
1308 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 12, DECEMBER 1993

A Simple Distributed Loop-Free Routing Strategy
for Computer Communication Networks

Kang G. Shin, Fellow, IEEE, and Chih-Che Chou

Abstract-The loops resulting from either component failures
or load changes in a computer communication network degrade
the performance and the adaptability of conventional distributed
adaptive routing strategies, such as ARPANET’s previous routing
strategy (APRS). In this paper, we develop a distributed loop-
free routing strategy by adding only one additional piece of
information-the total number of minimum-delay paths-to the
commonly used routing messages and tables. Most conventional
approaches to the looping problem suffer high overheads in time
and space because each message must either include the first
several nodes of its path or trace the entire path to detect a
loop. By contrast, the proposed routing strategy requires only
easily obtainable information, yet removes loops completely. It is
far more efficient in both time and space than its conventional
counterparts, especiallyTable Ifor sparse computer networks.
The correctness of the proposed strategy is proved, and several
illustrative examples are given. The performance of this strategy
is shown to be always better than, or at least as good as, that
of APRS and any multiorder routing strategies, where the order
of a routing strategy i s determined by the amount of routing
information carried in each routing message.

Index Terms-ARPANET, computer communication networks,
distributed adaptive routing, loop-free or fault-tolerant routing
strategy, network delay tables, routing messages.

I. INTRODUCTION

HE prime importance of message routing to the perfor- T mance of any distributed computing system has led to the
development of numerous routing strategies [2]-[4], [7]-[9],
[11)-[13]. Adaptive routing is more reliable and efficient than
nonadaptive routing because the former can dynamically adjust
itself to network changes as a result of component failures
and/or load changes. However, in order to make correct
routing decisions, each node must have up-to-date information
about the network changes. Obviously, it is too costly for
each node to maintain and update the information of the
entire network, such as the current routing strategy used in
ARPANET, especially when the network condition changes
often. Although the current APARNET routing strategy can
always send messages via optimal (minimum-delay) paths
provided each node has complete network information, it

Manuscript received August 22, 1991; revised June 12, 1992. This work
was supported in part by the National Science Foundation under Grant MIP-
9072549 and the Office of Naval Research under Contract N00014-92-5-1080,
Any opinions, findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the view of the
funding agencies.

The authors are with the Real-Time Computing Laboratory, Computer
Science and Engineering Division, Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109.

IEEE Log Number 9213608.

requires a large amount of memory to store the information
of the entire network and wastes a large portion of network
bandwidth to exchange routing messages. Hence, it is desirable
for each node to maintain only minimal information which is
sufficient to make correct routing decisions.

Many distributed adaptive routing strategies have been
reported in the literature, such as the APRANET’s previous
routing strategy (APRS) [l], [15] which seems to be acceptable
for most packet-switched networks due to its simple imple-
mentation. However, the problem of looping messages in case
of network-delay changes or nodellink failures degrades the
performance and adaptability of such routing strategies. To
remedy this deficiency, we shall, in this paper, develop a
distributed adaptive loop-free routing strategy which requires
as little information as possible.

Several solutions to the looping problem have been pro-
posed, including the TIDAS network [3] and multiorder strate-
gies [12], [13]. The authors of [12], [13] proposed a loop-
free algorithm which is somewhat similar to [3] for general
networks. In their algorithm, the complete information on the
path from the source to the destination is included in the
routing messages and tables. Although the looping problem
can be resolved completely by this algorithm, the size of the
routing message and the memory required to store the routing
tables are proportional to the diameter of the network. Hence,
it will induce very high operational overheads, especially
when a high-order strategy [13] is used, where the order of
a routing strategy is determined by the amount of routing
information carried in each routing message. Obviously, there
is a tradeoff between the operational overhead and the looping
delay.

Another similar approach [4]-which includes only the first
node of a shortest path, instead of the entire path, in the routing
messages and tables-can solve the looping problem without
the same overhead in [12], [13]. However, it increases the time
complexity in generating the routing messages because a node
needs to search its entire routing table for possible loops. Thus,
in the worst case, it must go through each entry in the routing
table solely for generating the routing message for each pair
of a neighbor node (of the source) and the destination node.

A different approach (91 uses a synchronization phase to
solve the looping problem, but it incurs an additional cost
of synchronization. Moreover, when no loop is encountered,
its performance is worse than APRS. There are some other
algorithms propsed in [5] , [6], and [14], which also have the
same major features as APRS, but which still suffer such
inherent drawbacks as poor adaptability and inefficiency.

1045-9219/93$03.00 Q 1993 IEEE

SHIN AND CHOU: DISTRIBUTED LOOP-FREE ROUTING STRATEGY FOR COMPUTER COMMMUNICATION 1309

Another variation of algorithms which can also reduce
the possibility of looping are least-hop routing algorithms
[lo]. Although they are relatively simpler than the least-delay
routing strategy, they can work only under the assumption that
the least-hop path is the least-delay path.

Most of the above routing strategies share a common
assumption that link delays (including transmission and queue-
ing delays) change relatively slowly compared to the rate
of updating routing tables. Our strategy also adopts this
assumption. However, this assumption does not limit the
ability of our strategy to adapt itself to the dynamic changes
of the network as long as the rate of delay change is smaller
than the rate of updating routing tables. In order to solve the
looping problem completely and avoid the high overheads
i n time and space, we propose a very simple but effective
strategy, called the order one loop-free algorithm, which can
effectively deal with node or link failures, occasional network
structural changes, and link-delay changes.

The paper is organized as follows. In Section 11, both
APRS and the proposed routing strategy are described, and the
correctness of the proposed strategy is proved. The operational
overheads of the proposed strategy are analyzed in Section 111.
The performance analysis of our strategy and its comparison
with APRS and multiorder strategies are treated in Section IV.
Simulation results are presented in Section V, and the paper
concludes with Section VI.

11. DESCRIPTION OF THE PROPOSED ROUTING STRATEGY

For an n,-node computer network, let Ni represent a host
computer node, and let Lz , j , 1 5 i , j 5 n,i # j be the
communication link from Ni to Nj . Also, let SPio,i, be the
set of all paths from Ni, to Ni, in the network; then a path
P E SP,,,i, is expressed by an ordered sequence of nodes
(Ni,, N i l , . . . , N i ,) , 1 5 i j 5 n , j E {0,1, . . . ,IC}, and nodes
on the path are visited in that order. Let A; be the set of all
nodes adjacent to Ni, that is, there is a link Li,j from Ni to
every NJ E Ai .

Because our strategy is similar to APRS except for adding
an additional piece of information-the number of minimum-
delay paths-to each entry of a routing message, we briefly
describe APRS first. Under APRS, the path from one node to
every other node is not determined in advance. Instead, every
node maintains a delay table to record the minimum delay
via each of its links to every other destination. The minimum-
delay table is exchanged periodically (once every 128 ms for
APRS) as a routing message between each pair of adjacent
nodes, containing the delays of the optimal paths from a node
to all the other nodes. Upon receiving a new routing message,
each node updates its own routing tables and derives a new
minimum-delay table which will be used to route messages
and will also be sent to all its neighbors as a routing message
for the next (exchange) time interval.

Let D;,j,d(m) denote the delay from N; via Nj to Nd in
the delay table of Ni under APRS during the time interval
[m, m + I) , and let DLi , j (m) denote the delay of link Li,j
at time In, where the time interval between two successive
routing-message exchanges is defined as one unit of time. For

nL
Fig. 1. L is a source loop for the path from N, going through L , then via

N3 to I V ~ .

simplicity, DLi>, is used to denote the delay of Li>j when
time dependency is immaterial. Note that DLi,j(m) includes
the transmission delay, propagation delay, and queueing delay.
Also, let OP,,d(m) be the minimum-delay (optimal) path
from N , to Nd in the delay table of N , during the interval
[m,m + l), and let DOP,,d(m) be the delay of that path.
However, the information kept in the delay table is not always
up to date because there might be a component failure which
is not immediately known to the source node N,. That is,
OP,,d(m) may not be the actual optimal path from N , to Nd
because its routing table could contain obsolete information.
According to APRS, the following relationships must hold:

However, APRS cannot prevent looping in case of link/node
failures and/or load changes. In order to eliminate looping
effects, several solutions are proposed by modifying APRS’s
way of constructing the minimum-delay tables. Unfortunately,
most of them result in high operational overheads in memory
and/or time. In order to eliminate the looping problem and
avoid the excessive operational overheads, we propose a strat-
egy that requires only one additional piece of easily obtainable
information-the total number of optimal paths-for each pair
of source and destination nodes in a routing message, and
some additional simple procedures for constructing the routing
messages and updating the delay tables.

Definition I: A source loop of a path is the loop which
starts and ends at a node which is the starting node of that
“path.” For example, L in Fig. 1 is a source loop for the
“path” from N , running through L, then via Nj to Nd, but
not a source loop of the path N , +. Nj + Nd.

Under APRS, if there are no paths containing a source
loop in the delay tables of all nodes in the network, then all
the paths determined by the delay tables do not contain any
loop. Therefore, we want to prevent all source loops when
constructing routing messages and updating routing tables.
Every node sends a routing message to each of its neighbors
just as in APRS. Unlike APRS, however, each Nj E Ai sends
Ni the minimum-delay loop-free paths as optimal paths for all
other nodes in the network which do not pass through Ni.

Since a subpath of an optimal (minimum-delay) path is also
an optimal path, the following three cases are sufficient to
determine whether OPk,d passes through Nj or not. Let npq
be the number of optimal paths from Np to Nq with delay d p q .

I 1 1

1310 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 12, DECEMBER 1993

Fig. 2. A known faulty path of N,.

1) If d k d # d k j f d j d , then no optimal path from Nk to

2) If d k d = d k j f d j d and n k d = n k j n j d , then all Optimal

3) If d k d = d k j f d j d and n k d < n k j n j d , then Some

Nd runs through Nj .

paths from Nk to Nd pass through Nj .

(n k j n j d) of the optimal paths from Nk to Nd pass through

In order to cope with link/node failures and link-delay
changes, we introduce the concept of a known faulty path as
follows.

For any destination Nd # Ni, a neighbor node Nk of Ni
(i.e., E A i) is said to have property A if there is another
neighbor Nj of Ni such that Nk --f . . . --f Nj --+ . . . --+ Nd is
a loop-free minimum-delay path from Nk to Nd without going
through Ni (see Fig. 2). Let Si represent the set of nodes in
Ai which have the property A , and let si = A;\&. At time
t , let SP3d\i be the set of all optimal paths from Nj E Ai
to Nd without passing through N;,n$d\i = (SP$\iI, and let
Pjd\i be a representative path in SPjd\i.

Suppose at time t o there had occurred a link failure in P$%
which was then detected by Nj E Ai at time tl > t o . At time
tl + 1, Nj E Ai will inform Ni of this link failure by sending
Ni a new set of optimal paths from Nj to Nd, denoted by
SP&i. The path is now a faulty path known to Ni or
called an Ni’s known faulty path.

Likewise, at time t 2 2 t l + 1,Nk # Nj is informed
of the link failure in P&i because in Nk’s delay table,
NI, --+ . . . --+ Nj --+ . . . + Nd was the optimal path from
Nk to Nd at time t < tz. Finally, at time t 2 + 1, NI , informs
Ni of the link failure in by sending N; a new set of
optimal paths, SPLi\i.

During [tl + 1, t 2 + l) , the information of the faulty paths
in SP&i can be used to reject the broken path which is
specified in the routing message sent from Nk to Ni because at
time tl + 1. Ni has already been informed of the link failure in
P:i\i, which is a subpath of P&i. In the proposed algorithm,
the faulty paths information will be saved in Ni’s routing table
to avoid loops.

Ni’s known faulty paths are defined formally as follows.
Assume that Nd is an arbitrary destination node in the network,
and Nj E Ai sends Ni the information on a set of paths,
SP&i, as the optimal paths from Nj to Nd without passing
through Ni during some time period [to , t l) . Suppose, at time
t l , Nj sends Ni a different set of optimal paths from Nj to
Nd, SP&i, due to some delay changeslcomponent failures in

N j , but others (n k d - n k j n j d) do not.

the network. Then, Pj&i E SP&; is said to be a faultypath
(or faulty segment of a path) known to Ni if and only if the
following two conditions hold.

C1: Pjj.,! does not contain any other faulty subpaths known
to Ni. (Initially, assume there is no known faulty path in the
network.)

C2: D(P&i) < D(Pj&i) or D(Pj:\i) = D(P&i) and
n z a > n&;, where D (P) is the delay of a path P. 0

Tke proposed strategy uses three tables to store the
necessary information in order to route messages correctly.
Given below are the detailed descriptions of these three
tables NT’, NT”, N T , and the notation for them and routing
messages. Note that N T will be the routing table that a node
actually uses to route packets in our strategy. However, we
will also introduce two other tables NT‘ and NT” since N T
is derived from NT‘ and NT“.

Notation for Routing Messages RM: The routing message
sent from Nj to Ni E Aj is a list of records (derived from
Nj’s routing table), one for each destination, and is denoted
by RMi+j)d for destination node Nd. A record is composed
of two fields: 1) the delay of an optimal path from Nj to Nd
without passing through N;, denoted by RMi+j,d.dly, and 2)
the number of paths with delay RMi+j,d.dly from Nj to Nd,
denoted by RM+j>d.num.

Notation for NT’: The table NT‘ of N; is an array of
records, each corresponding to a pair of Nj E Ai and a
destination node Nd # Ni in the network. That is, NT‘ has
an entryhecord NTilIj,d with two fields: 1) NTillj,,.dly =
the minimum delay from Nj to Nd without passing through
Ni, and 2) NTz!/j,d.num = the number of paths with delay
NT:/j,d .dly. Under the normal condition (no component fail-
ureldelay change), a node’s NT’ is used to store the routing
messages from its neighbors.

When Ni receives the routing message from one of its
neighbors, this information is stored in the corresponding entry
of NT’. After the node receives all the routing messages
during the current routing-message exchange interval, it uses
another table NT” (to be described below) to check whether
each record of the message contains a known faulty path or
not. (A record may correspond to multiple paths since there
may be more than one optimal path between any given two
nodes.) If the record does not contain any known faulty path,
this record is ready to be used for generating new routing
tables. If all the paths specified in the entry contain known
faulty paths, then the corresponding NTa!/j,d.dly is set to 00

and NTz’/3,d.num to 0. Otherwise, some (but not all) paths
specified in the entry contain known faulty paths; in such a
case, the delay is stored in the corresponding NT:/j,d.dly,
and NTz(lj,d.num is set to the number of paths which do not
contain any known faulty path segment.

Initially, Ni knows only the information about its neighbors,
thus setting NTz(lj,j.dly := 0, NT:llj,j.num := 1, VNj E Ai,
and NTZ;j>d.dly := 03, NT:llj,d.num := 0 if d # j ,VNj E Ai.

Notation for NT”: The structure of NT” is exactly the
same as NT‘, containing a record for each pair of a node
in A; and a destination node in the network. As mentioned
above, NT” is used to store the most recent information about

1311 SHIN AND CHOU: DISTRIBUTED LOOP-FREE ROUTING STRATEGY FOR COMPUTER COMMMUNICATION

the known faulty paths, and the information is used to check
the validity (whether to contain a known faulty path or not) of
routing messages from its neighbors before using these routing
messages to update the three routing tables. Each entry of NT"
contains the most recent information on a known faulty path
of the corresponding entry of NT'.

NT" is updated in the following two cases. For Nj E A;:
Case I : RM;,,,d.dly > NT,!,j,d.dly. That is, the optimal

path from Nj to Nd has been altered, and the delay from Nj
to Nd increased.

Case 2: RM;,,,d.dly - - NTz!lj,d.dly, but
RM;,,j,,l.num < NT,!lj,d.num. That is, some of the
optimal paths from Nj to Nd became invalid.

In both cases, NT,!,j,d .dly and NT,!lJ)d .num are copied into
the corresponding entry of NT" in order to update information
on known faulty paths.

Remark: In case RM;,j,d.dly < NTzllj,d.dly, we do not
update the corresponding entry of NT" because looping
always results from known faulty paths. But in this case, the
old path is not a known faulty path. Note that this case implies,
in general, the recovery of a component failure or a temporary
congestion.

Initially, NTz'jj,,.dly := 03, and NT,!)j,d.num, := 0, where
.Nj E A; and Nd # N; is an arbitrary node in the network.

Notation for NT: N T is similar to a delay table under
APRS, except N T now contains no loop. Each entry of N T
has only one field, NTilj>d.dly, which is the minimum delay
from N; via Nj E A; to Nd without going through any loop, so

NT;/j,d.dly = NT,!!/j,d.dly + DL;>j. (3)

Under the proposed strategy, the values of NT;lj,d.dly,VNj E
.4; are sorted in ascending order, and are used to route mes-
sages and construct the routing messages, RhLfj,-;,d,VNj E
.4;; Ni will choose the minimum-delay path in N T as the
optimal path to Nd and send Nj this path as its routing
message, provided this path does not contain Nj .

After initializing NT' , N T can be derived using (3).
Before formally stating our algorithm, let us consider the

following two examples.
Example I : This is an example of constructing the routing

message RMj,;,d under a stable condition, i.e., no known
faulty paths are involved. Note that a path may become
faulty when a link or node fails and/or the delay of a link
increases due to the dynamic change of the network load.
The next example will consider the case which involves
known faulty paths. Assume Nk, N j , N , E A;, and Ni has

which correspond to NTz(lk,d.ni~m, NTz!,k,j .num, NT,!lj,d.
num, NT,!l,,d .num, NT,!lx,j .num, NT,!,,,, .dly , NT,!lk,J .d ly ,
.VT,!lj,d.dly, NTzl,x,d .dly , NT:lx,j .dly , respectively. Since
we assume no known faulty paths involved here, all
numbers are consistent with each other, and NT" can
be ignored in this example.

Then, as shown in Fig. 3, Ni is aware of the following
three paths to Nd:

path 1 via Nj with delay d j d + DLi,j = NT;/j,d.dly,
path 2 via Nk with delay d k d f DLi,k = NTi/k,d.dly,

knowledge of njkd, nfkj, n j d , n x d , n,j , d k d , d k j , d i d , d x d , d x j

Fig. 3. Example 1.

path 3 via N, with delay d,d + DL;,, = NT;/,,d.dly,

d,d # d,j + d j d . That is, the optimal path from Ni to Nd is
N; -+ Nj + . . . + Nd, and the optimal path from N, to Nd
does not pass through Nj .

When constructing Ni's routing message RMj,;,d for Nj
which contains all optimal paths to Nd, we need to consider
the following three cases. (Among these three cases, path 1
will never be chosen by N; as an optimal path because it will
lead to a ping-pong type loop [12].)

Case 1: If d k d # d k j + d j d , then path 2 will be sent to
Nj as the optimal path from N; to Nd because path 2 is the
minimum-delay loop-free path from Ni to Nd without passing

Suppose d j d f DL;,j < d k d + DL;,k < d,d + DLi,,, and

Nj ,
Case 2: If d k d = d k j f d j d and n k d = n k j n j d , then path 3

will be sent to Nj as the optimal path from N; to Nd because
path 2 will lead to the (source) loop, Nj + N; + Nk -+

. . . 3 Nj -+ . . . -+ Nd.
Case 3: If d k d = d k j + d j d and n k d > nkjnjd, then path

2 will be sent as the optimal path, but the number of optimal
0

Since the routing information from Nj and Nk may be
derived at different times, the two nodes' knowledge of d j d

may be different. This problem can be handled by Procedure B
(to be described later) which removes all faulty paths. AS Ni
is a neighbor of Nj , it will always be informed of the change
of d j d by Nj directly. At the same time, the d k d information
from Nk may still include the old d j d (assume that the optimal
path from Nk to Nd runs through N j) , i.e., the change of d j d

has not propogated to Ni via Nk. Therefore, there are two
cases': either d j d increases or decreases. If d i d decreases, the
path via Nk will not be selected since d k d must be larger than
the new d j d . Thus, the optimal path will be chosen to be path
1 or path 3.

If d j d increases, the old d j d will be saved in NT", and
used by Procedure B to remove any possible known faulty
path. Example 2 shows how the tables are updated and routing
messages constructed when d j d increases.

Example 2: This example illustrates the process of updating
delay tables and constructing RMj,;,d upon N;'s receipt of
a routing message which includes a new set of optimal paths.
The optimal path from Nj to Nd in Example 1 becomes invalid
due to some link failure (Fig. 4), and Nj detects this failure
at time t o .

paths will be changed from n k d to n k d - n k j n j d .

'There is, in fact, a third case, where dJ! does not change, but n J d changes.
We will consider all three cases formally in Theorem 1 .

I I 1 I

1312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 12, DECEMBER 1993

LARGE ,__._...-.-...___.

Fig. 4. Example 2.

Upon receiving the new set of optimal paths from Nj to Nd
with delay larger than d j d at time tl = t o + 1, Ni will store
the old set of optimal paths (Ni's known faulty paths), djd
and njd in NT", and then record the new paths in NT' . As
in Example 1, there are three cases to consider.

In Case 1, because the optimal path running through both
Nk and N, does not pass through N j , path 2 will still be
sent to Nj as the optimal path. However, in Case 2, during
[t l , t f) where t f is the time Nk detects the link failure, N,
can use the information in NT'' to learn that the path via
Nk will pass through N j , i.e., it contains a known faulty
segment N3 + . . . 4 Nd. Thus, N; will not use the routing
message received from Nk to update its routing table directly;
instead, it will set NT$,,,.dly := GO and NT:!,,d.num :=
0. This path will be ignored until a new path is found. As
a result, during this time interval, path 3 will be sent to
Nj as the optimal path from N; to Nd. In our algorithm,
LARGE (in Fig. 4, which is the delay of the new optimal
path from N j to Nd), d j d , n , j d , d k j , and n k j , are recorded
in NTrlJ,,.d1y, NT:jj.p.dly, NTt'jj,d.numr NTz(lk>j.dly, and
NTz(lk,j.num, respectively; d k d and n.kd are found from
RMi+k ,d .dl y and RM;+k,d .num, respectively.

In Case 3, N; will set NT$,,,.dly := d k d , but the num-
ber of optimal paths will be changed to NTljk ,d .num :=

- nkjnjd. Note that n k j = NT21/k,j.num and n j d =

Given below is the proposed algorithm for an arbitrary node
N;. In addition to an initialization procedure, it contains two
procedures: Procedure A for constructing the routing messages
to its neighbors, and Procedure B for updating its own routing
tables.

NTz!.jj,, .num. 0

ProcedureZnitiulizution: For all Nj E Ai do

NTijj,jdly := DL;,j; NT! % / 3 > 3 . ..dly := 0; NT:,j,j.num := 1;
{

1
NTL';3,j.dly := GO; NT2/;,,j.num := 0

Set all other .dly entries to m, and .num entries to 0.

For other nodes which are not adjacent to Ni, there should
be no corresponding entries in N T , N T ' , and NT" of Ni.
However, they will be added in all three tables whenever their
information reaches N; .

Procedure A: Construct routing message RMj+;,d for each
Nj E A; and Nd in the network, and maintain N T and NT' .

1) VlVk E Ai,k # j , sort NT;lk,d.dly in ascending order
into a list L.

2) If L is empty, or the head of L is CO, then RMj,;,d.dly
:= CO; RMj+;,d.num := 0.

3) Let the set of smallest entries of L be S , which may
contain more than one element.

RMj,i,d.num := 0;
For all NTijk,d.dly E s do

if (NT$k,d.dly 5 NTt'jj,d.dly)
R Mj 1 d . num : = R Mj + i d . n,um -k N Tlj ,d . num ;

else if (NT:j,,d.dly - NTz!jj,d.dly # NTt!jk,j.dly)
RMj,i,d.num := RMj+;>d.num -k NTt!jk,d.num;

else if (NTijk,d.n,um # NT,!llj,d.num x NT,!jk>j.num)
RMj,i,d.num := RMJ+;,d.num + NT,ljk,d.num -

{

Nq'jj,d.niLm x NT,!llk,j.num

if (RMj+i,d.num > 0)

else

1
RMj+;,d.dl?/ := NT;jk,d.dly;

L := L - S ; go to Step 2;

Procedure B: Update routing tables. If some destination
node Nd specified in the routing messages has not been
recorded in all of N T , N T ' , and NT", then we add new en-
tries (N Tij , ,d. n um , N Tlj ,d. dl y , N Tz!j ,d .num,, N Ti'; ~ d . dl y ,
NT,j,,d.dly for all Nk E Ai) to the three tables and set
all other .dly entries to 00 and .num entries to 0; this is
for the case when some node could not be reached before
or a new node is added to the network.

When N; receives RM;+k,d, this message is used to update
NT%!/,,,.dly, NTljk,d.num, NTZ';,,,.dly, NT,'j,,d.nmm, and
NTi/k,d.dly as follows (see Example 2).

1) Update NT".
if (RM,,k,d.dly > NT%',,,,.dly) {

NT:j,,,.dly := NT$,>,.dly;
NTz!)k,d.num := NTa'/k,d.num :

1 (a)
j
else if ((RM;,k,d.dly = NT:jk3d.dly) and

(RMttk,d.num < NTlj,,,.nlLm)) {
if (NTZ";,,,.dly = NT%!/,,,.dly)

N Ti'; ,d. num : = N Tl; , ,d. num + N Tz'/ k , .num -
RMi, , d . n u m ; (b')

else {
NTlj,,,.dly := NT%'/,,,.dly :
NTz(;k,d.num := NTz(l,,d.num
- RMi/k,d.num; (b)

11
2) Update NT' and N T .

NT%'j,)d.dly := RMt+k,d.dly
NTt'jk,d.num := RM,+k,d.num
if (NTa'/k,d.num # 0) {

For each N3 E A1\{Nk j do {
if (NT$,,,.dly = NTt'j,,3.dly+ NTt'j3,,.dly) {

(c)
N Tt'/ ,d . num : = N Tz', ,d .num

-NTz'jk,3.num x NTZ';3,d.num; (d)

I I

SHIN AND CHOU: DISTRIBUTED LOOP-FREE ROUTING STRATEGY FOR COMPUTER COMMMUNICATION 1313

if (NT,!(lk,d.n,i~m = 0) {
NT,!/,>,.dly := 00; (e)
break;

) > I >
NT,/k,d.dly := NTZ/,,,.dly + DL;,k; 0

Since the routing messages from different neighbors may
arrive at different routing message exchange intervals, most
operations of Step 2 in Procedure B (except for the first
two copying statements) have to be delayed until all routing
messages arrive. As we assume that a node can detect the
failure of its own neighbors andlor its own links, the node will
not wait for the routing message through a broken link/node.
So, Procedure B can be executed at appropriate times and all
NT"'s are up to date when a node executes Procedure B.

Note that although the IC in Procedure B refers to all
neighbors Nk E A ; , Part 1) of Procedure B will actually run
only for those nodes that report troubles since only such nodes
can satisfy one of the two if-statements. Similarly, Part 2) of
Procedure B will only affect those nodes (Nk's) with property
A, when the node (N j) that enabled Nk's to possess property
A reports troubles (statements (c) in Procedure B.)

Suppose N ; ' s delay tables, N T and NT' , contain no known
faulty paths of N+ (this property can be achieved by Procedure
B); then the implementation of Procedure A is straightfor-
ward. Since NT,'/,>,.dly is the delay of the optimal paths
from Nk to Nd and NT:(lj,d.dly is the delay of the optimal
paths from Nj to Nd, if NT,!/,,,.dlv 5 NT:Ij,d.dly, or if
NT;/,,,.dly > NTzlj,,.dly and NT$,,,.dlg - NTzIi,,.dly #
NTz!/,,j.dly, then one of the optimal paths from Ni via Nk
to Nd will not pass through Nj . Otherwise, NT,!l,,d.dly >
NTz/J,,.dly, NT:/,,,.dly - NT$j,,.dly = NTzlk,j.dly, and
NTc'/k,d.n,i~m,- NT:,k,j .n,um, x NT,'/j,d.ni~m is the number of
optimal paths from Nk to Nd that do not pass through Ni and
Nj . Note that NT'/k,d.ixum - NT' / k , j . n i~m x NT.' . num
is not necessarily the number of loop-free optimal paths from
N; via Avk to Nd since there could be more than one optimal
path from N; to Nk.

As proven below, Procedure B removes all known faulty
paths in the network delay tables, provided the tables did not
previously contain any such path.

Theorem 1: Suppose there are no known faulty paths of
N+ in its current delay table NT' . If this condition holds for
every node in the network, then the condition will still hold for
every node in the network, even after executing the proposed
updating process.

Proof: Recall the definition of a known faulty path and
consider Fig. 5. We only need to consider the behavior of
our algorithm after a link failure (delay change). Since if
no failurekhange occurs then there is no faulty path at all,
Procedure A is sufficient to make all paths specified by the
network delay table loop-free. Since Step 1) of Procedure B
will not be executed if no failurelchange occurs, Step 2) of
Procedure B degenerates itself to just a process of copying the
routing messages into NT' , i.e., NTt!ij,,.d1y := M in (c) of
Procedure B.

Recall the situation shown in Fig. 2 where a link failure had
occurred at time t o : N,i detected this failure at time tl > t o ,

213,d'

Fig. 5 . Theorem 1

and Nk (a representative node of Sa) detected it at time
t 2 > t l . If an optimal path from Nk to Nd does not pass
through N3 (like N, in Figs. 2 and 5), the failure in P:i\,
will not affect this optimal path. As mentioned above, Step 1)
of Procedure B will not be executed, and Step 2) of Procedure
B degenerates itself to a copying process. Hence, we will focus
only on the situation when Nk -+ . ' . --f N3 -+ . . . ---f Nd is
the optimal path from Nk to Nd without passing through N,.

Part 1: Until tl + 1, N, does not know anything about the
fault in Pi&,, which is the current optimal path from N, via

Part 2: At time tl + 1, N3 will inform N, of the failure
in Pi:\, by sending N, a new set of paths, SPi&,, while all
other nodes still send N, the obsolete set of paths, SP&,.
Thus, only one entry of NT' , NT,'l,,d.dly, is copied into
the corresponding entry of NT'' by Step 1) of Procedure B.
NT,')3,d.num will be set to the number of the faulty paths with
delay NT,'lJ,d.dly by the statements (a) and (b) or (b') in Step
1) of Procedure B. In Step 2) of Procedure B, all NT,'lk,,.dly's
will be checked by statement (c) to see if the entry NT;;,,,
contains any known faulty path [NT2';3,d.dly in statement (c)].
If it contains the faulty segment of P:&,, NTt'/k,!.ni~m x
NT,'jJ,,.num (which is the number of paths containing this
known faulty segment in NT;';3,,.dly) will be subtracted from
NTz'lk,d.ni~m [statement (d)]. Moreover, if NT,'/k,d.ni~m =
0, i.e., all paths with delay NT,'/k,d.dly contain known faulty
segments, set NTL',,,.dly := 00 Therefore, the delay table
NT' of N, contains no faulty path known so far.

Part 3: During the time period [tl + 2, t 2 -t l), N3 may
send N, another new set of paths SPii\, whenever it finds a
path with delay <D(Pi$\,). Thus, D(P&,) < D(P:&,), or
D(P:$\,) = D(P&,) and n:i\, > nfi\, . However, in both
cases, NT,'i3,,.dly and NT,";3,d.ni~m will not be overwritten
by Step 1) of Procedure B, i.e., the set of known faulty paths,
SP:&a, is still in NT,')3,d.dly and NT,')3,d.num, although
NT,',J,,.dly and NTt'/3,d .num may be changed during this
time period. Since NT,'';3,d.dly and NT,'j3>d.num are not
changed, and Nk still sends N, the obsolete set of paths
SP&z, NT,'/,,,.dly and NTz>k,d.num are set to the same
value as in Part 2.

Part 4: At time t 2 + 1 (there can be many different tz 's ,
corresponding to different Nk's and different paths from N3 to
Nk) , the procedure of handling the routing message RM,-3,d
is the same as Part 3. However, Nk will send N, a new set
of valid paths (for destination Nd) , SP&,. As derived from

N3 to Nd.

1314 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 12, DECEMBER 1993

Parts 2 and 3, there are two possible causes of NTi(lk,d.dly
and NT,(Ik,d.num at this time.

Case I: When NTz,,,,.dly = 00 and NTilk,d.num = 0,
i.e., no valid path exists. Step 1) of Procedure B will not be
executed because R&f i -k ,d .d l y < NT:/,>,.dly = 00.

Case 2: When NT%f/,,,.dly is equal to both D(Pj:\i) and
D(P:Lli), and NTz!lk,d.num is the number of paths with delay
NTz(lk)d.dly after removing those paths containing known
faulty segments (derived in Part 2). In this case, Rhf;,k,d.dly
must be equal to NT%’/,,,.dly because there are still some
valid paths with delay NTt!/k,d.dly, and NTil/,>,.dly is the
minimum delay for the path from N; via Nk to Nd. Moreover,
Rhf;,k.d.num > NTz!,k,d.num because Nk knows at least
NTt!lk,d.num paths with delay RM+k,d.dly. Thus, according
to our algorithm, Step 1) of Procedure B will not be executed
either. Those paths containing known faulty segments will
be removed by Step 2) of Procedure B. Therefore, if there
is some other node N y E Si, which sends Ni the routing
message containing the information of a path N y -+ . . . --+

Nk --f . . . --f Nj -+ . . . -+ Nd in Step 2) of Procedure
B, our algorithm will only subtract the number of paths
that pass through Nj from NTi/y,d.num because the faulty
segment Nk -+ . . . --f Nj --f . ’ . -+ Nd is not figured in
NTz’;,,,.dly and NTt!)k,d.num in both cases. That is, Step 2)
of Procedure B removes each known faulty path exactly once.
Consequently, Step 2) of Procedure B can remove all known
faulty paths of Ni.

Part 5: After t2 + 1, the procedure of handling the routing
message RM+j,d is the same as Part 3. The routing message
RM+k,d from Nk can be processed in the same way as in
Part 4. 0

Corollary 1: If there are no loops and no known faulty
paths in the delay tables of all nodes in the entire network
during some time interval [m, m + l), then under our strategy,
this property will hold in the next time interval [m,+ 1, m+2).

Proof: Since if there are no loops and no known faulty
paths in all delay tables, our algorithm can detect and avoid
all source loops, and generate the correct number of optimal
paths between any two nodes. So, all delay tables are still loop-
free during the next time interval. Thus, by Theorem 1, our
algorithm can remove all known faulty paths from neighbor
nodes’ routing messages during the next time interval. 0

Since there are no loops and no known faulty paths upon
initialization of a network, by Corollary 1 the network will
always stay loop-free under our strategy.

As mentioned above, our algorithm, which is a modified
version of APRS, is actually an order-one strategy, only
adding the number of paths with the optimal delay to routing
messages, and is loop-free in case of link failures and/or
network structural changes. The performance of our strategy
will be analyzed in Section IV; examples and comparison
between APRS and the strategy in [13] will also be given
there.

111. ANALYSIS OF OPERATIONAL OVERHEAD

Let the network have n nodes and (Ail 5 a,Vz E
CO, . . . , n} , where (Ail is the node degree of N;. Then, the

proposed algorithm induces the space and time overheads as
discussed below.

Space Requirement: The algorithm needs three tables
N T , NT’, and NT”. N T has at most na entries, and both
NT‘ and NT” have at most 2nm entries. O(na) memory
locations are thus needed for these tables. Moreover, the
size of a routing message is O(na) since each record/entry
in the message contains two fields. Therefore, the proposed
algorithm has O(na) space complexity.

Time Complexity: The proposed algorithm consists of three
procedures: Procedure A, Procedure B, and the procedure for
sending the routing messages to adjacent nodes.

0 Procedure A essentially contains two loops. The outer
loop is used to construct the routing message for each destina-
tion node. Thus, they will execute once for each destination,
i.e., n times per unit time for the entire network. In the
outer loop, Step 1) is a sorting procedure, so its complexity
is O(a!) . Steps 2) and 3) form the inner loop; basically, it
will execute a times for each iteration of the outer loop.
Thus, Procedure A has complexity O(na!). However, if all
NT,/k,d’s are not changed, then we do not have to sort
the list each time, construct new RMJ+i,d, and send the
corresponding routing message. Moreover, this is usually the
case because the network does not change frequently. Thus,
the complexity of Procedure A is usually much lower than
O(na!).

0 Procedure B stores new routing messages and computes
new entries of the network delay tables. It contains two steps.
The first step is used to update NT“. According to our
algorithm, this step is O(na). The second step is used to update
N T and NT’. In addition to storing new routing messages in
NT’, it has a loop for removing known faulty paths. In a brute-
force implementation, updating each entry needs O (a) time,
thus needing O(na2) time for updating all tables. However,
with a careful implementation, a node maintains a link list for
each destination node whose components are pointers to each
NT” entry containing a faulty path. When updating an NT”
entry in Step l), we move that entry to the head of the list to
avoid the corresponding search. Therefore, updating an entry
needs only a constant time, and updating the entire table needs
O(na) time. Since both steps need O(na) time, Procedure B
is an O(na) procedure.

0 Sending procedure totally sends O (n) messages, each
with size O (n) , thus needing O(na) time.

The worst-case time complexity of our algorithm is O(na!).
Since a is usually a small constant (less than lo), it is an O(n)
algorithm, thus making our algorithm particularly suitable for
sparse networks.

IV. PERFORMANCE ANALYSIS
AND DEMONSTRATIVE EXAMPLES

As mentioned earlier, the information in the delay tables
may become obsolete due to component failures and structural
changes which are not known immediately to the source node
N, . In such a case, the OP,,d(m) derived from Ns’s routing
table may not be the actual optimal path. In the examples and
analyses that will follow, OP,,d denotes the “current” actual

I I 8 ,

SHIN AND CHOU: DISTRIBUTED LOOP-FREE ROUTING STRATEGY FOR COMPUTER COMMMUNICATION 1315

TABLE I
DELAY TABLES OF :VI. .\'2. 2v3. -YI TO

DESTINATION NODE Lvj UNDER OUR ALGORITHM
neighbor Time
node 0 1 11 2 1 3 1 4 ...~~

Delav Table of N. to destination N,

TABLE I1
DELAY TABLES OF -VI. -\-2. AV?. NI TO DESTINATION NODE -Vs UNDER APRS

optimal path from N, to Nd and DOP,,d denotes the delay
of OPs.d. Before analyzing the performance, let us consider
an illustrative example.

Example 3: This example illustrates the network
operations under our algorithm in Table I after the failure
of link L4,5 is detected at time 0 (Fig. 6). Each entry of
the table contains five numbers which are in the order of
NTi,j,d.dly f NT$j,d .dly fNTz'lj,, .num fNT,';j,d.dlylNTz(;j,d I

num. A * symbol marks the entry where the optimal path
is found for the first time after the link failure, and an cm
symbol indicates paths with an infinite delay or paths with
a loop. At the time of failure t = 0,N4 can determine the
new optimal path to N5 from its routing table since the path
through N3 does not use the failed link. At time t = 1, N3
can determine its new optimal path to N5 after receiving
N4's routing message with an CO delay and rejecting the
paths through N I and N2 since both contain the known faulty
path N.1 -+ . . . -+ N5. In the same manner, N2 and N I can
determine their new optimal paths to N5 at time t = 1 and
t = 2, respectively. Tables I1 and I11 are the operations under
APRS and the third-order strategy which is shown in [13] to
be the minimal order loop-free strategy for the network in
Fig. 6. As can be seen in Table I, N I , N2, N3, N4 need 2, 1,
1, 0, time units, respectively, to find new optimal paths to N5
under the proposed algorithm, while they need 20, 19, 17, 20
time units under APRS in Table 11, and 3, 3, 2, 0 time units
under the third-order strategy in [13] in Table 111. Obviously,

TABLE I11

THIRD-ORDER (MINIMAL ORDER LOOP-FREE) ROUTING STRATEGY
DELAY TABLES OF 9 1 , N2, ;h'~, Lvd TO DESTINATION NODE UNDER THE

neighbor nodes Time
entry time E (-w,o) I/ time = o I time = 1 I time = 2 I time = 3 I time = 4

Delay Table of NI to destination N r
7 II 7 I 7 I 1 1 1 2 7 1 2 7

Fig. 6. Example 3.

our algorithm is far better than the others. 0
Definition 2 [13]: The hop function h: SP ---f I+ is defined

as the number of links in a path, where I f is the set of positive
integers.

Lemma 1: A n arbitrary node N, can determine an optimal
path to Nd in h(OP,,d) time units after initialization.

Proof: By assumption, there are no loops and no known
faulty paths in the network at the time of initialization.
By Corollary 1, during the interval (0, h(OP,,d)], there are
still no loops and no known faulty paths in the network.
Moreover, because routing messages are exchanged once per
unit time, the information is broadcast exactly one hop per
unit time. Thus, using the proposed algorithm, N , can get the

0
Since a node failure can be represented as the failure of

all links attached to it, network structural changes can be
represented as link-delay changes. Moreover, because a link
failure can be viewed as its link delay becoming CO, without
loss of generality, we can consider only link-delay changes in
the analysis. Assume that the delay of link Li,j had changed
and this change was detected at time 0, while the delays of
other links remain unchanged. We make a further assumption
that there always exists at least one path from a node N , to
another node Nd. Otherwise, the corresponding delay in the
delay table of N , will simply be set to CO.

In the following performance analysis, we need to consider
the four cases distinguished by the relation between Li,j and

Case I : Li,j E OPs,d despite the decreaselincrease of
DLi,j. OPs,d remains unchanged, even with the change in
DLi,j. N , can obtain the correct value of Dop,,d in h(OP,,i)
time units since N, is h(OP,,i) hops away from Li,j whose

information from Nd in h(OP,,d) time units.

OPs,d.

delay has changed. U

I I

I
I

1316 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 12, DECEMBER 1993

Case 2: Li>j is not part of OP,,, regardless of the change
of DLij. That is, OP,,, will not be affected by this link-delay

Cases 1 and 2 are very simple, and their results and
performances can be predicted easily because the change has
no effects on the routing decision for the packets from N, and
N,. In these two cases, our strategy has exactly the same
performance as APRS and the strategy in [13] in case of
link failures. However, the remaining two cases are much
more complicated than these. It is necessary to introduce the
following definitions before discussing them.

Definition 3: Screen of a path P, denoted by scn(P)
[12]. Let a path P = (N , , , N i , , . . . , N i _) , and the pair
(Ni, ,N,,+,) = Likri,+, is the first link in the ordered
sequence representation of P, whose delay change is not
known to Ni,. Then, if DLib,i,+, increases, then scn(P) = k ,
else scn(P) = -k . In case there is no link delay in P recently,
scn(P) = 30.

Definition 4: A new set of paths, SP,',,, is defined as
SP,',, G SP,,, - {PIP E SPs,d, and P contains a loop}.

change. 0

Obviously, SP,',, c SPs,d.
Case 3: 0 Li>j E OP,,,, DLi,j increased recently.
0 Li,j is not part of OP,,, any longer after this change.
In this case, all paths containing Li,j have a positive screen

value. This is similar to those cases discussed in [12], [13]
because a link failure can be treated as the delay of that link
increased to 30. So, the link cannot be part of any optimal
path. Let m, be the minimal time units required for a source
node Ns to find its new optimal path to Nd in case of
a link-delay change under our strategy, and let m k be the
minimal time units required for N, to find its new nonfaulty
optimal path under the kth order routing strategy in [12],
[13]. Also, let r denote the delay of the new optimal path
OP,,,, and SPS",, G SP,,, - {PIP E SP,,,, and P contains
a loop whose order is less than, or equal to, k } . Clearly,
SP,',, C SPS",,Vk > 0. The authors of [12], [13] proved the
following relations:

m.0 = niax{scn(P)IP E SPs,d and d (P) < r }
m,k = niax{scn(P)IP E SPS",, and d (P) < r }
m, 5 niax{scn(P)IP E SP,',, and d (P) < r }

where APRS is order 0, and m, 5 m k 5 mo,Vk > 0.

\trategy [13] and, of course, better than APRS.
Therefore, our strategy is better than any order routing

Case 4: 0 La,, is not part of OPs,d and DL,,, decreases.
0 This decrease makes L,,, become part of OP,,,.
In this case, some paths will have negative screen values,

including the new optimal path. Because the new optimal path
from N, to I v d is N, + . . . + N, + N3 + . . . + Nd, and
OP,>d is already known to N,, so m, = -scn(OP,,d) =
h(OP,,,). Since the information on the decreased DL,,,
propagates through OP,,, one hop per unit time, DoPS>, and
DOP,,, need h(OP,,,) time units to propagate the information
from N, to N,. 0

The following observations indicate the superiority of our
\trategy to others.

Fig. 7. Example 4.

1) In Cases 1 and 2, a link-delay change will not affect
the message routing under our strategy. In Case 1, nodes
can obtain the correct delay of an optimal path in h(OP,,i)
time units. This is optimal under any APRS-related routing
strategies because the information is propagated one hop per
unit time.

2) In Case 4, a source node can find a new nonfaulty
optimal path to the destination after each link-delay change
in h(OP,,;) time units. This is also optimal under all APRS-
related routing strategies for the same reason as above.

3) In Case 3, the performance of our strategy is better than,
or at least the same as, that of APRS and any order strategy
in [13].

Example 4: See Fig. 7.
The network in Fig. 7 is a part of the real APARNET. In

order to make this example more illustrative, DL2,3 and DLs,g
are assigned to 3 and 100, respectively. Suppose L2,3 fails at
time 0. Basically, this network becomes two sets of nodes, S1

and S2, which are connected only via Ls,g after this failure,
where

s1 = { Nl, N2 , N9 , NlO 2 N11, N12 > N13 }
s2 = {N3,N4,N5,N6,N7,N8,N14}.

Obviously, the optimal paths between two nodes within the
same set are not affected by this failure, but the optimal
paths between two nodes which belong to different sets are
all changed. Moreover, as can be seen in Fig. 7, an arbitrary
node, say N1 E SI, will find its optimal paths to any arbitrary
node in S2 in the same amount of time because all the screen
values of the paths from NI to any node in S2 are identical.
Similarly, an arbitrary node in S2 can find its optimal paths
to any arbitrary nodes in S1 in the same amount of time.
Table IV shows the operations of all nodes in S1 to find
new nonfaulty optimal paths to N3 after the failure of link
L2,3, where N3 is a representative node for S2. Each entry of
Table IV contains only three numbers which are in the order
of NT,Ij,d.dlylNTz(lj,,.dlylNTzf~j,,.dly because all ".num"
entries are either 0 or 1. A * symbol marks the entry where the
optimal path is found for the first time after the link failure, and
an co symbol indicates paths with an infinite delay or paths
which include a loop. Some other entries of NT' needed in
our algorithm are decribed in Table V.

SHIN AND CHOU: DISTRIBUTED LOOP-FREE ROUTING STRATEGY FOR COMPUTER COMMMUNICATION

Time
0 1 1 1 2 . 3 1 4,5 1 6 1 7

Deloy Table of NI. lo deslrnolion N3
N, I 8/3/00 I m/m/3 I m/m/3 I m/m/3 I 148/143/3 I 125'/120/3 - Ns I48/18/m [m/m/m I m/m/m I 135/105/m I 135/105/m I 135/105/m

TABLE IV
DELAY TABLES OF ALL NODES IN si WITH THE

DESTINATION NODE !l!, UNDER OUR ALGORITHM

V. SIMULATION
We simulate both APRS and the proposed strategy to

compare their performance. Two networks (in Figs. 8 and 9)
are used in the simulation. Packets are assumed to arrive at the
system according to a Poisson process. During the simulation,
we increase the rate of packet arrival until the network
under testing gets overloaded. The packet size is assumed
to be uniformly distributed between 20 and 1000 bytes. The
period of exchanging routing tables between adjacent nodes
is assumed to be 128 ms (as in APRS). The number attached
to each link in these figures represents the delay (in units of
0.1 ms) of transmitting a 1000-byte packet over that link; for
example, a 100 kb/s link has label 100 and a 10 kb/s link has
label 1000.

The simulation has two parts: without and with component
failures. In Figs. 10 and 11, the vertical axis represents the
ratio of packet delivery delay of the proposed strategy to that
of APRS. We used the average of the data collected in a
period of 100 s as a sample; for example, under 200 packetsh
load, each sample represents the average of approximately
20000 packets. Figs. 10 and 11 show the average value of 100
samples under specific load conditions. In both figures, most
samples we collected were around the average value. However,
there were a few samples (around 1%) with large variances.
When the network is lightly loaded, the two strategies exhibit
similar values of packet delivery delay. However, when the
network load increases, the APRS delivery delay increases
much faster than our strategy. Moreover, since the delay
increases faster, the packets start to build up at local hosts
under APRS when the packet arrival rates are greater than

I 174 12108

351

Fig. 8. The ten-node test network.

1317

Fig. 9. The 20-node test network

400 packetsts in Fig. 10 and 500 packetsh in Fig. 11. By
contrast, our strategy can still function correctly at those load
levels. As the delay ratio in the 20-node network drops much
faster than it does in the ten-node network, our strategy is
expected to perform even better for larger networks. When the
network becomes larger, the looping effect caused by the link
delay changes (due to increasing queueing delay) has more
pronounced effects on the average packet delivery delay since
the loop is likely to be larger in a larger network, and APRS
likely needs a longer time to resolve a larger loop.

In the second part of the simulation, assuming the occur-
rence of a link failure, we measured the average delay per
packet for the first 100 s after the failure. As in the first part
of simulation, each point in Figs. 12 and 13 is the average

1318 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 12, DECEMBER 1993

delay ratio
ours over APRS

I

0 . 9 I 1 1 I I I I
100 200 300 400 packets/sec

Fig. 10. Ratio of average per-packet delays in the ten-node network.

d e l a y r a t i o

""'7 Over APRS

O. L,
100 200 300 400 500 p a c k e t s / s e c

Fig. 11. Ratio of average per-packet delays in the 20-node network.

of 100 samples which are mostly around the average value.
However, a few of them (around 1%) are somewhat off from
the average value. The vertical axis again represents the ratio
of packet delivery delay of our strategy to that of APRS. In the
presence of a failure, our strategy outperforms APRS because
of its loop-free capability. The tendencies of Figs. 12 and 13
are the same as in Figs. 10 and 11, except that the ratio figure
drops much faster. Due to the presence of component failures,
the looping effect of APRS is more pronounced than it was
in the first part. Since the failed link has an infinite delay, all
paths going through that link suffer the looping problem. By
contrast, our strategy is loop-free, and therefore, the ratio drops
much faster in the presence of component failures. Because
of a larger average packet delivery delay the networks under
APRS become overloaded when the arrival rate reaches 300
(in the ten-node network) and 500 (in the 20-node network)
packetsh.

VI. CONCLUSION

In this paper, we propose a very simple but effective loop-
free routing strategy which can completely solve the looping
problem in case of link-delay changes as well as linWnode
failures. We have also proved the correctness of the strategy
and analyzed its performance and operational overheads. The
performance is improved significantly by simply attaching the
total number of paths with the optimal delay between two

delay ratio

1.0

I

300 packets/sec 100 200

Fig. 12. Ratio of average delays with the presence of failure in the ten-node
network.

delay ratio
ours over APRS

I
1.0

0.8

I I I I I
I I I I

100 200 300 4 0 0 500 p a c k e t s / s e c

Fig. 13. Ratio of average delays with the presence of failure in the 20-node
network.

nodes to the normal routing messages under APRS. Moreover,
the operational overhead of the proposed algorithm is shown
to be very low. Both ours and APRS have time and space
complexity O (n) for sparse networks, where n is the number
of nodes in the network. Despite its simplicity, the proposed
algorithm can eliminate the looping problem completely with
little overhead.

LIST OF SYMBOLS

Node i.
The directional link from Ni to N j .
The delay of link Li,j at time m.
The delay of link Li,j when time is imma-
terial.
The optimal (least delay) path from N , to
Nd at time m.
The delay of OP,,d(m).
The set of nodes which are adjacent to Ni.
The delay of the path from Ni through
Nj E Ai to Nd in Ni's table.
The delay of the optimal paths from Ni to
Nj when time is immaterial.
Number of the optimal paths from Ni to
Nj when time is immaterial.

I I 8 ,

SHIN AND CHOU: DISTRIBUTED LOOP-FREE ROUTING STRATEGY FOR COMPUTER COMMMUNICATION

SP3”d\?

P&\, Representative of SP&, .
n;d\?
D (P)
RMt t 3 ,d

RM,,,,d.dly
RM,+73d .~ ium The number field of RM,-?,d.

Set of optimal paths from N3 E A, to Nd
without passing through N , at time t .

Number of elements (paths) in set SP&,.
Delay function of a path P.
Routing messages which are sent from N3
to N, E A, for the destination Nd.
The delay field of RMz-,,d.

The entry containing the optimal paths
from N3 to Nd without passing N , in N,’s
table.
The delay field of NT,’13,d.
The number field of NT,’/J,d.
The entry containing the known faulty
paths from N3 to Nd without passing N ,
in N,’s table.
The delay field of NT,‘j3,d.
The number field of NT,’3,d.
The entry containing the delay of the opti-
mal paths from N , through N3 E A, to Nd
in N,’s table.
The screen function of a path P.
The hop function of a path P.

REFERENCES

[l] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ:
Prentice-Hall International, 1987.

[2] B. W. Boehm and R. L. Mobley, “Adaptive routing techniques for
distributed communications systems,” IEEE Trans. Commun. Technol.,
vol. COM-17, pp. 340-349, June 1969.

[3] T. Cegrell, “A routing procedure for the TIDAS message-switching
network,” IEEE Trans. Commun., vol. COM-23, pp. 575-585, June
1975.

(41 C. C. Cheng, S. P. R. Kumar, and J. J. Garcia-Luna-Aceves, “A dis-
tributed loop-free rooting algorithm suitable for arbitrary link weights,”
Tech. Rep. CSS-89-05, Dep. Elec. Eng. Comput. Sci., Northwestern
Univ., Sept. 1989.

[5] J. M. Jaffe and F. H. Moss, “A responsive distributed routing algorithm
for computer networks,” IEEE Trans. Commun., vol. COM-30, pp.
1758-1 762, July 1982.

[6] M. J . Johnson, “Updating routing tables after resource failure in a
distributed computer network,” Networks, vol. 14, pp. 379-391, 1984.

[7] L. Kleinrock and H. Opderbeck, “Throughput in the ARPANET-
protocols and measurement,” IEEE Trans. Commun., vol. COM-25,
pp. 95-103, Jan. 1977.

[SI J. M. McQuillan, 1. Richer, and E. C. Rosen, “The new routing algorithm
for the ARPANET,” IEEE Trans. Commun., vol. COM-28, pp. 71 1-719,
May 1980.

[9] P. M. Merlin and A. Segall, “A failsafe distributed routing protocol,”
IEEE Trans. Commun., vol. COM-27, pp. 1280-1288, Sept. 1979.

[lo] D. J . Nelson, K. Sayood, and H. Chang, “An extended least-hop
distributed routing algorithm,” IEEE Trans. Commun., vol. 38, pp.
52eS28, Apr. 1990.

1319

1111 K. Ramamritham, J. A. Stankovic, and W. Zhou, “Distributed sched-
uling of tasks with deadlines and resource requirements,” IEEE Trans.
Comput., vol. 38, pp. 111&1122, Aug. 1989.

[12] K. G. Shin and M.-S. Chen, “Performance analysis of distributed routing
strategies free of ping-pong-type looping,” IEEE Trans. Comput., vol.
C-36, pp. 129-137, Feb. 1987.

[13) -, “Minimal order loop-free routing strategy,” IEEE Trans. Comput.,
vol. 39, pp. 87G888, July 1990.

141 W. D. Tajibnapis, “A correctness proof of a topology information
maintenance protocol for distributed computer networks,” Commun. Ass.
Comput. Mach., vol. 20, pp. 477485, 1977.

Englewood Cliffs, NJ:
Prentice-Hall, 1989.

151 A. S. Tanenbaum, Computer Nefworks, 2nd ed.

Kang G. Shin (S’75-M’78-SM’83-F’92) received
the B.S. degree in electronics engineering from
ca,...i r.r,,t;,.n.,~ T L ; . , ~ - ~ ; + . ~ cpnlli unrpn in icnn
OC””, I.LLII”I.LL. “ L ” * C L U L L J , Y l V U L , I\”.CU, I.1 I, I ” ,

and both the M.S. and Ph.D. degrees in electrical
engineering from Cornell University, Ithaca, NY, in
1976 and 1978, respectively.

He is Professor and Chair of the Computer Sci-
ence and Engineering Division, Department of Elec-
trical Engineering and Computer Science, Univer-
sity of Michigan, Ann Arbor. From 1978 to 1982
he was on the faculty of Rensselaer Polytechnic

Institute, Troy, NY. He has held visiting positions at the US. Air Force Flight
Dynamics Laboratory, AT&T Bell Laboratories, Computer Science Division
within the Department of Electrical Engineering and Computer Science at UC
Berkeley, and International Computer Science Institute, Berkeley, CA.

Dr. Shin was the Program Chairman of the 1986 IEEE Real-Time Sys-
tems Symposium (RTSS), the General Chairman of the 1987 RTSS, the
Guest Editor of the 1987 August special issue of IEEE TRANSACTIONS ON
COMPUTERS on Real-Time Systems, and is a Program Co-chair for the 1992
INTERNATIONAL CONFERENCE ON PARALLEL PRocEssiNG He chaired the IEEE
Technical Committee on Real-Time Systems from 1991 to 1993, served as
a Distinguished Visitor of the Computer Society of the IEEE, is an Editor
of IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED COMPUTING, and is
an Area Editor of International Journal of Time-Critlcal Computing Systems.
He has authored/coauthored over 240 technical papers (about 110 of these in
archival journals) and several book chapters in the areas of distributed real-
time computing and control, fault-tolerant computing, computer architecture,
and robotics and automation. In 1987, he received the Outstanding IEEE
T RANSACTIONS ON AUTOMATIC CONTROL Paper Award for a paper on
robot trajectory planning. In 1989, he also received the Research Excellence
Award from the University of Michigan. In 1985, he founded the Real-Time
Computing Laboratory, where he and his colleagues are currently building a
19-node hexagonal mesh multicomputer, called HARTS, to validate various
architectures and analytic results in the area of distributed real-time computing.

Chih-Che Chou received the B.S.E. degree from
National Taiwan University, Taipei, Taiwan, in
1988, and the M.S.E. degree from the University of
Michigan, Ann Arbor, in 1992.

Currently, he is working toward the Ph.D. degree
in computer science and engineering at the Uni-
versity of Michigan. His research interests include
real-time communication, distributed systems, and
communication systems for manufacturing

