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A Simple Distributed Loop-Free Routing Strategy 
for Computer Communication Networks 
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Abstract-The loops resulting from either component failures 
or load changes in a computer communication network degrade 
the performance and the adaptability of conventional distributed 
adaptive routing strategies, such as ARPANET’s previous routing 
strategy (APRS). In this paper, we develop a distributed loop- 
free routing strategy by adding only one additional piece of 
information-the total number of minimum-delay paths-to the 
commonly used routing messages and tables. Most conventional 
approaches to the looping problem suffer high overheads in time 
and space because each message must either include the first 
several nodes of its path or trace the entire path to detect a 
loop. By contrast, the proposed routing strategy requires only 
easily obtainable information, yet removes loops completely. It is 
far more efficient in both time and space than its conventional 
counterparts, especiallyTable Ifor sparse computer networks. 
The correctness of the proposed strategy is proved, and several 
illustrative examples are given. The performance of this strategy 
is shown to be always better than, or at least as good as, that 
of APRS and any multiorder routing strategies, where the order 
of a routing strategy i s  determined by the amount of routing 
information carried in each routing message. 

Index Terms-ARPANET, computer communication networks, 
distributed adaptive routing, loop-free or fault-tolerant routing 
strategy, network delay tables, routing messages. 

I. INTRODUCTION 

HE prime importance of message routing to the perfor- T mance of any distributed computing system has led to the 
development of numerous routing strategies [2]-[4], [7]-[9], 
[ 11)-[13]. Adaptive routing is more reliable and efficient than 
nonadaptive routing because the former can dynamically adjust 
itself to network changes as a result of component failures 
and/or load changes. However, in order to make correct 
routing decisions, each node must have up-to-date information 
about the network changes. Obviously, it is too costly for 
each node to maintain and update the information of the 
entire network, such as the current routing strategy used in 
ARPANET, especially when the network condition changes 
often. Although the current APARNET routing strategy can 
always send messages via optimal (minimum-delay) paths 
provided each node has complete network information, it 
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requires a large amount of memory to store the information 
of the entire network and wastes a large portion of network 
bandwidth to exchange routing messages. Hence, it is desirable 
for each node to maintain only minimal information which is 
sufficient to make correct routing decisions. 

Many distributed adaptive routing strategies have been 
reported in the literature, such as the APRANET’s previous 
routing strategy (APRS) [l], [15] which seems to be acceptable 
for most packet-switched networks due to its simple imple- 
mentation. However, the problem of looping messages in case 
of network-delay changes or nodellink failures degrades the 
performance and adaptability of such routing strategies. To 
remedy this deficiency, we shall, in this paper, develop a 
distributed adaptive loop-free routing strategy which requires 
as little information as possible. 

Several solutions to the looping problem have been pro- 
posed, including the TIDAS network [3] and multiorder strate- 
gies [12], [13]. The authors of [12], [13] proposed a loop- 
free algorithm which is somewhat similar to [3] for general 
networks. In their algorithm, the complete information on the 
path from the source to the destination is included in the 
routing messages and tables. Although the looping problem 
can be resolved completely by this algorithm, the size of the 
routing message and the memory required to store the routing 
tables are proportional to the diameter of the network. Hence, 
it will induce very high operational overheads, especially 
when a high-order strategy [13] is used, where the order of 
a routing strategy is determined by the amount of routing 
information carried in each routing message. Obviously, there 
is a tradeoff between the operational overhead and the looping 
delay. 

Another similar approach [4]-which includes only the first 
node of a shortest path, instead of the entire path, in the routing 
messages and tables-can solve the looping problem without 
the same overhead in [12], [13]. However, it increases the time 
complexity in generating the routing messages because a node 
needs to search its entire routing table for possible loops. Thus, 
in the worst case, it must go through each entry in the routing 
table solely for generating the routing message for each pair 
of a neighbor node (of the source) and the destination node. 

A different approach (91 uses a synchronization phase to 
solve the looping problem, but it incurs an additional cost 
of synchronization. Moreover, when no loop is encountered, 
its performance is worse than APRS. There are some other 
algorithms propsed in [5 ] ,  [6], and [14], which also have the 
same major features as APRS, but which still suffer such 
inherent drawbacks as poor adaptability and inefficiency. 
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Another variation of algorithms which can also reduce 
the possibility of looping are least-hop routing algorithms 
[lo]. Although they are relatively simpler than the least-delay 
routing strategy, they can work only under the assumption that 
the least-hop path is the least-delay path. 

Most of the above routing strategies share a common 
assumption that link delays (including transmission and queue- 
ing delays) change relatively slowly compared to the rate 
of updating routing tables. Our strategy also adopts this 
assumption. However, this assumption does not limit the 
ability of our strategy to adapt itself to the dynamic changes 
of the network as long as the rate of delay change is smaller 
than the rate of updating routing tables. In order to solve the 
looping problem completely and avoid the high overheads 
i n  time and space, we propose a very simple but effective 
strategy, called the order one loop-free algorithm, which can 
effectively deal with node or link failures, occasional network 
structural changes, and link-delay changes. 

The paper is organized as follows. In Section 11, both 
APRS and the proposed routing strategy are described, and the 
correctness of the proposed strategy is proved. The operational 
overheads of the proposed strategy are analyzed in Section 111. 
The performance analysis of our strategy and its comparison 
with APRS and multiorder strategies are treated in Section IV. 
Simulation results are presented in Section V, and the paper 
concludes with Section VI. 

11. DESCRIPTION OF THE PROPOSED ROUTING STRATEGY 

For an n,-node computer network, let Ni represent a host 
computer node, and let Lz , j ,  1 5 i , j  5 n,i # j be the 
communication link from Ni to Nj .  Also, let SPio,i, be the 
set of all paths from Ni, to Ni, in the network; then a path 
P E SP,,,i, is expressed by an ordered sequence of nodes 
( Ni,, N i l ,  . . .  , N i , ) ,  1 5 i j  5 n , j  E {0,1, . . .  ,IC}, and nodes 
on the path are visited in that order. Let A; be the set of all 
nodes adjacent to Ni, that is, there is a link Li,j from Ni to 
every NJ E Ai .  

Because our strategy is similar to APRS except for adding 
an additional piece of information-the number of minimum- 
delay paths-to each entry of a routing message, we briefly 
describe APRS first. Under APRS, the path from one node to 
every other node is not determined in advance. Instead, every 
node maintains a delay table to record the minimum delay 
via each of its links to every other destination. The minimum- 
delay table is exchanged periodically (once every 128 ms for 
APRS) as a routing message between each pair of adjacent 
nodes, containing the delays of the optimal paths from a node 
to all the other nodes. Upon receiving a new routing message, 
each node updates its own routing tables and derives a new 
minimum-delay table which will be used to route messages 
and will also be sent to all its neighbors as a routing message 
for the next (exchange) time interval. 

Let D;,j,d(m) denote the delay from N; via Nj to Nd in 
the delay table of Ni under APRS during the time interval 
[m, m + I ) ,  and let DLi , j (m)  denote the delay of link Li,j 
at time In, where the time interval between two successive 
routing-message exchanges is defined as one unit of time. For 

nL 
Fig. 1. L is a source loop for the path from N, going through L ,  then via 

N3 to I V ~ .  

simplicity, DLi>, is used to denote the delay of Li>j when 
time dependency is immaterial. Note that DLi,j(m) includes 
the transmission delay, propagation delay, and queueing delay. 
Also, let OP,,d(m) be the minimum-delay (optimal) path 
from N ,  to Nd in the delay table of N ,  during the interval 
[m,m + l), and let DOP,,d(m) be the delay of that path. 
However, the information kept in the delay table is not always 
up to date because there might be a component failure which 
is not immediately known to the source node N,. That is, 
OP,,d(m) may not be the actual optimal path from N ,  to Nd 
because its routing table could contain obsolete information. 
According to APRS, the following relationships must hold: 

However, APRS cannot prevent looping in case of link/node 
failures and/or load changes. In order to eliminate looping 
effects, several solutions are proposed by modifying APRS’s 
way of constructing the minimum-delay tables. Unfortunately, 
most of them result in high operational overheads in memory 
and/or time. In order to eliminate the looping problem and 
avoid the excessive operational overheads, we propose a strat- 
egy that requires only one additional piece of easily obtainable 
information-the total number of optimal paths-for each pair 
of source and destination nodes in a routing message, and 
some additional simple procedures for constructing the routing 
messages and updating the delay tables. 

Definition I: A source loop of a path is the loop which 
starts and ends at a node which is the starting node of that 
“path.” For example, L in Fig. 1 is a source loop for the 
“path” from N ,  running through L,  then via Nj to Nd, but 
not a source loop of the path N ,  +. Nj + Nd. 

Under APRS, if there are no paths containing a source 
loop in the delay tables of all nodes in the network, then all 
the paths determined by the delay tables do not contain any 
loop. Therefore, we want to prevent all source loops when 
constructing routing messages and updating routing tables. 
Every node sends a routing message to each of its neighbors 
just as in APRS. Unlike APRS, however, each Nj E Ai sends 
Ni the minimum-delay loop-free paths as optimal paths for all 
other nodes in the network which do not pass through Ni. 

Since a subpath of an optimal (minimum-delay) path is also 
an optimal path, the following three cases are sufficient to 
determine whether OPk,d passes through Nj or not. Let npq 
be the number of optimal paths from Np to Nq with delay d p q .  
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Fig. 2. A known faulty path of N,. 

1) If d k d  # d k j  f d j d ,  then no optimal path from Nk to 

2 )  If d k d  = d k j  f d j d  and n k d  = n k j n j d ,  then all Optimal 

3) If d k d  = d k j  f d j d  and n k d  < n k j n j d ,  then Some 

Nd runs through Nj .  

paths from Nk to Nd pass through Nj .  

( n k j n j d )  of the optimal paths from Nk to Nd pass through 

In order to cope with link/node failures and link-delay 
changes, we introduce the concept of a known faulty path as 
follows. 

For any destination Nd # Ni,  a neighbor node Nk of Ni 
(i.e., E A i )  is said to have property A if there is another 
neighbor Nj of Ni such that Nk --f . . . --f Nj --+ . . . --+ Nd is 
a loop-free minimum-delay path from Nk to Nd without going 
through Ni (see Fig. 2).  Let Si represent the set of nodes in 
Ai which have the property A ,  and let si = A;\&. At time 
t ,  let SP3d\i be the set of all optimal paths from Nj E Ai 
to Nd without passing through N;,n$d\i = (SP$\iI, and let 
Pjd\i be a representative path in SPjd\i. 

Suppose at time t o  there had occurred a link failure in P$% 
which was then detected by Nj E Ai at time tl > t o .  At time 
tl + 1, Nj E Ai will inform Ni of this link failure by sending 
Ni a new set of optimal paths from Nj to Nd, denoted by 
SP&i. The path is now a faulty path known to Ni or 
called an Ni’s known faulty path. 

Likewise, at time t 2  2 t l  + 1,Nk # Nj is informed 
of the link failure in P&i because in Nk’s delay table, 
NI,  --+ . . .  --+ Nj --+ . . .  + Nd was the optimal path from 
Nk to Nd at time t < tz. Finally, at time t 2  + 1,  NI ,  informs 
Ni of the link failure in by sending N; a new set of 
optimal paths, SPLi\i. 

During [tl + 1, t 2  + l ) ,  the information of the faulty paths 
in SP&i can be used to reject the broken path which is 
specified in the routing message sent from Nk to Ni because at 
time tl + 1. Ni has already been informed of the link failure in 
P:i\i, which is a subpath of P&i. In the proposed algorithm, 
the faulty paths information will be saved in Ni’s routing table 
to avoid loops. 

Ni’s known faulty paths are defined formally as follows. 
Assume that Nd is an arbitrary destination node in the network, 
and Nj E Ai sends Ni the information on a set of paths, 
SP&i, as the optimal paths from Nj to Nd without passing 
through Ni during some time period [ to ,  t l ) .  Suppose, at time 
t l ,  Nj sends Ni a different set of optimal paths from Nj to 
Nd, SP&i, due to some delay changeslcomponent failures in 

N j ,  but others ( n k d  - n k j n j d )  do not. 

the network. Then, Pj&i E SP&; is said to be a faultypath 
(or faulty segment of a path) known to Ni if and only if the 
following two conditions hold. 

C1: Pjj.,! does not contain any other faulty subpaths known 
to Ni. (Initially, assume there is no known faulty path in the 
network.) 

C2: D(P&i) < D(Pj&i) or D(Pj:\i) = D(P&i) and 
n z  a > n&;, where D ( P )  is the delay of a path P. 0 

Tke proposed strategy uses three tables to store the 
necessary information in order to route messages correctly. 
Given below are the detailed descriptions of these three 
tables NT’, NT”, N T ,  and the notation for them and routing 
messages. Note that N T  will be the routing table that a node 
actually uses to route packets in our strategy. However, we 
will also introduce two other tables NT‘ and NT” since N T  
is derived from NT‘ and NT“. 

Notation for Routing Messages RM: The routing message 
sent from Nj to Ni E Aj is a list of records (derived from 
Nj’s routing table), one for each destination, and is denoted 
by RMi+j)d for destination node Nd. A record is composed 
of two fields: 1) the delay of an optimal path from Nj to Nd 
without passing through N;,  denoted by RMi+j,d.dly, and 2 )  
the number of paths with delay RMi+j,d.dly from Nj to Nd, 
denoted by RM+j>d.num. 

Notation for NT’: The table NT‘ of N; is an array of 
records, each corresponding to a pair of Nj E Ai and a 
destination node Nd # Ni in the network. That is, NT‘ has 
an entryhecord NTilIj,d with two fields: 1) NTillj,,.dly = 
the minimum delay from Nj to Nd without passing through 
Ni, and 2 )  NTz!/j,d.num = the number of paths with delay 
NT:/j,d .dly. Under the normal condition (no component fail- 
ureldelay change), a node’s NT’ is used to store the routing 
messages from its neighbors. 

When Ni receives the routing message from one of its 
neighbors, this information is stored in the corresponding entry 
of NT’. After the node receives all the routing messages 
during the current routing-message exchange interval, it uses 
another table NT” (to be described below) to check whether 
each record of the message contains a known faulty path or 
not. (A record may correspond to multiple paths since there 
may be more than one optimal path between any given two 
nodes.) If the record does not contain any known faulty path, 
this record is ready to be used for generating new routing 
tables. If all the paths specified in the entry contain known 
faulty paths, then the corresponding NTa!/j,d.dly is set to 00 

and NTz’/3,d.num to 0. Otherwise, some (but not all) paths 
specified in the entry contain known faulty paths; in such a 
case, the delay is stored in the corresponding NT:/j,d.dly, 
and NTz(lj,d.num is set to the number of paths which do not 
contain any known faulty path segment. 

Initially, Ni knows only the information about its neighbors, 
thus setting NTz(lj,j.dly := 0, NT:llj,j.num := 1, VNj E Ai,  
and NTZ;j>d.dly := 03, NT:llj,d.num := 0 if d # j ,VNj  E Ai. 

Notation for NT”: The structure of NT” is exactly the 
same as NT‘, containing a record for each pair of a node 
in A; and a destination node in the network. As mentioned 
above, NT” is used to store the most recent information about 
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the known faulty paths, and the information is used to check 
the validity (whether to contain a known faulty path or not) of 
routing messages from its neighbors before using these routing 
messages to update the three routing tables. Each entry of NT" 
contains the most recent information on a known faulty path 
of the corresponding entry of NT'.  

NT" is updated in the following two cases. For Nj E A;: 
Case I :  RM;,,,d.dly > NT,!,j,d.dly. That is, the optimal 

path from Nj to Nd has been altered, and the delay from Nj 
to Nd increased. 

Case 2: RM;,,,d.dly - - NTz!lj,d.dly, but 
RM;,,j,,l.num < NT,!lj,d.num. That is, some of the 
optimal paths from Nj to Nd became invalid. 

In both cases, NT,!,j,d .dly and NT,!lJ)d .num are copied into 
the corresponding entry of NT" in order to update information 
on known faulty paths. 

Remark: In case RM;,j,d.dly < NTzllj,d.dly, we do not 
update the corresponding entry of NT" because looping 
always results from known faulty paths. But in this case, the 
old path is not a known faulty path. Note that this case implies, 
in general, the recovery of a component failure or a temporary 
congestion. 

Initially, NTz'jj,,.dly := 03, and NT,!)j,d.num, := 0, where 
.Nj E A; and Nd # N; is an arbitrary node in the network. 

Notation for NT:  N T  is similar to a delay table under 
APRS, except N T  now contains no loop. Each entry of N T  
has only one field, NTilj>d.dly, which is the minimum delay 
from N; via Nj E A; to Nd without going through any loop, so 

NT;/j,d.dly = NT,!!/j,d.dly + DL;>j. (3) 

Under the proposed strategy, the values of NT;lj,d.dly,VNj E 
.4; are sorted in ascending order, and are used to route mes- 
sages and construct the routing messages, RhLfj,-;,d,VNj E 
.4;; Ni will choose the minimum-delay path in N T  as the 
optimal path to Nd and send Nj this path as its routing 
message, provided this path does not contain Nj .  

After initializing NT' ,  N T  can be derived using (3). 
Before formally stating our algorithm, let us consider the 

following two examples. 
Example I :  This is an example of constructing the routing 

message RMj,;,d under a stable condition, i.e., no known 
faulty paths are involved. Note that a path may become 
faulty when a link or node fails and/or the delay of a link 
increases due to the dynamic change of the network load. 
The next example will consider the case which involves 
known faulty paths. Assume Nk, N j ,  N ,  E A;,  and Ni has 

which correspond to NTz(lk,d.ni~m, NTz!,k,j .num, NT,!lj,d. 
num, NT,!l,,d .num, NT,!lx,j .num, NT,!,,,, .dly ,  NT,!lk,J .d ly ,  
.VT,!lj,d.dly, NTzl,x,d .dly ,  NT:lx,j .dly ,  respectively. Since 
we assume no known faulty paths involved here, all 
numbers are consistent with each other, and NT" can 
be ignored in this example. 

Then, as shown in Fig. 3, Ni is aware of the following 
three paths to Nd: 

path 1 via Nj with delay d j d  + DLi,j = NT;/j,d.dly, 
path 2 via Nk with delay d k d  f DLi,k = NTi/k,d.dly, 

knowledge of njkd, nfkj, n j d ,  n x d ,  n,j , d k d ,  d k j  , d i d ,  d x d ,  d x j  

Fig. 3. Example 1. 

path 3 via N,  with delay d,d + DL;,, = NT;/,,d.dly, 

d,d # d,j + d j d .  That is, the optimal path from Ni to Nd is 
N; -+ Nj + . . . + Nd, and the optimal path from N,  to Nd 
does not pass through Nj .  

When constructing Ni's routing message RMj,;,d for Nj 
which contains all optimal paths to Nd, we need to consider 
the following three cases. (Among these three cases, path 1 
will never be chosen by N; as an optimal path because it will 
lead to a ping-pong type loop [12].) 

Case 1: If d k d  # d k j  + d j d ,  then path 2 will be sent to 
Nj as the optimal path from N; to Nd because path 2 is the 
minimum-delay loop-free path from Ni to Nd without passing 

Suppose d j d  f DL;,j < d k d  + DL;,k < d,d + DLi,,, and 

Nj , 
Case 2: If d k d  = d k j  f d j d  and n k d  = n k j n j d ,  then path 3 

will be sent to Nj as the optimal path from N; to Nd because 
path 2 will lead to the (source) loop, Nj + N; + Nk -+ 

. . .  3 Nj -+ . . .  -+ Nd. 
Case 3: If d k d  = d k j  + d j d  and n k d  > nkjnjd, then path 

2 will be sent as the optimal path, but the number of optimal 
0 

Since the routing information from Nj and Nk may be 
derived at different times, the two nodes' knowledge of d j d  

may be different. This problem can be handled by Procedure B 
(to be described later) which removes all faulty paths. AS Ni 
is a neighbor of Nj ,  it will always be informed of the change 
of d j d  by Nj directly. At the same time, the d k d  information 
from Nk may still include the old d j d  (assume that the optimal 
path from Nk to Nd runs through N j ) ,  i.e., the change of d j d  

has not propogated to Ni via Nk. Therefore, there are two 
cases': either d j d  increases or decreases. If d i d  decreases, the 
path via Nk will not be selected since d k d  must be larger than 
the new d j d .  Thus, the optimal path will be chosen to be path 
1 or path 3. 

If d j d  increases, the old d j d  will be saved in NT",  and 
used by Procedure B to remove any possible known faulty 
path. Example 2 shows how the tables are updated and routing 
messages constructed when d j d  increases. 

Example 2: This example illustrates the process of updating 
delay tables and constructing RMj,;,d upon N;'s receipt of 
a routing message which includes a new set of optimal paths. 
The optimal path from Nj to Nd in Example 1 becomes invalid 
due to some link failure (Fig. 4), and Nj detects this failure 
at time t o .  

paths will be changed from n k d  to n k d  - n k j n j d .  

'There is, in fact, a third case, where dJ!  does not change, but n J d  changes. 
We will consider all three cases formally in Theorem 1 .  
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LARGE ,__._...-.-...___. .... 

Fig. 4. Example 2. 

Upon receiving the new set of optimal paths from Nj to Nd 
with delay larger than d j d  at time tl = t o  + 1, Ni will store 
the old set of optimal paths (Ni's  known faulty paths), djd 
and njd in NT",  and then record the new paths in NT' .  As 
in Example 1, there are three cases to consider. 

In Case 1, because the optimal path running through both 
Nk and N,  does not pass through N j ,  path 2 will still be 
sent to Nj as the optimal path. However, in Case 2, during 
[ t l , t f )  where t f  is the time Nk detects the link failure, N, 
can use the information in NT'' to learn that the path via 
Nk will pass through N j ,  i.e., it contains a known faulty 
segment N3 + . . .  4 Nd. Thus, N; will not use the routing 
message received from Nk to update its routing table directly; 
instead, it will set NT$,,,.dly := GO and NT:!,,d.num := 
0. This path will be ignored until a new path is found. As 
a result, during this time interval, path 3 will be sent to 
Nj as the optimal path from N; to Nd. In our algorithm, 
LARGE (in Fig. 4, which is the delay of the new optimal 
path from N j  to Nd), d j d ,  n , j d ,  d k j ,  and n k j ,  are recorded 
in NTrlJ,,.d1y, NT:jj.p.dly, NTt'jj,d.numr NTz(lk>j.dly, and 
NTz(lk,j.num, respectively; d k d  and n.kd are found from 
RMi+k ,d .dl y and RM;+k,d .num, respectively. 

In Case 3,  N; will set NT$,,,.dly := d k d ,  but the num- 
ber of optimal paths will be changed to NTljk ,d .num := 

- nkjnjd. Note that n k j  = NT21/k,j.num and n j d  = 

Given below is the proposed algorithm for an arbitrary node 
N;. In addition to an initialization procedure, it contains two 
procedures: Procedure A for constructing the routing messages 
to its neighbors, and Procedure B for updating its own routing 
tables. 

NTz!.jj,, .num. 0 

ProcedureZnitiulizution: For all Nj E Ai do 

NTijj,jdly := DL;,j; NT!  % / 3 > 3  . ..dly := 0; NT:,j,j.num := 1; 
{ 

1 
NTL';3,j.dly := GO; NT2/;,,j.num := 0 

Set all other .dly entries to m, and .num entries to 0. 

For other nodes which are not adjacent to Ni, there should 
be no corresponding entries in N T ,  N T ' ,  and NT" of Ni. 
However, they will be added in all three tables whenever their 
information reaches N; . 

Procedure A: Construct routing message RMj+;,d for each 
Nj E A; and Nd in the network, and maintain N T  and NT' .  

1) VlVk E Ai,k  # j ,  sort NT;lk,d.dly in ascending order 
into a list L. 

2 )  If L is empty, or the head of L is CO, then RMj,;,d.dly 
:= CO; RMj+;,d.num := 0. 

3)  Let the set of smallest entries of L be S ,  which may 
contain more than one element. 

RMj,i,d.num := 0; 
For all NTijk,d.dly E s do 

if (NT$k,d.dly 5 NTt'jj,d.dly) 
R Mj 1 d .  num : = R Mj + i d . n,um -k N Tlj  ,d . num ; 

else if (NT:j,,d.dly - NTz!jj,d.dly # NTt!jk,j.dly) 
RMj,i,d.num := RMj+;>d.num -k NTt!jk,d.num; 

else if (NTijk,d.n,um # NT,!llj,d.num x NT,!jk>j.num) 
RMj,i,d.num := RMJ+;,d.num + NT,ljk,d.num - 

{ 

Nq'jj,d.niLm x NT,!llk,j.num 

if (RMj+i,d.num > 0 )  

else 

1 
RMj+;,d.dl?/ := NT;jk,d.dly; 

L := L - S ;  go to Step 2; 

Procedure B: Update routing tables. If some destination 
node Nd specified in the routing messages has not been 
recorded in all of N T ,  N T ' ,  and NT",  then we add new en- 
tries ( N Tij  , ,d. n um , N Tlj ,d. dl y , N Tz!j ,d .num,, N Ti'; ~ d .  dl y , 
NT,j,,d.dly for all Nk E Ai)  to the three tables and set 
all other .dly entries to 00 and .num entries to 0; this is 
for the case when some node could not be reached before 
or a new node is added to the network. 

When N; receives RM;+k,d, this message is used to update 
NT%!/,,,.dly, NTljk,d.num, NTZ';,,,.dly, NT,'j,,d.nmm, and 
NTi/k,d.dly as follows (see Example 2). 

1) Update NT".  
if (RM,,k,d.dly > NT%',,,,.dly) { 

NT:j,,,.dly := NT$,>,.dly; 
NTz!)k,d.num := NTa'/k,d.num : 

1 (a) 
j 
else if ((RM;,k,d.dly = NT:jk3d.dly) and 

(RMttk,d.num < NTlj,,,.nlLm)) { 
if (NTZ";,,,.dly = NT%!/,,,.dly) 

N Ti'; ,d. num : = N Tl; , ,d. num + N Tz'/ k ,  .num - 
RMi, , d . n u m  ; (b' ) 

else { 
NTlj,,,.dly := NT%'/,,,.dly : 
NTz(;k,d.num := NTz(l,,d.num 
- RMi/k,d.num; (b) 

11 
2) Update NT' and N T .  

NT%'j,)d.dly := RMt+k,d.dly 
NTt'jk,d.num := RM,+k,d.num 
if (NTa'/k,d.num # 0 )  { 

For each N3 E A1\{Nk j do { 
if (NT$,,,.dly = NTt'j,,3.dly+ NTt'j3,,.dly) { 

( c )  
N Tt'/ ,d .  num : = N Tz', ,d .num 

-NTz'jk,3.num x NTZ';3,d.num; (d) 
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if (NT,!(lk,d.n,i~m = 0 )  { 
NT,!/,>,.dly := 00; (e) 
break; 

) > I >  
NT,/k,d.dly := NTZ/,,,.dly + DL;,k; 0 

Since the routing messages from different neighbors may 
arrive at different routing message exchange intervals, most 
operations of Step 2 in Procedure B (except for the first 
two copying statements) have to be delayed until all routing 
messages arrive. As we assume that a node can detect the 
failure of its own neighbors andlor its own links, the node will 
not wait for the routing message through a broken link/node. 
So, Procedure B can be executed at appropriate times and all 
NT"'s are up to date when a node executes Procedure B. 

Note that although the IC in Procedure B refers to all 
neighbors Nk E A ; ,  Part 1) of Procedure B will actually run 
only for those nodes that report troubles since only such nodes 
can satisfy one of the two if-statements. Similarly, Part 2 )  of 
Procedure B will only affect those nodes (Nk's) with property 
A, when the node ( N j )  that enabled Nk's to possess property 
A reports troubles (statements (c) in Procedure B.) 

Suppose N ; ' s  delay tables, N T  and NT' ,  contain no known 
faulty paths of N+ (this property can be achieved by Procedure 
B); then the implementation of Procedure A is straightfor- 
ward. Since NT,'/,>,.dly is the delay of the optimal paths 
from Nk to Nd and NT:(lj,d.dly is the delay of the optimal 
paths from Nj to Nd, if NT,!/,,,.dlv 5 NT:Ij,d.dly, or if 
NT;/,,,.dly > NTzlj,,.dly and NT$,,,.dlg - NTzIi,,.dly # 
NTz!/,,j.dly, then one of the optimal paths from Ni via Nk 
to Nd will not pass through Nj .  Otherwise, NT,!l,,d.dly > 
NTz/J,,.dly, NT:/,,,.dly - NT$j,,.dly = NTzlk,j.dly, and 
NTc'/k,d.n,i~m,- NT:,k,j .n,um, x NT,'/j,d.ni~m is the number of 
optimal paths from Nk to Nd that do not pass through Ni and 
Nj .  Note that NT'/k,d.ixum - NT' / k , j . n i~m x NT.' . num 
is not necessarily the number of loop-free optimal paths from 
N; via Avk to Nd since there could be more than one optimal 
path from N; to Nk. 

As proven below, Procedure B removes all known faulty 
paths in the network delay tables, provided the tables did not 
previously contain any such path. 

Theorem 1: Suppose there are no known faulty paths of 
N+ in its current delay table NT' .  If this condition holds for 
every node in the network, then the condition will still hold for 
every node in the network, even after executing the proposed 
updating process. 

Proof: Recall the definition of a known faulty path and 
consider Fig. 5. We only need to consider the behavior of 
our algorithm after a link failure (delay change). Since if 
no failurekhange occurs then there is no faulty path at all, 
Procedure A is sufficient to make all paths specified by the 
network delay table loop-free. Since Step 1) of Procedure B 
will not be executed if no failurelchange occurs, Step 2)  of 
Procedure B degenerates itself to just a process of copying the 
routing messages into NT' ,  i.e., NTt!ij,,.d1y := M in (c) of 
Procedure B. 

Recall the situation shown in Fig. 2 where a link failure had 
occurred at time t o :  N,i detected this failure at time tl > t o ,  

213,d' 

Fig. 5 .  Theorem 1 

and Nk (a representative node of Sa) detected it at time 
t 2  > t l .  If an optimal path from Nk to Nd does not pass 
through N3 (like N,  in Figs. 2 and 5), the failure in P:i\, 
will not affect this optimal path. As mentioned above, Step 1) 
of Procedure B will not be executed, and Step 2) of Procedure 
B degenerates itself to a copying process. Hence, we will focus 
only on the situation when Nk -+ . ' . --f N3 -+ . . . ---f Nd is 
the optimal path from Nk to Nd without passing through N,. 

Part 1: Until tl + 1, N,  does not know anything about the 
fault in Pi&,, which is the current optimal path from N,  via 

Part 2: At time tl + 1, N3 will inform N,  of the failure 
in Pi:\, by sending N, a new set of paths, SPi&,, while all 
other nodes still send N,  the obsolete set of paths, SP&,. 
Thus, only one entry of NT' ,  NT,'l,,d.dly, is copied into 
the corresponding entry of NT'' by Step 1) of Procedure B. 
NT,')3,d.num will be set to the number of the faulty paths with 
delay NT,'lJ,d.dly by the statements (a) and (b) or (b') in Step 
1) of Procedure B. In Step 2) of Procedure B, all NT,'lk,,.dly's 
will be checked by statement (c) to see if the entry NT;;,,, 
contains any known faulty path [NT2';3,d.dly in statement (c)]. 
If it contains the faulty segment of P:&,, NTt'/k,!.ni~m x 
NT,'jJ,,.num (which is the number of paths containing this 
known faulty segment in NT;';3,,.dly) will be subtracted from 
NTz'lk,d.ni~m [statement (d)]. Moreover, if NT,'/k,d.ni~m = 
0, i.e., all paths with delay NT,'/k,d.dly contain known faulty 
segments, set NTL',,,.dly := 00 Therefore, the delay table 
NT' of N, contains no faulty path known so far. 

Part 3: During the time period [tl + 2, t 2  -t l), N3 may 
send N,  another new set of paths SPii\, whenever it finds a 
path with delay <D(Pi$\,). Thus, D(P&,) < D(P:&,), or 
D(P:$\,) = D(P&,) and n:i\, > nfi\, .  However, in both 
cases, NT,'i3,,.dly and NT,";3,d.ni~m will not be overwritten 
by Step 1) of Procedure B, i.e., the set of known faulty paths, 
SP:&a, is still in NT,')3,d.dly and NT,')3,d.num, although 
NT,',J,,.dly and NTt'/3,d .num may be changed during this 
time period. Since NT,'';3,d.dly and NT,'j3>d.num are not 
changed, and Nk still sends N, the obsolete set of paths 
SP&z, NT,'/,,,.dly and NTz>k,d.num are set to the same 
value as in Part 2. 

Part 4: At time t 2  + 1 (there can be many different tz 's ,  
corresponding to different Nk's and different paths from N3 to 
Nk) ,  the procedure of handling the routing message RM,-3,d 
is the same as Part 3. However, Nk will send N, a new set 
of valid paths (for destination Nd) ,  SP&,. As derived from 

N3 to Nd. 
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Parts 2 and 3, there are two possible causes of NTi(lk,d.dly 
and NT,(Ik,d.num at this time. 

Case I: When NTz,,,,.dly = 00 and NTilk,d.num = 0, 
i.e., no valid path exists. Step 1) of Procedure B will not be 
executed because R&f i -k ,d .d l y  < NT:/,>,.dly = 00. 

Case 2: When NT%f/,,,.dly is equal to both D(Pj:\i) and 
D(P:Lli), and NTz!lk,d.num is the number of paths with delay 
NTz(lk)d.dly after removing those paths containing known 
faulty segments (derived in Part 2).  In this case, Rhf;,k,d.dly 
must be equal to NT%’/,,,.dly because there are still some 
valid paths with delay NTt!/k,d.dly, and NTil/,>,.dly is the 
minimum delay for the path from N; via Nk to Nd. Moreover, 
Rhf;,k.d.num > NTz!,k,d.num because Nk knows at least 
NTt!lk,d.num paths with delay RM+k,d.dly. Thus, according 
to our algorithm, Step 1) of Procedure B will not be executed 
either. Those paths containing known faulty segments will 
be removed by Step 2) of Procedure B. Therefore, if there 
is some other node N y  E Si, which sends Ni the routing 
message containing the information of a path N y  -+ . . .  --+ 

Nk --f . . .  --f Nj -+ . . .  -+ Nd in Step 2 )  of Procedure 
B, our algorithm will only subtract the number of paths 
that pass through Nj from NTi/y,d.num because the faulty 
segment Nk -+ . . . --f Nj --f . ’ .  -+ Nd is not figured in 
NTz’;,,,.dly and NTt!)k,d.num in both cases. That is, Step 2) 
of Procedure B removes each known faulty path exactly once. 
Consequently, Step 2)  of Procedure B can remove all known 
faulty paths of Ni. 

Part 5: After t2 + 1, the procedure of handling the routing 
message RM+j,d is the same as Part 3. The routing message 
RM+k,d from Nk can be processed in the same way as in 
Part 4. 0 

Corollary 1: If there are no loops and no known faulty 
paths in the delay tables of all nodes in the entire network 
during some time interval [m, m + l), then under our strategy, 
this property will hold in the next time interval [m,+ 1, m+2). 

Proof: Since if there are no loops and no known faulty 
paths in all delay tables, our algorithm can detect and avoid 
all source loops, and generate the correct number of optimal 
paths between any two nodes. So, all delay tables are still loop- 
free during the next time interval. Thus, by Theorem 1, our 
algorithm can remove all known faulty paths from neighbor 
nodes’ routing messages during the next time interval. 0 

Since there are no loops and no known faulty paths upon 
initialization of a network, by Corollary 1 the network will 
always stay loop-free under our strategy. 

As mentioned above, our algorithm, which is a modified 
version of APRS, is actually an order-one strategy, only 
adding the number of paths with the optimal delay to routing 
messages, and is loop-free in case of link failures and/or 
network structural changes. The performance of our strategy 
will be analyzed in Section IV; examples and comparison 
between APRS and the strategy in [13] will also be given 
there. 

111. ANALYSIS OF OPERATIONAL OVERHEAD 

Let the network have n nodes and (Ail 5 a,Vz E 
CO, .  . . , n} ,  where (Ail is the node degree of N;. Then, the 

proposed algorithm induces the space and time overheads as 
discussed below. 

Space Requirement: The algorithm needs three tables 
N T ,  NT’,  and NT”. N T  has at most na entries, and both 
NT‘ and NT” have at most 2nm entries. O(na) memory 
locations are thus needed for these tables. Moreover, the 
size of a routing message is O(na) since each record/entry 
in the message contains two fields. Therefore, the proposed 
algorithm has O(na) space complexity. 

Time Complexity: The proposed algorithm consists of three 
procedures: Procedure A, Procedure B, and the procedure for 
sending the routing messages to adjacent nodes. 

0 Procedure A essentially contains two loops. The outer 
loop is used to construct the routing message for each destina- 
tion node. Thus, they will execute once for each destination, 
i.e., n times per unit time for the entire network. In the 
outer loop, Step 1) is a sorting procedure, so its complexity 
is O(a!) .  Steps 2 )  and 3) form the inner loop; basically, it 
will execute a times for each iteration of the outer loop. 
Thus, Procedure A has complexity O(na!).  However, if all 
NT,/k,d’s are not changed, then we do not have to sort 
the list each time, construct new RMJ+i,d, and send the 
corresponding routing message. Moreover, this is usually the 
case because the network does not change frequently. Thus, 
the complexity of Procedure A is usually much lower than 
O(na!).  

0 Procedure B stores new routing messages and computes 
new entries of the network delay tables. It contains two steps. 
The first step is used to update NT“. According to our 
algorithm, this step is O(na).  The second step is used to update 
N T  and NT’. In addition to storing new routing messages in 
NT’, it has a loop for removing known faulty paths. In a brute- 
force implementation, updating each entry needs O ( a )  time, 
thus needing O(na2) time for updating all tables. However, 
with a careful implementation, a node maintains a link list for 
each destination node whose components are pointers to each 
NT” entry containing a faulty path. When updating an NT” 
entry in Step l), we move that entry to the head of the list to 
avoid the corresponding search. Therefore, updating an entry 
needs only a constant time, and updating the entire table needs 
O(na) time. Since both steps need O(na)  time, Procedure B 
is an O(na)  procedure. 

0 Sending procedure totally sends O ( n )  messages, each 
with size O ( n ) ,  thus needing O(na)  time. 

The worst-case time complexity of our algorithm is O(na!). 
Since a is usually a small constant (less than lo), it is an O(n)  
algorithm, thus making our algorithm particularly suitable for 
sparse networks. 

IV. PERFORMANCE ANALYSIS 
AND DEMONSTRATIVE EXAMPLES 

As mentioned earlier, the information in the delay tables 
may become obsolete due to component failures and structural 
changes which are not known immediately to the source node 
N, .  In such a case, the OP,,d(m) derived from Ns’s routing 
table may not be the actual optimal path. In the examples and 
analyses that will follow, OP,,d denotes the “current” actual 
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TABLE I 
DELAY TABLES OF :VI. .\'2. 2v3. -YI TO 

DESTINATION NODE Lvj UNDER OUR ALGORITHM 
neighbor Time 
node 0 1  11 2 1  3 1  4 ...~~ 

Delav Table of N. to destination N, 

TABLE I1 
DELAY TABLES OF -VI. -\-2. AV?. NI TO DESTINATION NODE -Vs UNDER APRS 

optimal path from N,  to Nd and DOP,,d denotes the delay 
of OPs.d. Before analyzing the performance, let us consider 
an illustrative example. 

Example 3: This example illustrates the network 
operations under our algorithm in Table I after the failure 
of link L4,5 is detected at time 0 (Fig. 6). Each entry of 
the table contains five numbers which are in the order of 
NTi,j,d.dly f NT$j,d .dly fNTz'lj,, .num fNT,';j,d.dlylNTz(;j,d I 

num. A * symbol marks the entry where the optimal path 
is found for the first time after the link failure, and an cm 
symbol indicates paths with an infinite delay or paths with 
a loop. At the time of failure t = 0,N4 can determine the 
new optimal path to N5 from its routing table since the path 
through N3 does not use the failed link. At time t = 1, N3 
can determine its new optimal path to N5 after receiving 
N4's routing message with an CO delay and rejecting the 
paths through N I  and N2 since both contain the known faulty 
path N.1 -+ . . .  -+ N5. In the same manner, N2 and N I  can 
determine their new optimal paths to N5 at time t = 1 and 
t = 2, respectively. Tables I1 and I11 are the operations under 
APRS and the third-order strategy which is shown in [13] to 
be the minimal order loop-free strategy for the network in 
Fig. 6. As can be seen in Table I, N I ,  N2, N3, N4 need 2, 1, 
1, 0, time units, respectively, to find new optimal paths to N5 
under the proposed algorithm, while they need 20, 19, 17, 20 
time units under APRS in Table 11, and 3, 3, 2, 0 time units 
under the third-order strategy in [13] in Table 111. Obviously, 

TABLE I11 

THIRD-ORDER (MINIMAL ORDER LOOP-FREE) ROUTING STRATEGY 
DELAY TABLES OF 9 1 ,  N2, ;h'~, Lvd TO DESTINATION NODE UNDER THE 

neighbor nodes Time 
entry time E (-w,o) I/ time = o I time = 1 I time = 2 I time = 3 I time = 4 

Delay Table of NI to destination N r  
7 II 7 I 7  I 1 1 1 2 7 1 2 7  

Fig. 6. Example 3. 

our algorithm is far better than the others. 0 
Definition 2 [13]: The hop function h: SP  ---f I+ is defined 

as the number of links in a path, where I f  is the set of positive 
integers. 

Lemma 1: A n  arbitrary node N,  can determine an optimal 
path to Nd in h(OP,,d) time units after initialization. 

Proof: By assumption, there are no loops and no known 
faulty paths in the network at the time of initialization. 
By Corollary 1, during the interval (0, h(OP,,d)], there are 
still no loops and no known faulty paths in the network. 
Moreover, because routing messages are exchanged once per 
unit time, the information is broadcast exactly one hop per 
unit time. Thus, using the proposed algorithm, N ,  can get the 

0 
Since a node failure can be represented as the failure of 

all links attached to it, network structural changes can be 
represented as link-delay changes. Moreover, because a link 
failure can be viewed as its link delay becoming CO, without 
loss of generality, we can consider only link-delay changes in 
the analysis. Assume that the delay of link Li,j had changed 
and this change was detected at time 0, while the delays of 
other links remain unchanged. We make a further assumption 
that there always exists at least one path from a node N ,  to 
another node Nd. Otherwise, the corresponding delay in the 
delay table of N ,  will simply be set to CO. 

In the following performance analysis, we need to consider 
the four cases distinguished by the relation between Li,j and 

Case I :  Li,j E OPs,d despite the decreaselincrease of 
DLi,j. OPs,d remains unchanged, even with the change in 
DLi,j. N ,  can obtain the correct value of Dop,,d in h(OP,,i) 
time units since N,  is h(OP,,i) hops away from Li,j whose 

information from Nd in h(OP,,d) time units. 

OPs,d. 

delay has changed. U 
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Case 2: Li>j  is not part of OP,,, regardless of the change 
of DLij. That is, OP,,, will not be affected by this link-delay 

Cases 1 and 2 are very simple, and their results and 
performances can be predicted easily because the change has 
no effects on the routing decision for the packets from N, and 
N,. In these two cases, our strategy has exactly the same 
performance as APRS and the strategy in [13] in case of 
link failures. However, the remaining two cases are much 
more complicated than these. It is necessary to introduce the 
following definitions before discussing them. 

Definition 3: Screen of a path P, denoted by scn(P) 
[12]. Let a path P = ( N , , , N i , , . . . , N i _ ) ,  and the pair 
(Ni, ,N,,+,)  = Likri,+, is the first link in the ordered 
sequence representation of P, whose delay change is not 
known to Ni,. Then, if DLib,i,+, increases, then scn(P) = k ,  
else scn(P) = -k .  In case there is no link delay in P recently, 
scn(P) = 30. 

Definition 4: A new set of paths, SP,',,, is defined as 
SP,',, G SP,,, - {PIP E SPs,d, and P contains a loop}. 

change. 0 

Obviously, SP,',, c SPs,d. 
Case 3: 0 Li>j E OP,,,, DLi,j increased recently. 
0 Li,j is not part of OP,,, any longer after this change. 
In this case, all paths containing Li,j have a positive screen 

value. This is similar to those cases discussed in [12], [13] 
because a link failure can be treated as the delay of that link 
increased to 30. So, the link cannot be part of any optimal 
path. Let m, be the minimal time units required for a source 
node Ns to find its new optimal path to Nd in case of 
a link-delay change under our strategy, and let m k  be the 
minimal time units required for N, to find its new nonfaulty 
optimal path under the kth order routing strategy in [12], 
[13]. Also, let r denote the delay of the new optimal path 
OP,,,, and SPS",, G SP,,, - {PIP E SP,,,, and P contains 
a loop whose order is less than, or equal to, k } .  Clearly, 
SP,',, C SPS",,Vk > 0. The authors of [12], [13] proved the 
following relations: 

m.0 = niax{scn(P)IP E SPs,d and d ( P )  < r }  
m,k = niax{scn(P)IP E SPS",, and d ( P )  < r }  
m, 5 niax{scn(P)IP E SP,',, and d ( P )  < r }  

where APRS is order 0, and m, 5 m k  5 mo,Vk > 0. 

\trategy [13] and, of course, better than APRS. 
Therefore, our strategy is better than any order routing 

Case 4: 0 La,, is not part of OPs,d and DL,,, decreases. 
0 This decrease makes L,,, become part of OP,,,. 
In this case, some paths will have negative screen values, 

including the new optimal path. Because the new optimal path 
from N, to I v d  is N, + . . .  + N, + N3 + . . .  + Nd, and 
OP,>d is already known to N,, so m, = -scn(OP,,d) = 
h(OP,,,). Since the information on the decreased DL,,, 
propagates through OP,,, one hop per unit time, DoPS>,  and 
DOP,,, need h(OP,,,) time units to propagate the information 
from N, to N,. 0 

The following observations indicate the superiority of our 
\trategy to others. 

Fig. 7. Example 4. 

1) In Cases 1 and 2, a link-delay change will not affect 
the message routing under our strategy. In Case 1, nodes 
can obtain the correct delay of an optimal path in h(OP,,i) 
time units. This is optimal under any APRS-related routing 
strategies because the information is propagated one hop per 
unit time. 

2)  In Case 4, a source node can find a new nonfaulty 
optimal path to the destination after each link-delay change 
in h(OP,,;) time units. This is also optimal under all APRS- 
related routing strategies for the same reason as above. 

3) In Case 3, the performance of our strategy is better than, 
or at least the same as, that of APRS and any order strategy 
in [13]. 

Example 4: See Fig. 7. 
The network in Fig. 7 is a part of the real APARNET. In 

order to make this example more illustrative, DL2,3 and DLs,g 
are assigned to 3 and 100, respectively. Suppose L2,3 fails at 
time 0. Basically, this network becomes two sets of nodes, S1 

and S2, which are connected only via Ls,g after this failure, 
where 

s1 = { Nl, N2 , N9 , NlO 2 N11, N12 > N13 } 
s2 = {N3,N4,N5,N6,N7,N8,N14}. 

Obviously, the optimal paths between two nodes within the 
same set are not affected by this failure, but the optimal 
paths between two nodes which belong to different sets are 
all changed. Moreover, as can be seen in Fig. 7, an arbitrary 
node, say N1 E SI, will find its optimal paths to any arbitrary 
node in S2 in the same amount of time because all the screen 
values of the paths from NI to any node in S2 are identical. 
Similarly, an arbitrary node in S2 can find its optimal paths 
to any arbitrary nodes in S1 in the same amount of time. 
Table IV shows the operations of all nodes in S1 to find 
new nonfaulty optimal paths to N3 after the failure of link 
L2,3, where N3 is a representative node for S2. Each entry of 
Table IV contains only three numbers which are in the order 
of NT,Ij,d.dlylNTz(lj,,.dlylNTzf~j,,.dly because all ".num" 
entries are either 0 or 1. A * symbol marks the entry where the 
optimal path is found for the first time after the link failure, and 
an co symbol indicates paths with an infinite delay or paths 
which include a loop. Some other entries of NT' needed in 
our algorithm are decribed in Table V. 



SHIN AND CHOU: DISTRIBUTED LOOP-FREE ROUTING STRATEGY FOR COMPUTER COMMMUNICATION 

Time 
0 1 1  1 2 . 3 1  4,5 1 6  1 7  

Deloy Table of NI. lo  deslrnolion N3 
N, I 8/3/00 I m/m/3 I m/m/3 I m/m/3 I 148/143/3 I 125'/120/3 - Ns I48/18/m [ m/m/m I m/m/m I 135/105/m I 135/105/m I 135/105/m 

TABLE IV 
DELAY TABLES OF ALL NODES IN si WITH THE 

DESTINATION NODE !l!, UNDER OUR ALGORITHM 

V. SIMULATION 
We simulate both APRS and the proposed strategy to 

compare their performance. Two networks (in Figs. 8 and 9) 
are used in the simulation. Packets are assumed to arrive at the 
system according to a Poisson process. During the simulation, 
we increase the rate of packet arrival until the network 
under testing gets overloaded. The packet size is assumed 
to be uniformly distributed between 20 and 1000 bytes. The 
period of exchanging routing tables between adjacent nodes 
is assumed to be 128 ms (as in APRS). The number attached 
to each link in these figures represents the delay (in units of 
0.1 ms) of transmitting a 1000-byte packet over that link; for 
example, a 100 kb/s link has label 100 and a 10 kb/s link has 
label 1000. 

The simulation has two parts: without and with component 
failures. In Figs. 10 and 11, the vertical axis represents the 
ratio of packet delivery delay of the proposed strategy to that 
of APRS. We used the average of the data collected in a 
period of 100 s as a sample; for example, under 200 packetsh 
load, each sample represents the average of approximately 
20000 packets. Figs. 10 and 11 show the average value of 100 
samples under specific load conditions. In both figures, most 
samples we collected were around the average value. However, 
there were a few samples (around 1%) with large variances. 
When the network is lightly loaded, the two strategies exhibit 
similar values of packet delivery delay. However, when the 
network load increases, the APRS delivery delay increases 
much faster than our strategy. Moreover, since the delay 
increases faster, the packets start to build up at local hosts 
under APRS when the packet arrival rates are greater than 

I 174 12108 

351 

Fig. 8. The ten-node test network. 
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Fig. 9. The 20-node test network 

400 packetsts in Fig. 10 and 500 packetsh in Fig. 11. By 
contrast, our strategy can still function correctly at those load 
levels. As the delay ratio in the 20-node network drops much 
faster than it does in the ten-node network, our strategy is 
expected to perform even better for larger networks. When the 
network becomes larger, the looping effect caused by the link 
delay changes (due to increasing queueing delay) has more 
pronounced effects on the average packet delivery delay since 
the loop is likely to be larger in a larger network, and APRS 
likely needs a longer time to resolve a larger loop. 

In the second part of the simulation, assuming the occur- 
rence of a link failure, we measured the average delay per 
packet for the first 100 s after the failure. As in the first part 
of simulation, each point in Figs. 12 and 13 is the average 
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Fig. 10. Ratio of average per-packet delays in the ten-node network. 

d e l a y  r a t i o  
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Fig. 11. Ratio of average per-packet delays in the 20-node network. 

of 100 samples which are mostly around the average value. 
However, a few of them (around 1%) are somewhat off from 
the average value. The vertical axis again represents the ratio 
of packet delivery delay of our strategy to that of APRS. In the 
presence of a failure, our strategy outperforms APRS because 
of its loop-free capability. The tendencies of Figs. 12 and 13 
are the same as in Figs. 10 and 11, except that the ratio figure 
drops much faster. Due to the presence of component failures, 
the looping effect of APRS is more pronounced than it was 
in the first part. Since the failed link has an infinite delay, all 
paths going through that link suffer the looping problem. By 
contrast, our strategy is loop-free, and therefore, the ratio drops 
much faster in the presence of component failures. Because 
of a larger average packet delivery delay the networks under 
APRS become overloaded when the arrival rate reaches 300 
(in the ten-node network) and 500 (in the 20-node network) 
packetsh. 

VI. CONCLUSION 

In this paper, we propose a very simple but effective loop- 
free routing strategy which can completely solve the looping 
problem in case of link-delay changes as well as linWnode 
failures. We have also proved the correctness of the strategy 
and analyzed its performance and operational overheads. The 
performance is improved significantly by simply attaching the 
total number of paths with the optimal delay between two 

delay ratio 

1.0 

I 

300 packets/sec 100 200 

Fig. 12. Ratio of average delays with the presence of failure in the ten-node 
network. 
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Fig. 13. Ratio of average delays with the presence of failure in the 20-node 
network. 

nodes to the normal routing messages under APRS. Moreover, 
the operational overhead of the proposed algorithm is shown 
to be very low. Both ours and APRS have time and space 
complexity O ( n )  for sparse networks, where n is the number 
of nodes in the network. Despite its simplicity, the proposed 
algorithm can eliminate the looping problem completely with 
little overhead. 

LIST OF SYMBOLS 

Node i. 
The directional link from Ni to N j .  
The delay of link Li,j at time m. 
The delay of link Li,j when time is imma- 
terial. 
The optimal (least delay) path from N ,  to 
Nd at time m. 
The delay of OP,,d(m). 
The set of nodes which are adjacent to Ni. 
The delay of the path from Ni through 
Nj E Ai to Nd in Ni's table. 
The delay of the optimal paths from Ni to 
Nj when time is immaterial. 
Number of the optimal paths from Ni to 
Nj when time is immaterial. 
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SP3”d\? 

P&\, Representative of SP&, . 
n;d\? 
D ( P )  
RMt t 3 ,d 

RM,,,,d.dly 
RM,+73d .~ ium The number field of RM,-?,d.  

Set of optimal paths from N3 E A,  to Nd 
without passing through N ,  at time t .  

Number of elements (paths) in set SP&,. 
Delay function of a path P. 
Routing messages which are sent from N3 
to N, E A, for the destination Nd. 
The delay field of RMz-,,d.  

The entry containing the optimal paths 
from N3 to Nd without passing N ,  in N,’s 
table. 
The delay field of NT,’13,d. 
The number field of NT,’/J,d. 
The entry containing the known faulty 
paths from N3 to Nd without passing N ,  
in N,’s table. 
The delay field of NT,‘j3,d. 
The number field of NT,’3,d. 
The entry containing the delay of the opti- 
mal paths from N ,  through N3 E A,  to Nd 
in N,’s table. 
The screen function of a path P. 
The hop function of a path P. 
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