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Use of Common Time Base for Checkpointing and 
Rollback Recovery in a Distributed System 

Parameswaran Ramanathan, Member, IEEE, and Kang G.  Shin, Fellow, IEEE 

Abstract- A new approach for checkpointing and rollback 
recovery in a distributed computing system using a common time 
base is proposed in this paper. First, a common time base is 
established in the system using a hardware clock synchronization 
algorithm. This common time base is coupled with the idea of 
pseudo-recovery points to develop a checkpointing algorithm that 
has the following advantages: 1) reduced wait for commitment for 
establishing recovery lines, 2) fewer messages to be exchanged, 
and 3) less memory requirement. These advantages are assessed 
quantitatively by developing a probabilistic model. 

Index Terms- Checkpointing, domino effect, fault-tolerant 
clock synchronization, pseudo-recovery points, real-time systems, 
recovery block, rollback error recovery. 

I. INTRODUCTION 

ONCURRENT processes in a critical real-time system C are required to complete their execution prior to an 
imposed deadline. Failing to meet such a deadline could lead to 
catastrophic results. It would be difficult to meet the deadlines 
if the processes always have to restart their execution in case 
of failure. Hence, one of the issues in the design of a critical 
real-time system is to provide the capability of error recovery 
without having to restart the processes from the beginning. 

The recovery block (RB) approach proposed in [3] ,  [12] is 
one way of recovering from an error without a restart. In this 
approach, concurrent processes save their states several times 
during their execution so that they can roll back to a saved state 
and resume their execution in case of an error. Unfortunately, 
the rollback of a process can result in a cascade of rollbacks 
that can push the processes back to their beginnings, i.e., a 
domino effect. This results in the loss of the entire computation 
done prior to the detection of the error. In order to avoid 
the domino effect, Randell [12], [13] proposed a conversation 
scheme. Kim [5] also proposed a similar scheme but with more 
flexibility. 

In the conversation scheme, cooperating processes enter 
a conversation before interacting with each other. Within a 
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conversation, processes save their states before they interact. 
During a conversation, a process is not allowed to interact with 
any other process that does not belong to the conversation. 
Processes exit a conversation only after every process in the 
conversation has passed its acceptance test. If a process does 
not pass its acceptance test, then all processes in the conver- 
sation roll back to the saved state and redo the computation 
using an alternative algorithm. 

Although this scheme results in a good abstraction for 
the programmer, there are several disadvantages. First, the 
faster processes in a conversation have to wait for the slower 
processes to complete their acceptance test. Second, a process 
outside the conversation will have to wait for the end of 
the conversation if it wants to interact with a process within 
the conversation. Third, processes have to exchange messages 
solely for checkpointing purposes. For instance, in order to 
ensure that all processes in a conversation have passed their 
acceptance tests, each process has to broadcast a message to 
all other processes in the conversation to indicate that it has 
successfully passed its acceptance test. The end result of these 
three factors is an underutilization of the processors on which 
the processes are executing. 

To overcome this underutilization problem, Shin and Lee 
[ 141 proposed apseudo-recovery block (PRB) approach. In this 
approach, processes do not wait for each other to coordinate 
the saving of states. Instead, after passing an acceptance test, 
a process broadcasts a message to all other processes asking 
them to save their states immediately. On receiving such 
a message, a process completes its current instruction and 
then saves its states without an acceptance test. This ensures 
that all processes save their states almost at the same time. 
However, the saved state may be potentially erroneous because 
most of the processes did not execute an acceptance test. 
Shin and Lee [14] refer to this coordinated (but potentially 
erroneous) set of states as a pseudo-recovery point (PRP). 
Upon detection of an error, processes roll back to a PRP that 
has been validated later by an acceptance test in each of the 
processes. Although there is no waiting for commitment in this 
scheme, substantial overheads in time and space are introduced 
because each process has to retain many PRP’s in order to 
ensure a successful rollback in case of error. In addition, each 
process has to send a large number of messages solely for 
checkpointing purposes. 

Another approach for coordinating the establishment of the 
checkpoints was proposed by Koo and Toueg [6]. In their ap- 
proach, a process that wishes to establish a checkpoint executes 
a two-phase commit protocol. In the first phase, the process 
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tentatively saves its state and requests all other processes to do 
the same. The process then waits for the response from other 
processes. If all the “relevant” processes indicate that they 
are also willing to establish a checkpoint, then the tentative 
checkpoint is made permanent. Otherwise, the checkpoint 
is discarded. In the second phase, the decision to commit 
or discard the tentative checkpoint is conveyed to the other 
processes and they immediately carry out the decision. Since 
all or none of the processes commit to a checkpoint, a process 
has to retain a maximum of two saved states. However, the 
worst-case time for completing the protocol is proportional 
to the total number of processes in the system and to the 
upper bound on the communication delay between any two 
processes. Since a process cannot send any noncheckpointing 
message while it is waiting for the protocol to terminate, the 
waiting overhead of this approach can be fairly large. 

In contrast to the foregoing approaches, a new scheme is 
proposed in this paper to prevent the domino effect with little 
time and space overhead. This scheme is intended for systems 
that have a common time base. A common time base can be 
established by synchronizing the clocks of all the processors’ 
in the system using a hardware synchronization algorithm [4], 
[7], [16]. This entails additional hardware on each processor 
(see [16] for an analysis of additional hardware needed) but 
imposes almost no time overhead on the system performance. 

Unlike conventional algorithms, individual processes are 
coordinated in saving their states by using the common time 
base. The expected time for processes to reach their acceptance 
tests is first estimated;2 these estimated times are then used to 
determine the times at which all the cooperating processes are 
asked to save their states. If the times for saving the states are 
selected properly, then we show that the overheads imposed by 
the checkpointing algorithm can be reduced considerably. In 
particular, each process has to retain only two sets of states to 
be able to restart after an error without a cascade of rollbacks. 
This should be contrasted to n - 1 set of states each process 
has to retain in the PRB scheme where n is the total number 
of processes concurrently running on the system. Moreover, as 
shown later in the paper, the probability of a process sending 
a message solely for checkpointing purposes and the expected 
waiting time at each checkpoint is very small as compared 
with other algorithms. For a typical numerical example, the 
expected waiting time for the proposed algorithm is only about 
10-15% of the expected wait time in the conversation scheme 

The paper is organized as follows. Section I1 presents an 
informal description of the proposed scheme. The necessary 
assumptions, notation, and terms are presented in Section 111. A 
checkpointing scheme that couples the idea of a PRB approach 
with the presence of common time base is proposed in Section 
IV. Then, in Section V, the checkpointing scheme is modeled 
probabilistically to analyze the various overheads involved. 
Based on this analysis, a numerical method for determining 
the optimal (in the sense to be defined) times for establishing 
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‘Each processor in the system is assumed to have its own clock. 
’The actual time for a process to reach a given point in its execution could 

be substantially different from the estimated time due to loops, recursions, 
synchronization delays, etc. 

the PRP’s is also presented in this section. In Section VI, the 
expected overheads are evaluated numerically for some known 
distributions in the model. For that example, it is shown that 
the overheads in the proposed approach are much smaller than 
the other schemes. Finally, Section VI1 concludes the paper 
by briefly describing the merits and demerits of the proposed 
scheme. 

11. INFORMAL DESCRIPTION OF THE PROPOSED SCHEME 

Since the proposed checkpointing scheme is based on the 
PRB approach, we begin by briefly describing the PRB scheme 
as presented in [14]. 

A.  PRB Scheme 

Unlike a conversation-based scheme, each process in the 
PRB scheme is allowed to interact with any other process 
without any restrictions. In addition, each process is allowed 
to execute an acceptance test as, and when, it is appropriate. 
This is significant because the programmer can independently 
choose suitable points in each process to test for correctness. 
However, in order to ensure a consistent rollback in case of 
an error, each process sends a message to all other processes 
whenever it successfully completes an acceptance test. On 
receiving this message, the other processes save their states 
immediately without executing any acceptance test. In case 
of an error, all processes roll back to a state that has later 
been shown to be error free by an acceptance test in each 
process. 

For example, consider a system of three processes, P I ,  
P2, and P3 shown in Fig. 1. In this figure, the acceptance 
tests by the individual processes are shown by the rectangular 
boxes. Corresponding to an acceptance test in each process, a 
dotted line represents the coordinated saving of states among 
all processes. However, this coordinated set of states is not 
guaranteed to be error free because all but one process have 
not executed an acceptance test before saving their states. 
Therefore, if P2 detects an error at a time indicated by x 
in the figure, the processes cannot roll back to the most 
recently saved state because no other process except P3 has 
validated that state. Hence, all processes roll back to the 
state corresponding to the acceptance test by process PI. This 
state can be assumed to be error free because all processes 
have executed at least one acceptance test since saving that 
state. 

It is clear from the foregoing example that a PRB scheme 
requires processes to save their states quite often. Furthermore, 
each process has to retain a large number of states so that it 
can roll back to an error-free state when an error is detected. 
The proposed checkpointing scheme eliminates these two 
drawbacks by using the common time base. 

B. Proposed Checkpointing Scheme 

The basic idea of the proposed checkpointing scheme is 
to have the programmer first estimate the expected time for 
processes to reach each of their acceptance tests. This can 
possibly be done by observing the processes during program 
development. It is only an estimate because the programmer 
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Fig. 1. Example of a PRB checkpointing scheme. 
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Fig. 2. Example of a system with three cooperating processes. 

has no way of determining a priori the effect of the actual en- 
vironment on the number of loops, recursion, synchronization 
overheads, resource contention, etc. Based on these estimated 
times, the programmer selects the times at which all processes 
establish a pseudo-recovery point (PRP). When the local clock 
of a process reaches one of the selected times, the process 
saves its states without executing an acceptance test. Due to 
the presence of a common time base, the local clocks of all 
processes are tightly synchronized and therefore all processes 
establish a PRP at almost the same time. 

The time for establishing the j th  PRP is chosen in such a 
way that all processes are expected to have completed their j t h  
acceptance test by that time. If a process has not completed 
its j th  acceptance test by that time, then all other processes 
wait for that process to complete its j t h  acceptance test. As a 
result, no process establishes two consecutive PRP's without 
an acceptance test between them. Similarly, no process is 
allowed to execute two consecutive acceptance tests without a 

PRP in between them. That is, if a process reaches the ( j f1) th  
acceptance test before the time for the j t h  PRP, the process just 
waits until it is time for the next PRP and then saves its state 
before proceeding with its normal execution. The end result of 
these two conditions is that in each process an acceptance test 
alternates with a PRP. If the time for establishing the PRP is 
chosen as described later in this paper, then it is shown that in 
most cases there will be no need for a process to wait before 
establishing a PRP. Furthermore, in most cases there will be 
no need for processes to exchange messages for checkpointing 
purposes. 

For example, consider a system of three processes shown 
in Fig. 2. For each process the figure shows the estimated 
times for the j t h  and the ( j  + 1)th acceptance tests (denoted 
by ATj and ATj+l, respectively) and the times selected by the 
programmer for establishing the ( j  - l)th, jth, and ( j  + 1)th 
PRP (denoted by PRPj-1, PRPj, and PRPj+l, respectively). 
Figs. 3-6 show various possible scenarios that can arise 
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Fig. 4. Scenario in which a process is slow 

these three processes. The a conversation scheme because each process in a conversation 
scenarios arise because the time at which a process reaches 
its acceptance tests differs from the estimated times. 

Fig. 3 shows the most likely scenario in which all processes 
have completed their j t h  acceptance test prior to the time 
for the j t h  PRP. In this scenario, no messages are exchanged 
for checkpointing purposes and no process waits for another 
process to establish a PRP. Fig. 4 shows the scenario in which 
PI is slow and therefore has not completed its j t h  acceptance 
test by the time for the j t h  PRP. In this scenario, PI sends 
a message to other processes asking them to wait for it to 
catch up. As soon as PI completes its j t h  acceptance test 
all the processes establish their j t h  PRP and proceed with 
their normal execution. Note that this requires other fault- 
tolerance mechanisms such as timeout to ensure that a fault in 
PI does not permanently hold up other nonfaulty processes. 
Such fault-tolerance mechanisms are not unique to our scheme; 
they are also needed in other checkpointing algorithms such as 

has to make sure other processes in that conversation have 
passed their acceptance test. 

Fig. 5 shows the scenario in which P3 is so fast that it 
reaches the ( j +  1)th acceptance test before the time for the j th  
PRP. As a result, P3 waits until it is time for the j t h  PRP, saves 
its state, and then proceeds with its normal execution. The 
other processes are unaffected by this. As mentioned earlier, 
if the programmer selects the time for establishing the j th  PRP 
appropriately, then the first scenario will occur more frequently 
than the latter two. 

Fig. 6 shows the behavior of the processes when a failure is 
detected by P3. Processes cannot roll back to the most recently 
saved PRP because it has not necessarily been validated by 
an acceptance test in all processes. However, by the very 
nature of the algorithm, the second to last PRP is guaranteed 
to have been validated by an acceptance test in all processes. 
Therefore, all processes roll back to the second to last PRP and 
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redo their computation. Observe that processes do not have to 
exchange messages to determine the state to which they roll 
back. Furthermore, each process has to retain only two PRP's 
to be able to successfully roll back in case of an error. 

111. BASIC SYSTEM ARCHITECTURE 

This section describes the architectural support assumed in 
the rest of the paper. First, the proposed algorithm is based on 
the availability of a common time base. The common time 
base is established by synchronizing the clocks of all the 
processors in the system. For this purpose, each processor 
is assumed to have its own clock (as is usually the case) 
and is provided with a clock synchronization circuitry [4], 
[7], [16]. The circuitry is composed of a reference signal 
generator, phase detector, and a voltage-controlled oscillator. 
The reference signal generator receives some of the other 
clocks in the system [16] and generates a reference signal, 

depending on the hardware synchronization algorithm being 
used. The phase detector compares the phase of the reference 
signal with the phase of the oscillator output and outputs 
a voltage proportional to the phase error between the two 
signals. This output voltage is fed through a filter to the 
voltage-controlled oscillator, which then adjusts the frequency 
of operation, depending on the magnitude of the error. The 
output of the oscillator serves as the clock of the processor. 

The existence of a common time base is used to predict 
the relative behavior of the processes. Since the execution 
of a process is controlled by the clock of the processor in 
which it is executing, and since the clocks of all the processors 
are kept in lock-step synchronization, the relative behavior 
of the cooperating processes can be predicted more easily 
and accurately than when the processors operate completely 
asynchronously of each other. This additional ability to predict 
the relative behavior of the processes is used as a key element 
to reduce time and space overhead of the proposed algorithm. 
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In order to coordinate the establishment of PRP’s, each 
process is provided with a pseudo-clock. The pseudo-clock of 
each process can be thought of as a counter that normally 
increments at every pulse of the corresponding real clock. 
However, as we describe later, there are situations where the 
pseudo-clocks do not increment. In fact, there are situations 
in which the pseudo-clocks are forced to roll back instead of 
keeping up with real time. 

Pseudo-clocks of all the processes are always kept tightly 
synchronized with respect to each other because the clocks of 
all the processors are in lock-step synchronization. In addition, 
the checkpointing algorithm is such that whenever a pseudo- 
clock stops incrementing, or whenever it rolls back to previous 
values, all the other pseudo-clocks also do the same. 

Each process is also provided with four interrupts: Pseudo- 
Recovery Interrupt (PRI), Acceptance Test Interrupt (ATI), 
Error Interrupt (EI), and Timer Interrupt (TI). A process 
receives a PRI when its pseudo-clock reaches a value R3 for 
some j E { 1.2,  . . . , n},  where Rj’s are clock values provided 
to the cooperating processes prior to their execution. It can 
thus be a hardware interrupt implemented with the help of a 
timer. On the other hand, AT1 is a software interrupt triggered 
when a process enters an acceptance test, whereas E1 is either 
a hardware or a software interrupt triggered whenever an error 
is detected in the system during the execution of an acceptance 
test. It is generated in the process that detects the error and 
passed on to the other processes by sending messages. A TI is 
generated when an alarm set by a process expires before the 
process cancels the alarm. 

To preserve process autonomy, PRI and AT1 are generated 
locally in each process. As a result, they are not generated 
at the same time in all the cooperating processes. However, 
since the pseudo-clocks of all the processes are kept in tight 
synchrony by the checkpointing algorithm, the PRI’s will be 
generated within a short time interval determined by the small 
skews between the synchronized clocks. That is, the time 
interval is equal to the maximum skew that exists between 
the pseudo-clocks of all the processes. The maximum skew 
between pseudo-clocks is thus determined by the maximum 
skews that exist between the real clocks and the maximum 
number of cycles it takes to execute an instruction in a process. 

Unlike the PRI’s, the ATI’s in different processes do not 
necessarily occur within a short time interval. They are gov- 
erned by the presence of loops, recursions, waiting times for 
shared resources, and other overheads in each of the processes. 
Hence, the proposed algorithm coordinates the establishment 
of the pseudo-recovery lines while requiring only a loose 
synchronization in the execution of the acceptance tests. 

Iv .  FORMAL DESCRIPTION OF THE PROPOSED SCHEME 

The main goal of the scheme proposed in this paper is to 
reduce the amount of waiting and the number of messages 
exchanged between the processes for checkpointing purposes. 
Presented as follows is a formal description of the proposed 
scheme. 

Let PI ,  Pz, . . . , PN be the N cooperating processes in the 
system. They satisfy the following assumptions. 

A l )  The processes are synchronous in the sense that there 
is an integer constant @ 2 1 such that in any time 
interval in which some nonfaulty process takes @ + 1 
“steps,” every nonfaulty process must take at least one 
step. 

A2) There is a known upper bound U on the communica- 
tion delays between any two processes. 

A3) The processes are executing on reliable processors. 
A l )  is based on the availability of the common time base. 

In this assumption, a “step” is defined by the granularity of our 
abstraction. For instance, a step can either be an instruction or 
a procedure or a set of procedures depending on the level 
of our abstraction. A2) is required to distinguish between 
a failed process not sending a message and unusually large 
communication delays. It is well-known that any form of 
synchronization is difficult to achieve, if not impossible, in the 
presence of both faulty processes and unbounded communica- 
tion delays [ 2 ] .  Al)  and A2) are consistent with definition of 
processor and communication synchronism in [l]. A3) is made 
for convenience of presentation. Over and above the proposed 
checkpointing scheme, one would need other fault-tolerant 
mechanisms such as timeouts, redundancy, and the like. A 
checkpointing-and-rollback recovery scheme does not obviate 
the need for redundant or spare processors since a rollback 
recovery might need a redundant or spare processor to execute 
alternate algorithms in case of a permanent hardware failure. 

The expected time for a process to reach each of its 
acceptance tests is estimated prior to its execution. This is 
made possible by the existence of a common time base and 
the fact that the processes are synchronous. However, it is 
only expected because the presence of loops and recursions 
and waiting times for shared resources, the overhead due to 
interrupts and the like are not known a priori. Using these 
expected times, the time at which all processes establish their 
PRP’s is calculated. The time for the j th  PRP is chosen so 
that all processes are expected to have completed their j th  
acceptance test but not their ( j +  1)th. Each process establishes 
its PRP when its pseudo-clock reaches the determined time 
(indicated by the arrival of a PRI). 

However, before establishing a PRP, a process checks 
whether it has passed an acceptance test since the last PRP. 
Since the times for establishing the PRP are appropriately 
chosen in accordance with the predicted behavior of the 
process, the process would have almost always passed an 
acceptance test since the last PRP. In the rare instances when 
it has not passed an acceptance test, the process broadcasts a 
message to all other processes in the system indicating that. On 
receiving such a message, every process stops incrementing 
its pseudo-clock and waits for those processes that have 
not yet passed their acceptance test. After they pass their 
acceptance test, messages are once again sent to all processes 
indicating it. After all processes have passed their acceptance 
tests, processes start incrementing their pseudo-clocks and 
resume their normal operation. Similarly, before executing an 
acceptance test, each process checks whether or not it has 
established a PRP since the last acceptance test. If it has not 
established one, it waits till it receives the next PRI, establishes 
a PRP, and then starts executing the acceptance test. 
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In order to describe our algorithm more formally, we define 
the 

. 

- 
following primitives: 
Receive (text, process-id): Receives the message text from 
the process whose identity is process-id. 
Broadcast (text, processid): Process process-id broad- 
casts the message text to all processes. 
Wait (condition): Process halts until the condition be- 
comes true. 
Alarm (interval): Cancel any previously-set alarm and 
generate a timer interrupt after interval time units have 
elapsed. If interval has value 0, then do not generate any 
interrupt but cancel all previously-set alarms. 

The issue of implementing these three primitives in the 
presence of faults is nontrivial. There are several papers 
in literature that have addressed this issue [8], [9]. Here 
we assume the existence of such an implementation and 
concentrate on developing and analyzing a checkpointing 
algorithm using these primitives. 

procedure pseudorecovery-interrupt; 
6: Maximum skew between pseudo-clocks of 

U :  Upper bound on communication delay; 
begin 

pseudo-clockbackup : = pseudoxlock; 
i f  ( n o t  AT-flag) then 

slow := t rue ;  
broadcast ( "not completed AT", 

nonfaulty processes; 

begin 

my-id) ; 

disable-clock : = t rue ;  
pseudo-clock := pseudo-clock-backup; 

end ; 

wait (alarm( 6 + U )  ) ; 
for k = l  t o  N ,  k # i 

else begin 

i f  receive ("not completed AT", k )  
then 

begin 
receive-f lag : = t rue ;  
count := count + 1; 
alarm (Max-Willing-To-Wait) ; 

end; 
i f  ( n o t  receive-f lag) then 

checkpoint-valid : = 

checkpoint-new := current-state; 

begin 

checkpoint-new; 

end 

disable-clock := t r u e ;  
pseudo-clock : = 
pseudox lock-backup ; 

whi le  receive-f lag do 

else begin 

i f  receive ( "completed AT", k )  
then 

begin 
count := count - 1; 
i f  count=O then 

begin 
receive-flag := f a l s e ;  
alarm (0); 

end 
end; 

disable-clock : = f a l s e ;  
pseudo-clock : = 

end; 
pseudo-clock-backup ; 

end; 
end ; 

AT-flag := f a l s e ;  
end; / *  pseudorecovery-interrupt * /  

- 
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procedure at-interrupt; 

i f  AT-f lag then 
begin 

begin 
wait (pseudorecovery interrupt) 
execute (acceptance test) 

end 
else begin 

execute (acceptance test) 
i f  slow then 

begin 
broadcast ( "completed AT" , 

AT-flag := true;  
slow := false 
pseudorecovery-interrupt; 

m y - i d )  ; 

end ; 
end; 

end; / *  at-interrupt * /  

procedure error-interrupt; 
current-state := checkpoint-valid; 
Invalidate checkpoint-new; 

end / * error-interrupt * / 

procedure clock; 
i f  ( n o t  disable-clock) then 

increment ( Ci ) ; 
end / *  clock * /  

The procedures used in the foregoing algorithm can be 
described informally as follows. 

Procedure Pseudorecoverylnterrupt: This procedure is ex- 
ecuted when a process receives a PRI, i.e., when its pseudo- 
clock reaches a time to set up a PRP. AT-jag indicates whether 
it has passed an acceptance test since the last PRP. If it has not 
passed an acceptance test, it sets the slow flag and broadcasts 
a "not completed AT" message to all the other processes. 
Otherwise, it checks the incoming messages to ensure that 
all other processes have also passed an acceptance test since 
the last PRP. 
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There are several ways of checking the incoming messages 
to ensure that all other processes have passed their acceptance 
test. A simple, but slightly inefficient, way is to halt all 
processing for 6 + U time units, where S is the maximum 
skew between pseudo-clocks of any two nonfaulty processes 
and U is an upper bound on communication delay between any 
two nonfaulty processes. This wait ensures receipt of all “not 
completed A T  messages because the corresponding PRI’s in 
all processes will occur within 6 time units of each other and 
U is the maximum time required to deliver a “not completed 
AT” message from one process to all other processes. A more 
efficient way of checking for “not completed AT” messages is 
to set an alarm for 6+U time units and let each process proceed 
with its computation as long as there is no (noncheckpointing) 
message to be sent. When the alarm expires, each process can 
independently check their incoming buffers for “not completed 
AT” messages from other processes. 

If a process receives a “not completed AT” message, it rolls 
back its pseudo-clock to the time of the PRI and disable its in- 
crement. It also stops all execution until it receives “completed 
AT’ message from all the slow processes. To prevent a failed 
process from permanently blocking a nonfaulty process, each 
process sets an alarm for a duration of Max-Willing-to-Wait 
on receiving the “not completed AT’ message. If a “completed 
AT” message is not received within this duration, then slow 
process is considered to have failed and a recovery action 
such as a rollback is undertaken. 

It is not easy to determine an optimal value for 
Max-Willing-to-Wait. Choosing a small value would cause 
more (slow) nonfaulty processes to be considered faulty, 
whereas choosing a large value will cause nonfaulty processes 
to wait for a long time in case a process is faulty. However, 
it is not difficult in practice to choose reasonably good values 
depending on the exact nature of the cooperating processes. 

At each PRP, the processes must have a consistent view of 
messages in the system. A message viewed as “sent” by one 
process should be viewed as “received” by all processes that 
are supposed to receive that message. Similarly, a message 
viewed as “received” by one process should be viewed as 
“sent” by the process that sent the message. If these two 
conditions are not satisfied at a PRP, the system will be in an 
inconsistent state if a rollback occurs to that PRP. To ensure 
this consistency, all messages sent by a process between its j t h  
and (j  + 1)th PRP are tagged with j to indicate the interval 
in which they are sent. Processes use this tag to determine 
whether or not a message should be part of their j t h  PRP. Only 
messages with tag (j - 1) are included in the j th PRP. This 
technique guarantees the latter consistency condition because 
a message is viewed as “received” in the j th  PRP only if it has 
a tag of j - 1, which means that the message was sent prior 
to the establishment of the j t h  PRP in the sending process. 
Moreover, since processes wait for S + U time units after 
receiving a PRI before establishing a PRP, this technique also 
guarantees the first consistency condition. 

Procedure AT-Interrupt: In order to prevent a process from 
running ahead of all the others, a process is allowed to establish 
only one acceptance test between any two successive pseudo- 
recovery lines. Thus, if a process gets two ATI’s before getting 

a PRI, then it has to wait for a PRI. This is ensured by checking 
the AT-flag variable whenever an AT1 occurs. 

If it is the first AT1 after a PRI, then the process checks 
whether it is running slower than the others, i.e., are there some 
processes waiting for it to complete this acceptance (indicated 
by slow)? If so, it broadcasts a “completed AT” message to all 
other processes. If all processes have finished their acceptance 
tests, then it proceeds with the normal execution, otherwise it 
waits for others to finish. 

Procedure Error-Interrupt: This procedure is executed 
whenever an error occurs in the system. Errors are detected 
during the execution of an acceptance test.3 The procedure 
rolls back the processes to a valid state and then allows each 
of the processes to proceed from that point on by using an 
alternative path [12], [13]. If an error is detected somewhere 
in between the j th and ( j  + 1)th PRI, the processes roll back 
to the states corresponding to the ( j  - 1)th PRI because the 
proposed algorithm guarantees an acceptance test between the 
( j  - 1)th and the j th PRI. Consequently, there is no need to 
interact with other processes to determine the state to which a 
process has to roll back. This simplifies the rollback procedure 
to a great extent. 

Procedure Clock: This procedure describes the incrementing 
of pseudo-clocks. When the disable clock is true (which 
happens when one of the processes is waiting for other 
process(es) to finish their acceptance test), the pseudo-clock 
does not increment. The highlight of our approach lies in 
that the need of message exchange and waits in the above 
algorithm is minimized by the prediction of process execution 
behavior with a common time base. A detailed analysis of its 
performance is the subject of the next section. 

V. ANALYSIS OF A CHECKPOINTING SCHEME 

In this section, a probabilistic model is developed to char- 
acterize the checkpointing scheme described in Section IV. 
This model is used to analyze the expected overhead of 
the proposed scheme. To facilitate the analysis, we use the 
following notation. 

n Number of checkpoints 
ATj The jth acceptance test 
PRPj The jth pseudo-recovery point. 
Wij 

Tij (A i j )  

Random variable representing the uncertainty in 
the expected time for Pi to reach ATj 
Time required by Pi to reach ATj without 
(with) the checkpointing overhead 
max Wij 
Waiting time by Pi at PRPj 
The real time at which Pi receives (establishes) 
the j th  PRI 
Density (distribution) of a random variable X 

s, a 

Oij 
A$ (A$)  

fx ( F x )  
M3 max Waj 
mj min Wij 

% 

a 

a 
Pseudo-clock time at which all processes re- 
ceive their j th  PRI. 

3The chosen, as well as the additional, acceptance tests can trigger an EI. 
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A. Probabilistic Model 
To model the performance of the proposed checkpointing 

scheme, we make the following assumptions. 
MA1) W,, and wkl, k # i, are independent of each other 

for all j, 1. 
MA2) Given Wz,, the time required by P, to reach AT, 

without waiting for other processes during the check- 
pointing, denoted by Tz,, has a density fT,,lw,,. 

where kj is a design parameter. 
MA4) Ro = Afo = 0 for all i. 
The programmer inserts the acceptance tests within the 

processes. For each acceptance test, he or she will usually 
have a desired point (time) in the process where each test 
could be inserted. The desired point will be based on the 
number of acceptance tests the programmer wants to insert and 
the estimated total execution time for the processes [15]. The 
acceptance tests cannot, however, be inserted at any arbitrary 
point in the process since one may not be exactly aware of the 
state a process should be in at every point in its execution (for 
verification by an acceptance test). Thus the acceptance tests 
will be inserted at a feasible point closest to the desired point. 
After insertion, the expected time to reach an acceptance test 
will therefore differ from the desired time. We can model this 
uncertainty in the expected time to reach an acceptance test 
as a random variable distributed around the desired time for 
inserting that acceptance test. Section VI illustrates this aspect 
by using a specific example. 

MA1) states that the random variable representing the 
uncertainty in the expected time for Pa to reach AT, is 
independent of that for Pk to reach the ATl for all k # i. MA2) 
states that due to unpredictable waits for shared resources 
and other overheads, the actual time for P, to reach its 
j th  acceptance test will differ from the expected time. The 
distribution of the actual time of an acceptance test around the 
expected time is defined by MA2). MA3) defines the class of 
functions considered in the analysis for determining the times 
to establish the PRP's. Since our checkpointing algorithm 
requires every process to have completed the j t h  acceptance 
test and not the j + lth, it is reasonable to assume that the 
time for the j t h  PRI should be somewhere in between M, and 
m3+1. This particular class of functions is chosen to make the 
analysis tractable. MA4) specifies the initializing conditions. 

There are two factors that contribute to the checkpointing 
overhead: overhead of saving states, and overhead of waiting 
at each pseudo-recovery point. The overhead of saving states 
depends directly on the number of times a process has to 
save its state. It can be reduced substantially at the cost of 
additional hardware as shown in [lo]. A process waits at the 
j t h  pseudo-recovery point either if one of the n processes does 
not complete its j t h  acceptance test before the j th  PRI or if 
the process receives the j + lth AT1 before the j t h  PRI. In the 
first case, a process waits because some process is slower than 
expected, whereas in the second case the process waits because 

it is much faster than expected. We henceforth refer to the first 
case as a slow-wait and the second case as the fast-wait. 

Since PRI's are based on time rather than points in ex- 
ecution whereas ATI's correspond to points in execution, 
the probability of a slow-wait depends on the time interval 
between the start of the process and the j th  PRI. When 
the overhead due to the checkpointing scheme is zero, Pi 
executes for Rj time units before the j t h  PRI. But in practice, 
due to the waiting times at the previous checkpoints, Pi 

gets ATj - o i k  time units for execution before the j t h  

PRI. Since the processes prevent their pseudo-clocks from 

incrementing while waiting at the PRP's, Afj - Oik 2 Rj. 

This result is proved formally in Theorem 1. For proving the 
theorem it is convenient to define the following function. 

Definition: Let Ci be a mapping from real-time to the 
pseudo-time on process Pi such that Ci(t) = T means that 
the pseudo-time on Pi at real-time t is T .  

Theorem I :  Let A:j and Rj be the respective real-time and 
the pseudo-time at which process Pi receives the j t h  PRI. 
Also let Oik be the Pi's waiting time at the kth PRP. Then, 

j -1 

k = l  

j - 1  

k = l  

j - 1  

A:j - Oik 2 Rj, 
k = l  

Proof: Since a process might have to wait for some other 
processes (including itself) to complete the kth acceptance test 
before establishing the kth PRP, A:k is not necessarily equal 
to Afk, where Afk is the real-time at which Pi establishes 
the kth PRP. However, since the processes do not increment 
their pseudo-clocks while some process is waiting, Ci(A:k) = 
Ci(Afk) for all i .  

In the time between the establishment of the kth PRP and 
the receiving of the k + lth PRI, the pseudo-clocks of all 
processes keep up with real time. As a result, 

ci(A:k+1) - c i ( A f k )  = A:k+, - Afk for all 2 ,  k. 

Also, since a process that has not completed its kth acceptance 
test when it received the kth PRI continues to run while 
the others are waiting for it to complete the acceptance test, 
Oik 5 Afk - A:k. From these observations, the theorem can 
be proved as follows. 

j j - 1  

A:j = - Afk-1) 4- - A:k) 
k = l  k = l  

j 3 - 1  

= - Rk-1) -k - &) 
k = l  k = l  

j-1 

= Rj + x ( A f k  - A:k) 
k = l  
j - 1  

2 Rj + X O i k .  
k = l  

j - 1  

In other words, A:j - oil, 2 Rj.  
k = l  
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The foregoing theorem implies that the time interval be- 
tween two successive PRI’s does not depend on the waiting 
times at the previous PRI’s. Consequently, the total time that 
a process gets to execute before receiving the j th  PRI does 
not depend on the waiting times at the previous PRI’s. So the 
probability of a message being sent does not depend on the 
waiting times at each PRP. The probability of a message being 
sent can therefore be estimated by considering the situation in 
which there is no checkpointing overhead, i.e., the probability 
of Pi sending a message can be estimated by using Tij instead 
of Aij .  

B. Estimation of the Overhead 

The overhead due to slow-wait occurs when a process does 
not complete its j t h  acceptance test before the time Rj while 
the overhead due to fast-wait occurs when a process reaches 
its j + l th  acceptance test before Rj. The overhead due to 
saving of states occurs each time a process has to establish a 
pseudo-recovery point. 

In terms of the notation introduced earlier, the wait time at 
the j t h  PRP of process Pi can be expressed as 

Sj - Tij if Tij > Rj 
Sj - Rj if Sj > Rj,Tij 5 Rj and Tij+l > Rj 
Sj - Tij+l if Sj > Rj and Tij+l 5 Rj 
Rj - Tij+l if Sj I Rj and Tij+l I Rj 

otherwise 

Oij = lo  (5.1) 
The first case, namely Tij > Rj ,  corresponds to the situation 
where Pi does not complete its ATj before receiving the j th  
PRI. Pi therefore waits from the time it completes its ATj till 
the slowest process completes. The second case corresponds 
to situation where Pi completes its j th  acceptance test before 
the j th  PRI, but some other process does not. So Pi waits for 
the slowest to complete from the time it receives the j PRI. 
The third and the fourth cases occur when Pi is so fast that it 
completes both ATj and ATj+l before receiving the j th  PRI. 
In the third case, a process other than Pi does not complete its 
ATj before the j th  PRI. In this case, Pi waits from the time it 
receives the j + l th AT1 till the slowest process completes its 
j th  acceptance test. In the fourth case, all processes complete 
their ATj by Rj and therefore Pi resumes its normal execution 
at the time Rj. Finally, if none of the above situation occurs, 
then Pi does not wait at the j th pseudo-recovery point. The 
goal is to select a Rj such that the final case occurs more 
often than the other four cases. 

We can then prove the following result about the expected 
value of Oij, i.e., the expected wait time of Pi at the j th  PRP. 

Theorem 2: 
E[Oij] 5 E[Tij-RjlTij > Rj]+E[Rj-Ti j+ l (Rj  > Tij+l]. 

Proof: See Appendix. 
Although exact analytic expressions for the expected over- 

head can be derived, evaluating those expressions to within 
an acceptable accuracy is very complicated. Thus, we derive 
analytic expressions for the upper bound in Theorem 1 instead 
of attempting to derive the exact expressions. 

E[Tij - RjlTij > Rj] can be evaluated from the joint 
distribution of Tij and Rj as follows. 

P{Tij 5 t ;  Rj 5 Z} = 

(5.2) 

Equation (5.2) can be evaluated from the joint distribution of 
Tij, M j ,  and mj+l. Since Wij and Wkl are assumed to be 
independent for all k # i, the joint distribution of Tij, M j ,  
and mj+l can be expressed as 

P{Tij I t ;  Mj I 21; mj+l > ~ 2 )  = 
P{Tij I t ;  Wij 5 ~ l ; W i j + l  > 2 2 )  

.P{VZ # i Wlj 5 21; Wlj+l > 2 2 )  

where 

P{VZ # i WZj 5 21; WZj+l > .2} = 
N ..I. 

l#i 

and 

P{Tij I t ;  Wij I ~l;Wij+l  > 2 2 )  = 
21 Lo P{Tij <tlWij=tl)P{Wij+l >~plWij=t l )  

+vi, ( t l ) d t l .  

Similarly, it is possible to evaluate the E[Rj - Tij+llRj > 
Tij+l] from the joint distribution of Tij+l and Rj. 

P{Tij+l I t;  Rj 5 Z} = 

‘fM, ( t l ) d t l .  
(5.3) 

Equation (5.3) can be evaluated from the joint distribution 
of Tij+l, M j ,  and mj+l. Since Wij and Wkl are assumed to 
be independent for all k # i, the joint distribution of Tij, M j ,  
and mj+l can be expressed as 

P{Tij+l I t ;  Mj 5 ~ 1 ;  mj+l > ~ 2 )  = 
P{Tij+l I t;  Wij I ~ 1 ;  Wij+l > 22) 

.P{VZ # i Wlj I 21; Wlj+l > Z2) 

where, 

P{VZ # i Wlj 5 21; Wlj+l > z2}  = 
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6.0 
8.0 
9.0 

10.0 
12.0 

The overhead due to saving of states depends on: 1) the 
number of times a process has to save its state and 2)  the 
architecture of the system. In particular, it does not depend on 
R, or any other parameter specific to the proposed algorithm. 
Since the proposed algorithm requires a process to save its 
states only once every pseudo-recovery line as compared to 
N - 1 in the PRB approach [14], where N is the number 
of cooperating processes in the system, this overhead is 
substantially less in the proposed algorithm than in the PRB 
approach. 

The foregoing equations can be used to determine a good 
value for the design parameter k,. This value of k, would have 
been optimal if we use the exact expressions (instead of the 
upper bound) for the E[O,,] and if our objective is to minimize 
the expected wait time. On the other hand, if our objective 
is to minimize a different objective like the probability of a 
long wait or the probability of a process sending a message, 
then we need to derive and minimize the appropriate analytic 
expressions. Although the basic probabilistic model used in 
this paper is general enough to accommodate almost any 
objective, we will presume that the objective is to select a k ,  
that minimizes the expected wait time at the yth PRP. Since 
evaluating the exact expressions for the expected wait time is 
very complicated even for some simple distributions, we will 
minimize the upper bound specified in Theorem 1 to obtain a 
sub-optimal solution. In other words, 

Minimize 
E[S, - R,Is, > R,] + E[R, - T~,+IIT~~+I L R3] with 
respect to R, 
Subject to: 

if MJ > mJ+l 
RJ = { Z + k ,  * ( m ~ + l  - M J )  if mj+l 2 M ,  

where 5, is a design parameter. Since k,  is the only design 
parameter in R,, choosing a value for R, is equivalent to 
choosing a value for 5,. The value of k ,  that minimizes 
the foregoing objective can be determined numerically using 
iterative optimization techniques as in [11]. 

12.0 
12.0 
12.0 
12.0 
12.0 

VI. NUMERJCAL EXAMPLES 

The overheads described in the previous section were eval- 
uated using numerical integration techniques for some known 
distribution and the following results were obtained. To ac- 
count for differences in the processes undcr consideration, 
the expected time for processes to reach the 7th acceptance 
test was assumed to be uniformly distributed over the interval 
[ j  * znter-at - a3 ,  * znter-ot + u J ] ,  where 0, is a known 
parameter. Given the expected time for a process to reach its 
j t h  acceptance test, the actual time (without the checkpointing 
overhead) was assumed to be uniformly distributed around the 
expected time with parameter b,, i.e., f ~ , , ~ ~ ~ ~ , , ( t l W , ,  = t l )  is 
uniformly distributed over the interval [tl - b,, tl  + b 3 ] .  This 
accounted for the variation in number of times certain loops 
were executed, waiting times for shared resources, interrupt 
service overhead, etc. 

The expected waiting time at the sixth PRP for the best 
value of k, (obtained by solving the minimization problem 

8.0 
8.0 
8.0 
8.0 
8.0 

TABLE I 
EXPECTED OVERHEADS I N  THE PROPOSED CHECKPOIN~ ING SCHEME 

10.0 
12.0 
14.0 
16.0 
18.0 

ED,l 
(Prop.) 

1.32 
1.95 
2.79 
4.42 
6.56 
1.22 
1.95 
2.62 
2.92 
4.06 

EP,,I 
(Rand.) 
15.80 
17.25 
18.03 
18.82 
20.49 
15.41 
17.25 
19.14 
21.07 
23.03 

13.87 
11.30 
15.47 
23.48 
32.01 
7.90 
11.29 
13.71 
13.87 
17.64 

Prob. of 
mess. % 

4.14 
4.86 
5.95 
5.76 
5.04 
2.61 
4.86 
7.70 
7.65 
13.53 

in Section V-B) is shown in Table I. The values in this table 
correspond to a zntrr-ot of 25. The minimization problem for 
determining the best k ,  was solved using the Fibonacci descent 
method. This method would lead to the optimal solution if the 
objective being minimized is unimodal. Otherwise, the results 
would be upper bounds to the actual value. 

The table also shows the variation in the expected waiting 
times with changes in the parameters a6 and bs.  It is clear from 
the table that the expected waiting time increases with 0 6  for 
a constant b6. This is because an increase in a6 corresponds to 
a greater variance between the processes, and hence it is more 
difficult to coordinate the completion of acceptance tests by 
the processes. Similarly, an increase in b6 results in an increase 
in the expected waiting time. This is because an increase in 
b6 implies that our estimate of the execution time to reach 
the y th  differs more from the actual execution time. For the 
purpose of comparison, the table also contains the expected 
wait time in Randell’s checkpointing scheme [12]. Even for 
large values of 0 6  and b6 the expected wait times in the 
proposed checkpointing scheme is much lew than in Randell’s 
scheme. For example, 06 = 12, b6 = 12 and ~ n t r r - a t  = 25 
corresponds to the case where the actual execution time to 
reach the sixth acceptance could vary between 126 time units 
to 174 time units. Even for this severe variation in the actual 
execution time, the expected wait time is only 32% of the 
expected wait time in Randell’s scheme. 

In addition to the reduced wait times, the proposed scheme 
also has fewer message exchanges for checkpointing purposes. 
Column 6 in Table I shows the probability of process sending 
a message at the sixth PRP for the best value of I C , .  These 
values should be contrasted to a 100% probability of message 
exchange in Randell’s scheme. 

VII. CONCLUSION 

The checkpointing algorithm proposed in this paper has 
all the desirable features with little time and space overhead. 
Processes have to establish only one PRP per pseudo-recovery 
line and preserve only two PRP’s. The paper also presented a 
model to evaluate the expected waiting time and the probabil- 
ity of exchanging messages for checkpointing purposes. For a 
typical numerical example the expected waiting times and the 
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probability of a process exchanging messages are shown to be 
much less than Randell’s checkpointing scheme [12]. 

The additional overheads in this scheme as compared to 
others are 1) the need for a common time base and 2) the 
need to know the expected times for reaching the acceptance 
tests a priori. If a hardware synchronization algorithm is used 
to establish the common time base, then the time overhead 
on the system is almost minimal. The cost of the additional 
hardware (see [16] for an analysis of hardware cost) is easily 
compensated by the reduced overhead in the checkpointing 
algorithm. Moreover, as was pointed out in [8], this common 
time base can be used to efficiently handle problems other 
than checkpointing. 

The expected times for reaching acceptance tests have to 
be estimated only once for every process. This can be easily 
done by executing the process repeatedly prior to their actual 
execution (mission). Since processes are usually repeatedly 
executed prior to the mission to ensure that there are no bugs in 
the program, these estimates can be obtained at no extra cost. 
Hence, the checkpointing algorithm proposed in this paper has 
high potential use for real-time applications. 

APPENDIX 

and 

Furthermore, 
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