
Intelligent Disruption Recovery
for Decentralized Manufacturing Systems

Thomas Tsukada Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2122

Abstract
This paper considers the problems of intelligent re-

sponse to disruptions in a decentralized manufacturing
system. In the absence of intelligent coordination, the
response to a disruption of one part of the system may
cause a disruption in another part of the system. This
paper presents a model for the problem of recovering
from this kind of disruption, and presents a solution
approach based upon the idea of negotiation from the
field of distributed artificial intelligence. The model
and solution approach are evaluated in the domain of
job shop rescheduling.

1 Introduction
Decentralized process control is fast becoming an

important concept in manufacturing systems research.
While advances in computer hardware have made pos-
sible centralized control of a large manufacturing pro-
cess at one powerful computer, advances in distributed
computing are allowing the decentralization of con-
trol among a less expensive coordinated group of less
powerful computers. Decentralization has several ad-
vantages, allowing better fault tolerance, easier modi-
fiability, and parallelism. Decentralized approaches
also take advantage of the distributed nature of the
manufacturing process. Decentralized systems have
been discussed in [6, 81.

Flexible manufacturing systems must be able to re-
cover from disruptions without halting the entire sys-
tem. In a decentralized system, intelligent run-time
coordination is required for this flexibility. In a heter-
archical cellular manufacturing system, for example,
if a disruption occurs a t a cell, that cell’s controller
must take some action to respond. However, this ac-
tion may affect some other cell, causing a disruption in
that cell, requiring action from its controller. In such

The work described in this paper was supported in part by the
NSF Under Grant IRI-9209031.

a way, a disruption at one cell may propagate through
the whole cellular system.

A good example of this type of propagation of dis-
ruptions can be seen in the rescheduling of a cellular
manufacturing system. If one cell suffers a disrup-
tion, such as a down machine or the arrival of a new
unexpected job, then the jobs a t that cell must be res-
cheduled. However, because of precedence constraints
or resource sharing, this rescheduling may disrupt the
schedules of other cells, by the late arrival of parts
or resource unavailability. Thus, a disruption in the
schedule of one cell may result in the schedule disrup-
tions at other cells which were otherwise undisrupted.

The problem that we address in this paper is that
of decentralized disruption recovery, how a decentral-
ized manufacturing system can deter the propagation
of disruptions through communicat.ion and coopera-
tion among local controllers. The effect that an action
taken by a local cont.roller has a t a remote cell depends
not only upon the action but also on the state at the
other cell. Thus, when choosing a good response to
a local disruption, a controller must take into consid-
eration the states a t other cells; some form of com-
munication and cooperation is required to deter the
propagation of disruptions. To approach this prob-
lem, we propose the use of distributed planning theory
and distributed constraint satisfaction theory from the
field of distributed artificial intelligence (DAI). The
domain in which we consider this problem is that of
rescheduling in cellular manufacturing systems.

The remainder of this paper is organized as follows.
In Section 2, we present, a formal model of the decent-
ralized disruption recovery problem, and a general ap-
proach to this problem. In Section 3, we examine this
problem in the domain of job shop scheduling, and
present an algorithm for rescheduling in a cellular job
shop. Numerical results of this algorithm are presen-
ted and discussed in Section 4. Section 5 concludes

852
1050-4729/93 $3.00 0 1993 IEEE

this paper.

2 The decentralized disruption recov-
ery problem

Manufacturing cells can affect one another in many
different ways: shared resources, transfer of parts, con-
trol over the shop floor environment, and others. In
this section we present a very general model of the de-
centralized disruption recovery problem, and a general
approach to this problem based on the idea of negoti-
at ion from DAI. This general model and approach do
not provide solutions to any specific problems, but do
provide an outline for developing solution algorithms
in more specific application domains.

2.1 Model
We model disruption recovery in a manufacturing

system of n loosely coupled manufacturing cells. Let
C = {Cl, CZ, . . . , Cn} be the set of cells. For each cell
Ci, there is a set Si = { s i l , . . . , s i m } of states. For
each cell Ci, there is a set Di c Si, which is the set
of disrupted states. A state in Si which is not in Di
is a safe state. There is a set Ai = { a i l , . . . , sip} of
disruption recovery actions which can be taken at cell
Ci. A disruption is an event which causes a cell to be
in a disrupted state. For a disruption d at cell Ci, let
Rdi C Ai be the set of proper recovery actions that
cell Ci can take to recover from disruption d .

For each pair of cells Ci and c k , k # i, there is
a transition function Til, : Ai X s k + sk which de-
scribes how an action taken by cell Ci affects cell c k .
Thus, if cell c k is in state S k l and cell Ci takes action
Q i j , then Cell c k Will be put into State Fik(aij , S k i) .

For each action ai,, let Mi, = {ck : 3 S k l E
s&,Fik(ai j ,sk,) E Dk}. That is, Mij is the set of
cells which could possibly be disrupted if cell i takes
action ai,.

We call t = (t l , 1 2 , . . . , zn) the system state if cell
Ci is in state sio,, for all i. Given a system state 2,

of cells which will be disrupted if cell Ci takes action
a i j , given system state x.

In order to recover from a disruption d at cell Ci
without propagating a disruption, we want to find an
action aih such that aih E Rdi, and N i h = 0. w e as-
sume that the controller at cell Ci knows the set Mij

for every disruption recovery action in Ai,, but that
it does not know the system state, and thus cannot
determine, without communication, what the set N,,
is for any of the disruption recovery actions in Aij .

let Nij = { c k : Fik(aij ,skz,) E Dk}. Nij is the set

For example, cell Ci may know that it shares a partic-
ular resource with cell C,. Without communication,
however it will not know whether use of this resource
at any given time will conflict with Cols use of it.

2.2 Outline of approach

This model does not include a central controller.
DAI research has for the past decade studied similar
problems in which a group of distributed intelligent
agents must interact to solve a problem. Distributed
planning, an important area of DAI, involves the con-
struction of a global plan through the interaction of
problem-solving agents, where there is no central co-
ordination of the agents’ activities, and no individual
agent has complete knowledge of the problem to be
solved. Negotiation among agents is an important
part of distributed planning [l, 51. We apply ideas
about negotiation and intelligent interaction among
agents in the following approach to the decentralized
disruption recovery problem.

When a disruption d has been detected and iden-
tified at cell C;, Ci uses some heuristic H to pick a
fault recovery action aihl E Rdi. Cell ci then sends a
proposal message to all members of Mi),], proposing
action a i h l (recall that Mihl is the set of cells that
can potentially be disrupted by cell C, taking action
a d , .) Cell Ci then waits for replies from members of
Mih, . If all the replies are ok replies, then N i h l = 8,
so cell Ci takes action a,ihl, a.nd then presumably t,he
disruption has been handled.

If, however, there is a not-ok reply, then N i h l # 8,
so the following loop is executed, starting with j = 1.
A t the beginning of the loop, if cell Ci determines
that further negotiation will be useless (either because
a solution cannot be found, or because of time con-
straints), then cell C, chooses (using some measure)
the best of {Qihl . . . a ;h , } , and takes that action (thus
resolving the local disruption, but causing one or more
disruptions at other cells). Otherwise j is incremen-
ted, and a new a i h j is chosen using heuristic H, and
proposed to members of M i h , . If all the replies are ok
messages, then Nihj = 8, so cell Cj takes action a i h j l

and the disruption has been handled. If not, then
N j h , # 8, so the loop is executed again.

When a cell ck (k # i) receives a proposal mes-
sage from cell ci proposing action q h j , it determines
whether the action aih , will cause a disruption at Ch.
If not, then Cell ck N i h j , so c k returns a ok reply
message to cell cj. Otherwise, c k E N i h , , so the cell
returns a not-ok reply message, perhaps along with
some information I k j , to cell Ci. This information I k j

is likely to be some indication of w1ia.t state c k is in,

853

but often a full description of this state will be too
expensive to send. This information is used a t cell
Ci by the heuristic H in order to determine a better
proposal.

The preceding approach is only a simple outline
of an algorithm for solving the decentralized disrup-
tion recovery problem. Obviously, the heuristic H , the
information Ik,, the means of determining when fur-
ther negotiation will be useful or not, and the means
of determining the best of the rejected proposed ac-
tions, are very domain-specific, and cannot be more
fully described given this very general model. Nev-
ertheless, this approach will be useful in determining
decentralized disruption recovery algorithms for more
specified domains. Results from the study of distrib-
uted constraint satisfaction problems suggest the use
of variable and value heuristics [7] and resource de-
mand profiles [lo] for determining what possible solu-
tions to try first.

This approach is somewhat different from distrib-
uted planning. In distributed planning, multiple
agents cooperate to solve problems which they have
in common. In our approach, agents cooperate in or-
der to prevent local problems from becoming common
problems. When cooperating with a disrupted cell,
undisrupted cells do not help the disrupted cell find
a good solution; they merely help it find a solution
which will not disrupt themselves.

3 The rescheduling domain
In this paper, we study the disruption recovery

problem in the domain of job shop scheduling in a cel-
lular manufacturing system. The scheduling domain
is chosen to investigate this problem, because it con-
tains easily definable interactions among cells, in the
form of precedence constraints among jobs.

One important and often overlooked aspect of
scheduling is the actual execution of an already-
constructed schedule (a preschedule). Oftentimes, the
real situation on the shop floor is different from that
assumed in the scheduling process. Machines may
break down, new unexpected jobs may arrive, release
dates may change, etc. Such unexpected events may
render a preschedule infeasible. Thus, if there is no
provision for dealing with such events, even an optimal
scheduling method may be completely irrelevant.

One approach to handling unexpected events is dy-
namic scheduling, in which no preschedule is construc-
ted. All scheduling decisions are made at run-time, by
dispatch rules [4], or by least-commitment opportun-
istic planning [9]. The advantages of dynamic schedul-

ing are that it is computationally easy, and that it is
robust in unpredictable environments. Another ap-
proach is to construct a new schedule when events
render the old one infeasible. One very fast way of
doing this is to “push b a c k the existing schedule un-
til it becomes feasible. This method is widely used in
practice, but very often produces an inefficient sched-
ule. Another method, much more slow and resource-
intensive, is to construct a completely new schedule
using the same (presumably good) scheduler which
produced the preschedule.

These approaches do not make use of a good pres-
chedule. We choose instead to follow the matchup
scheduling approach of Bean et al. [3]. In this ap-
proach, when unexpected events disrupt the presched-
ule, the scheduler attempts to schedule production so
that the system can return to (“match up with”) the
original preschedule. Thus, the good preschedule need
not be discarded when disruptions occur. The pres-
chedule must be robust enough so that the system can
return to it in a reasonable amount of time, and the
system must be rescheduled efficiently until it matches
up with the preschedule. The matchup scheduling
paradigm reduces the problem of recovering from dis-
ruption to the narrower problem of returning to the
preschedule.

3.1 The decentralized job shop reschedul-
ing problem

We consider a job shop scheduling problem in which
tardiness is the performance measure. When preced-
ence constraints are considered, the problem of res-
cheduling a cell in a decentralized cellular manufac-
turing system easily fits into t.he model presented in
Section 2. The set Si of states for cell Ci is the set of
all possible schedules for Ci, given the set of jobs which
must be processed at Ci. Those states which represent
infeasible schedules are the disrupted states. The set.
of actions Ai is the set of all feasible rescheduling ac-
tions for Ci, given the charact,eristics of the machines
and jobs at C,. Thus, Ai is as big as the set of all
feasible schedules for Ci.

Following the matchup scheduling paradigm dis-
cussed above, we assume that each cell has a presched-
ule which is followed in absence of any disruptions.
The rescheduling action aij of cell C; may disrupt
the schedule of another cell if C; in the new sched-
ule delays processing of any job which must precede
jobs at other cells. We assume that if completion of a
job on Ci must precede some other job a t another cell,
Ci will know the identity of this other cell, but not its
scheduling details. Thus Mi, is the set of cells having

854

jobs which must succeed one of the jobs delayed at C,
by rescheduling action aij , and Ci knows Mij .

3.2 Algorithm for decentralized job shop
rescheduling

If the preschedule of a cell becomes infeasible be-
cause of a disruption, then the cell must reschedule.
As in the matchup scheduling paradigm, we assume
that there is some finite set of jobs which can be res-
cheduled in response to the disruption, such that the
remainder of the cells schedule can remain intact. We
assume that this set of jobs has already been identified
by one of the methods described in [3]. Let B denote
this set of jobs.

To solve these rescheduling problems, we take the
approach previously outlined in Section 2.2. Because
the propagation of a disruption to another cell can oc-
cur when a job is completed late, we would like to have
a heuristic which helps produce a schedule in which
every job which has successors is done on time. One
heuristic which we make use of in this algorithm is
the MDD (modified due date) dispatching rule. The
modified due date for a job a t a given time is the
maximum of its processing time and the time remain-
ing before its due time. This rule has been proven to
be a good simple heuristic to keep tardiness low [2].
Likewise, the information communicated in the not-
ok reply from a remote node should indicate by what
times those jobs are expected to have been completed.
Thus, we use the following rescheduling algorithm.

When the local node recognizes a disruption and de-
termines that job set B must be rescheduled:

for all ji E B

reschedule B by MDD;
d, := CO;

if C: 5 ci V j i E P
then stop; {new schedule is good}

while not done
do begin

else

for each job ji E P
send a proposal message to each cell in Si

proposing that ji be completed at c:;
wait for responses;
if all replies are ok messages

else
then stop; {new schedule is good}

for each job ji for which
a not-ok reply was received

di := the value from the not-ok reply;

reschedule B by smallest d,
using MDD to break ties;

end; {while}

When a remote cell Cj receives a message
proposing that ci be completed at c::

if c: 5 t i ,

else
Cj will return an ok message;

Cj will return a not-ok reply
along with value tij ;

where:
P is the set of jobs in B that must precede

Si is the set of cells which ha.ve jobs

d; = the due time assigned to job j i ;
tij = the time that cell Cj expects

ji to have completed;
ci = completion time for job ji

in the original schedule;
c: = completion time for job ji

in the latest new schedule;

some job at another cell;

which job ji must precede;

In this algorithm, the disrupted cell uses commu-
nication to find out when other cells are expecting jobs
at the disrupted cell to complete. The disrupted cell
then assigns appropriate deadlines to the jobs to be
rescheduled, and reschedules in order to meet those
deadlines. This algorithm terminates when a dead-
line had been assigned to each job in P , regardless
of whether the resulting schedule will disrupt another
cell’s schedule. Thus, this algorithm does not always
find a solution which does not propagate disruptions,
and there are many cases in which such a solution does
not exist. If no solution is found, however, the inform-
ation gained by the disrupted cell will help reduce the
disruption caused to other cells.

3.3 An example
The very simple example in Figure 1 illustrates this

problem. The original preschedule is shown in (a).
This schedule is rendered infeasible by a disruption at
machine A3 of cell A from time 0 to time 2. In (b),
the schedule for cell A is pushed back from the disrup-
tion. This, however, causes part G to be delivered to
cell B, disrupting cell B’s schedule. By our simple ne-
gotiation algorithm, cell A proposes the pushed-back
schedule to cell B, is informed by cell B that part 6

855

w

A

B W 14131

50.0- -+--T+fbShk€@- 7 - - r - 1 -

I l l /

1 1 1

0 I l I I I I I

I I I I I I I
I I I I I I I

, ' I I I I I I I

70.0. ! ! ! ! ! ! 1
Length of Disruption (ave job proc time I 1)
0.5 1.0 7.5 2.0 2.5 3.0 3.5 4.0

Figure 1: An example Figure 2: Tardiness vs disruption length

must complete processing at cell A by time 8. With
this new information, cell A produces the schedule in
(c), which does not disrupt cell B's schedule.

4 Experimental results and discussion

In order to evaluate our approach, we ran sev-
eral experiments comparing the performance of our
algorithm with that of commonly used dispatching
rules, for several rescheduling problems. In our exper-
iments, we assume a four-cell system, in which each
cell has two identical machines, and twelve jobs are
scheduled at each cell. Simple precedence constraints

push-back. We compared the rescheduling perform-
ance of our negotiation-based algorithm (NEG) with
that of push-back rescheduling, and rescheduling us-
ing three dispatch rules: MDD, EDD, and SPT. These
methods were used for 20 different randomly generat,ed
job sets, and for 8 different disruption durations.

The results (avera.ged over the 20 job sets) are
shown in Figure 2. For small disruptions, push-
back rescheduling performed best, presumably be-
cause it retained most of the characteristics of the ori-
ginal preschedule. As disruptions become larger, our
negotiation-based algorithm outperforms the others.

The reason that the negotiation-based algorithm

dispatch method, MDD, kept tardiness low on the dis-

(undisrupted) cells. The negotiation-based algorithm,
however, kept down tardiness a t remote cells by try-
ing to isolate the disruption at the disrupted cell. This
was done at the cost of having a high tardiness at the
disrupted cell. Additional tardiness at remote cells,
however, is multiplied by the number of remote cells
(in this case 3) in order to obtain total tardiness. This
multiplicative effect demonstrates the cost of allow-

are provided by requiring that each of two jobs in each

the first cell. Jobs have release times and due times.

ule for each job set was generated by a non-optimal
branch and bound beam Search' using MDD as a
istic.

Of the last three by preceded by One Of the jobs Of performs better is illustrated in Figure 3. The best

The performance is tardiness, and a presched- rupted cell, but a high tardiness on the remote

In each experiment, one of the machines of the first
cell was disrupted for a certain period of time (dur-
ing which the machine could not process any job).
The first cell was then rescheduled, and any resulting
schedule disruptions at other cells were handled by

856

' l - ~ - ~ - - ~ - - ~ - ~ - - ~ - l
0.0

0.5 1.0 1.5 2.0 2 5 3.0 3.5 4.0
Length of Disruptlon (we job proc tlme = 1)

Figure 3: Cell tardiness vs disruption length

ing disruptions to propagate unhindered, and justifies
incurring a larger local cost in order to limit these
propagations.

These experiments also demonstrated limitations to
the decentralized disruption recovery. Decentralized
approaches generally work well for problems which
are easily decomposable into almost independent sub-
problems. However, in problems constrained as these
scheduling problems, constraints will probably make
disruptions very hard to isolate. Even though our
negotiation-based algorithm performed better than
the other rescheduling methods did for large disrup-
tion size, it was still causing propagation of disrup-
tions. Identifying how decomposable a problem is is
the most important factor in how relevant these de-
centralized negotiation approaches are.

5 Conclusions

We have presented an approach to the problem of
recovering from disruptions in a decentralized cellu-
lar manufacturing system. We are planning to con-
tinue this study for a system consisting of a larger
number of cells, and a greater number of precedence
constraints. This is just a part of the larger problem

of providing intelligent coordination in a decentralized
manufacturing system. Our future work will examine
more rigorously the relevance and applicability of DAI
techniques to this area.

References
[l] M. R. Adler et al. Conflict-resolution strategies

for nonhierarchical distributed agents. In
L. Gasser and M. N. Huhns, editors, Distributed
Artificial Intelligence Volume 2, pages 139-162.
Morgan Kaufmann, San Mateo, 1989.

[2] K . R. Baker and J . W. M. Bertrand. A dynamic
priority rule for sequencing against due dates. J .
Opns . M g m t . , 3:37-42, 1982.

[3] J . C. Bean et al. Matchup scheduling with mul-
tiple resources, release dates and disruptions.
Operations Research, 39(3):470-483, May-June
1991.

[4] J . H . Blackst.one et al. A state-of-the-art sur-
vey of dispatch rules for manufacturing job shop
operations. In.ternationa1 Journal of Production
Research, 20(1):27-45, 1982.

[5] S. E. Conry et al. Multista.ge negotiation for
distributed constra.int satisfaction. IEEE T r a m .
on. System.s, Man, and Cybernet ics , 21(6): 1462-
1477, November 1991.

[6] N. A. Duffie et al. Fault-tolerant heterarch-
ical control of het,erogeneous manufacturing sys-
tem entities. Journ a1 of Manu fac t uring Sys tems,
7(4):315-328, 1988.

[7] Y. Nishibe et al. Effects of heuristics in distrib-
uted constraint, satisfaction problems. In Proceed-
ings Eleventh Internat'l Wrkshp on D A I , pages
285-302, 1992.

[8] H . V. D. Pa.runa.k. Dishibuted artificial intel-
ligence systems. In A. Kusiak, editor, Artificial
Intelligence Implications for Computer Integrated
Manufacturing, pages 225-251. IFS Ltd., 1988.

[9] S. F. Smith et al. An int,egrated framework for
generating and revising fact.ory schedules. J . Opl .
Res. Soc., 41(6):539-552, 1990.

[lo] K . Sycara et a.1. Distributed constrained heur-
istic search. IEEE Trans. on. Sys tems, Man, and
Cybernet ics , 21(6):1446-1461, November 1991.

857

http://constra.int

