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Abstract-In a distributed real-time system, nonuniform task 
arrivals may temporarily overload some nodes while leaving 
some other nodes idle. As a result, some of the tasks on an 
overloaded node may miss their deadlines even if the overall 
system has the capacity to meet the deadlines of all tasks. In 
a companion paper [l], we proposed, without any modeling 
analysis, a decentralized, dynamic load sharing (LS) scheme as 
a solution to this problem. In this paper, we develop analytic 
queueing models to comparatively evaluate the proposed LS 
scheme as well as three other schemes: no LS, LS with random 
selection of a receiver node, and LS with perfect information. 

The evolution of a node’s load state is modeled as a continuous- 
time semi-Markov process, where cumulative execution time 
(CET), rather than the commonly-used queue length (QL), is em- 
ployed to describe the workload of a node. Not only fundamental 
differences among the different LS schemes are addressed in the 
analytic models, but also implementation overheads are taken 
into account. Several metrics relevant to real-time performance 
are derived from these models: in particular, we evaluate the 
probability of a task missing its deadline, called the probability of 
dynamic failure. The proposed scheme is compared against other 
LS schemes using these performance metrics. 

The validity of analytic models is checked with simulations. 
Both analytic and simulation results indicate that by using ju- 
dicious exchange/use of state information and Bayesian decision 
mechanism, the proposed scheme makes a significant improve- 
ment over other existing LS schemes in minimizing the probabil- 
ity of dynamic failure. 

Index Terms- Bayesian analysis, continuous-time Markov 
chains, deadlines, distributed real-time systems, load sharing, 
location and transfer policies, performance evaluation, random 
probing and selection. 

I. INTRODUCTION 
ISTRIBUTED computing systems have long received D considerable attention mainly due to their potential for 

high-performance and high-reliability, and the availability of 
inexpensive, powerful processors/memory chips. The central 
issue in realizing this potential is how to schedule the use of 
various resources in the system. Load sharing (LS) is known 
to be an essential element of scheduling tasks in a distributed 
system [2], [3], enabling underloadedhdle nodes to share the 
loads of overloaded ones so as to improve system performance. 
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The main goal of Ls in a distributed real-time system is 
to minimize the probability of a task failing to complete ex- 
ecution before its deadline, which was termed the probability 
ofdynamic failure (Pdyn) in [4]-[6]. Upon arrival of a real- 
time task, each node determines first whether or not it can 
complete this task in time. If it can, the task is executed 
locally; otherwise, some other “capable node” will be chosen 
to execute the task [3], [7]-[ll]. By “capable node,” we 
mean a node which has sufficient resource surplus to complete 
transferred-in task(s) in time. 

To determine when and where to transfer a task, all dy- 
namidadaptive Ls approaches need to use information on the 
workload of other nodes. If the cumulative execution time 
(CET) of a node is less than, or equal to, the laxity’ of a newly 
arrived task, then the node can guarantee the task. Each node 
makes a decision on where to send a locally unguaranteed 
task using the state information collected by either periodic 
exchange of states [ 101-[14], biddingktate probing at the 
time of making a LS decision [2], [15]-[23], or state-change 
broadcasts [l], [24]-[26]. No matter which strategy is used 
for collecting state information, the information may become 
out-of-date at the time of using it due to the delays in 
collecting it. That is, what a node observes about other 
nodes’ states might be different from their true states at the 
time of making LS decisions. This inconsistency may cause 
performance degradation which is often ignored or assumed 
tolerable in previous research except for [22], [27], where the 
authors analyzed the effects of communication delays on the 
mean response time of dynamic LS, but did not propose how 
to deal with it. 

To alleviate the negative effects of the delay in collecting 
state information and transferring tasks, Shin and Chang 
proposed a LS method based on state-change broadcasts in 
which each node needs to maintain state information of only 
a small set of nodes in its physical proximity, called a buddy 
set [25]. The buddy sets are systematically set up so as to 
overlap among some of them, thus allowing for system-wide 
(as opposed to only local) load sharing while significantly 
reducing the overhead in collecting state information. Three 
thresholds-based on queue length (QL) and denoted by TH,, 
T H f ,  and T H ,  -are used to define the load state of a node. A 
node is said to be underloaded if Q L  5 TH,, medium-loaded 
if T H ,  < QL 5 T H f ,  fully-loaded if T H f  < Q L  5 TH,, 
and overloaded if QL > TH,. Whenever a node becomes 
fully-loaded (underloaded) due to the arrival and/or transfer 

‘The laxity of a task is defined as the latest time a task must start execution 
in order to meet its deadline. 
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(completion) of tasks, it will broadcast its change of state to all 
the other nodes in its buddy set. Every node that receives this 
broadcast will update its state information by eliminating the 
fully-loaded node from, or adding the underloaded node to, its 
ordered list (called a preferred fisf) of available receivers. An 
overloaded node can then select, without probing other nodes, 
the first available node from its preferred list. The main focus 
in (251 was to develop the basic concepts of buddy sets and 
preferred lists, and derive an approximate performance figure 
using QL as the measure of each node’s workload. 

In a companion paper [l] ,  we proposed, without any mod- 
eling analysis, a new decentralized, dynamic LS scheme that 
uses the CET of each node and combines the preferred 
lists, region-change broadcasts, and Bayesian analysis both to 
minimize the probability of dynamic failure and to alleviate 
the performance degradation caused by communication delays. 
In this paper, we shall develop analytic models for this 
scheme as well as three other schemes: no LS, LS with 
random selection, and LS with perfect information. Not only 
the fundamental differences among the transfer and location 
policies used by different schemes are addressed, but also 
the computatiodcommunication overheads in implementing 
these schemes are included in the analytic models. By taking 
into account these overheads, the analytic models provide 
a means of assessing the absolute real-time performance of 
the schemes considered. We shall derive several performance 
metrics, such as Pdyn, task transfer-out ratio, and maximum 
system utilization. These metrics are then used to assess the 
proposed LS scheme against the other schemes. 

The first step in developing the analytic LS models is 
to define the (load) state of a node. For ease of analysis, 
the number of tasks queued at each node, or QL, is often 
used as the node’s state [3], [7], [8], [lo], [17], [25], [28]. 
Performance analysis based on QL would be accurate only if 
all tasks have an identical, or identically-distributed, execution 
time, and the mean task response time is used as the perfor- 
mance metric. If task execution times are neither identical nor 
identically-distributed, , QL is no longer an adequate measure 
to characterize the load of a node. For real-time applications 
it is the CET, not QL, of a node that determines whether 
the node can guarantee a task or not. For example, a node 
with only a few tasks queued may not be able to guarantee 
a newly arrived task if a large amount of time is required to 
complete each queued task. On the other hand, a node with a 
large QL may still guarantee an arrived task as long as the 
total CET of that node does not exceed the laxity of this 
task. 

Most LS schemes known to date are concerned with min- 
imizing the mean response time (MRT) for general-purpose 
distributed systems, except for those in [13], [HI, [21], [25], 
and [29], where the LS algorithms were evaluated with respect 
to either the percentage of tasks lost or the probability of 
dynamic failure. The performance of real-time LS algorithms 
is usually evaluated via simulations except for a few cases. For 
example, Shin and Chang [25] proposed an embedded Markov 
chain model, where QL, instead of CET, is used as the state 
of a node, but the exact solution to this model is very difficult 

CET as a node’s state, but all tasks are assumed to have an 
identical deadline. 

By contrast, we shall in this paper use Pdyn as the per- 
formance metric, and CET as the load state, and allow both 
task laxity and task execution time to be drawn from different 
probability distributions. 

Most previous work has shown that simple LS algorithms 
can significantly reduce MRT for general-purpose systems, 
and the incremental benefits of employing complex LS 
algorithms become insignificant due to their communica- 
tion/computation overheads. Using the fraction of tasks lost 
as the performance metric, Kurose et al. [18] extended 
this result to soft real-time systems. However, as both 
the analytic and simulation results indicate, this extension 
does not necessarily hold when Pdyn is used as the 
performance metric. By making judicious exchangehe of 
state information, complex schemes-though they incur more 
computation/communication overheads-achieve notable im- 
provement in reducing Pdyn over those simple LS schemes. 

The rest of this paper is organized as follows. Section I1 
describes the system model used and details the operations of 
the proposed LS scheme and five other schemes, particularly 
focusing on the transfer policies that a node uses to handle 
locally unguaranteed tasks. Section 111 presents a mathematical 
model based on continuous-time semi-Markov chains that 
describes the state evolution of a node under different LS 
schemes. A two-step iterative algorithm used to solve the 
queueing model for different schemes is also given in Section 
111. The computation and communication overheads incurred 
in implementing the proposed LS scheme are dealt with in 
Section IV. In Section V, we derive several performance 
metrics, such as CET distributions, task transfer-out ratios, and 
Pdyn for the schemes under consideration, and comparatively 
evaluate the performance of the proposed LS scheme with 
these derived metrics and simulations. The paper concludes 
with Section VI. 

11. SYSTEM MODEL AND LS SCHEMES 

A. System Model 
The nodes of a distributed system are assumed to be 

“homogeneous” in the sense that all nodes have the same 
arrival rate of external tasks2 and are identical in processing 
capability and speed. Consequently, the task arrivalhransfer 
activities experienced by each node are stochastically iden- 
tical over a long term. Thus, we can adopt the general 
methodology-introduced in [3], and also used in [18], [25], 
and [30]-of first modeling the state (CET) evolution of 
a single node in isolation and then combining the node- 
level models into a system-level model. This decomposition 
was first verified (through simulation) in [3] to be valid for 
homogeneous systems of reasonably large size. We will also 
check its validity in Section V by comparing the analytic 
results with the results obtained from event-driven simulations. 

External tasks (excluding transferred-in tasks) are assumed 
to arrive locally at node IC according to a Poisson process with 

to obtain. In [18], performance models were developed using ’These exclude transfer-in tasks. 
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rate x k  = Vk. A task requires z units of time to execute and 
has j units of laxity time with probability q i j ,  1 5 i 5 m, 
0 5 j 5 T,, where m and T, (measured in number of 
time units) are the largest task execution time and the largest 
task laxity in the system, respectively. {q i  = q i j ,  1 5 
i 5 m}  and { q j  = q i j ,  0 5 j 5 T,} are the 
probability distributions of task execution time and task laxity, 
respectively. All tasks are assumed to be independent of one 
another, so they do not communicate during their execution 
and thus have no precedence constraints among themselves. 
Note that aperiodic tasks in a real-time system are usually 
independent of each other. By contrast, periodic tasks often 
communicate with each other but their invocation, execution, 
and communication behaviors are usually known a priori and 
thus scheduled off-line. 

B. LS Schemes Under Consideration 

We shall develop models for the proposed LS scheme 
as well as three other schemes: no LS, LS with random 
selection, and LS with perfect information. Besides, LS with 
state probing and LS with focused addressing [17], [21] will 
be comparatively assessed in Section V using simulations. We 
shall describe first the operations of these schemes. 

As was discussed in [3], a LS approach can be characterized 
by its transfer policy which determines when a task cannot be 
locally guaranteed, and its location policy which determines 
where a locally unguaranteed task should be transferred to. 
All LS schemes studied here employ the same transfer policy: 
a task with laxity d is transferred from node i if and only 
if node i’s CET is greater than d. This transfer policy is of 
the threshold type as in [3], [8], [27], and [31], except that the 
threshold may change dynamically with the current state of the 
node and the time constraints of queued tasks. However, the 
location policies with which a node treats locally unguaranteed 
tasks are different as follows: 

The noncooperative scheme: does not have LS capability 
and is used as a baseline in our analysis. 

The quasi-perfect LS scheme: is used as another baseline 
where each node uses the same transfer policy but has com- 
plete information on the workload of other nodes without any 
overheads in collecting it.3 

The random selection scheme: each locally unguaranteed 
task is sent to a randomly selected node. LS with random 
selection is simple to implement, requires no information 
exchange, and incurs little communication overhead. However, 
excessive task transfers may result since each unguaranteed 
task is sent blindly, without using any state information, to an 
arbitrarily chosen node. 

The state probing scheme: a node with an unguaranteed 
task randomly probes up to some predetermined number 
of nodes and transfers the task to the first capable node 
found during the probing. LS with state probing gathers and 
uses the state information as needed, and thus may have 
the most up-to-date observation about other nodes. However, 

3This, however, cannot be modeled as an M/G/n queue, as compared to the 
perfect load sharing in [3]. This is because of the transfer policy used which 
incorporates the consideration of task laxities/deadlines into the LS decision. 
Hence, we label this scheme as quasi-perfect. 

at least two additional messages are generated per probing, 
introducing time and communication overheads to the task 
to be transferred, and may thus be undesirable to the timely 
completion of real-time tasks. (Note that these overheads do 
occur when a task needs to be transferred.) Moreover, as was 
analyzed in [27] and [22], the performance of state probing is 
sensitive to the variation of communication delays. 

The focused addressing scheme: each node exchanges state 
information periodically. A node sends its unguaranteed task 
to a node (called the focused node) which is randomly selected 
among those nodes “seen” to be capable of guaranteeing the 
task. (If such a capable node does not exist, the focused node 
is the node itself.) Meanwhile, the node also sends request- 
for-bid (RFB) messages to all the other nodes in the system, 
indicating that bids (which contains the CET of the bidding 
node) should be returned to the designated focused node. If 
the focused node cannot guarantee the task, it chooses, based 
on the bids received, a capable node for transferring the task 
(ties are broken randomly); otherwise, the task is queued on 
the focused node. The bids received at the focused node are 
also used to update the observation of other nodes’ states. If 
neither the focused node nor the bidding nodes can guarantee 
the task, the task is declared to be lost and thrown out. 

To avoid poor CPU utilization, RFB messages do not require 
nodes to reserve CPU cycles or any other resources needed to 
execute the task to be transferred. When a task arrives at a 
node whose bid has been accepted, the node will check again 
whether or not the task can be guaranteed. Note that this is a 
simplified version of the scheme proposed in [21] and [17]. It 
also differs slightly from that of [21] and [17] in the way a node 
chooses the focused node. The authors of [21] and [17] used 
the percentage of free time during the next window (which is 
a design parameter) and many other estimated parameters to 
determine the focused node or the node to which the task must 
be transferred again. However, we use the observed CET of 
other nodes to determine the nodes for transferring tasks. 

The proposed scheme: a node transfers each locally un- 
guaranteed task to one of the nodes in its buddy set by 
combining the preferred lists, state-region change broadcasts, 
and Bayesian analysis. This scheme was proposed in [l], 
without any performance modeling analysis, to i) minimize 
Pdyn, and ii) alleviate the performance degradation caused by 
communication delays. 

The operation of the proposed LS scheme is outlined below 
for completeness. (See [ l ]  for a detailed account.) Under 
this scheme, the task scheduler at each node is modeled 
as a Bayesian decision maker [32]: upon arrival of a real- 
time task, the scheduler first determines whether the node 
can guarantee the task or not. If it cannot, the scheduler on 
that node looks up the list of loss-minimizing decisiom, and 
choose-based on the current observation about other nodes’ 
states, X-the best candidate receiver in a small set of n 
nodes in its physical p r~x imi ty ,~  i.e., a buddy set. The list 
of loss-minimizing decisions is computedhpdated periodically 
to minimize the expected Bayesian loss with respect to the 
posterior distribution of system state given the observation. 

4For example, those nodes one or two hops away from the node of interest. 
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Each node performs the following four operations: 

(a): When a task with execution time T, and laxity D, arrives: 
if current-time + CET 2 D, then 
begin 

receivernode = tablelookup(g:observation)t; 
transfer the task to receivermode; 

end 
else 
begin 

CET := CET + T,; 
if CET crosses TR2b, 1 5 k 5 - 1 then 

/*  TIT,, . . ., T R K - ,  are thresholds $1 
broadcast the stateregion change to all nodes in its buddy set; 

queue the task locally; 
end 

(b): When a message broadcast by node i ,  1 5 i 5 n, arrives: 
update observation 2,; 
record the (observation, true state) pair needed for constructing probability 

distributions; 

( c ) :  At every dock tick, 
CET := CET - 1; 
if CET crosses TRZr,  1 5 k 5 (41 - 1 then 

broadcast the state-region change to all nodes in its buddy set; 

(d): At every Tp clock ticks, 
update the probability distributions and the table of loss-minimizing 

decisions; 

tIf a node antidpato, bued on the corrent observation 8, that no other nodes con guuonte the t-k, thls 
task U declared to be lost and thrown away. 

Fig. 1. Operations of the task scheduler on each node. 

Fig. 1 summarizes the four (4) main operations of the task 
scheduler on each node. 

Both the posterior distribution of system state given the 
node’s observation and the list of loss-minimizing decisions 
are constructed/updated as follows. Each node communicates 
with, maintains the state information of, and/or transfers 
unguaranteed tasks to, the nodes in its buddy set only. K 
state regions defined by ( K  - 1) thresholds, TH1,  TH2,  ..., 
T H K - ~ ,  are used to characterize the workload of each node. 
Each node will broadcast a time-stamped message, informing 
all the other nodes in its buddy set of a state-region change 
whenever its load crosses TH2k for some k, where 1 5 k 5 
[1(/21 - 1.’ This time-stamped message contains node number 
i ,  state w;, and the time t o  when this message is sent. When the 
message broadcast by node i arrives at node j, node i ’ s  state at 
t o ,  denoted by wit  can be recovered by node j .  Node j can also 
trace back to find its observation about node i ,  xi, at time t o .  
This observation xi is what node j thought (observed) about 
node i when node i was actually in state wt .  xz’s along with 
w;’s (1 5 i 5 n) are used by node j to compute/update the 
posterior distribution, Pw, IS,, of node i ’ s  state W, given node 
j’s observation xi periodically. Any inconsistency between 

5The reason for not broadcasting the change of state region whenever a 
node’s load crosses an odd-numbered threshold is to reduce the network 
traffic resulting from region-change broadcasts. On the other hand, the reason 
for not combining two adjacent state regions into one and then broadcasting 
the change of state region whenever a node’s CET crosses any threshold is 
to include finer state information in each broadcast and thus construct more 
accurate posterior distributions needed for Bayesian decisions. 

the true state, W,, and the state observed by node j ,  X,, 
is characterized by this probability distribution. Besides, w, 
sent by node i at time t o  is transformed to node j ’ s  new 
observation,6 x,, about node i at the time node i receives this 
message by the rule that x, = if THk 5 w, < THk+I, 
k 2 0, and T H O  = 0. 

For each possible X = 2, and for each possible T d  E 
(O.T,,,]-where T,,, is the largest task laxity in the sys- 
tem-node j computes P w , ~ ~ , ( W ,  > Td),’ i = 1 , . . . , n  
every time the posterior distribution is updated, and the node 
k which results in the smallest value is chosen as the receiver 
node, and recorded in the list of loss-minimizing decisions. 
When node 3 cannot guarantee locally a real-time task with 
laxity Td, it decides to which other node this task will be 
transferred by looking up the list using Is. and T d  as the 
indexes. 

A tie will be broken by using the preferred list: each node 
orders the nodes in its buddy set into a preferred list such 
that a node is the lcth preferred node of one and only one 
other node, where k is some integer [25], [33], and a node 
chooses from the preferred list the first d, with Bayesian 
risk. The preferred list thus provides an effective way of 
selecting a receiver among several possible candidate nodes 

A 

hThe reason for transforming w ’ ~  into s, is to reduce the size of the 

’which was shown in [l] to be the expected loss in the Bayesian decision 

observation space. 

model. 
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while minimizing the possibility of more than one node 
simultaneously sending unguaranteed tasks to the same node. 
The set of loss-minimizing decisions is a list of decisions 
indexed by each possible observation 2 and each possible 
task laxity Td. Once these calculations are completed, the task 
scheduler needs only to perform a table lookup with both 
- x and Td as indexes to determine to which node a locally 
unguaranteed task should be transferred. 

111. ANALYTIC MODELS 

Queueing models are developed to evaluate the performance 
of the proposed LS scheme as well as three other schemes: no 
LS, LS with random selection, LS with perfect information. 
We first model the state evolution of a node by a continuous 
time semi-Markov chain [34], [35] which will serve as the 
underlying model. The parameters of this model are derived 
for different LS schemes to characterize task arrival/transfer 
processes in the system level. A two-step iterative approach is 
then taken to obtain a numerical solution to the semi-Markov 
model. 

A.  The Underlying Model 

The state of a node is defined as the CET of that node, 
and each node is modeled as an M["I /D/ l  queue with bulk 
arrivals. (Arrival of a task with i units of execution time is 
viewed as the simultaneous arrival of i tasks, each requiring 
one unit of execution time.) The case in which all tasks require 
an identical execution time-and thus the state is QL-is a 
special case of this model. 

The composite (both external and transferred) task arrival 
rate at a node is X(T) ,  which depends on the node's CET, 
T ,  and the location/transfer policies used. Execution of a task 
requires i units of time with probability qa, and such a task is 
called a type-i task, 1 5 i 5 m. Since at any time a node is 
either idle or busy executing a task, the node occupancy (by 
tasks) is divided into busy slots (measured in terms of system 
clock cycles) which are numbered as Bl ,&,  . . ., relative to 
any reference point of time (see Fig. 2).  Note that two adjacent 
busy slots of a node may be either contiguous or separated by 
idle periods. Let Tk denote a node's remaining CET at the 
end of Bk, and X i  represent the number of type-i arrivals 
during Bk, then 

where R is the number of clock cycles required for the node 
to complete a task which finds the node idle upon its arrival, 
and has the distribution { q a ,  1 I i I m}. If Tk-1 = 0, then 
the node remains idle until a task with the required execution 
time, R, arrives. iXi is the CET accrued during Bk with 
each type-i task contributing i units of time for execution. 
Equation (1) describes a semi-Markov chain because i) Tk 
depends only on Tk-1, and not on T p  Vk' < k - 1, and ii) the 
state residence times-the length of Bk -are deterministic 
with value 1, rather than exponentially-distributed. 

Equation (1) can be used to get the z-transform of the CET 
distribution. Let T+ and T denote the CET on a node at 

some embedding time instant and at some random time instant, 
respectively. Because of the embedding points (i.e., at the end 
of each busy slot) chosen for the embedded Markov chain, 
the distribution of T ,  denoted by p ~ ( . ) ,  is not necessarily the 
same as that of T + ,  denoted by p : ( . )  [35], [36]. However, 
p ~ ( . )  can be derived from p $ ( . )  as described in [36]. So, let 
us derive &(.) first. 

Let a+(.) denote the z-transform of CET distribution at 
the embedding time points, then 

Note that for mathematical tractability of (2) ,  iXf-the 
CET arrival process during Bk-is approximated to be in- 
dependent of Tk-1, which is unrealistic for the location 
and transfer policies of the proposed LS scheme as well as 
others. As will be discussed in Section V-B, this deficiency 
is remedied by figuring the dependency of the task arrival 
process on CET into task arrival rate. In other words, the task 
arrival rate X on a node is determined by the node's CET, T ,  
i.e., A(.) is a function of T .  

The second factor of (2) ,  E ( z ~ T = ~  a x ; ) ,  is computed as 
follows. Since state residence times are all 1, we have 

m 

p(' I-' eqt (qi A ) ~  Z X  - zn) = 
n! 

and 

otherwise 
where 1 I i 5 m, and N is the set of natural numbers. In the 
above equation we used the fact that if each event of a Poisson 
process is classified independently of others to be any of type 
1 ,2 ,  . . .  .m with probability qz, then the number of type-i 
arrivals is independent of others, and is Poisson-distributed 
with Xqt. Let U; E iX;, then 

10 

P=O 
30 
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CET on a node 1 

arrival departure of deputure 
of a task the first task of &e 
with R=2 second task 

Where Bi  is the node's i-th busy cycle 

Fig. 2. A sample path for the evolution of remaining CET on a node. 

Assuming independent arrivals of different types of tasks, we 
then have 

& ( O )  can be obtained from 

1 = @+(1) 
ni 

m 

2=1 

(4) - - c A ( * R ( z ) - 1 )  

where @ R ( z )  is the z-transform of the required task execution 
time. 

We now compute the first factor of (2) .  The event, (Tk-1  - 
1 + (1 - S ( T k - 1 ) ) R  = i}, contains two mutually exclusive 
subevents: 1) Tk-1  = 0 and R = i + 1, and 2)  Tk-1 = i + 1: 

P(Tk-1 - 1 + (1 - S ( T k - 1 ) ) R  = 2)  = q 2 + 1 p T + ( 0 )  + p $ ( i +  I), 

and thus, 

1 E ( ~ T ~  - 1 - 1+(1 -6 (T~  ) ) R  

oc, 

= P(Tk--1 - 1 + (1 - S ( T k - 1 ) ) R  = n ) Z n  
n = O  
oc, 

= C ( S n + I P ; ( o )  + P $ b  + 1))z" 
n = O  

Substituting (4) and ( 5 )  into (2) ,  and rearranging the terms, 
we get 

where we have used L'Hopital's rule in evaluating the limit. 
Consequently, 

= ( l / E ( R ) )  - X (7) 

where E ( R )  is the expected execution time, i.e., E ( R )  = 
x i = ,  i q i .  Note that for the system to be stable (or for the 
CET at a node not to grow unboundedly), we must have 
C z l  iXq i  5 1, or X 5 ( l / E ( R ) ) ,  which is the necessary 
and sufficient condition for p$(O)  2 0. Thus, 

m 

(1 - X)(@.,(z) - l ) e A ( @ R ( L ) - ' )  

. (8) E ( R )  
- eV@R(z)-l) a+(.) = 

The above results for the embedded Markov chain do not 
directly apply to the total general-time stochastic process. 
However, the relation between the general-time steady-state 
distribution, p~ (.), and the distribution at embedding points, 
p $ ( . ) ,  is shown in [36] to be 

for M["] /G/l  systems, where @ ( z )  is the z-transform of the 
general-time CET distribution. Thus, we have 
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and 

p T ( 0 )  = 1 - XE(R). (11) 

If all tasks require an identical execution time, i.e., P ( R  = 
1) = 1, then the state reduces to QL, and (11) reduces to 

p T ( 0 )  = 1 - 

which is exactly the utilization U = X since the service time 
is 1, and (10) [and also (S)] reduces to 

Computing the inverse z-transform of (10) [(12)] numerically 
yields the CET (QL) distribution, { p ~ ( i ) ,  i 2 O}. The discus- 
sion of a rather subtle technique for the inversion of (10) can 
be found in [36]. 

B. Derivation of X(T) 
The semi-Markov chain model derived above can be used to 

evaluate different LS schemes if X(T) characterizes both the 
corresponding task arrivals and/or task transfers in the system 
level. The following variables are necessary to facilitate the 
derivation of X(T): 

(YT: the rate of transferring tasks out of a node given 
that the node’s remaining CET is T.  Since the transfer 
policy determines whether or not a task can be guaranteed 
locally, this parameter characterizes the transfer policy 
used. 
PT:  the rate of transferring tasks into a node given that the 
node’s remaining CET is T.  This parameter corresponds 
to the location policy used, since the location policy 
determines where to send each unguaranteed task. 
~ j :  the probability that the remaining CET on a node is 
no less than j units of time, i.e., -y3 = P(T  2 j). 
Kj:  the number of nodes that can be chosen by a node, 
excluding itself, for transferring a task with laxity j .  The 
distribution of K3 can be expressed in terms of y, as 

P( Kj = a)  = ( c 1)  (1 - e n-1-8 
Y3+1) Y,+1 ’ 

As shown in Fig. 3, X(T) = X - (YT +OT. By appropriately 
tailoring CIT and ,/3~ to describe the transfer and location 
policies adopted and by approximating the combined (external 
and transferred-in) task arrivals at each node to follow a 
Poisson process, the above semi-Markov chain model can be 
used to express the operations of different LS schemes. This 
approximation is accurate only when 1) task-transfer out of 
each node is a Poisson process, implying that the decision 
on whether or not to transfer a task is independent of the 
current workload [37], which is not true for our LS scheme, 
and 2 )  task-transfer into each node-the superposition of 
task transfers out of other nodes-is Poisson. However, this 
approximation is shown by our simulation experiments to 
provide very good results; when the task transfer-out ratio 
is less than 40% of the task arrival rate, the combined task 
arrival processes at each node have the coefficients of variation 
of their interarrival times close to one, which is at least a 

h 

Tasks tmnskmd to 
aT other nodes 

Tasks tnnsferred fro m 
other nodes 

where a T  is the rate of transferring tasks out of a node 
given the remaining CET I T. 

given the rematning CET - T. 
andh(T)= X - U T + ~ T .  

p T the rate Of tMk8 into a node 

Fig. 3 .  A generic queueing model for each node. 

necessary condition for the combined task arrival processes to 
be modeled as Poisson. 

Moreover, for all LS schemes the following relationship 
between (YT and / 3 ~  results from the law of task conservation, 
cyz~ X ( k ) p T ( k )  = 

Theorem 1: If task flow of the system is conserved, then 

k=O k=l 

The transfer policy used in real-time systems is of the 
dynamic threshold type: a task is transferred to other nodes 
only if it cannot be guaranteed locally. Thus, given a node’s 
remaining CET = T ,  all the tasks arrived with laxities smaller 
than T should be transferred, thus leading to 

T-1 

j = O  

for all schemes except for no LS in which CYT = PT = 0, 
and X(T) = X V T .  

Unlike the transfer policy, the location policy depends 
on each LS scheme. The random selection scheme selects 
randomly a receiver node in the system for each unguaranteed 
task without using any state information. Thus, we get PT for 
this scheme as8 

where Ny,+l is the average number of nodes that cannot 
guarantee tasks with laxity j in an N-node system, X q J  is 
the arrival rate of tasks with laxity j on a node, and the 
product of these two is the average rate of transferring tasks 
with laxity j in the system. Since all unguaranteed tasks are 
transferred randomly, each node shares 1/N of these tasks. 
The randomness property is reflected in the independence of 
/ 3 ~  from T.  The correctness of (15) is verified in the Appendix. 

* JT is derived under the assumption that the task-transfer into a node-the 
superposition of task-transfers out of other nodes-is Poisson-distributed. 



SHIN AND HOU: ADAPTIVE LOAD SHARING SCHEMES 747 

Our proposed LS scheme uses the posterior distributions 
derived from the state information gathered from time-stamped 
region-change broadcasts to estimate the workload of other 
nodes, and chooses probabilistically, from the preferred list, 
the best candidate to which each unguaranteed task will be 
transferred. If these distributions are properly constructed, then 
PT can be expressed as 

j=T 

where n is the number of nodes in a buddy set. Note that 1) 
a node i with CET = T can guarantee all tasks with laxity 
greater than T ,  and thus, the summation is performed from T 
to T,, and 2) the term X@yj+l is contributed by the node 
whose most preferred node is node i, the term is 
contributed by the node whose second preferred node is node 
i and whose most preferred node cannot guarantee tasks with 
laxity j ,  and the term Xqjyy+l accounts for the situation when 
all nodes in a buddy set cannot guarantee tasks with laxity j .  
The correctness of (16) is verified in the Appendix. 

Recall that a node is the kth preferred node of one and 
only one other node, and if node i is the kth preferred 
node of j, then j is also the kth preferred node of i [25], 
[33]. This property minimizes the possibility of multiple 
nodes simultaneously sending tasks to the same “capable” 
node, while ensuring unguaranteed tasks to be evenly shared 
by “capable” nodes. More formally, we have the following 
theorem: 

Theorem 2: Using the preferred lists and proper prior/post- 
erior distributions, our proposed scheme balances load in the 
sense that all unguaranteed tasks are evenly shared by those 
capable nodes. 

Proof: This theorem is proved by deriving ,& based 
on the idea of even sharing of unguaranteed tasks among 
“capable” nodes and comparing the result with the ,LIT in (16). 
Even sharing of unguaranteed tasks gives 

where X q j  is the arrival rate of tasks with laxity j, nyj+l is 
the average number of nodes which cannot guarantee tasks 
with laxity j .  The product of these two is the average rate of 
transferring tasks with laxity j ,  which will be shared evenly by 
e other nodes (in addition to the node itself) with probability 
P(Kj = e). PT can be simplified to 

n-1 

which is exactly the same as (16). 0 

The location policy of the quasi-perfect LS scheme is similar 
to that of our scheme except that i) accurate state information 
is obtained without incurring any communication cost, ii) there 
is no overhead associated with task transfers, and iii) the buddy 
set size is N, the number of nodes in the entire system. That is, 
unguaranteed tasks are transferred directly and instantaneously 
to “capable” nodes. X(T) can be expressed as 

The correctness of (18) is also verified in the Appendix. 

C. An Iterative Algorithm 

X(T) (QT and PT)  must be known before solving the 
Markov chain model for p ~ ( . ) .  However, X(T) depends on 
yj which in turn depends on p ~ ( . ) .  An iterative approach is 
taken to handle the difficulty associated with this recursion 

( z )  = eX(’R(Z)-l) [(4)] can be problem. Note that 

interpreted as the pdf of the number of arrivals’ during one 
unit of service time (execution time). Thus, we modify (4) as 

EL 

00 

to account for the effect that the task arrival rate varies with the 
current CET, T, of a node. Consequently, (10) is modified as 

and (12) as 

In the first step, the modified version of (10) [(12)] is solved for 
p ~ ( . )  with both QT and PT set to 0, or equivalently, AT = X 
VT. The resulting p ~ ( . )  is used to compute QT and PT in the 
second step. Then p ~ ( . )  is recalculated with the new (YT and 
PT [and thus a new X(T)] using the modified version of (4) 
and (10). This result will, in turn, change QT and PT. This 
procedure will repeat until p ~ ( . )  and X(T) converge to some 
fixed values. 

IV. COMPUTATION/COMMUNICATION OVERHEADS 

To develop a practical model for assessing the performance 
of different LS schemes, one should, in addition to addressing 
the fundamental differences among the LS schemes, take 
into account their implementation overheads: for example, the 
computational overheads of our scheme due to probability 
updates, and communication delays associated with state- 
information collection and task transfers. The tradeoff between 
the associated complexity and the resulting benefit can be 

9As mentioned earlier, a type-z task arrival is viewed as z simultaneous 
arrivals, each with one unit of execution time. 
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analyzed accurately only if implementation overheads are 
included in the model. In this section, our model is extended 
to include the overheads of the proposed scheme due to 
time-stamped region-change broadcasts, periodic updates of 
posterior distributions, and task transfers by: 

Augmenting the original task set with a new type of tasks, 
i.e., the probability updating tasks. 
Modifying the underlying semi-Markov chain model to 
include the effect of region-change broadcasts on the CET 
of a node. 
Considering the effect of communication delay by mod- 
ifying (YT and &-. 

A. Overheads of Probability Updates 

As mentioned in Section 11, each node updates the posterior 
distributions of other nodes' CET once every Tp units of time. 
Let U be the time required for updating the distributions, then 
we introduce a new type of task by modifying the parameters 
A and q;j (which characterize the task set) as 

1 1 1 '  - - A' = A + -, (A + -)quT, - 
TP TP TP ' 

and 

where qi j  and q i j  (A' and A) are the new and old values of the 
probabilities (task arrival rates), respectively. That is, a new 
type of tasks is added to the task set: the one with execution 
time U and laxity T,. Moreover, qij's are scaled in accordance 
with the new task arrival rate A'. Note that 1 )  the laxity of the 
probability updating task is chosen to be T,, since this task 
is not time-critical, and 2) for ease of analysis, this periodic 
task is modeled to have exponential time-to-event distributions 
with the rates equal to the reciprocal of the period. The error of 
this approximation relative to the exact limit-equivalent rates 
is bounded as indicated by Kitchin [38]. 

B. Overheads of Region-Change Broadcasts 

Recall that each node broadcasts the change of state region 
to all the other nodes in its buddy set. Let a be the time needed 
for broadcasting a region-change. Since this broadcasting 
process is state-dependent, the overheads of region-change 
broadcasts can be included by modifying ( l ) ,  the expression 
for state evolution as 

Tk-1 + ELl ixh - 1 + a 
if Tk-1 > 0 and Tk-1 E {TH2e, 1 5 c 5 [$I - 1) 

if Tk-1 > 0 and Tk-1 @ {THze, 1 5 e 5 [$I - 1) 
if Tk-1 = 0. 

Tk = Tk-1 4- ixh - 1 

ELl ZX; + R - 1 I (19) 
In other words, whenever the remaining CET reaches THzk 
(1 5 k 5 rK(/21 - l ) ,  a units of time are added to the state to 
account for the CET increase due to broadcasts. The property 
of semi-Markov chain is retained, because whether or not to 
increase by a units of time depends only on Tk-1. Similarly, 

(2) should be rewritten as 

where 6'(z) is the impulse function or the derivative of the unit 
step function, 6(z). Following the same (but more complex) 
derivation as in Section 111, one can get a modified version 
of (10): 

Note that the above equations reduce to (10) if a = 0 (no 
broadcasting overhead). Before solving (20) for p ~ (  .), one 
has to know the values of pT(TH2f), 1 5 L 5 [1(/21 - 1, 
which, in turn, depend on @(z) .  This recursive dependency can 
again be handled by using an iterative approach as follows. 
@ ( z )  is first inverse z-transformed with p ~ ( T H 2 f )  set to 0. 
The resulting p ~ ( . )  (in particular, p~(TH2e)'s) is then used 
to compute the new @(z)  from which new p ~ ( . )  can then be 
calculated. This process will be repeated until p ~ (  .) converges 
to a fixed value. 

C. Effect of Communication Delays 

Communication delays are composed of three components 
[39]: 1) the queueing delay, which is the time between 
the queueing of a task and the start of its transfer, 2) the 
transmission delay, which is the time between the first and 
last bits of the task transferred, and 3) the propagation delay, 
which is the time from the transmission of a bit at the sending 
node to its receipt by the destination node. The transmission 
delay depends on the size of the transferred task, and is thus 
assumed to be proportional (with ratio 0 1 )  to the required 
execution time of the task. The propagation delay depends 
on the physical distance/characteristics of the communication 
medium between the sender and receiver nodes, is indepen- 
dent of traffic loads, and is thus assumed to be constant, 
0 2 .  The queueing delay depends heavily on traffic loads. 
Since region-change broadcasts and task transfers introduce 
additional traffic loads, the queueing delay under the proposed 
scheme is expected to be larger than others. However, the 
exact dependency of the queueing delay on these operations 
is difficult to model, because 1) the delay also depends on the 
capacity of the communication medium and the (contention) 
protocols used, both of which are application-dependent, and 
2) the effect of region-change broadcasts on this delay depends 
on the state of the system, which changes dynamically with 
time. We thus assume in our model that the queueing delay due 
to task transfers and region-change broadcasts are proportional 
to (with ratio 03 and 04) the task transfer-out ratio (7) 
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and external task arrival rate (A), respectively.1° Let c ~ ( i )  
and cp(i) (TR and TP) denote the communication overheads 
encountered by a task with i units of execution time (task 
transfer-out ratios) in the random selection scheme and the 
proposed scheme, respectively, then we have c ~ ( i )  = 01 . i + 
02 + 03 . TR and cp(i) = 01 . i + 02 + 03 . rp + 04 + A. 

Considering the effect of communication delays, CYT in (14) 
should be modified as 

m T-1 

where c(z) is cp(i) or c ~ ( i ) ,  depending the scheme under 
consideration. Note that for those tasks whose laxity is less 
than the communication delay, there is no need to transfer 
them. Similarly, PT is modified as 

for the random selection scheme, and 

for the proposed LS scheme. Correctness of these expressions 
can be verified similarly to Corollaries 1-3 as shown in the 
Appendix. 

V. PERFORMANCE ANALYSIS 

To demonstrate the effectiveness of the proposed LS scheme 
and the validity of the analytic models, we present numerical 
results for the case when inter-arrival times of external tasks 
are exponentially distributed. Note, however, that the proposed 
LS scheme is not restricted to exponential distributions. The 
proposed scheme and four other LS schemes, i.e., no LS, LS 
with random selection, LS with state probing," and LS with 
perfect information, are comparatively evaluated with both 
analytic models and simulation. Also, the simulation results 
were compared against those obtained from the analytical 
models. 

A 16-node regular system12 is used as an example. For 
convenience, the average task execution time, E ( R ) ,  is nor- 
malized to 1 throughout our analysis, so that all time-related 
parameters may be expressed in units of average task execution 
time. The external task arrival rate is varied from 0.2 to 0.9. 
The buddy set size is chosen to be 12, since the performance 
improvement by increasing the buddy set size beyond 10 was 
shown in [25] to be insignificant. The maximum number of 
nodes to be probed randomly for each locally unguaranteed 
task is restricted to 5 based on the finding in [3]. 

The computational overhead for each state probing, region- 
change broadcast (b), and probability distribution update (U) 

"The reasons for assuming this linear relationship is that we can easily 
compute these coefficients using linear prediction and the data obtained from 
simulations. 

l 1  Only simulation results are shown for this scheme in our analysis. 
''A system is said to be regular if all node degrees are identical. 

is assumed to be 1, 1, and 2% of E ( R ) ,  respectively. The 
transmission delay associated with each task transfer is as- 
sumed to be 10% of E ( R ) ,  i.e., o1 = 0.1. The propagation 
delay is assumed to be 1% of E(R) ,  i.e., 02 = 0.01. The 
coefficients associated with the queueing delay due to task 
transfers (03), region-change broadcasts (04), and state probes 
(os) are set to 0.1, 0.05, and 0.01, re~pective1y.l~ These 
parameter values will be used throughout our analysis, un- 
less specified otherwise. Besides, for notational convenience, 
{ e l ,  e2, * .  . ,em}iq, ,q  *,..., q m }  is used to denote that a task 
requires execution time ei with probability qi, 1 5 i 5 m. 
If qi = qVi, then (41 ,  q 2 ,  . . . , q m }  is condensed to q. Similar 
notation is used to describe the distribution of task laxity. 

For each combination of system configuration and external 
task attributes, the simulation ran until it reached a confidence 
level 95% in the results for a maximum error (e.g., one 
half of the confidence interval) of 1) 2% of the specified 
probability if Pdyn is the measure of interest, 2) 0.2% of 
the specified response time value if mean response time is 
the measure, 3) 5% of the task arrival rate if the maximum 
system utilization is the measure, and 4) 5% of the ratio value 
if task transfer-out ratio or frequency of task collision is the 
measure. The number of simulation experiments needed to 
achieve the above confidence interval is calculated based on 
the assumption that the parameter to be estimated/measured 
has a normal distribution with unknown mean and variance. 

We will first describe how to determine the values of those 
tunable parameters used in the proposed scheme. We will 
then evaluate and compare different LS schemes with respect 
to several important performance metrics derived from the 
analytic models and simulation. In spite of a large number of 
the parameters involved, the results are found to be quite robust 
in the sense that the conclusion drawn from the performance 
curves for a representative set of parameter values is valid 
over a wide range of parameter values. We will also analyze 
the effects of varying communication overheads and using 
QL (instead of CET) as the measure of workload on the 
performance of different schemes. 

A. Determination of Tunable Parameters in 
the Proposed Scheme 

The accuracy of prior/posterior distributions depends on the 
values of those tunable parameters, such as the probability 
update interval Tp, the probability updating ratio a, and the 
number (K) and values of thresholds of state regions. It is, 
however, difficult to objectively determine an optimal combi- 
nation of these parameters which gives accurate prior/posterior 
distributions while incurring the least amount of overhead. The 
main reasons for this difficulty are: 

The choice of a and Tp depends on the variation of 
workload characteristics, which is application-dependent. 
The number and values of thresholds must be determined 
by optimizing the tradeoff between the resolution of 
state-space division and the overhead of the resulting 
region-change broadcasts. It is impossible to determine 

13All overhead-related parameters are based on the data obtained from 
simulations. 
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CET 5 
0.0 

0.8 
1.6 

2.4 

3.2 

4.0 

4.8 

5.6 

6.4 

7.2 

0.0 

0.8 

1.6 
2.4 

3.2 

4.0 

4.8 

5.6 

6.4 

7.2 

Simulation 

0.2133 

0.5995 
0.8547 

0.9642 

0.9929 

0.9981 

0.9996 

0.9999 

1.0000 

1.0000 

0.2094 

0.6473 

0.8890 

0.9581 

0.9857 

0.9949 

0.9980 

0.9992 

0.9997 

0.9998 

TABLE I 
CET DISTRIBUTIONS FOR DIFFERENT TASK SETS UNDER DIFFERENT SCHEMES (LV = 16) 

Analytic 

0.2121 

0.6216 

0.8602 

0.9611 

0.9887 

0.9961 

0.9990 

0.9998 

1.0000 

1.0000 

0.2192 

0.7380 

0.9184 

0.9662 

0.9892 

0.9923 

0.9961 

0.9984 

0.9996 

0.9999 

No Sharinn 
Analytic 

0.2914 

0.6474 

0.8858 
0.9820 

0.9998 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

Simulation 

0.2810 

0.6421 

0.8897 

0.9867 

0.9998 

1.0000 

1.0000 

1.0000 

1.0000 

1.0000 

Analytic 

0.2000 

0.3867 
0.5281 

0.6316 

0.7263 

0.7816 
0.8412 

0.8824 

0.9086 

0.9293 

the optimal number and values of thresh01 

Simulation 

0.2138 

0.3710 
0.5246 

0.6362 

0.7222 

0.7874 

0.8369 

0.8751 

0.9044 

0.9259 

State Prob. 1 Random Selection 

0.2000 

0.3867 

0.5281 

0.6316 

0.7263 

0.7816 
0.8412 

0.8824 

0.9086 

0.9293 

0.2153 

0.3749 

0.5284 

0.6406 

0.7287 

0.7902 

0.8419 

0.8803 

0.9128 

0.9301 

simulation 

0.2212 

0.6202 
0.8653 

0.9665 

0.9933 

0.9979 

0.9997 

1.0000 

1.0000 

1.0000 

0.2287 

0.7210 

0.9262 

0.9741 

0.9930 

0.9980 

0.9995 

0.9998 

1.0000 

1.0000 

Proposed Scheme 

Analytic 

0.2609 

0.6920 

0.9019 

0.9811 

0.9975 

0.9982 

0.9986 
0.9992 

0.9998 

0.9999 

0.2683 

0.8614 

0.9686 

0.9860 

0.9912 

0.9930 

0.9948 

0.9978 

0.9984 

0.9990 

jimulation 

0.2568 

0.6911 

0.9080 

0.9840 

0.9987 

0.9995 
0.9998 

0.9999 

0.9999 

0.9999 

0.2853 

0.8409 

0.9770 

0.9910 

0.9957 

0.9977 

0.9988 

0.9992 

0.9995 

0.9996 

I without a S3. Since varying the order o 
closed-form expression for this tradeoff. Moreover, the 
optimal number and values of thresholds also depend on 
both the laxity and the execution time distribution of the 
task set. 

Thus, we shall determine the tunable parameters for each task 
set as follows. 

S1. We fix all but one parameter of interest, and obtain 
the performance curve as a function of this parameter 
from which the optimal value for this parameter can be 
determined. Next, we keep the first parameter of interest 
fixed at its optimal value and vary another parameter of 
interest (while keeping all the rest parameters fixed at 
their originally chosen values). This process is repeated 
until all the parameters are exhausted. 

S2. We check whether or not the simulation result (with 
P d y n  as the performance metric) with those tunable 
parameters chosen from S1 is consistent with, or close 
to, that computed from the queueing model. If the 
simulation result agrees with the analytic one, we tag 
this set of parameters as one of candidate parameter 
sets. Note that in the derivation of the performance 
model, we assume that the prioriposterior distributions 
be accurately constructed to obtain the analytic results. 
Consequently, the performance curves obtained from 
the queueing model serve as an upper bound. The set 
of parameters which gives the same performance as 
the analytic model is thus considered as a candidate 
because it yields the correct prior/posterior distribution 
given the computation/communication overheads. 

parameters examined in 
SI may give different values of parameters, we may 
end up with more than one candidate parameter set 
from which we choose the one with the smallest 
P d y n  and at the same time, reasonably small compu- 
tation/communication overheads (e.g., the processing 
power used, the frequency of region-change broadcasts, 
or task transfer-out ratio) as an “optimal” parameter set. 

Note that theoretically, the sets of parameters obtained 
through the above three steps may not be globally optimal, 
but our extensive simulations have shown them to yield 
good results, as compared to other schemes. Moreover, our 
simulation results indicate that the proposed scheme is robust 
to the variation of the tunable parameters. The change in Pdyn 
is shown to be less than for any given change in either 
the threshold interval, the number of state regions, or the 
values of thresholds. The interested readers are referred to [l] 
for numerical examples and a detailed account of this. This 
robustness is an important advantage coming from the use of 
prior/posterior distributions and Bayesian analysis. 

B. Evaluation of Important Performance Metrics 

I )  Distribution of CET, p ~ (  .): The CET distribution can 
be obtained by using either (10) or (20), depending on the 
scheme under consideration. Table I gives some numerical 
examples of the CET distribution with respect to different 
distributions of task laxity for different LS schemes. The CET 
distribution obtained via simulation is shown to be very close 
to the analytic solution, with a 5% error in the cumulative 
distribution, indicating the validity of the analytic models. So, 
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Fig. 4. Probability distribution of cumulative execution time for the task set with X = 0.8, ET = {0 .4 .0 .8 ,1 .2 ,1 .6}~  2 5 ,  and L = { 1 , 2 ,  3}1/3.  

No LS (analytic) 
No LS (simulation) 
Proposed scheme (analytic) 
Proposed scheme (simulation) 
Quasi-perfect (analytic) 

Cumulative execution time (CET) 

Fig. 5. Probability distribution of cumulative execution time for the task set with X = 0.8, ET = {0.027.0.27, 2 . i } l / 3 ,  and L = { l r 2 , 3 } 1 / 3 .  

we shall henceforth use the numerical results derived from 
the analytic models in the subsequent discussion, unless stated 
otherwise. 

CET Distributions with respect to different distributions of 
task execution time are plotted in Fig. 4 and Fig. 5 with 
X = 0.8. The numerical results are so close to one another 
among the state probing scheme, the random selection scheme, 
and the proposed scheme that only one curve corresponding 
to the proposed scheme is plotted. (Also, the results for no 
LS obtained from analytic modeling and simulations are so 
close to each other that they are almost indistinguishable 
in Figs. 4-5.) The CET distributions under different LS 
schemes approach unity much faster than those without U, 

thus justifying the need of LS to handle bursty task arrivals 
in distributed systems. Besides, the CET distributions vary 
significantly as the distribution of task execution time varies; 
QL is thus not adequate to measure the workload of a node. 
More on this will be discussed later. 

One interesting result is that the CET distribution associated 
with the proposed scheme does not approach unity with the 
fastest speed (Table I). However, the proposed LS scheme does 
have a higher P(T 5 t )  than others for Vt E (0, T,,], where 
T,,, is the largest task laxity in the system. This is because the 
proposed scheme, instead of trying to minimizing the average 
CET on each node, aims to make each node's CET less than 
the laxity of any arrived task, so that Pdyn can be minimized. 
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/ 

Task anival rate 

Fig. 6. Probability of dynamic failure (Pdyn) versus task arrival rate for a system with 16 nodes. (Task set: ET = {0.4,0.8, 1.2,1.6}0.25, ~5 = {1,2,3)1/3.)  

Another interesting result is that CET distributions vary with 
the distributions of task laxity even when the distributions of 
task execution time are the same. This is because of the real- 
time application-oriented transfer policy used, where the laxity 
of an incoming task, rather than certain thresholds as in [3], 
[25], and [40], is used to determine whether or not to transfer 
a task. Consequently, we try to minimize Pdyn with respect to 
the distributions of both task laxity and task execution time, 
instead of balancing load only with respect to the distribution 
of task execution time. 

2) Probability of Dynamic Failure: A dynamic failure oc- 
curs if the sum of the queueing-for-execution time and the 
task-transfer (if any) time exceeds the laxity of a task. Let 
PdynJd,e, Pdyn(d,  and Pdyn denote the probability of missing 
the deadline of a task with execution time e and laxity d, 
the probability of missing the deadline of a task with laxity 
d, and the probability of dynamic failure, respectively. Then, 
Pdyn = z j = o P d y n l j q j ,  and, according to our queueing 
model, the other two probabilities can be expressed in terms 
of rj and q j  as: 

1) Noncooperative scheme (no LS): P d y n ~ d , e  - Pdynld = 
-yd+l, where yj is calculated from (10) with X(T) = X 
V T .  

T ,  

- 

2) LS scheme with random selection: 

and 
m 

i = l  

where cR(e) is the communication overhead associated 
with a task with execution time e under the random 

selection scheme, ns = Ld/cR(e)J,  and ~j is obtained 
from (10) using (YT in (21) and / 3 ~  in (22). 

3)  Perfect information scheme: Pdynld,e = Pdynld = Yd+l,  

where y j  is calculated from (10) using X(T) in (18). 
4) The proposed scheme: 

N 

i = O  

and 
m 

where cp(  e) is the communication overheads associated 
with a task with execution time e under the proposed LS 
scheme, nz = Ld/cp (e ) ] ,  and rj is obtained from (20) 
using (YT in (21) and PT in (23). 

Figs. 6 and 7 are the plots of P d y n  versus task arrival rate 
(A), and P d y n p  versus task laxity (d), obtained from both 
the analytic models and simulation. Table I1 shows numerical 
examples of Pdynld under different schemes. The random 
selection scheme outperforms the state probing scheme when 
the system load gets heavy or the task laxity gets tight, e.g., 
L = { 1 ,2 ,3}  as compared to L = {I} in Table II(b). The 
reasons for this are: 1) under heavy loads, most nodes are 
likely to become unable to guarantee tasks, which will in 
turn make state probing unsuccessful most of the time, and 
2) probing other nodes before sending an unguaranteed task 
introduces two communication messages (one for request and 
the other for response), whereas the random selection scheme 
does not require such message. This phenomenon becomes 
more pronounced under stringent time constraints. 

Our analytic and simulation studies have shown the pro- 
posed LS scheme to be significantly better than both the 
state probing scheme and the random selection scheme in 
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Fig. 7. Probability of tasks with laxity d missing deadlines (Pdynld) versus task laxity d for a system with 16 nodes. (Task set: X = 0.8, 
ET = {0.4,0.8,1.2.1.6}0 2 5 ,  L = 1 1 . 2 . 3 . 4 ,  5)o  2 . )  

meeting deadlines. This is in sharp contrast to the common 
notion [3] that simple LS schemes perform nearly as well 
as complex ones for general-purpose systems. By making 
judicious exchangehse of state information, the proposed LS 
scheme-though it incurs more computation/communication 
overheads-achieves notable performance improvement over 
those simple LS schemes. 

The proposed LS scheme is also superior to the focused 
addressing scheme, because in the latter 

1) The focused node or its successor node-the node that 
the focused node will re-transfer the task to-among 
those “seen” capable is basically chosen randomly, thus 

t 

increasing the chance of two nodes sending their unguar- 
anteed tasks to the same node. 

2) Not many RFB messages are issued under light loads, 
making a node unable to keep its observation of other 
nodes up-to-date and thus increasing the chance of 
transferring a task to an incapable focused node. This 
becomes intolerable for tasks with tight laxities. 

3) Requests and replies for bids become excessive under 
heavy loads, thus increasing communication delays. The 
state information collected via periodic state exchange or 
the bids sent from other nodes may become out-of-date. 

The proposed scheme performs, however, worse than the 
quasi-perfect LS scheme because of the processing over- 
head (introduced by the probability update process) and the 
communication delays (in task transfers and region-change 
broadcasts). See Table 111 for the case where all process- 
inglcommunication overheads are set to zero except the task 
transmission delay which remains 10% of the task execution 
time. Without considering all the processingkommunication 
overheads, the performance of the proposed scheme is very 
close to that of the quasi-perfect LS scheme. This implies 

that ignoring implementation overheads underestimates Pdyn, 
which is unacceptable for critical real-time applications. 

3) Maximum System Utilization, Amax: The system utiliza- 
tion is defined as the ratio of external task arrival rate (A) to the 
system service rate ( l / E ( R ) ) .  The service rate is normalized 
to 1 in our analysis, and thus, the system utilization is simply A. 
Since Pdyn  increases as system load gets heavier, there exists 
an upper bound for A, termed as maximum system utilization 
A,,,, below which Pdyn  5 6 can be guaranteed for some 
t > 0. Fig. 8 shows some numerical examples of A,,, versus 
t. Among all LS schemes, the proposed scheme offers the 
performance closest to that of the quasi-perfect LS scheme, 
and usually outperforms both the state probing scheme and 
the random selection scheme by an order of magnitude. 

4) Mean Response Time: Probabilistically, the mean re- 
sponse time (MRT) is the sum of the average CET on a 
node, CEO i p ~ ( i ) ,  and the average required execution time, 
E ( R )  = 1, i.e., S = CzoiipT(i) + 1. It is conventionally 
used as a global system performance index in general- 
purpose distributed systems, and many approaches have been 
developed under the goal of minimizing MRT. Table IV 
gives MRT with respect to different task attributes under 
different schemes. MRT increases as the system load increases 
[Table IV(a)], or the variance of either the distribution of task 
execution time or the distribution of task laxity gets large 
[Table IV(b) and (c)]. 

MRT associated with the proposed scheme varies least 
drastically with the change of distributions of task laxity and/or 
task execution time as compared to those associated with other 
LS schemes. This is due to the use of Bayesian analysis to 
choose a receiver node for task transfer. Moreover, our LS 
scheme outperforms others (except for the quasi-perfect LS 
scheme) even when all the computational overheads are taken 
into account and MRT is used to measure their performance. 
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Lax. No State 
d Sharing Probing 
1 0.6184 0.1515 
2 0.4336 4.779 x 

3 0.2894 3.514 x 

1 0.7121 0.2476 
2 0.5896 5.086 x lo-' 
3 0.4923 4.994 x 

1 0.5894 0.1293 

TABLE I1 
Pdynjd VERSUS TASK LAXITY d FOR DIFFERENT TASK SETS UNDER DIFFERENT SCHEMES (lv 16). (a) = 0.8. (b) = 0.4  

Proposed 
Scheme 

2.438 x lo-' 
3.034 x 
7.156 x 

4.342 x lo-' 
6.432 x 
3.617 x 

2.094 x lo-' 

Quasi- 
Perfect 

5.247 x 10W3 
6.316 x 
5.604 x lo-* 
3.274 x lo-' 
2.316 x 

1.604 x 

5.946 x 

(a) 

Arrival Rate 
(4 

0.8 

0.4 

Lax. No State Random Focused Proposed Quasi- 
d Sharing Probing Selection Addressing Scheme Perfect 
1 0.6184 3.027 x lo-' 4.325 x 2.878 x 1.862 x lo-' 5.247 x 

2 0.4336 3.161 x 2.946 x 2.874 x 2.389 x 6.316 x 
3 0.2894 2.763 x 8.846 x 5.323 x 1.024 x 5.604 x 

1 0.1578 1.875 x 7.894 x 4.275 x lo-' 1.870 x 4.746 x 
2 0.0479 8.764 x lo-' 3.376 x 9.619 x lo-' 3.678 x lo-' 1.042 x 

3 0.0176 4.763 x lo-" 5.416 x lo-' 5.136 x lo-'" 0 0 

This is due to the fact that, to minimize Pdyn, the proposed 
scheme aims to share all the unguaranteed tasks among capable 
nodes (as proven in Theorem 2), thus at the same time 
balancing the load in the system. 

5) Task Transfer-out Ratio, T: The task transfer ratio, T ,  is 
defined as the fraction of arrived tasks (both external and 
transferred-in tasks) that have to be transferred out, and can be 
expressed as T = y3+1q3. T is a measure of the traffic 
overheads due to task transfers. 

Table V gives T for various task attributes under different 
schemes. Generally, T increases as the system load gets heavier 
and/or the task laxity gets tighter. Moreover, as the variance 
of task execution time increases, the task transfer-out ratio 
increases. This is because a node easily becomes incapable 
of guaranteeing tasks upon the arrival of long tasks or tasks 
with a short laxity, thus resulting in more task transfers under 
these conditions. 

Under light and medium loads, the task transfer ratios as- 
sociated with different schemes are very close to one another. 

occur, and thus the location policies employed by different 
schemes have little influence on system performance. When 
the system load gets heavier, the way of choosing a node 
for task transferhetransfer becomes more important. The state 
probing scheme has a task transfer ratio closest to that of the 
quasi-perfect LS scheme since it always checks the capability 
of a node before transferring a task. The proposed scheme 
is slightly inferior to the state probing scheme due to the 
use of imperfect observation to probabilistically decide on the 
location of task transfer. However, the proposed scheme does 
not require, at the time of decision, the additional round-trip 
communication associated with state probing which may be 
detrimental to critical-time applications. 

The focused addressing scheme performs slightly better than 
the proposed scheme under light loads. However, when the 
system load gets heavier, the performance of the focused 
addressing scheme deteriorates due to the increased proba- 
bility of making incorrect LS decisions based on o~t-of-date '~  
information. 

This is because most Of the tasks can be guaranteed locally 
or with at most one task transfer; not many task-retransfers 

14as a result of the increased communication delay caused by an excessive 
number of bidding messages. 
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ET = (0.027,0.27,2.703}1/3 6.106 2.174 2.101 1.979 
L = (1) 3.521 1.547 1.536 1.502 
L = {1,2}0,5 3.521 1.688 1.629 1.679 
L = {0.4,0.8,1.2,l.6}0.2~ 3.521 1.812 1.604 1.579 

probpbility of dynamic failure 

(A = 0.4) 
Task Attributes 
ET= (1) 

L = {1,2,3}1/3 ET = {0.4,0.8, l.2,1.6}0.zs 

L = (1) 
L = { 1,2}0.5 

1.2,1.6}0.2~ L = (0.4,0.8,1.2,1.6}0.~6 

ET = {0.027,0.27,2.703}1/~ 

ET = {0.4,0.8, 

Fig. 8. Maximum system utilization versus the probability of dynamic failure Pdyn for a system with 16 nodes. 

TABLE IV 
COMPARISON OF MEAN RESPONSE TIME AMONG DIFFERENT LS SCHEMES. (a) MRT VERSUS TASK ARRIVAL RATE FOR 

A TASK SET WITH ET = {0.4.0.8.1.2,1.6}0 25 AND L = { 1,2.3}1,3. (b) MRT FOR DIFFERENT TASK SETS UNDER 
DIFFERENT LS SCHEMES (A = 0.8). (c) MRT FOR DIFFERENT TASK SETS UNDER DIFFERENT LS SCHEMES (A = 0.4) 

Prob. Selection Address. Scheme Perfect 
1.154 1.117 1.115 1.117 1.118 1.108 
1.406 1.302 1.268 1.265 1.257 1.236 
1.868 1.498 1.483 1.466 1.446 1.439 
3.521 1.872 1.836 1.789 1.720 1.668 

(a) 

No State Raodom Focused Proposed Quasi- 
LS Prob. Selection Address. Scheme Perfect 

1.348 1.267 1.264 1.259 1.248 1.240 
1.406 1.302 1.268 1.265 1.257 1.236 

1.406 1.198 1.184 1.165 1.167 1.154 
1.406 1.250 1.242 1.233 1.228 1.214 
1.406 1.211 1.190 1.162 1.163 1.148 

1.806 1.350 1.335 1.314 1.316 1.301 

1.822 1.804 & 
1.576 1.547 
1.418 I 1.386 

6) Frequency of Task Collision, ftc: The frequency of task 
collision is defined as the fraction of transferred tasks that are 
not guaranteed on remote nodes after their transfer. This is 
a measure for the capability of the LS algorithms in reducing 
the probability of task re-transfers. Fig. 9 shows the simulation 
results for different LS schemes. 

Generally, ftc increases as the system load gets heavier, 
the task laxity gets tighter, andlor as the variance of task 
execution time increases for the same reason that leads to 
the increase of T in Section V-B5. The state probing scheme 
has the lowest frequency of task collision, because it always 
checks the capability of a node (and thus maintainsluses the 
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0.058 0.068 0.056 0.056 0.052 
0.114 0.156 0.116 0.112 0.107 
0.185 0.338 0.241 0.224 0.184 

TABLE V 
COMPARISON OF TASK TRANSFER-OUT RATIO AMONG DIFFERENT LS SCHEMES. (a) T VERSUS TASK ARRIVAL. RATE FOR THE TASK SET 

WITH ET = {0.4,0.8,1.2,1.6}0.~~ AND L = {1,2,3}1/3 UNDER DIFFERENT LS SCHEMES. (b) X = 0.8 (c) X = 0.4 

I Arrival Rate I State I Random I Focused I Prop. I Quasi- I 
(A)  
0.2 I 0.019 I 0.024 I 0.020 I 0.021 I 0.019 

I Prob. I Selection I Address. I Scheme I Perfect 

(c) 

I I I I I / '  

- l -  - l -  - l - - l - - l . c -  
I I 1 I . f  

I I I I I : I  

- -7 

+ .-..-+ 
*- - --* 
....... 

0-0 

Random selection (simulation) 
State probing (simulation) 
Focusbd address. (simulation) 
Proposed scheme (simulation) 

Task d v a l  rate 

Frequency of task collision versus external task arrival rate for a 16-node system with a task set: ET = {0.4 .0 .8 .1 .2 .1 .6 }0 .~~ and L = {1,2,3}1/3. Fig. 9. 

most up-to-date state information) before transferring a task. 
The random selection scheme, on the other hand, does not use 
any state information for LS decision, and thus necessarily has 
the highest frequency of task collision. The ftc of the proposed 
scheme lies between that of state probing and that of focused 
addressing. The reason for the focused addressing scheme to 
be inferior to the proposed scheme is that the state information 

of other nodes is collected via periodic information exchanges 
and/or in the bids received in previous RFB activities, and may 
be obsolete at the time of choosing a focused node. That is, the 
focused node is likely to be unable to guarantee the task and 
needs to re-transfer the task based on the bids received in the 
current RFB activity. The proposed LS scheme may also use 
obsolete state information, but it neutralizes the undesirable 
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effect of using out-of-date information with Bayesian decision 
analysis. 

7) Sensitivity to Communication Delays: There are two types 
of communication delay needed to be considered in load 
sharing: i) the state-collection delay incurred from region- 
change broadcastsistate probes, where the queueing delay (or 
the queueing-related costs, 03, 04, and 0 5 )  plays a dominat- 
ing role; ii) the delay associated with task transfers, where 
both the queueing delay and the transmission delay (or task 
transmission cost 01) dominate. To study the impact of com- 
munication delay on the performance, Pdyn was computed 
for each scheme with 1) the task transmission costs being 
5, 10, 15, and 20% of the task execution time (i.e. 01 = 
0.05,0.10,0.15,0.20), and 2) the queueing-related costs ob- 
tained from simulation (i.e. 0 2 ,  03,  04, and 05) being halved, 
doubled, and tripled. 

As shown in Fig. 10 and Table VI(a), both the state probing 
scheme and the random selection scheme are more sensitive 
to the variation of transmission delay as compared to the 
proposed scheme. The performance degradation of the state 
probing scheme occurs, because, as the task transmission delay 
increases, other tasks may arrive at the node probed between 
the time it was probed and the time an unguaranteed task of 
the probing node arrived at the probed node. Thus, there is 
not much correlation between the state of the probed node 
when it was probed and the state of that node when an 
unguaranteed task arrived. (Similarly, one can reason about the 
performance degradation of the focused addressing scheme.) 
The performance of the random selection scheme degrades as 
the transmission delay increases, due to the combined effect of 
higher task transfer-out ratio (Table V) and larger transmission 
cost. 

Fig. 11 [Table VI(b)] shows the effect of varying queueing- 
related costs on the performance of LS schemes. The state 
probing scheme is most sensitive to the variation of the queue- 

ing delay because, in addition to suffering the same effect 
as varying the transmission delay, the state probing scheme 
generates two additional messages per probe increasing the 
possibility of a task missing its deadline, especially when the 
queueing delay is large. Varying queueing-related costs have 
the same effect as varying transmission delay on the random 
selection scheme. 

By contrast, the proposed scheme is made less susceptible 
to both the queueing delay and the transmission delay by us- 
ing prior/posterior distributions to characterize the correlation 
between the observed state and the true state. 

8) CET Versus QL as the Measure of Workload: All dynamic 
LS schemes use information on the workload of each node to 
determine when and where to transfer a task. As discussed 
before, QL is not appropriate to describe the workload state 
of a node for real-time applications. To show this, we ran 
simulations with QL as the state and compared the result 
with that obtained from the analytic solution with CET as the 
state. As shown in Table VII, the performance of the proposed 
scheme with QL as the state is close to (and sometimes 
worse than) that of the random selection scheme. This is 
because the proposed scheme essentially degenerates to the 
random selection scheme with 1) improper QL information 
which is correlated to CET in an unpredictable manner, 
and 2) more overheads due to region-change broadcasts and 
probability updates. The performance degradation becomes 
more pronounced as the variance of the distribution of task 
execution time gets larger. 

VI. CONCLUDING REMARKS 
Queueing models are developed to quantitatively assess the 

proposed scheme as well as three other schemes. Instead of 
the commonly-used QL, CET is used as the load state of each 
node. Each node's workload most relevant to a real-time task 
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Lax. State Random 
d Prob. Selection 
1 4.091 x 8.415 x 
2 3.758 x lo-' 1.362 x lo-' 
3 2.813 x 7.145 x 
1 0.1515 0.1286 

3 3.514 x lo-' 1.447 x 
1 0.2134 0.1823 
2 2.801 x 7.216 x lo-$ 

2 4.779 x 10-3 2.302 x 10-3 

(times queueing-related coefficients) 

Fig. 11. Probability of dynamic failure P d y n  versus queueing delay coefficients for a system of 16 nodes. (Task set: X = 0.8, ET = { O .  ~, 

tripled 

0.8,1.2, 
L = { l . 2 ,3} l , 3 . )  

3 5.513 x 2.875 x 1.324 x lo-' 9.578 x 
1 0.4194 0.2458 0.2173 4.245 x 
2 7.475 x lo-' 1.675 x 1.267 x lo-' 7.213 x 
3 3.842 x 2.334 x 1.726 x lo-' 2.046 x 

TABLE VI 

UNDER DIFFERENT SCHEMES. (a) EFFECI OF TASK TRANSFER COSTS ON Pd,,. (b) EFFECT OF QUEUEING DELAYS ON Pdyn 
EFFECTS OF COMMUNICATION DELAY ON P d y n  FOR A TASK S E T  WITH ET = {0.4.0.8,1.2,1.6}0 25  AND L = {1,2,3},/3 

Transfer Costa Prob. 
0.1090 I 3 I 3.257 x 5% 

1.167 x 
0.1515 'I 

20% 

2596 

4.779 x 10-3 
3.514 x lo-' 

0.1834 
7.524 x lo-' 

0.2068 
5.851 x 10-5 

1.878 10-4 

3.869 x 10-4 

1.154 x 

0.2550 
1.394 x lo-' 

(a) 

Prop. 
Scheme 

1.845 x 
1.654 x lo-' 
1.987 x 
2.438 x 
3.034 x l W 4  
7.156 x 
3.725 x 
9.845 x 
1.436 x lo-' 
6.029 x 
1.346 x 

6.486 x lo-' 
3.421 x 
6.857 x 

2.112 x 10-5 

610.25, 

can thus be accurately modeled. Moreover, by including all 
computationlcommunication overheads, the proposed analytic 
models provide a means of evaluating the absolute real-time 

performance of LS schemes. The assumptions and approxi- 
mations made in our analysis were checked with event-driven 
simulations. 
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d (state:CET) (state:QL) (state:CET) 
1 0.1286 0.1085 2.438 x 
2 2.302 x 1.625 x 3.034 x low4 
3 1.447 x 9.604 x 7.156 x 
1 0.1856 0.2492 4.342 x 

TABLE VI1 
PERFORMANCE COMPARISON OF USING CETiQL AS THE MEASURE OF WORKLOAD 

0.27, 2.703}1/3, 
L = {1,2,3}1/3 
ET = {0.4,0.8,  

I X  = 0.8) I laxity I Random Selection I Proposed Scheme 1 Proposed Scheme 

2 3.543 x 4.924 x lo-' 6.432 x 

3 2.967 x 3.142 x 3.617 x 

8.242 x lo-* 7.606 x 2.094 x 

Task Arrival rate 
Der node 

1 = 0.8 

System Laxity P d y n ( d  

Attribute d 
Homogeneous System 

1 5 i 5 64) 
Inhomogeneous System 

(X i  = 0.8, 

( X j  = 0.65, X16+j = 0.95, 
X s ~ + j  = 0.65, X*+j = 0.95, 

1 = 0.6 

3.326 x 
8.798 x 
1.266 x lo-' 
1.470 x 

9.872 x lo-' 
5.855 x 10-6 

1 5 j 5 16) 

(X i  = 0.6, 2 2 . 5 6 2 ~  lo-' 
3 6.745 x lo-' 1 5 i 5 64) 

Inhomogeneous System 1 1.565 x lo-' 

Xsa+j = 0.65, X,a+j = 0.95, 3 3.682 x lo-' 

Homogeneous System 1 5 . 0 7 9 ~  

( X j  = 0.65, Xl6+j = 0.95, 2 9.782 X lo-' 

1 5  j 5 16) 

Both the analytic and simulation results indicate that by us- 
ing judicious exchangehse of state information and Bayesian 
decision mechanisms, the proposed LS scheme makes a signif- 
icant improvement in minimizing Pdyn over those simple LS 
algorithms. This is in sharp contrast to the common notion 
that simple LS algorithms yield performance close to that 
of complex algorithms for general-purpose systems where 
minimizing the mean response time is the main concern. Since 
missing a task deadline can cause a disastrous accident in a 
real-time environment, a more complex, but intelligent, LS 
scheme should be employed to minimize PdyTL. 

We assumed a first-come-first-served policy on each node: 
a newly-arrived task is inserted at the end of task queue if 
it can be guaranteed on that node, and will otherwise be 
considered for transfer. This policy is simple and ensures to 
preserve the existing guarantees. However, to reduce I'dyn, 

the minimum-laxity-first-served policy is shown to be better 
[41] for queueing the incoming tasks at each node. That is, the 
tasks on a node are ordered by their laxities, and a task with 
the minimum laxity is always executed first by the node. If the 
minimum-laxity-first-served policy is employed, the transfer 
policy would not be simply of the threshold type. For example, 
a newly-arrived task may be inserted somewhere in the task 

queue, not necessarily at the end of the queue, thus possibly 
violating some of existing guarantees. (Such tasks, if possible, 
must be transferred to other capable nodes.) How to modify 
the parameters CYT and ,& to account for this transfer policy 
is currently under investigation. 

Though we considered only homogeneous systems, the 
proposed scheme can also be applied to heterogeneous systems 
where different nodes may have different arrival rates of exter- 
nal tasks. Our simulation results indicate that the performance 
improvement is even more pronounced for heterogeneous 
systems than homogeneous ones with the same average task 
arrival rate (see Table VIII). This is because that increasing 
the degree of heterogeneity increases the possibility that un- 
even task arrivals temporarily make some nodes incapable of 
guaranteeing tasks while leaving other nodes idlehnderloaded. 
This situation can be effectively handled, and the processing 
power of those idlehnderloaded nodes can be fully utilized 
by using the proposed LS scheme. How to extend our analytic 
models to include the case for heterogeneous systems is an 
interesting, but difficult, matter. 

APPENDIX 
VERIFICATION OF FLOW CONSERVATION 

To verify the correctness of (15), one has to show that flow 
conservation holds for the system with the random LS scheme. 

Corollary I :  For the random LS scheme, a k p ~ ( k )  = 
b k .  

Proof: 

x m k-1 53 

k=O k=O i = l  J = O  
7n zc cx 

= c Ari,Y,+l 
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where the second equality follows from interchanging the 
summation indexes while preserving the range of summation 
appropriately, and the third equality follows from q i j  = 0 for 

To verify the correctness of (16), one has to show that 
flow conservation holds for the system with the proposed LS 
scheme, i.e., 

Corollary 2: When those tasks being rejected are not con- 
sidered, 

j ? T m + l .  0 

k=O k=O 

for the proposed scheme. 
Proof: 

j = 1  

However, from Corollary 1, 

k=O j=1 

Inconsistency results from the nonzero probability of dynamic 
failure, since the difference, ~ j ” + ~ ,  is the probability that a 
task with laxity j will fail to complete in time. If these failed 
tasks are not rejected or continuously transferred from node 
to node, thus conserving task flow, and/or the probability of 
dynamic failure is negligibly small, the summation in (16), 
l+yj+l+y;+l+...+y;;: can be replaced by Cr=o$+l = 
1/(1 - y j ) ,  thus PT = A @ .  j ~ j + 1 / ( 1  . - yj+l) ,  and 

0 
To verify the correctness of (18), one has to show that flow 

conservation holds for the system with the quasi-perfect LS 
LS scheme. 

Corollary 3: Without considering those tasks being re- 
jected and declared not to meet their deadlines, we have 

cp=o P k p T ( k )  = Cr=r~ QkPT(k). 

33 

for the quasi-perfect LS scheme. 

Proof: 

T- 

j = O  

= A. 

Inconsistency again results from the nonzero probability of 
dynamic failure. If this probability (or 77) is negligibly small 
and/or the failed tasks are continuously transferred among 
nodes, task flow will be conserved. 0 

ACKNOWLEDGMENT 

The authors wish to thank Prof. M. Srinivasan at the 
University of Michigan, and the anonymous reviewers for 
their valuable comments on an early draft of this paper. Y- 
C. Chang’s assistance in preparing event-driven simulation 
programs is also gratefully acknowledged. 

REFERENCES 

K. G. Shin and C.-J. Hou, “Design and evaluation of effective load 
sharing in distributed real-time systems,” in Proc. Third IEEE Symp. 
Parallel and Distributed Processing, Dec. 1991, pp. 670-677. Also 
IEEE Trans. Parallel Distributed Sysf., to be published. 
M. Livny and M. Melman, “Load balancing in homogeneous broadcast 
distributed systems,” in Proc. ACM Compuf. Network Performance 
Symp., 1982, pp. 47-55. 
D. L. Eager, E. D. Lazowska, and J. Zahojan, “Adaptive load sharing 
in homogeneous distributed systems,’’ IEEE Trans. Software Eng., vol. 
SE-12, no. 5, pp. 662-675, 1986. 
C. M. Krishna and K. G. Shin, “Performance measures for multiproces- 
sor controllers,” in Performance ’83, A. K. Agrawala and S. K. Tripathi, 
Eds., North-Holland, 1983, pp. 229-250. 
K. G. Shin, C. M. Krishna, and Y. H. Lee, “A unified method for 
evaluating real-time computer controllers its application,” IEEE Trans. 
Automat. Confr., vol. AC-30, pp. 357-366, Apr. 1985. 
M. H. Woodbury and K. G. Shin, “Evaluation of the probability of 
dynamic failure and processor utilization for real-time systems,” in Proc. 
IEEE Real-Time Sysf. Symp., 1988, pp. 222-231. 
T. P. Yum and H.-C. Lin, “Adaptive load balancing for parallel queues 
with traffic constraints,” IEEE Trans. Commun., vol. COM-32, pp. 
1339-1342, Dec. 1984. 
Y. T. Wang and R. J. T. Morris, “Load sharing in distributed systems,” 
IEEE Trans. Comput., vol. C-34, pp. 204-217, Mar. 1985. 
T. C. K. Chou and J. A. Abraham, “Distributed control of computer 
systems,” IEEE Trans. Compuf., vol. C-35, June 1986. 
C.-Y. H. Hsu and J. W . 4 .  Liu, “Dynamic load balancing algorithms 
in homogeneous distributed systems,’’ in IEEE Proc. 6th Inf. Conf 
Distributed Compuf. Sysf., 1986, pp. 216-223. 
A. Weinrib and S. Shenker, “Greed is not enough: Adaptive load sharing 
in large heterogeneous systems,” in IEEE INFOCOM’88-Conf Comput. 
Commun. Proc., 1988, pp. 986-994. 
J. A. Stankovic, “Simulation of three adaptive, decentralized controlled, 
job scheduling algorithms,” Comput. Networks, vol. 8, pp. 199-217, 
1984. 
-, “An application of Bayesian decision theory to decentral- 
ized control of job scheduling,” IEEE Trans. Comput., vol. C-34, pp. 
117-130, Feb. 1985. 



SHIN AND HOU: ADAPTIVE LOAD SHARING SCHEMES 761 

A. B. Barak and A. Shiloh, “A distributed load-balancing policy for 
a multicomputer,” Sofrware-Practice and Exper., vol. 15, no. 9, pp. 
901-913, 1985. 
R. G. Smith, “The contract net protocol: High-level communication and 
control in a distributed problem solver,” IEEE Trans. Comput., vol. C-29, 
pp. 1104-1113, Dec. 1980. 
P. Krueger and R. Finkel, “An adaptive load balancing algorithm for 
a multicomputer,” Tech. Rep. 539, Dep. Comput. Sci, Univ. Wiscon- 
sin-Madison, Apr. 1984. 
J. A. Stankovic, K. Ramamritham, and S .  Chang, “Evaluation of a 
flexible task scheduling algorithm for distributed hard real-systems,” 
IEEE Trans. Comput., vol. C-34, pp. 1130-1141, Dec. 1985. 
J.  F. Kurose and R. Chipalkatti, “Load sharing in soft real-time 
distributed computer systems,’’ IEEE Trans. Comput., vol. C-36, pp. 
993-999, Aug. 1987. 
T. L. Casavant and J.  G. Kuhl, “Analysis of three dynamic distributed 
load-balancing strategies with varying global information requirements,” 
in IEEE Proc. 7th Int. Conf Distributed Comput. Syst., 1987, pp. 
185- 192. 
S. Zhou, “A trace-driven simulation study of dynamic load balancing,” 
IEEE Trans. Software Eng., vol. SE-14, pp. 1327-1341, Sept. 1988. 
K. Ramamritham, J .  A. Stankovic, and W. Zhao, “Distributed sched- 
uling of tasks with deadlines and resource requirements,” IEEE Trans. 
Comput., vol. C-38, pp. 1110-1123, Aug. 1989. 
R. Mirchandaney, D. Towsley, and J. A. Stankovic, “Analysis of the 
effect of delays on load sharing,” IEEE Trans. Comput.. vol. C-38, pp. 
1513-1525, Nov. 1989. 
L. M. Ni, C. W. Xu, and T. B. Gendreau, “A distributed drafting 
algorithm’ for load balancing,” IEEE Trans. Software Eng.. vol. SE-I 1, 
no. 10, pp. 1153-1161, 1985. 
A. Ha6 and X. Jin, “Dynamic load balancing in a distributed system 
using a decentralized algorithm,” in IEEE Proc. 7th Int. Conf Distributed 
Comput. Syst., Sept. 1987, pp. 170-184. 
K. G. Shin and Y.-C. Chang, “Load sharing in distributed real-time 
systems with state change broadcasts,” IEEE Trans. Comput., vol. C-38, 
pp. 1124-1142, Aug. 1989. 
-, “A coordinated location policy for load sharing in hypercube 
multicomputers.” J. and Parallel Distributed Comwt.,  1993, to be 
published: 
R. Mirchandanev. D. Towslev. and J. A. Stankovic, “Adaptive load shar- 
ing in heterogeneous systems,” in IEEE Proc. 9th Int. Chf: Distributed 
Comput. Syst., 1989, pp. 298-306. 
L. M. Ni and K. Hwang, “Optimal load balancing in a multiple processor 
system with many job classes,” IEEE Trans. Software Eng., vol. SE-1 1, 
no. 5, pp. 491-496, 1985. 
H.-Y. Chang and M. Livny, “Distributed scheduling under deadline 
constraints: A comparison of sender-initiated and receiver-initiated 
approaches,” in Proc. IEEE Real-time Syst. Symp., 1986, pp. 175- 181. 
K. J.  Lee and D. Towsley, “A comparison of priority-based decentralized 
load balancing in distributed computer systems,” in Proc. Performance 
’86, May 1986, pp. 70-78. 
R. Alonso and L. L. Cova, “Sharing jobs among independently owned 
processors,” in IEEE Proc. 8th Int. Conf Distributed Comput. Syst., - .  
1988, pp. 282-288. 
M. H. DeGroot, Optimal Statistical Decisions. New York: McGraw- 
Hill, 1970. 
K. G. Shin and Y.-C. Chang, “Load sharing in hypercube multicomput- 
ers for real-time applications,” in Proc. 4th Conf Hypercube, Concurrent 
Comput., and Appl., 1989, pp. 617-622. 
S. Ross, Applied Probability Models with Optimization Applications. 
San Francisco, CA: Holden-Day, 1970. 
D. Gross and C. Harris, Fundamentals of Queueing Theory, second ed. 
New York: Wiley, 1985. 
M. L. Chaudhry and J.  G. C. Templeton, A First Course in Bulk Queues. 
New York: Wiley, 1983, ch. 2-3, pp. 58-61, 127-130. 
L. Kleinrock, Queueing Systems, Volume 1: Theory. New York: Wiley, 
1975. 
J. F. Kitchin, “Practical Markov modeling for reliability analysis,” in 
IEEE 1988 Proc. Annu. Reliability and Maintainability Symp., 1988, pp. 

290-296. 
[39] D. Bertsekas and R. Gallager, Data Networks. Englewood Cliffs, NJ: 

Prentice-Hall, 1987. 
[40] S. Pulidas, D. Towsley, and J. A. Stankovic, “Embedding gradient 

estimators in load balancing algorithms,’’ in IEEE Proc. 8th Int. Conf 
Distributed Comput. Syst., 1988, pp. 482-490. 

(411 J. Hong, X. Tan, and D. Towsley, “A performance analysis of minimum 
laxity and earliest deadline scheduling in a real-time system,” IEEE 
Trans. Comput., vol. C-38, pp. 1736-1744, Dec. 1989. 

Kang G. Shin (S’75-M’78-SM’83-F’92) re- 
ceived the B.S. degree in electronics engineering 
from Seoul National University, Seoul, Korea, 
in 1970, and both the M.S. and Ph.D degrees 
in electrical engineering from Come11 University, 
Ithaca, NY, in 1976 and 1978, respectively. 

From 1978 to 1982 he was on the faculty of 
Rensselaer Polytechnic Institute, Troy, NY. He has 
held visiting positions at the U.S. Airforce Flight 
Dynamics Laboratory, AT&T Bell Laboratories, 
Computer Science Division within the Department 

of Electrical Engineering and Computer Science at U.C. Berkeley, and 
International Computer Science Institute, Berkeley, CA. He is Professor and 
Associate Chair of Electrical Engineering and Computer Science (EECS) 
for Computer Science and Engineering, The University of Michigan, Ann 
Arbor. He has authored/coauthored over 240 technical papers (more than 
100 of these in archival journals) and several book chapters in the areas 
of distributed real-time computing and control, fault-tolerant computing, 
computer architecture, and robotics and automation. In 1985, he founded the 
Real-Time Computing Laboratory, where he and his colleagues are currently 
building a 19-node hexagonal mesh multicomputer, called HARTS, to validate 
various architectures and analytic results in the area of distributed real-time 
computing. 

In 1987, Dr. Shin received the Outstanding IEEE TRANSACTIONS ON 
AUTOMATIC CONTROL Paper Award for a paper on robot trajectory planning. 
In 1989, he also received the Research Excellence Award from The University 
of Michigan. He was the Program Chairman of the 1986 lEEE Real-Time 
Systems Symposium (RTSS), the General Chairman of the 1987 RTSS, the 
Guest Editor of the 1987 August special issue of IEEE TRANSACTIONS ON 
COMPUTERS on Real-Time Systems, and is a Program Co-chair for the 1992 
International Conference on Parallel Processing. He currently chairs the IEEE 
Technical Committee on Real-Time Systems, is a Distinguished Visitor of 
the Computer Society of the IEEE, an Editor of IEEE TRANSACTIONS ON 
PARALLEL AND DISTRIBUTED SYSTEMS, and an Area Editor of International 
Journal of Time-Critical Computing Systems. 

Chao-Ju Hou (S’88) was born in Taipei, Taiwan, 
Republic of China She received the B.S.E. de- 
gree in electrical engineering from National Taiwan 
University in 1987, the M.S.E. degree in electrical 
engineering and computer science, and the M.S.E 
degree in industrial and operations engineering both 
from the University of Michigan, Ann Arbor, in 
1989 and 1991, respectively. 

She is now working as a Research Assistant in 
the Real-Time Computing Laboratory, and expects 
to receive the Ph.D. degree in electrical engineering 

and computer science from the University of Michigan, Ann Arbor, in 
1993 Her research interests are in the areas of distributed and fault-tolerant 
computing systems, queueing systems, estimation and decision theory, and 
performance modelingievaluation. 


