded
real-time computing, in Proc. COMPCON, pp.
282-288, 1990.

580

