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Abstract 

Thas paper describes a software fault injector (SFI) 
developed t o  facilitate the validation of dependability 
mechanisms on an experimental distributed real-time 
system called HARTS [l]. SFI introduces a number 
of extensions t o  previous work done on fault injection 
tools. In particular, it allows combinations of fault 
types to be injected in the nodes of a distributed sys- 
tem. It also allows control of all timing parameters of 
.the injection ad each node. A description is given of  
the features and implementation of SFI. As  a demon- 
stration of the utility of SFI, the results of some sample 
experiments are presented. 

1 Introduction 

Computing systems employed in life- and mission- 
critical applications must be highly dependable. In 
practice, the dependability requirements of these sys- 
tems are met by employing a variety of fault-tolerance 
and fault-recovery mechanisms, both in software and 
in hardware. In a dependable distributed computer 
system, applications must be designed to tolerate 
faults in the nodes of the system. Reliable distrib- 
uted applications may use mechanisms such as nes- 
ted transactions [2] or process groups [3] to deal with 
faults in different nodes of the system. Any such mech- 
anisms used must be rigorously validated to verify that 
the system meets its dependability requirements. 

* The work reported here is supported in part by the Of- 
fice of Naval Research under Contract N00014-91-J-1115, and 
the National Aeronautic and Space Administrationunder Grant 
NAG-1220, and the National Science Foundation under Grant 
MIP-9012549. Any opinions, findings, and conclusions or re- 
commendations expressed in this paper are those of the authors 
and do not necessarily reflect the views of the funding agencies. 

Verification and evaluation of dependability mech- 
anisms can be performed either statically by proof-of- 
correctness and probabilistic modeling, or dynamically 
by experimentation 141. Complete static verification 
of large systems can be very difficult due to the com- 
plexity of the models. When models are used, their 
accuracy often depends on the dependability paramet- 
ers used for the components of the system. These 
parameters may be difficult to estimate, and it is de- 
sirable to use parameters obtained from experimental 
testing of the system. As a result, dynamic verific- 
ation is an important part of the validation process 
for dependable systems. However, dynamic verifica- 
tion can also be very difficult due to  the large mean- 
time-between-failure (MTBF) of highly dependable 
systems. In order to measure or verify the dependab- 
ility of fault-tolerant distributed systems experiment- 
ally, there must be some way to accelerate the occur- 
rence of faults, errors, or failures in the nodes of the 
system. 

Fault injection is the general name given to a num- 
ber of techniques used to accelerat8e the occurrence of 
faults, errors, or failures in a system during dynamic 
verification. A fault injector is a tool which imple- 
ments these techniques. Previously used fault injec- 
tion techniques include hardware fault injection, soft- 
ware fault injection, and simulated fault injection. In 
hardware fault injection, faults are typically injected 
at  the pin level [5, 6, 7,  8, 91. One exception is [lo], 
in which the faults were injected by exposing the sys- 
tem to heavy-ion radiation. In software fault injection 
experiments, errors have been injected by altering the 
content of registers or memory [11, 12, 131, or by alter- 
ing sequences of instructions to emulate the behavior 
of hardware faults [14]. In simulated fault injection, 
faults or errors are injected into simulation models of 
the system [15, 161. 
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Faalt injection can be used to experimentally de- 
termine the dependability parameters of the system, 
such (as detection latency or fault coverage, and can aid 
in the measurement of other aspects of the system’s 
behavior. Fault injection can also be used to test the 
operation of fault-tolerance mechanisms as part of the 
system design process. Methodologies useful in de- 
termining the locations that should be faulted in order 
to fully test fault-tolerance mechanisms are discussed 
in [17, 181. 

In previously implemented fault injectors, the 
classes of faults and errors available to the user are 
either physical faults, or are chosen for their ability 
to represent some underlying physical fault model. In 
addition, the user’s control over the timing of the in- 
jection is typically limited to specifying either per- 
manent or transient faults. Even when intermittent 
faults can be injected (e.g., [9]), the available timing 
parameters are limited. These restrictions can com- 
plicate the testing of distributed dependability mech- 
anisms, which are often designed to tolerate the oc- 
currence of certain failure modes in the nodes of the 
system, without regard for the underlying causes of 
those failures [19]. For example, a reliable broadcast 
protocol may be designed to tolerate omission failures 
in the network, without regard to the type of fault 
that caused the failure. In order to validate the prop- 
erties of such distributed dependability mechanisms, 
the user needs to be able to recreate the desired fail- 
ure mo’des in the nodes of the system. 

This paper presents SFI (Software Fault-Injector), 
a fault injection tool designed to facilitate the test- 
ing of diistributed dependability mechanisms. SFI sup- 
ports low-level fault injection for testing dependability 
mechanisms on single nodes. SFI also provides higher 
level injection methods that can be combined to emu- 
late different failure modes in the nodes of a distrib- 
uted system. This allows the user to cause the nodes 
of the system to  exhibit the desired failure modes 
without having to determine the lower level faults 
that would cause those failures. With SFI, faults can 
be injected as transient, intermittent, and permanent 
faults, and the timing parameters of all fault types 
can be completely specified by the user. SFI has been 
implemented on HARTS, an experimental distributed 
real-timesystem [l], and it integrates quickly with any 
application developed for HARTS, without requiring 
any change in the application. Section 2 gives a brief 
description of the HARTS hardware and software en- 
vironment. Section 3 describes the capabilities and 
implementation of SFI. 

One important issue in the design of dependable 
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distributed systems is detecting the occurrence of 
faults, either in nodes or connecting network links, 
and then using that information to correctly recover 
and maintain correct system operation. When faults 
only occur intermittently, the problem of detecting 
and correcting those faults becomes even more diffi- 
cult. In Section 4 we present a sample experiment 
that demonstrates SFI by using it to explore the effect 
of intermittent communication failures on the commu- 
nications between two nodes. Finally, Section 5 gives 
a conclusion and a discussion of future work. 

2 HARTS environment 

HARTS is an experimenhl distributed real-time 
system, which is being built in  the Real-time Com- 
puting Laboratory at  The University of Michigan [l]. 
It is comprised of multiprocessor nodes connected 
by a point-to-point interconnection network. Each 
HARTS node consists of several Application Pro- 
cessors (APs) which are used for running application 
tasks, a.nd a Network Processor (NP). The N P  con- 
tains the interface to the network, buffer memory, and 
a general-purpose processor which handles most of the 
processing rela.ted to communica.tion. 

In the current configura.tion, the nodes of the 
HARTS are VMEbus-based systems. Each node 1ia.s 
1-3 A P  cards, a. System Cont,roller card, a Net- 
work Processor card, and an Ethernet processor card 
(ENP). The Ethernet serves as a link to the worksta- 
tions used for software development. A custom NP 
boa,rd is currently under development. 

Each of the nodes of HARTS runs the HARTOS op- 
erating system [20]. The first version of HARTOS is 
primarily an extension of the functionality of the uni- 
processor pSOS1[21] red-time operating system kernel 
to work in a multiprocessor and dist,ributed environ- 
ment. pSOS services are enhanced to provide inter- 
processor communica.tion (both unreliable datagram 
and RPC) and a distributed name service. While the 
custom NP is under development, the ENP is being 
used to execute the HARTOS communication soft- 
ware. Once the custom NP is completed, the HAR- 
TOS software will be ported t,o i t .  

Software for HARTS is developed on Sun worksta- 
tions. A Sun 3/150 serves as the main connection to 
HARTS. HARTS applications a.nd system software are 
downloaded from this workstation through the local 
HARTS Ethernet. The workst(a.tion is also connected 
to the campus computing fxilities by a sepazate Eth- 
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Memory faults 
Fault types I Interarrival I Injection I 

_. 

Adder 

Heap 

Table 1: Memory error options 

time effect 
Deterministic User defined 

ernet connection. In this way, programs developed and 
compiled on other workstations may be downloaded to 
HARTS, but HARTS executes with a dedicated local 
Ethernet. The workstation also serves as the console 
for the HARTS nodes. 

Communi 
Fault types 

Lose outgoing messages 
Lose incoming messages 
Lose all messages 

, Alter messages 
Delay messages 

ation faults 
Inter arrival 
time 
Deterministic 
Exponential 
Permanent 

Header 

Table 2: Communication failure options 

Processor faults 
Fault types 1 Interarrival I Injection 

11 Multidier I Permanent I 11 
Table 3: Processor fa.ilure options 

3 Software Fault Injector 

The Software Fault Injector (SFI) provides a suite 
of tools that simplify and automate the design and 
execution of dependability experiments. It simplifies 
the measurement of dependability parameters and the 
validation of dependability mechanisms in distributed 
systems, and provides lower-level injection methods to 
support testing of dependability mechanisms on single 
nodes. 

SFI consists of two main components: the SFI Ex- 
periment Generator (SEG) and the SFI Control Mod- 
ules (SCM). The SEG takes a user-supplied experi- 
ment description file to create the executable files and 
script files used to run the fault injection experiments. 
The SCM consists of the routines that provide the ac- 
tual fault injection and behavior modification capab- 
ilities. The SEG compiles the appropriate portions of 
the SCM with the workload for each node. The rela- 
tionship between these components is shown in Fig- 
ure 1. 

The types of faults, errors, and failures that can be 
injected with SFI are discussed in Section 3.1. Sec- 
tion 3.2 discusses how SFI is used to perform fault 
injection experiments. Section 3.3 describes how the 
injection is performed and how the SFI is implemen- 
ted. 

3.1 SFI fault models 

Dependable distributed applications and operating 
systems must be designed to function in the presence 
of a variety of possible failure modes at  the processing 
nodes and in the communication links between nodes. 
In order to simplify testing of such applica.tions or 

other dependability mechanisms on HARTS, SFI has 
been designed to allow the injectmion of a variety of er- 
rors and failure types. The user can choose any com- 
bination of these necessary to create the errors or fail- 
ure modes that are appropriate for the experiments to 
be run. The possible errors and failures are: 

0 Memory errors: Transient, intermittent, or 
(pseudo-)permanent errors in memory. 

0 Communication failures: Lost, altered, or delayed 
messages. 

0 Processor failures: Failures in functional units of 
the CPU. 

Each error or failure has a number of possible vari- 
ations that can be specified by the user in the ex- 
periment description file (see Tables 1, 2, and 3). A 
memory error can be injected as a single bit, two- 
bit compensating, or burst (byte) error. In addi- 
tion, the duration of a memory error can be selec- 
ted to emulate transient, intermittent or (pseudo- 
)permanent memory faults. A transient fault is only 
injected once, at  a given time after the start of an 
experiment run. An intermitt,ent fault is injected re- 
peatedly at  the same location. For an intermittent 
fault, the user can specify the distribution of the in- 
terarrival time between injections. The interarrival 
time can be deterministic, with a set time between in- 
jections, or can follow an exponential distribution with 
a given mean. Other interarrival distributions can be 
added if needed. If the interarrival time between in- 
jections is small, the injected fault, will behave like a 
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Modified Hartos 

Figure 1: Relationship of SFI files. 

permanent fault. Note that this is not a true perman- 
ent fault, as it is possible for the faulted location to 
be overwritten between injections. 

The location a t  which a memory error is to be injec- 
ted can either be explicitly specified, or can be chosen 
at  randlom from a list of target locations generated 
by SFI. This list of target locations is created using 
the syrribol table generated by the compiler, and can 
be anywhere in the memory space of the processor. 
If desired, the errors can be explicitly placed in data 
registers, global variables, code locations, or dynam- 
ically allocated memory. The user can specify which 
types of locations should be used. SFI can also create 
script files to perform multiple run experiments, each 
injecting a different location. For example, if the user 
wanted to test the effect of stuck-at faults occurring in 
the progiram code on the program’s behavior, he would 
specify memory faults as active, with the fault type as 
a single bit stuck-at-zero (or stuck-at-one) fault, and 
the location as all program code locations. SEG would 
then generate script files that would run the experi- 
ment once for each memory location, injecting faults 
in a different location on each run. 

Communication failures are specified in a manner 
similar to memory errors, except with some additional 
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options. Messages can be lost, altered, or delayed. If 
the node has multiple incoming and outgoing links, as 
in a point-to-point architecture such as HARTS [l], 
different fault types can be specified separately for 
each link. Lost messages are simply not delivered to 
the recipient. The user can specify whether outgoing, 
incoming, or all messages are lost a t  the faulty link. 
Messages can be lost intermittently, with a probability 
specified by the user, or alternatively, every message 
can be lost. Messages may be altered in the same 
manner as memory locations, i.e., by inserting single 
bit, two-bit compensating, or burst errors. The user 
can specify whether the error is to be injected into the 
body of the message or into the header, which contains 
routing information. As before, the injection can be 
intermittent or permanent. For delayed messages, a 
method must be specified to determine how long each 
message will be delayed. The delay time can be either 
deterministic or can follow an exponential distribution 
with a user supplied mean. This variety of communic- 
ation failures, and the ability to combine failure types, 
allows the injection of a variety of failure semantics, 
including Byzantine failures. 

Processor failures emulate the effect of faults in- 
ternal to the CPU, either in functional units such as 



ALU, or in internal CPU data paths. These failures 
are implemented by allowing the user to specify al- 
ternate code sequences for any given operation or set 
of operations. Currently SFI implements failures in 
the arithmetic unit as built-in failure modes. For ex- 
ample, the result of all ALU operations can have any 
bit stuck-at a particular value. Additional fault loca- 
tions can be added as needed. 

In addition to the parameters that can be specified 
for each error or failure type, the user can specify 
global experiment timing parameters. These allow the 
user to specify the start and stop time of injection on 
each node. This allows experiments to be run in which 
a node runs correctly for some time, exhibits faulty be- 
havior for another period of time, and then resumes 
correct operation. This can be used to model tempor- 
ary conditions or cycles of failure and repair. 

3.2 Running SFI experiments 

In order t o  create and run an experiment using SFI, 
the user creates an experiment description file that 
provides SFI with the names of the HARTS nodes to 
be used, the location of the workload to  be run on each 
node, and a description of the types of errors and/or 
failures to be inserted on each node. The workload 
can be any application that runs on HARTS. It can be 
a real application, or a synthetic workload generated 
with SWG, a synthetic workload generator developed 
for HARTS [22]. 

The experiment description file is used by the SEG 
to  create all of the necessary files for an experiment. 
Based on the fault description in the experiment de- 
scription file, the SEG compiles the workload together 
with appropriate SCM modules. In some cases the 
modules are versions of HARTOS system calls that 
have been modified so that their behavior represents 
the operation of the system in the presence of some un- 
derlying fault. In other cases a module may represent 
an injection task to be run concurrently with the work- 
load. SEG uses the fault description and symbol table 
information from the compiler t o  create experiment 
parameter files that are used to initialize the injec- 
tion processes. One parameter file is created for each 
run of the experiment. The parameters describe the 
fault types and locations to be used in the correspond- 
ing run. These parameter files are downloaded to the 
HARTS node with the executable files. By download- 
ing the experiment parameters separately, we elim- 
inate the need for the application to be recompiled 
for each experiment. Finally, SEG creates script files 
that are used to run the experiments. The script files 
download the executable and parameter files to the 

HARTOS nodes and run the experiments. 
One important issue when running dependability 

experiments is the ability to collect relevant data from 
the experiment. SFI implements data collection by 
two methods. Data can be logged by writing to the 
console device directly, or by storing the data on the 
HARTS nodes, and downloading it after the experi- 
ment has completed. The data collection can be per- 
formed under the control of the executing workload, or 
can be done by using HMON, a monitor for distributed 
real-time systems being developed for HARTS [23]. 

3.3 SFI implementation 

Due to the nature of computer systems, the access- 
ibility of the various components in which we would 
like to inject faults varies considera.bly. As a result, 
a variety of methods must be used to inject different 
types of faults. In some ca.ses it is possible to ac- 
cess the location to be fa.ulted directly, while in other 
cases it is necessary to emula.t,e t(he effect of a fault by 
causing a corresponding erroneous behavior. In im- 
plementing SFI we have used three different methods 
of fault injection. These are a.ctive injection, control 
flow alteration, and code repla.cement. 

Active injection is performed by a process that runs 
concurrently with the executing workload. SFI uses 
a.ctive injection to inject memory errors. Control flow 
alteration is a technique tha.t, ca,n be used when the 
functional behavior of the system is to be altered. 
When fault injection is activated, a, running program 
executes an alternate instruction sequence, so that the 
intended function is performed incorrectly. This is 
particularly useful at the level of t,he operating sys- 
tem or communication protocols, where the services 
available to programs can be alt,ered so that their func- 
tionality differs when fault iiijection is activated. SFI 
uses control flow a.lteration t.o inject communication 
failures. Code alteration can be used to inject faults 
in areas that are not otherwise accessible to executing 
programs. With this technique, faults in a functiona.1 
unit can be emulated by altering program instructions 
that use that unit. SFI uses code alteration to emulate 
faults in the processor’s functional units. 

The iiijection of memory errors and communication 
failures is controlled by the SFI Control Process (The 
SCP is one of the SCM modules that is compiled to- 
gether with the work1oa.d. The SCP is the first task to 
run, replacing the workload’s startup process. When 
SCP starts, it checks the experiment parameters that 
are downloaded with the executable code. If the para- 
meters indica.t,e that the current, experiment requires 
a. memory error, SCP sta,rts a high priority process, 
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called the memory fault injection process, to perform 
the injection. This process injects the error at the se- 
lected address by reading, altering, and then writing 
back the contents of that location. Once the error has 
been injected, the memory fault injection process will 
pause itself for a time period determined by the user- 
defined interarrival time. This will repeat until the 
experiment is completed, or until a user-specified stop 
time. 

If the current experiment requires a communication 
failure, SCP sets flags that are checked by the com- 
munications protocols to determine the desired beha- 
vior. When an experiment is created using the SEG, 
it will, based on the type of faults to be injected, be 
compiled with modules from the SCM that represent 
altered versions of some of the HARTOS system calls. 
The altered system calls check the flags set by the 
SCP, atnd change their operation based on those flags. 
When no communication failure is to be injected, the 
altered1 versions of the system calls behave identically 
to the original versions. 

Once SCP has set up the fault injection mechan- 
isms, it starts the workload. The workload then runs 
normally, with no knowledge of the fault injection pro- 
cesses ithat have been started. 

The processor failures are not injected at run time. 
Instead they are emulated by changing all references 
to the faulty unit at the assembly language level. If a 
processor failure is to be injected, the compilation of 
the experiment is done in two steps. In the first step, 
all of the required files are compiled to the assembly 
language level. The SEG then searches for all instruc- 
tions or instruction sequences that use the faulty func- 
tional unit, and replaces them with instructions that 
performi an appropriate incorrect operation. After the 
search-atnd-replace, compilation is completed using the 
altered files. Currently, processor failures can be in- 
jected to emulate adder and multiplier faults. 

4 Experiments 

One important issue in the design of dependable 
distributed systems is detecting the occurrence of 
faults/fa.ilures in the system, either in nodes or com- 
munication links. Once a failure is detected, the in- 
formation can be used to recover and maintain correct 
system operation. When failures can occur intermit- 
tently, the problem of detecting and correcting those 
failures becomes even more difficult. 

In this section, we present an example application 
of SFI to demonstrate how it might be used as an aid 

in both the modeling and development of fault toler- 
ant distributed systems. We demonstrate SFI by using 
it to explore the effect of int.ermittent failures on the 
communication between two nodes. In Section 4.1 we 
develop and test a model of the effect of intermittent 
failures on the message delivery time between two ad- 
jacent HARTS nodes. In Section 4.2 we use SFI to test 
some alternate routing algorithms that use informa- 
tion gathered about intermittent faults. 

4.1 Effect of intermittent message losses 

In this section, we first develop a model t o  predict 
the effect of intermittent communication failures on 
message delivery times between two adjacent HARTS 
nodes, and then verify the a.ccuracy of the model us- 
ing SFI. For this experiment, we a,ssume omission fail- 
ure sema.ntics, in which messages can be lost but not 
a,lt4ered. This might represent a syst,em operating in 
an environment t,liat is outsside it,s normal operating 
pa.rameters. The poor operating conditions may cause 
messages to be intermittently corrupted, and thus dis- 
carded at the data link level. At higher layers of the 
communication subsystem, the messages would ap- 
pear to be lost. We assume t1~a.t since failures can 
be intermittent,, the communicat,ion subsystem will re- 
send a message until either a. correct acknowledgment 
is received, or it is determined that the link has failed. 
We also a,ssuine t1ia.t the communication subsystem 
has a predetermined timeout period during which it 
waits for an acknowledgement before resending. This 
timeout period is based on the transmission delay and 
maximum expected queuing delay at. the destination 
node. Both the initia.1 message or the acknowledge- 
ment can be lost. 

When there a.re no failures, the total time required 
to send a messa.ge to a.n a.dja.cent node and receive an 
acknowledgement (i,e., the round-trip time) depends 
only on the trmsmission time, t,he propagation delay, 
aad the computa.tion over1iea.d mid queueing delay at 
both nodes. Ea.ch time a messa.ge is lost, the round- 
trip time will be increased by one timeout period. 
When message loss is intermittent, the number of at- 
tempts required until a messa.ge is sent and acknow- 
ledged correctly ca.n be expressed by a geometric ra.n- 
dom varia.ble. 

Let N be the random varia.ble that represents the 
number of times a. message is sent over a link until it 
is received and acknowledged correctly. Then N is a 
geometric random variable t,hat gives the number of 
attempts until a. success, where a. success is the event 
tha.t neither the messa.ge nor its a.cknowledgement is 
lost. If p represents the prohabilit0y that any given 



Probability 
of loss 

0% 
1% 
2% 
3% 
5% 
10% 
20% 
30% 
50% 
75% 

of loss I mean attempts 
1% 1.02 

Predicted 
mean time 

7.60 
8.12 
8.64 
9.16 
10.46 
13.58 
22.16 
34.64 
85.60 

397.60 

average attempts 
1.02 

Observed 
average time 

7.60 
8.18 
8.43 
8.45 
10.93 
14.15 
21.70 
36.80 
94.94 
427.18 

1.04 
1.06 
1.11 
1.23 
1.56 
2.04 
4.00 
16.00 

Table 4: Predicted and observed average round-trip 
delay in milliseconds. 

1.04 
1.07 
1.11 
1.26 
1.50 
2.08 
4.02 
15.95 

message is corrupted, then Prob[szlccess] = (1 - P ) ~ .  
Therefore, 

2 x-1 Prob{N = z} = (1 - P ) ~  * (1 - (1 - p )  ) 

and the expected number of attempts will be: 

1 2812.5 
2 1230.5 
3 538.5 
4 235.5 
5 103.0 
6 45.0 
7 19.5 
8 8.5 

9+ 7.0 

We can use the probability function and mean for 
N to determine the expected round-trip time. The 
total time required to send a message and receive an 
acknowledgement will be the round-trip time with no 
failures, plus the time spent waiting for a reply every 
time a message is lost (i.e., the timeout period). Let 
RT represent the average round-trip time with no fail- 
ures, and let T O  represent the timeout period. If X 
is a random variable representing the total round-trip 
time in the presence of intermittent message loss, then 
the expected value of X will be: 

- 
X = RT + (TO * (x - 1)). 

In order to  verify this simple model, we ran exper- 
iments on HARTS using SFI. We used one node to 
send messages to an adjacent node. In order to match 
the failure semantics of the model, we chose to inject 
the faults at the sending node. We used SFI to in- 
ject communication faults such that messages would 
be lost with a given probability. We ran the experi- 
ment multiple times, each time changing the probab- 
ility of losing a message. 

In each run of the experiment, the sending node 
sent 5000 messages to the destination. We collec- 
ted data on the average round-trip time, the average 
number of timeouts, and the number of attempts re- 
quired by each message before successful transmission. 

2818 
1259 
52 1 
234 
87 
43 
22 
6 
9 

11 Probability I Predicted I Observed 

Table 5: Predicted and observed average number of 
attempts per message. 

Table 6: Predicted and observed frequency of number 
of attempts for 5000 iteration with the probability of 
message loss = 25%. 
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Table 4 shows the predicted mean and observed aver- 
age round-trip delay for different message loss prob- 
abilities. The predicted values are calculated from the 
equation for x by using the measured value of 7.6ms 
for RT, and with the timeout value TO set to 26ms. 
Tablle 5 shows the predicted mean and observed aver- 
age inumber of attempts required for different message 
loss probabilities. Table 6 shows, both the predicted 
and observed number of messages requiring a given 
number of attempts for a probability of message loss 
of 25%. 

The tables show that the observed data matches 
the results predicted by the model quite closely. This 
is not unexpected, given the simplicity of the model 
and the close modeling of the failure assumptions by 
the injected failures. To test the hypothesis that the 
observed number of attempts does1 follow a geometric 
distribution, we use a Chi-squared goodness-of-fit test 
on one of the data sets. The results from the other 
data sets are similar. 

Table 6 shows the predicted and observed frequency 
of the number of attempts for 5000 messages sent with 
a probability of message loss of 25%. From this data, 
we can calculate the x2 value: 

x 2  = 
9 

(oi - Pi)2 = 6.12. 
Pi 

For a confidence level of 0.05, xg,os = 15.507 with v = 
8 degrees of freedom. Since x2 < the observed 
data does come from a geometric (distribution. This 
means that the experimental results we obtained using 
SFI validate the model. 

i=l 

4.2 Routing using failure data 

In this section we present an example application 
of SFI to the system development process, and also 
demonstrate a few of its fault injection capabilities. In 
the example application, we use SFI to determine the 
effect of lost messages on different routing algorithms. 
This example also demonstrates the utility of SFI in 
testing distributed systems. 

In many routing algorithms for point-to-point net- 
works, routing decisions are made by determining the 
shortest path between two nodes. The length of a link 
in the path may be based on the transmission delay or 
congestion on that link. If a link is operating in an en- 
vironment in which there is a high paobability of mes- 
sage loss:, it may be desirable to increase the length on 
the link to account for the lost messages. In this sec- 
tion, we present two simple algorithms for adding the 
effect of lost messages to the link length. We then test 

Figure 2: System configura.tion for routing experi- 
ments. 

these algorithms using SFI, and compare the results 
of these tests with the results obt,ained when the effect 
of the message loss was not considered. The scenario 
we present is a simple one, but it demonstrates how 
SFI might be used in a.n a.ctua1 application. 

In the base algorithm we use for comparison, the 
length of a link is taken to be the transmission time 
of a message on that link. Ea.ch node calculates the 
shortest path to every other node based on this data. 
Messa.ges are routed as datagmms, with each node 
choosing the best outgoing link for a message based on 
the shortest path calculations. This simple algorithm 
does not consider congestion or flow control. 

We tested two alterations t,o this a.lgorithm. The 
alterations employ different met.hods to add the effect 
of lost messages on a link to the length of that link. In 
the first method, each node keeps track of the average 
number of timeouts per messa.ge on each outgoing link. 
The avera.ge number of timeout,s on a link multiplied 
by the timeout period gives t,he average incremental 
de1a.y ca.used by lost messa.ges for that link. This in- 
cremental delay is added to the transmission delay to 
calculate the current length of the link. The second 
method is to have each node periodically send out test 
messa.ges to all of its neighbors. The delivery time for 
the test messa.ges is used as t,he link length. 

In order to test the algorithm and its modifications, 
we ra.n experiments on HARTS using SFI. The test 
system we used was a three node subset of HARTS, 
with each node connected to the other two. The test 
system arrangement is shown in Figure 2. Node 1 
wa3 designated the source node, a i d  Node 3 was the 
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destination node. Node 2 was an intermediate node 
that provided an alternate path from Node 1 to Node 
3. 

As in Section 4.1, we assumed omission failure se- 
mantics for the network. SFI was used to inject omis- 
sion failures on the link connecting Node 1 to Node 
3. We sent 5000 messages from Node 1 to Node 3, 
and measured the average delivery time. In order to 
determine the effect of different conditions on the al- 
gorithms, we ran two sets of experiments. In the first 
set of experiments, we set SFI to inject a 60 second 
burst of intermittent failures between two periods of 
fault-free operation. This represents a cycle of cor- 
rect operation, followed by a failure and subsequent 
repair. When fault injection was active, the message 
loss probability was set to  20%. In the second set of 
experiments, fault injection was always active with a 
message loss probability of 20%. On each node, the 
link lengths in the routing table were initialized to the 
fault-free single link delivery time, which we meas- 
ured to be 7.6 milliseconds in Section 4.1. The results 
of the experiments are summarized in Table 7. The 
times shown include both the message transmission 
times and the processing overheads. 

In the base algorithm, the transmission times for 
fault-free operation are used as link costs. As a result 
Node 1 will always choose to  send messages to Node 
3 via link13. This is because the link lengths are not 
affected by message loss, and so the direct route is 
always shorter. Thus the average delivery time from 
Node 1 to Node 3 is the same as the delivery time 
without routing. When the link cost is augmented 
by the average time spent waiting for lost messages, 
which is the average number of timeouts per message 
multiplied by the timeout period, Node 1 will continue 
to send messages directly to  Node 3 until the number 
of lost messages causes the length of link13 to exceed 
the length of link12 + link28. Once the route through 
Node 2 becomes shorter, Node 1 will send all messages 
to  Node 3 through Node 2, even when the link is no 
longer faulty. This is because it has no way of detect- 
ing a repair of the link. As a result, this algorithm 
does not adapt well to  changing conditions. 

When the link length is determined by the use of 
test messages, the system will adapt better to chan- 
ging conditions. However, this method still has a num- 
ber of flaws. If the test message is not affected by the 
intermittent fault, then the effect of that fault will not 
be considered. In addition, the ftequency of the test 
messages will affect the correctness of the link length. 
If the test messages are sent frequently, the link length 
will better represent current conditions, but the test 

messages will add more overhead to the system. In 
this case, we sent test messages at a frequency of one 
test message for every hundred regular messages. 

The results show that,  given our assumptions about 
the system and its failure semantics, none of these 
methods is the best in all cases. To improve on these 
results, further refinements could be developed and 
then tested using SFI. This experiment demonstrates 
the usefulness of SFI for comparing different depend- 
ability mechanisms and testing distributed systems. 

5 Conclusion 

This paper has presented first an overview of SFI, 
a software fault injection tool developed for HARTS, 
a distributed real-time system. SFI improves upon 
previous fault injectors by allowing a wider range of 
injected fault types and injection options. I t  not only 
allows the injection of low-level faults, but also allows 
the direct injection of failures or faulty behaviors in or- 
der to simplify the validation of higher level depend- 
ability mechanisms in distributed systems. We also 
demonstrated the usefulness of SFI by presenting two 
experiments. These experiments show the application 
of SFI to both model validation and system testing. 
In the future, we intend to continue to extend the cap- 
abilities of SFI. We are working on developing fault in- 
jection methodologies for real-time systems, in which 
the fault injection mechanisms do not affect the tim- 
ing characteristics of the system under test. SFI is 
currently being used as a tool in the development and 
testing of dependability mechanisms for HARTS. 
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