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Abstract 
This paper considers the problems of intelligent re- 

sponse to  disruptions in a decentralized manufacturing 
system. In the absence of intelligent coordination, the 
response to a disruption of one part of the system may 
cause a disruption in another part of the system. This 
paper presents a model for the problem of recovering 
from this kind of disruption, and presents a solution 
approach based upon the idea of negotiation from the 
field of distributed artificial intelligence. The model 
and solution approach are evaluated in the domain of 
job shop rescheduling. 

1 Introduction 
Decentralized process control is fast becoming an 

important concept in manufacturing systems research. 
While advances in computer hardware have made pos- 
sible centralized control of a large manufacturing pro- 
cess at one powerful computer, advances in distributed 
computing are allowing the decentralization of con- 
trol among a less expensive coordinated group of less 
powerful computers. Decentralization has several ad- 
vantages, allowing better fault tolerance, easier modi- 
fiability, and parallelism. Decentralized approaches 
also take advantage of the distributed nature of the 
manufacturing process. Decentralized systems have 
been discussed in [6, 81. 

Flexible manufacturing systems must be able to re- 
cover from disruptions without halting the entire sys- 
tem. In a decentralized system, intelligent run-time 
coordination is required for this flexibility. In a heter- 
archical cellular manufacturing system, for example, 
if a disruption occurs a t  a cell, that cell’s controller 
must take some action to  respond. However, this ac- 
tion may affect some other cell, causing a disruption in 
that cell, requiring action from its controller. In such 
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a way, a disruption at one cell may propagate through 
the whole cellular system. 

A good example of this type of propagation of dis- 
ruptions can be seen in the rescheduling of a cellular 
manufacturing system. If one cell suffers a disrup- 
tion, such as a down machine or the arrival of a new 
unexpected job, then the jobs a t  that cell must be res- 
cheduled. However, because of precedence constraints 
or resource sharing, this rescheduling may disrupt the 
schedules of other cells, by the late arrival of parts 
or resource unavailability. Thus, a disruption in the 
schedule of one cell may result in the schedule disrup- 
tions at other cells which were otherwise undisrupted. 

The problem that we address in this paper is that 
of decentralized disruption recovery, how a decentral- 
ized manufacturing system can deter the propagation 
of disruptions through communicat.ion and coopera- 
tion among local controllers. The effect that an action 
taken by a local cont.roller has a t  a remote cell depends 
not only upon the action but also on the state at the 
other cell. Thus, when choosing a good response to  
a local disruption, a controller must take into consid- 
eration the states a t  other cells; some form of com- 
munication and cooperation is required to deter the 
propagation of disruptions. To approach this prob- 
lem, we propose the use of distributed planning theory 
and distributed constraint satisfaction theory from the 
field of distributed artificial intelligence (DAI). The 
domain in which we consider this problem is that of 
rescheduling in cellular manufacturing systems. 

The remainder of this paper is organized as follows. 
In Section 2, we present, a formal model of the decent- 
ralized disruption recovery problem, and a general ap- 
proach to this problem. In Section 3, we examine this 
problem in the domain of job shop scheduling, and 
present an algorithm for rescheduling in a cellular job 
shop. Numerical results of this algorithm are presen- 
ted and discussed in Section 4.  Section 5 concludes 
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this paper. 

2 The decentralized disruption recov- 
ery problem 

Manufacturing cells can affect one another in many 
different ways: shared resources, transfer of parts, con- 
trol over the shop floor environment, and others. In 
this section we present a very general model of the de- 
centralized disruption recovery problem, and a general 
approach to this problem based on the idea of negoti- 
at ion from DAI. This general model and approach do 
not provide solutions to any specific problems, but do 
provide an outline for developing solution algorithms 
in more specific application domains. 

2.1 Model 
We model disruption recovery in a manufacturing 

system of n loosely coupled manufacturing cells. Let 
C = {Cl, CZ, . . . , Cn} be the set of cells. For each cell 
Ci, there is a set Si = { s i l , .  . . , s i m }  of states. For 
each cell Ci, there is a set Di c Si, which is the set 
of disrupted states. A state in Si which is not in Di 
is a safe state. There is a set Ai = { a i l , .  . . , sip} of 
disruption recovery actions which can be taken at cell 
Ci. A disruption is an event which causes a cell to be 
in a disrupted state. For a disruption d at cell Ci, let 
Rdi C Ai be the set of proper recovery actions that 
cell Ci can take to recover from disruption d .  

For each pair of cells Ci and c k ,  k # i, there is 
a transition function Til, : Ai X s k  + sk which de- 
scribes how an action taken by cell Ci affects cell c k .  
Thus, if cell c k  is in state S k l  and cell Ci takes action 
Q i j ,  then Cell c k  Will be put into State Fik(aij ,  S k i ) .  

For each action ai,, let Mi, = {ck : 3 S k l  E 
s&,Fik(ai j ,sk,)  E Dk}. That  is, Mij is the set of 
cells which could possibly be disrupted if cell i takes 
action ai,. 

We call t = ( t l ,  1 2 , .  . . , zn) the system state if cell 
Ci is in state sio,, for all i. Given a system state 2, 

of cells which will be disrupted if cell Ci takes action 
a i j ,  given system state x. 

In order to  recover from a disruption d at cell Ci 
without propagating a disruption, we want to find an 
action aih such that aih E Rdi, and N i h  = 0. w e  as- 
sume that the controller at cell Ci knows the set Mij 

for every disruption recovery action in Ai,, but that 
it does not know the system state, and thus cannot 
determine, without communication, what the set N,, 
is for any of the disruption recovery actions in Aij .  

let Nij = { c k  : Fik(aij ,skz,)  E Dk}.  Nij is the set 

For example, cell Ci may know that it shares a partic- 
ular resource with cell C,. Without communication, 
however it will not know whether use of this resource 
at any given time will conflict with Cols use of it. 

2.2 Outline of approach 

This model does not include a central controller. 
DAI research has for the past decade studied similar 
problems in which a group of distributed intelligent 
agents must interact to solve a problem. Distributed 
planning, an important area of DAI, involves the con- 
struction of a global plan through the interaction of 
problem-solving agents, where there is no central co- 
ordination of the agents’ activities, and no individual 
agent has complete knowledge of the problem to be 
solved. Negotiation among agents is an important 
part of distributed planning [l, 51. We apply ideas 
about negotiation and intelligent interaction among 
agents in the following approach to the decentralized 
disruption recovery problem. 

When a disruption d has been detected and iden- 
tified at cell C;, Ci uses some heuristic H to pick a 
fault recovery action aihl E Rdi. Cell ci then sends a 
proposal message to all members of Mi),], proposing 
action a i h l  (recall that Mihl is the set of cells that 
can potentially be disrupted by cell C, taking action 
a d ,  .) Cell Ci then waits for replies from members of 
Mih, .  If all the replies are ok replies, then N i h l  = 8, 
so cell Ci takes action a,ihl, a.nd then presumably t,he 
disruption has been handled. 

If, however, there is a not-ok reply, then N i h l  # 8, 
so the following loop is executed, starting with j = 1. 
A t  the beginning of the loop, if cell Ci determines 
that further negotiation will be useless (either because 
a solution cannot be found, or because of time con- 
straints), then cell C, chooses (using some measure) 
the best of {Qihl  . . . a ;h , } ,  and takes that action (thus 
resolving the local disruption, but causing one or more 
disruptions at other cells). Otherwise j is incremen- 
ted, and a new a i h j  is chosen using heuristic H, and 
proposed to members of M i h , .  If all the replies are ok 
messages, then Nihj = 8, so cell Cj takes action a i h j l  

and the disruption has been handled. If not, then 
N j h ,  # 8, so the loop is executed again. 

When a cell ck (k # i )  receives a proposal mes- 
sage from cell ci proposing action q h j ,  it determines 
whether the action aih ,  will cause a disruption at Ch. 
If not, then Cell ck N i h j ,  so c k  returns a ok reply 
message to cell cj. Otherwise, c k  E N i h , ,  so the cell 
returns a not-ok reply message, perhaps along with 
some information I k j ,  to cell Ci. This information I k j  

is likely to be some indication of w1ia.t state c k  is in, 
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but often a full description of this state will be too 
expensive to send. This information is used a t  cell 
Ci by the heuristic H in order to  determine a better 
proposal. 

The preceding approach is only a simple outline 
of an algorithm for solving the decentralized disrup- 
tion recovery problem. Obviously, the heuristic H ,  the 
information Ik,, the means of determining when fur- 
ther negotiation will be useful or not, and the means 
of determining the best of the rejected proposed ac- 
tions, are very domain-specific, and cannot be more 
fully described given this very general model. Nev- 
ertheless, this approach will be useful in determining 
decentralized disruption recovery algorithms for more 
specified domains. Results from the study of distrib- 
uted constraint satisfaction problems suggest the use 
of variable and value heuristics [7] and resource de- 
mand profiles [lo] for determining what possible solu- 
tions to try first. 

This approach is somewhat different from distrib- 
uted planning. In distributed planning, multiple 
agents cooperate to solve problems which they have 
in common. In our approach, agents cooperate in or- 
der to prevent local problems from becoming common 
problems. When cooperating with a disrupted cell, 
undisrupted cells do not help the disrupted cell find 
a good solution; they merely help it find a solution 
which will not disrupt themselves. 

3 The rescheduling domain 
In this paper, we study the disruption recovery 

problem in the domain of job shop scheduling in a cel- 
lular manufacturing system. The scheduling domain 
is chosen to  investigate this problem, because it con- 
tains easily definable interactions among cells, in the 
form of precedence constraints among jobs. 

One important and often overlooked aspect of 
scheduling is the actual execution of an already- 
constructed schedule (a preschedule). Oftentimes, the 
real situation on the shop floor is different from that 
assumed in the scheduling process. Machines may 
break down, new unexpected jobs may arrive, release 
dates may change, etc. Such unexpected events may 
render a preschedule infeasible. Thus, if there is no 
provision for dealing with such events, even an optimal 
scheduling method may be completely irrelevant. 

One approach to handling unexpected events is dy- 
namic scheduling, in which no preschedule is construc- 
ted. All scheduling decisions are made at run-time, by 
dispatch rules [4], or by least-commitment opportun- 
istic planning [9]. The advantages of dynamic schedul- 

ing are that it is computationally easy, and that it is 
robust in unpredictable environments. Another ap- 
proach is to construct a new schedule when events 
render the old one infeasible. One very fast way of 
doing this is to “push b a c k  the existing schedule un- 
til it becomes feasible. This method is widely used in 
practice, but very often produces an inefficient sched- 
ule. Another method, much more slow and resource- 
intensive, is to  construct a completely new schedule 
using the same (presumably good) scheduler which 
produced the preschedule. 

These approaches do not make use of a good pres- 
chedule. We choose instead to follow the matchup 
scheduling approach of Bean et al. [3]. In this ap- 
proach, when unexpected events disrupt the presched- 
ule, the scheduler attempts to schedule production so 
that the system can return to (“match up with”) the 
original preschedule. Thus, the good preschedule need 
not be discarded when disruptions occur. The pres- 
chedule must be robust enough so that the system can 
return to it in a reasonable amount of time, and the 
system must be rescheduled efficiently until it matches 
up with the preschedule. The matchup scheduling 
paradigm reduces the problem of recovering from dis- 
ruption to the narrower problem of returning to the 
preschedule. 

3.1 The decentralized job shop reschedul- 
ing problem 

We consider a job shop scheduling problem in which 
tardiness is the performance measure. When preced- 
ence constraints are considered, the problem of res- 
cheduling a cell in a decentralized cellular manufac- 
turing system easily fits into t.he model presented in 
Section 2. The set Si of states for cell Ci is the set of 
all possible schedules for Ci, given the set of jobs which 
must be processed at Ci. Those states which represent 
infeasible schedules are the disrupted states. The set. 
of actions Ai is the set of all feasible rescheduling ac- 
tions for Ci, given the charact,eristics of the machines 
and jobs at C,. Thus, Ai is as big as the set of all 
feasible schedules for Ci. 

Following the matchup scheduling paradigm dis- 
cussed above, we assume that each cell has a presched- 
ule which is followed in absence of any disruptions. 
The rescheduling action aij of cell C; may disrupt 
the schedule of another cell if C; in the new sched- 
ule delays processing of any job which must precede 
jobs at other cells. We assume that if completion of a 
job on Ci must precede some other job a t  another cell, 
Ci will know the identity of this other cell, but not its 
scheduling details. Thus Mi, is the set of cells having 
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jobs which must succeed one of the jobs delayed at C, 
by rescheduling action aij ,  and Ci knows Mij .  

3.2 Algorithm for decentralized job shop 
rescheduling 

If the preschedule of a cell becomes infeasible be- 
cause of a disruption, then the cell must reschedule. 
As in the matchup scheduling paradigm, we assume 
that there is some finite set of jobs which can be res- 
cheduled in response to the disruption, such that the 
remainder of the cells schedule can remain intact. We 
assume that this set of jobs has already been identified 
by one of the methods described in [3]. Let B denote 
this set of jobs. 

To solve these rescheduling problems, we take the 
approach previously outlined in Section 2.2. Because 
the propagation of a disruption to  another cell can oc- 
cur when a job is completed late, we would like to have 
a heuristic which helps produce a schedule in which 
every job which has successors is done on time. One 
heuristic which we make use of in this algorithm is 
the MDD (modified due date) dispatching rule. The 
modified due date for a job a t  a given time is the 
maximum of its processing time and the time remain- 
ing before its due time. This rule has been proven to 
be a good simple heuristic to keep tardiness low [2]. 
Likewise, the information communicated in the not- 
ok reply from a remote node should indicate by what 
times those jobs are expected to have been completed. 
Thus, we use the following rescheduling algorithm. 

When the local node recognizes a disruption and de- 
termines that  job set B must be rescheduled: 

for all ji E B 

reschedule B by MDD; 
d, := CO; 

if C: 5 ci V j i  E P 
then stop; {new schedule is good} 

while not done 
do begin 

else 

for each job ji E P 
send a proposal message to each cell in Si 

proposing that ji be completed at c:; 
wait for responses; 
if all replies are ok messages 

else 
then stop; {new schedule is good} 

for each job ji for which 
a not-ok reply was received 

di := the value from the not-ok reply; 

reschedule B by smallest d, 
using MDD to break ties; 

end; {while} 

When a remote cell Cj receives a message 
proposing that ci be completed at c:: 

if c: 5 t i ,  

else 
Cj will return an ok message; 

Cj will return a not-ok reply 
along with value tij ; 

where: 
P is the set of jobs in B that must precede 

Si is the set of cells which ha.ve jobs 

d; = the due time assigned to job j i ;  
tij = the time that cell Cj expects 

ji to have completed; 
ci = completion time for job ji 

in the original schedule; 
c: = completion time for job ji 

in the latest new schedule; 

some job at another cell; 

which job ji must precede; 

In this algorithm, the disrupted cell uses commu- 
nication to find out when other cells are expecting jobs 
at the disrupted cell to complete. The disrupted cell 
then assigns appropriate deadlines to the jobs to be 
rescheduled, and reschedules in order to meet those 
deadlines. This algorithm terminates when a dead- 
line had been assigned to each job in P ,  regardless 
of whether the resulting schedule will disrupt another 
cell’s schedule. Thus, this algorithm does not always 
find a solution which does not propagate disruptions, 
and there are many cases in which such a solution does 
not exist. If no solution is found, however, the inform- 
ation gained by the disrupted cell will help reduce the 
disruption caused to other cells. 

3.3 An example 
The very simple example in  Figure 1 illustrates this 

problem. The original preschedule is shown in (a). 
This schedule is rendered infeasible by a disruption at 
machine A3 of cell A from time 0 to time 2. In (b), 
the schedule for cell A is pushed back from the disrup- 
tion. This, however, causes part G to be delivered to 
cell B, disrupting cell B’s schedule. By our simple ne- 
gotiation algorithm, cell A proposes the pushed-back 
schedule to cell B, is informed by cell B that part 6 
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Figure 1: An example Figure 2: Tardiness vs disruption length 

must complete processing at cell A by time 8. With 
this new information, cell A produces the schedule in 
(c), which does not disrupt cell B's schedule. 

4 Experimental results and discussion 

In order to  evaluate our approach, we ran sev- 
eral experiments comparing the performance of our 
algorithm with that of commonly used dispatching 
rules, for several rescheduling problems. In our exper- 
iments, we assume a four-cell system, in which each 
cell has two identical machines, and twelve jobs are 
scheduled at each cell. Simple precedence constraints 

push-back. We compared the rescheduling perform- 
ance of our negotiation-based algorithm (NEG) with 
that of push-back rescheduling, and rescheduling us- 
ing three dispatch rules: MDD, EDD, and SPT. These 
methods were used for 20 different randomly generat,ed 
job sets, and for 8 different disruption durations. 

The results (avera.ged over the 20 job sets) are 
shown in Figure 2. For small disruptions, push- 
back rescheduling performed best, presumably be- 
cause it retained most of the characteristics of the ori- 
ginal preschedule. As disruptions become larger, our 
negotiation-based algorithm outperforms the others. 

The reason that the negotiation-based algorithm 

dispatch method, MDD, kept tardiness low on the dis- 

(undisrupted) cells. The negotiation-based algorithm, 
however, kept down tardiness a t  remote cells by try- 
ing to isolate the disruption at the disrupted cell. This 
was done at the cost of having a high tardiness at the 
disrupted cell. Additional tardiness at remote cells, 
however, is multiplied by the number of remote cells 
(in this case 3)  in order to obtain total tardiness. This 
multiplicative effect demonstrates the cost of allow- 

are provided by requiring that each of two jobs in each 

the first cell. Jobs have release times and due times. 

ule for each job set was generated by a non-optimal 
branch and bound beam Search' using MDD as a 
istic. 

Of the last three by preceded by One Of the jobs Of performs better is illustrated in  Figure 3. The best 

The performance is tardiness, and a presched- rupted cell, but a high tardiness on the remote 

In each experiment, one of the machines of the first 
cell was disrupted for a certain period of time (dur- 
ing which the machine could not process any job). 
The first cell was then rescheduled, and any resulting 
schedule disruptions at other cells were handled by 
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ing disruptions to propagate unhindered, and justifies 
incurring a larger local cost in order to limit these 
propagations. 

These experiments also demonstrated limitations to  
the decentralized disruption recovery. Decentralized 
approaches generally work well for problems which 
are easily decomposable into almost independent sub- 
problems. However, in problems constrained as these 
scheduling problems, constraints will probably make 
disruptions very hard to isolate. Even though our 
negotiation-based algorithm performed better than 
the other rescheduling methods did for large disrup- 
tion size, it  was still causing propagation of disrup- 
tions. Identifying how decomposable a problem is is 
the most important factor in how relevant these de- 
centralized negotiation approaches are. 

5 Conclusions 

We have presented an approach to the problem of 
recovering from disruptions in a decentralized cellu- 
lar manufacturing system. We are planning to con- 
tinue this study for a system consisting of a larger 
number of cells, and a greater number of precedence 
constraints. This is just a part of the larger problem 

of providing intelligent coordination in a decentralized 
manufacturing system. Our future work will examine 
more rigorously the relevance and applicability of DAI 
techniques to this area. 
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