
571 IEEE TRANSAIXIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 6, JUNE 1993

Use of Common Time Base for Checkpointing and
Rollback Recovery in a Distributed System

Parameswaran Ramanathan, Member, IEEE, and Kang G. Shin, Fellow, IEEE

Abstract- A new approach for checkpointing and rollback
recovery in a distributed computing system using a common time
base is proposed in this paper. First, a common time base is
established in the system using a hardware clock synchronization
algorithm. This common time base is coupled with the idea of
pseudo-recovery points to develop a checkpointing algorithm that
has the following advantages: 1) reduced wait for commitment for
establishing recovery lines, 2) fewer messages to be exchanged,
and 3) less memory requirement. These advantages are assessed
quantitatively by developing a probabilistic model.

Index Terms- Checkpointing, domino effect, fault-tolerant
clock synchronization, pseudo-recovery points, real-time systems,
recovery block, rollback error recovery.

I. INTRODUCTION

ONCURRENT processes in a critical real-time system C are required to complete their execution prior to an
imposed deadline. Failing to meet such a deadline could lead to
catastrophic results. It would be difficult to meet the deadlines
if the processes always have to restart their execution in case
of failure. Hence, one of the issues in the design of a critical
real-time system is to provide the capability of error recovery
without having to restart the processes from the beginning.

The recovery block (RB) approach proposed in [3] , [12] is
one way of recovering from an error without a restart. In this
approach, concurrent processes save their states several times
during their execution so that they can roll back to a saved state
and resume their execution in case of an error. Unfortunately,
the rollback of a process can result in a cascade of rollbacks
that can push the processes back to their beginnings, i.e., a
domino effect. This results in the loss of the entire computation
done prior to the detection of the error. In order to avoid
the domino effect, Randell [12], [13] proposed a conversation
scheme. Kim [5] also proposed a similar scheme but with more
flexibility.

In the conversation scheme, cooperating processes enter
a conversation before interacting with each other. Within a

Manuscript received July 29, 1990. This work was supported in part
by NASA Grant NAG-1-296 and ONR Contract N00014-85-K-0122. Any
opinions, findings, and conclusions or recommendations expressed in this
paper are those of the authors and do not necessarily reflect the views of the
funding agencies. An earlier version of this paper appeared in Proceedings
of the Symposium on Reliable Distributed Systems, 1988. Recommended by
D. Reed.

P. Ramanathan is with the Department of Electrical and Computer Engi-
neering, University of Wisconsin-Madison, Madison, WI 53706-1691.

K. G. Shin is with the Real-Time Computing Laboratory, Computer
Science and Engineering Division, Department of Electrical Engineering and
Computer Science, The University of Michigan, Ann Arbor, MI 48109-2122.

IEEE Log Number 9202418.

conversation, processes save their states before they interact.
During a conversation, a process is not allowed to interact with
any other process that does not belong to the conversation.
Processes exit a conversation only after every process in the
conversation has passed its acceptance test. If a process does
not pass its acceptance test, then all processes in the conver-
sation roll back to the saved state and redo the computation
using an alternative algorithm.

Although this scheme results in a good abstraction for
the programmer, there are several disadvantages. First, the
faster processes in a conversation have to wait for the slower
processes to complete their acceptance test. Second, a process
outside the conversation will have to wait for the end of
the conversation if it wants to interact with a process within
the conversation. Third, processes have to exchange messages
solely for checkpointing purposes. For instance, in order to
ensure that all processes in a conversation have passed their
acceptance tests, each process has to broadcast a message to
all other processes in the conversation to indicate that it has
successfully passed its acceptance test. The end result of these
three factors is an underutilization of the processors on which
the processes are executing.

To overcome this underutilization problem, Shin and Lee
[141 proposed apseudo-recovery block (PRB) approach. In this
approach, processes do not wait for each other to coordinate
the saving of states. Instead, after passing an acceptance test,
a process broadcasts a message to all other processes asking
them to save their states immediately. On receiving such
a message, a process completes its current instruction and
then saves its states without an acceptance test. This ensures
that all processes save their states almost at the same time.
However, the saved state may be potentially erroneous because
most of the processes did not execute an acceptance test.
Shin and Lee [14] refer to this coordinated (but potentially
erroneous) set of states as a pseudo-recovery point (PRP).
Upon detection of an error, processes roll back to a PRP that
has been validated later by an acceptance test in each of the
processes. Although there is no waiting for commitment in this
scheme, substantial overheads in time and space are introduced
because each process has to retain many PRP’s in order to
ensure a successful rollback in case of error. In addition, each
process has to send a large number of messages solely for
checkpointing purposes.

Another approach for coordinating the establishment of the
checkpoints was proposed by Koo and Toueg [6]. In their ap-
proach, a process that wishes to establish a checkpoint executes
a two-phase commit protocol. In the first phase, the process

0098-5589/93$03.00 @ 1993 IEEE

572 IEEE TRANSACTIONS ON SOFlWARE ENGINEERING, VOL. 19, NO. 6, JUNE 1993

tentatively saves its state and requests all other processes to do
the same. The process then waits for the response from other
processes. If all the “relevant” processes indicate that they
are also willing to establish a checkpoint, then the tentative
checkpoint is made permanent. Otherwise, the checkpoint
is discarded. In the second phase, the decision to commit
or discard the tentative checkpoint is conveyed to the other
processes and they immediately carry out the decision. Since
all or none of the processes commit to a checkpoint, a process
has to retain a maximum of two saved states. However, the
worst-case time for completing the protocol is proportional
to the total number of processes in the system and to the
upper bound on the communication delay between any two
processes. Since a process cannot send any noncheckpointing
message while it is waiting for the protocol to terminate, the
waiting overhead of this approach can be fairly large.

In contrast to the foregoing approaches, a new scheme is
proposed in this paper to prevent the domino effect with little
time and space overhead. This scheme is intended for systems
that have a common time base. A common time base can be
established by synchronizing the clocks of all the processors’
in the system using a hardware synchronization algorithm [4],
[7], [16]. This entails additional hardware on each processor
(see [16] for an analysis of additional hardware needed) but
imposes almost no time overhead on the system performance.

Unlike conventional algorithms, individual processes are
coordinated in saving their states by using the common time
base. The expected time for processes to reach their acceptance
tests is first estimated;2 these estimated times are then used to
determine the times at which all the cooperating processes are
asked to save their states. If the times for saving the states are
selected properly, then we show that the overheads imposed by
the checkpointing algorithm can be reduced considerably. In
particular, each process has to retain only two sets of states to
be able to restart after an error without a cascade of rollbacks.
This should be contrasted to n - 1 set of states each process
has to retain in the PRB scheme where n is the total number
of processes concurrently running on the system. Moreover, as
shown later in the paper, the probability of a process sending
a message solely for checkpointing purposes and the expected
waiting time at each checkpoint is very small as compared
with other algorithms. For a typical numerical example, the
expected waiting time for the proposed algorithm is only about
10-15% of the expected wait time in the conversation scheme

The paper is organized as follows. Section I1 presents an
informal description of the proposed scheme. The necessary
assumptions, notation, and terms are presented in Section 111. A
checkpointing scheme that couples the idea of a PRB approach
with the presence of common time base is proposed in Section
IV. Then, in Section V, the checkpointing scheme is modeled
probabilistically to analyze the various overheads involved.
Based on this analysis, a numerical method for determining
the optimal (in the sense to be defined) times for establishing

1121-

‘Each processor in the system is assumed to have its own clock.
’The actual time for a process to reach a given point in its execution could

be substantially different from the estimated time due to loops, recursions,
synchronization delays, etc.

the PRP’s is also presented in this section. In Section VI, the
expected overheads are evaluated numerically for some known
distributions in the model. For that example, it is shown that
the overheads in the proposed approach are much smaller than
the other schemes. Finally, Section VI1 concludes the paper
by briefly describing the merits and demerits of the proposed
scheme.

11. INFORMAL DESCRIPTION OF THE PROPOSED SCHEME

Since the proposed checkpointing scheme is based on the
PRB approach, we begin by briefly describing the PRB scheme
as presented in [14].

A. PRB Scheme

Unlike a conversation-based scheme, each process in the
PRB scheme is allowed to interact with any other process
without any restrictions. In addition, each process is allowed
to execute an acceptance test as, and when, it is appropriate.
This is significant because the programmer can independently
choose suitable points in each process to test for correctness.
However, in order to ensure a consistent rollback in case of
an error, each process sends a message to all other processes
whenever it successfully completes an acceptance test. On
receiving this message, the other processes save their states
immediately without executing any acceptance test. In case
of an error, all processes roll back to a state that has later
been shown to be error free by an acceptance test in each
process.

For example, consider a system of three processes, P I ,
P2, and P3 shown in Fig. 1. In this figure, the acceptance
tests by the individual processes are shown by the rectangular
boxes. Corresponding to an acceptance test in each process, a
dotted line represents the coordinated saving of states among
all processes. However, this coordinated set of states is not
guaranteed to be error free because all but one process have
not executed an acceptance test before saving their states.
Therefore, if P2 detects an error at a time indicated by x
in the figure, the processes cannot roll back to the most
recently saved state because no other process except P3 has
validated that state. Hence, all processes roll back to the
state corresponding to the acceptance test by process PI. This
state can be assumed to be error free because all processes
have executed at least one acceptance test since saving that
state.

It is clear from the foregoing example that a PRB scheme
requires processes to save their states quite often. Furthermore,
each process has to retain a large number of states so that it
can roll back to an error-free state when an error is detected.
The proposed checkpointing scheme eliminates these two
drawbacks by using the common time base.

B. Proposed Checkpointing Scheme

The basic idea of the proposed checkpointing scheme is
to have the programmer first estimate the expected time for
processes to reach each of their acceptance tests. This can
possibly be done by observing the processes during program
development. It is only an estimate because the programmer

RAMANATHAN AND SHIN: USE OF COMMON TIME BASE FOR CHECKPOINTING AND ROLLBACK RECOVERY

c

t7 4

l=x -
..

ca

ex

c

c

-

513

==I

=a

v
Time

Restan line wrt to failure in P2

0 Acceptancetest

Fig. 1. Example of a PRB checkpointing scheme.

0 -
-
..........
-

Estimated times for ATj

Estimated for ATj+,

Chosen time for PRPj.l
Chosen time for PRPj
Chosen time for PRPFl

Fig. 2. Example of a system with three cooperating processes.

has no way of determining a priori the effect of the actual en-
vironment on the number of loops, recursion, synchronization
overheads, resource contention, etc. Based on these estimated
times, the programmer selects the times at which all processes
establish a pseudo-recovery point (PRP). When the local clock
of a process reaches one of the selected times, the process
saves its states without executing an acceptance test. Due to
the presence of a common time base, the local clocks of all
processes are tightly synchronized and therefore all processes
establish a PRP at almost the same time.

The time for establishing the j th PRP is chosen in such a
way that all processes are expected to have completed their j t h
acceptance test by that time. If a process has not completed
its j th acceptance test by that time, then all other processes
wait for that process to complete its j t h acceptance test. As a
result, no process establishes two consecutive PRP's without
an acceptance test between them. Similarly, no process is
allowed to execute two consecutive acceptance tests without a

PRP in between them. That is, if a process reaches the (j f1) th
acceptance test before the time for the j t h PRP, the process just
waits until it is time for the next PRP and then saves its state
before proceeding with its normal execution. The end result of
these two conditions is that in each process an acceptance test
alternates with a PRP. If the time for establishing the PRP is
chosen as described later in this paper, then it is shown that in
most cases there will be no need for a process to wait before
establishing a PRP. Furthermore, in most cases there will be
no need for processes to exchange messages for checkpointing
purposes.

For example, consider a system of three processes shown
in Fig. 2. For each process the figure shows the estimated
times for the j t h and the (j + 1)th acceptance tests (denoted
by ATj and ATj+l, respectively) and the times selected by the
programmer for establishing the (j - l)th, jth, and (j + 1)th
PRP (denoted by PRPj-1, PRPj, and PRPj+l, respectively).
Figs. 3-6 show various possible scenarios that can arise

574

V

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 6, JUNE 1993

1
Time

during an actual execution of

, ,.__.__.__: Estimated times for ATj

Actual time for ATj
c:::::::::: Estimated times for ATj+l

Actual time for ATj+l

- Chasen time for PRPj.1

- Chasen time for PRPj+l
.......... Chosen time for PRPj

Fig. 3. Most likely scenario in the proposed scheme

Blocked

Estimated times for ATj

Actual time for ATj

Estimated times for ATj+l
Actual time for ATj+,

Chosen time for PRPj.1
Chosen time for PRPJ
Chosen time for PRPJ+l

Fig. 4. Scenario in which a process is slow

these three processes. The a conversation scheme because each process in a conversation
scenarios arise because the time at which a process reaches
its acceptance tests differs from the estimated times.

Fig. 3 shows the most likely scenario in which all processes
have completed their j t h acceptance test prior to the time
for the j t h PRP. In this scenario, no messages are exchanged
for checkpointing purposes and no process waits for another
process to establish a PRP. Fig. 4 shows the scenario in which
PI is slow and therefore has not completed its j t h acceptance
test by the time for the j t h PRP. In this scenario, PI sends
a message to other processes asking them to wait for it to
catch up. As soon as PI completes its j t h acceptance test
all the processes establish their j t h PRP and proceed with
their normal execution. Note that this requires other fault-
tolerance mechanisms such as timeout to ensure that a fault in
PI does not permanently hold up other nonfaulty processes.
Such fault-tolerance mechanisms are not unique to our scheme;
they are also needed in other checkpointing algorithms such as

has to make sure other processes in that conversation have
passed their acceptance test.

Fig. 5 shows the scenario in which P3 is so fast that it
reaches the (j + 1)th acceptance test before the time for the j th
PRP. As a result, P3 waits until it is time for the j t h PRP, saves
its state, and then proceeds with its normal execution. The
other processes are unaffected by this. As mentioned earlier,
if the programmer selects the time for establishing the j th PRP
appropriately, then the first scenario will occur more frequently
than the latter two.

Fig. 6 shows the behavior of the processes when a failure is
detected by P3. Processes cannot roll back to the most recently
saved PRP because it has not necessarily been validated by
an acceptance test in all processes. However, by the very
nature of the algorithm, the second to last PRP is guaranteed
to have been validated by an acceptance test in all processes.
Therefore, all processes roll back to the second to last PRP and

RAMANATHAN AND SHIN: USE OF COMMON TIME BASE FOR CHECKPOINTING AND ROLLBACK RECOVERY 575

pl p3

.... I
................... Estimated times for ATi

ActualtimeforATj I
c:::::::::: Estimated times for ATj+l I""'

c::::'::::: Actual time for ATj+l

- Chosen time for PRPFl a - Chosen time for PRPj+l

1:::: :::::

.......... Chosen time for PRPj

Fig. 5 . Scenario in which a process is fast.

,
8 Estimated times fMATj

Actualtime forATj

Estimated times for ATj+l I::I: I s *I""'
c:::?::::: - Actual time for ATj+l

I:::: ::::: - Chosen time for PRPi.l

Chosen time for PRF'i+l

Failure chosen time for p w j L-LL -
Fig. 6. Scenario in which a process detects a failure.

redo their computation. Observe that processes do not have to
exchange messages to determine the state to which they roll
back. Furthermore, each process has to retain only two PRP's
to be able to successfully roll back in case of an error.

111. BASIC SYSTEM ARCHITECTURE

This section describes the architectural support assumed in
the rest of the paper. First, the proposed algorithm is based on
the availability of a common time base. The common time
base is established by synchronizing the clocks of all the
processors in the system. For this purpose, each processor
is assumed to have its own clock (as is usually the case)
and is provided with a clock synchronization circuitry [4],
[7], [16]. The circuitry is composed of a reference signal
generator, phase detector, and a voltage-controlled oscillator.
The reference signal generator receives some of the other
clocks in the system [16] and generates a reference signal,

depending on the hardware synchronization algorithm being
used. The phase detector compares the phase of the reference
signal with the phase of the oscillator output and outputs
a voltage proportional to the phase error between the two
signals. This output voltage is fed through a filter to the
voltage-controlled oscillator, which then adjusts the frequency
of operation, depending on the magnitude of the error. The
output of the oscillator serves as the clock of the processor.

The existence of a common time base is used to predict
the relative behavior of the processes. Since the execution
of a process is controlled by the clock of the processor in
which it is executing, and since the clocks of all the processors
are kept in lock-step synchronization, the relative behavior
of the cooperating processes can be predicted more easily
and accurately than when the processors operate completely
asynchronously of each other. This additional ability to predict
the relative behavior of the processes is used as a key element
to reduce time and space overhead of the proposed algorithm.

576 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 6, JUNE 1993

In order to coordinate the establishment of PRP’s, each
process is provided with a pseudo-clock. The pseudo-clock of
each process can be thought of as a counter that normally
increments at every pulse of the corresponding real clock.
However, as we describe later, there are situations where the
pseudo-clocks do not increment. In fact, there are situations
in which the pseudo-clocks are forced to roll back instead of
keeping up with real time.

Pseudo-clocks of all the processes are always kept tightly
synchronized with respect to each other because the clocks of
all the processors are in lock-step synchronization. In addition,
the checkpointing algorithm is such that whenever a pseudo-
clock stops incrementing, or whenever it rolls back to previous
values, all the other pseudo-clocks also do the same.

Each process is also provided with four interrupts: Pseudo-
Recovery Interrupt (PRI), Acceptance Test Interrupt (ATI),
Error Interrupt (EI), and Timer Interrupt (TI). A process
receives a PRI when its pseudo-clock reaches a value R3 for
some j E { 1.2, . . . , n}, where Rj’s are clock values provided
to the cooperating processes prior to their execution. It can
thus be a hardware interrupt implemented with the help of a
timer. On the other hand, AT1 is a software interrupt triggered
when a process enters an acceptance test, whereas E1 is either
a hardware or a software interrupt triggered whenever an error
is detected in the system during the execution of an acceptance
test. It is generated in the process that detects the error and
passed on to the other processes by sending messages. A TI is
generated when an alarm set by a process expires before the
process cancels the alarm.

To preserve process autonomy, PRI and AT1 are generated
locally in each process. As a result, they are not generated
at the same time in all the cooperating processes. However,
since the pseudo-clocks of all the processes are kept in tight
synchrony by the checkpointing algorithm, the PRI’s will be
generated within a short time interval determined by the small
skews between the synchronized clocks. That is, the time
interval is equal to the maximum skew that exists between
the pseudo-clocks of all the processes. The maximum skew
between pseudo-clocks is thus determined by the maximum
skews that exist between the real clocks and the maximum
number of cycles it takes to execute an instruction in a process.

Unlike the PRI’s, the ATI’s in different processes do not
necessarily occur within a short time interval. They are gov-
erned by the presence of loops, recursions, waiting times for
shared resources, and other overheads in each of the processes.
Hence, the proposed algorithm coordinates the establishment
of the pseudo-recovery lines while requiring only a loose
synchronization in the execution of the acceptance tests.

Iv . FORMAL DESCRIPTION OF THE PROPOSED SCHEME

The main goal of the scheme proposed in this paper is to
reduce the amount of waiting and the number of messages
exchanged between the processes for checkpointing purposes.
Presented as follows is a formal description of the proposed
scheme.

Let PI , Pz, . . . , PN be the N cooperating processes in the
system. They satisfy the following assumptions.

A l) The processes are synchronous in the sense that there
is an integer constant @ 2 1 such that in any time
interval in which some nonfaulty process takes @ + 1
“steps,” every nonfaulty process must take at least one
step.

A2) There is a known upper bound U on the communica-
tion delays between any two processes.

A3) The processes are executing on reliable processors.
A l) is based on the availability of the common time base.

In this assumption, a “step” is defined by the granularity of our
abstraction. For instance, a step can either be an instruction or
a procedure or a set of procedures depending on the level
of our abstraction. A2) is required to distinguish between
a failed process not sending a message and unusually large
communication delays. It is well-known that any form of
synchronization is difficult to achieve, if not impossible, in the
presence of both faulty processes and unbounded communica-
tion delays [2] . Al) and A2) are consistent with definition of
processor and communication synchronism in [l]. A3) is made
for convenience of presentation. Over and above the proposed
checkpointing scheme, one would need other fault-tolerant
mechanisms such as timeouts, redundancy, and the like. A
checkpointing-and-rollback recovery scheme does not obviate
the need for redundant or spare processors since a rollback
recovery might need a redundant or spare processor to execute
alternate algorithms in case of a permanent hardware failure.

The expected time for a process to reach each of its
acceptance tests is estimated prior to its execution. This is
made possible by the existence of a common time base and
the fact that the processes are synchronous. However, it is
only expected because the presence of loops and recursions
and waiting times for shared resources, the overhead due to
interrupts and the like are not known a priori. Using these
expected times, the time at which all processes establish their
PRP’s is calculated. The time for the j th PRP is chosen so
that all processes are expected to have completed their j th
acceptance test but not their (j + 1)th. Each process establishes
its PRP when its pseudo-clock reaches the determined time
(indicated by the arrival of a PRI).

However, before establishing a PRP, a process checks
whether it has passed an acceptance test since the last PRP.
Since the times for establishing the PRP are appropriately
chosen in accordance with the predicted behavior of the
process, the process would have almost always passed an
acceptance test since the last PRP. In the rare instances when
it has not passed an acceptance test, the process broadcasts a
message to all other processes in the system indicating that. On
receiving such a message, every process stops incrementing
its pseudo-clock and waits for those processes that have
not yet passed their acceptance test. After they pass their
acceptance test, messages are once again sent to all processes
indicating it. After all processes have passed their acceptance
tests, processes start incrementing their pseudo-clocks and
resume their normal operation. Similarly, before executing an
acceptance test, each process checks whether or not it has
established a PRP since the last acceptance test. If it has not
established one, it waits till it receives the next PRI, establishes
a PRP, and then starts executing the acceptance test.

FUMANATHAN AND SHIN: USE OF COMMON TIME BASE FOR CHECWOINTING AND ROLLBACK RECOVERY

In order to describe our algorithm more formally, we define
the

.

-
following primitives:
Receive (text, process-id): Receives the message text from
the process whose identity is process-id.
Broadcast (text, processid): Process process-id broad-
casts the message text to all processes.
Wait (condition): Process halts until the condition be-
comes true.
Alarm (interval): Cancel any previously-set alarm and
generate a timer interrupt after interval time units have
elapsed. If interval has value 0, then do not generate any
interrupt but cancel all previously-set alarms.

The issue of implementing these three primitives in the
presence of faults is nontrivial. There are several papers
in literature that have addressed this issue [8], [9]. Here
we assume the existence of such an implementation and
concentrate on developing and analyzing a checkpointing
algorithm using these primitives.

procedure pseudorecovery-interrupt;
6: Maximum skew between pseudo-clocks of

U : Upper bound on communication delay;
begin

pseudo-clockbackup : = pseudoxlock;
i f (n o t AT-flag) then

slow := t rue ;
broadcast ("not completed AT",

nonfaulty processes;

begin

my-id) ;

disable-clock : = t rue ;
pseudo-clock := pseudo-clock-backup;

end ;

wait (alarm(6 + U)) ;
for k = l t o N , k # i

else begin

i f receive ("not completed AT", k)
then

begin
receive-f lag : = t rue ;
count := count + 1;
alarm (Max-Willing-To-Wait) ;

end;
i f (n o t receive-f lag) then

checkpoint-valid : =

checkpoint-new := current-state;

begin

checkpoint-new;

end

disable-clock := t r u e ;
pseudo-clock : =
pseudox lock-backup ;

whi le receive-f lag do

else begin

i f receive ("completed AT", k)
then

begin
count := count - 1;
i f count=O then

begin
receive-flag := f a l s e ;
alarm (0);

end
end;

disable-clock : = f a l s e ;
pseudo-clock : =

end;
pseudo-clock-backup ;

end;
end ;

AT-flag := f a l s e ;
end; / * pseudorecovery-interrupt * /

-

577

procedure at-interrupt;

i f AT-f lag then
begin

begin
wait (pseudorecovery interrupt)
execute (acceptance test)

end
else begin

execute (acceptance test)
i f slow then

begin
broadcast ("completed AT" ,

AT-flag := true;
slow := false
pseudorecovery-interrupt;

m y - i d) ;

end ;
end;

end; / * at-interrupt * /

procedure error-interrupt;
current-state := checkpoint-valid;
Invalidate checkpoint-new;

end / * error-interrupt * /

procedure clock;
i f (n o t disable-clock) then

increment (Ci) ;
end / * clock * /

The procedures used in the foregoing algorithm can be
described informally as follows.

Procedure Pseudorecoverylnterrupt: This procedure is ex-
ecuted when a process receives a PRI, i.e., when its pseudo-
clock reaches a time to set up a PRP. AT-jag indicates whether
it has passed an acceptance test since the last PRP. If it has not
passed an acceptance test, it sets the slow flag and broadcasts
a "not completed AT" message to all the other processes.
Otherwise, it checks the incoming messages to ensure that
all other processes have also passed an acceptance test since
the last PRP.

578 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 6, JUNE 1993

There are several ways of checking the incoming messages
to ensure that all other processes have passed their acceptance
test. A simple, but slightly inefficient, way is to halt all
processing for 6 + U time units, where S is the maximum
skew between pseudo-clocks of any two nonfaulty processes
and U is an upper bound on communication delay between any
two nonfaulty processes. This wait ensures receipt of all “not
completed A T messages because the corresponding PRI’s in
all processes will occur within 6 time units of each other and
U is the maximum time required to deliver a “not completed
AT” message from one process to all other processes. A more
efficient way of checking for “not completed AT” messages is
to set an alarm for 6+U time units and let each process proceed
with its computation as long as there is no (noncheckpointing)
message to be sent. When the alarm expires, each process can
independently check their incoming buffers for “not completed
AT” messages from other processes.

If a process receives a “not completed AT” message, it rolls
back its pseudo-clock to the time of the PRI and disable its in-
crement. It also stops all execution until it receives “completed
AT’ message from all the slow processes. To prevent a failed
process from permanently blocking a nonfaulty process, each
process sets an alarm for a duration of Max-Willing-to-Wait
on receiving the “not completed AT’ message. If a “completed
AT” message is not received within this duration, then slow
process is considered to have failed and a recovery action
such as a rollback is undertaken.

It is not easy to determine an optimal value for
Max-Willing-to-Wait. Choosing a small value would cause
more (slow) nonfaulty processes to be considered faulty,
whereas choosing a large value will cause nonfaulty processes
to wait for a long time in case a process is faulty. However,
it is not difficult in practice to choose reasonably good values
depending on the exact nature of the cooperating processes.

At each PRP, the processes must have a consistent view of
messages in the system. A message viewed as “sent” by one
process should be viewed as “received” by all processes that
are supposed to receive that message. Similarly, a message
viewed as “received” by one process should be viewed as
“sent” by the process that sent the message. If these two
conditions are not satisfied at a PRP, the system will be in an
inconsistent state if a rollback occurs to that PRP. To ensure
this consistency, all messages sent by a process between its j t h
and (j + 1)th PRP are tagged with j to indicate the interval
in which they are sent. Processes use this tag to determine
whether or not a message should be part of their j t h PRP. Only
messages with tag (j - 1) are included in the j th PRP. This
technique guarantees the latter consistency condition because
a message is viewed as “received” in the j th PRP only if it has
a tag of j - 1, which means that the message was sent prior
to the establishment of the j t h PRP in the sending process.
Moreover, since processes wait for S + U time units after
receiving a PRI before establishing a PRP, this technique also
guarantees the first consistency condition.

Procedure AT-Interrupt: In order to prevent a process from
running ahead of all the others, a process is allowed to establish
only one acceptance test between any two successive pseudo-
recovery lines. Thus, if a process gets two ATI’s before getting

a PRI, then it has to wait for a PRI. This is ensured by checking
the AT-flag variable whenever an AT1 occurs.

If it is the first AT1 after a PRI, then the process checks
whether it is running slower than the others, i.e., are there some
processes waiting for it to complete this acceptance (indicated
by slow)? If so, it broadcasts a “completed AT” message to all
other processes. If all processes have finished their acceptance
tests, then it proceeds with the normal execution, otherwise it
waits for others to finish.

Procedure Error-Interrupt: This procedure is executed
whenever an error occurs in the system. Errors are detected
during the execution of an acceptance test.3 The procedure
rolls back the processes to a valid state and then allows each
of the processes to proceed from that point on by using an
alternative path [12], [13]. If an error is detected somewhere
in between the j th and (j + 1)th PRI, the processes roll back
to the states corresponding to the (j - 1)th PRI because the
proposed algorithm guarantees an acceptance test between the
(j - 1)th and the j th PRI. Consequently, there is no need to
interact with other processes to determine the state to which a
process has to roll back. This simplifies the rollback procedure
to a great extent.

Procedure Clock: This procedure describes the incrementing
of pseudo-clocks. When the disable clock is true (which
happens when one of the processes is waiting for other
process(es) to finish their acceptance test), the pseudo-clock
does not increment. The highlight of our approach lies in
that the need of message exchange and waits in the above
algorithm is minimized by the prediction of process execution
behavior with a common time base. A detailed analysis of its
performance is the subject of the next section.

V. ANALYSIS OF A CHECKPOINTING SCHEME

In this section, a probabilistic model is developed to char-
acterize the checkpointing scheme described in Section IV.
This model is used to analyze the expected overhead of
the proposed scheme. To facilitate the analysis, we use the
following notation.

n Number of checkpoints
ATj The jth acceptance test
PRPj The jth pseudo-recovery point.
Wij

Tij (A i j)

Random variable representing the uncertainty in
the expected time for Pi to reach ATj
Time required by Pi to reach ATj without
(with) the checkpointing overhead
max Wij
Waiting time by Pi at PRPj
The real time at which Pi receives (establishes)
the j th PRI
Density (distribution) of a random variable X

s, a

Oij
A$ (A$)

fx (F x)
M3 max Waj
mj min Wij

%

a

a
Pseudo-clock time at which all processes re-
ceive their j th PRI.

3The chosen, as well as the additional, acceptance tests can trigger an EI.

579 RAMANATHAN AND SHIN: USE OF COMMON TIME BASE FOR CHECKPOINTING AND ROLLBACK RECOVERY

A. Probabilistic Model
To model the performance of the proposed checkpointing

scheme, we make the following assumptions.
MA1) W,, and wkl, k # i, are independent of each other

for all j, 1.
MA2) Given Wz,, the time required by P, to reach AT,

without waiting for other processes during the check-
pointing, denoted by Tz,, has a density fT,,lw,,.

where kj is a design parameter.
MA4) Ro = Afo = 0 for all i.
The programmer inserts the acceptance tests within the

processes. For each acceptance test, he or she will usually
have a desired point (time) in the process where each test
could be inserted. The desired point will be based on the
number of acceptance tests the programmer wants to insert and
the estimated total execution time for the processes [15]. The
acceptance tests cannot, however, be inserted at any arbitrary
point in the process since one may not be exactly aware of the
state a process should be in at every point in its execution (for
verification by an acceptance test). Thus the acceptance tests
will be inserted at a feasible point closest to the desired point.
After insertion, the expected time to reach an acceptance test
will therefore differ from the desired time. We can model this
uncertainty in the expected time to reach an acceptance test
as a random variable distributed around the desired time for
inserting that acceptance test. Section VI illustrates this aspect
by using a specific example.

MA1) states that the random variable representing the
uncertainty in the expected time for Pa to reach AT, is
independent of that for Pk to reach the ATl for all k # i. MA2)
states that due to unpredictable waits for shared resources
and other overheads, the actual time for P, to reach its
j th acceptance test will differ from the expected time. The
distribution of the actual time of an acceptance test around the
expected time is defined by MA2). MA3) defines the class of
functions considered in the analysis for determining the times
to establish the PRP's. Since our checkpointing algorithm
requires every process to have completed the j t h acceptance
test and not the j + lth, it is reasonable to assume that the
time for the j t h PRI should be somewhere in between M, and
m3+1. This particular class of functions is chosen to make the
analysis tractable. MA4) specifies the initializing conditions.

There are two factors that contribute to the checkpointing
overhead: overhead of saving states, and overhead of waiting
at each pseudo-recovery point. The overhead of saving states
depends directly on the number of times a process has to
save its state. It can be reduced substantially at the cost of
additional hardware as shown in [lo]. A process waits at the
j t h pseudo-recovery point either if one of the n processes does
not complete its j t h acceptance test before the j th PRI or if
the process receives the j + lth AT1 before the j t h PRI. In the
first case, a process waits because some process is slower than
expected, whereas in the second case the process waits because

it is much faster than expected. We henceforth refer to the first
case as a slow-wait and the second case as the fast-wait.

Since PRI's are based on time rather than points in ex-
ecution whereas ATI's correspond to points in execution,
the probability of a slow-wait depends on the time interval
between the start of the process and the j th PRI. When
the overhead due to the checkpointing scheme is zero, Pi
executes for Rj time units before the j t h PRI. But in practice,
due to the waiting times at the previous checkpoints, Pi

gets ATj - o i k time units for execution before the j t h

PRI. Since the processes prevent their pseudo-clocks from

incrementing while waiting at the PRP's, Afj - Oik 2 Rj.

This result is proved formally in Theorem 1. For proving the
theorem it is convenient to define the following function.

Definition: Let Ci be a mapping from real-time to the
pseudo-time on process Pi such that Ci(t) = T means that
the pseudo-time on Pi at real-time t is T .

Theorem I : Let A:j and Rj be the respective real-time and
the pseudo-time at which process Pi receives the j t h PRI.
Also let Oik be the Pi's waiting time at the kth PRP. Then,

j -1

k = l

j - 1

k = l

j - 1

A:j - Oik 2 Rj,
k = l

Proof: Since a process might have to wait for some other
processes (including itself) to complete the kth acceptance test
before establishing the kth PRP, A:k is not necessarily equal
to Afk, where Afk is the real-time at which Pi establishes
the kth PRP. However, since the processes do not increment
their pseudo-clocks while some process is waiting, Ci(A:k) =
Ci(Afk) for all i .

In the time between the establishment of the kth PRP and
the receiving of the k + lth PRI, the pseudo-clocks of all
processes keep up with real time. As a result,

ci(A:k+1) - c i (A f k) = A:k+, - Afk for all 2 , k.

Also, since a process that has not completed its kth acceptance
test when it received the kth PRI continues to run while
the others are waiting for it to complete the acceptance test,
Oik 5 Afk - A:k. From these observations, the theorem can
be proved as follows.

j j - 1

A:j = - Afk-1) 4- - A:k)
k = l k = l

j 3 - 1

= - Rk-1) -k - &)
k = l k = l

j-1

= Rj + x (A f k - A:k)
k = l
j - 1

2 Rj + X O i k .
k = l

j - 1

In other words, A:j - oil, 2 Rj.
k = l

580 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 6, JUNE 1993

The foregoing theorem implies that the time interval be-
tween two successive PRI’s does not depend on the waiting
times at the previous PRI’s. Consequently, the total time that
a process gets to execute before receiving the j th PRI does
not depend on the waiting times at the previous PRI’s. So the
probability of a message being sent does not depend on the
waiting times at each PRP. The probability of a message being
sent can therefore be estimated by considering the situation in
which there is no checkpointing overhead, i.e., the probability
of Pi sending a message can be estimated by using Tij instead
of Aij .

B. Estimation of the Overhead

The overhead due to slow-wait occurs when a process does
not complete its j t h acceptance test before the time Rj while
the overhead due to fast-wait occurs when a process reaches
its j + l th acceptance test before Rj. The overhead due to
saving of states occurs each time a process has to establish a
pseudo-recovery point.

In terms of the notation introduced earlier, the wait time at
the j t h PRP of process Pi can be expressed as

Sj - Tij if Tij > Rj
Sj - Rj if Sj > Rj,Tij 5 Rj and Tij+l > Rj
Sj - Tij+l if Sj > Rj and Tij+l 5 Rj
Rj - Tij+l if Sj I Rj and Tij+l I Rj

otherwise

Oij = lo (5.1)
The first case, namely Tij > Rj , corresponds to the situation
where Pi does not complete its ATj before receiving the j th
PRI. Pi therefore waits from the time it completes its ATj till
the slowest process completes. The second case corresponds
to situation where Pi completes its j th acceptance test before
the j th PRI, but some other process does not. So Pi waits for
the slowest to complete from the time it receives the j PRI.
The third and the fourth cases occur when Pi is so fast that it
completes both ATj and ATj+l before receiving the j th PRI.
In the third case, a process other than Pi does not complete its
ATj before the j th PRI. In this case, Pi waits from the time it
receives the j + l th AT1 till the slowest process completes its
j th acceptance test. In the fourth case, all processes complete
their ATj by Rj and therefore Pi resumes its normal execution
at the time Rj. Finally, if none of the above situation occurs,
then Pi does not wait at the j th pseudo-recovery point. The
goal is to select a Rj such that the final case occurs more
often than the other four cases.

We can then prove the following result about the expected
value of Oij, i.e., the expected wait time of Pi at the j th PRP.

Theorem 2:
E[Oij] 5 E[Tij-RjlTij > Rj]+E[Rj-Ti j+ l (Rj > Tij+l].

Proof: See Appendix.
Although exact analytic expressions for the expected over-

head can be derived, evaluating those expressions to within
an acceptable accuracy is very complicated. Thus, we derive
analytic expressions for the upper bound in Theorem 1 instead
of attempting to derive the exact expressions.

E[Tij - RjlTij > Rj] can be evaluated from the joint
distribution of Tij and Rj as follows.

P{Tij 5 t ; Rj 5 Z} =

(5.2)

Equation (5.2) can be evaluated from the joint distribution of
Tij, M j , and mj+l. Since Wij and Wkl are assumed to be
independent for all k # i, the joint distribution of Tij, M j ,
and mj+l can be expressed as

P{Tij I t ; Mj I 21; mj+l > ~ 2) =
P{Tij I t ; Wij 5 ~ l ; W i j + l > 2 2)

.P{VZ # i Wlj 5 21; Wlj+l > 2 2)

where

P{VZ # i WZj 5 21; WZj+l > .2} =
N ..I.

l#i

and

P{Tij I t ; Wij I ~l;Wij+l > 2 2) =
21 Lo P{Tij <tlWij=tl)P{Wij+l >~plWij=t l)

+vi, (t l) d t l .

Similarly, it is possible to evaluate the E[Rj - Tij+llRj >
Tij+l] from the joint distribution of Tij+l and Rj.

P{Tij+l I t; Rj 5 Z} =

‘fM, (t l) d t l .
(5.3)

Equation (5.3) can be evaluated from the joint distribution
of Tij+l, M j , and mj+l. Since Wij and Wkl are assumed to
be independent for all k # i, the joint distribution of Tij, M j ,
and mj+l can be expressed as

P{Tij+l I t ; Mj 5 ~ 1 ; mj+l > ~ 2) =
P{Tij+l I t; Wij I ~ 1 ; Wij+l > 22)

.P{VZ # i Wlj I 21; Wlj+l > Z2)

where,

P{VZ # i Wlj 5 21; Wlj+l > z2} =

RAMANATHAN AND SHIN: USE OF COMMON TIME BASE FOR CHECKPOINTING AND ROLLBACK RECOVERY 581

6.0
8.0
9.0

10.0
12.0

The overhead due to saving of states depends on: 1) the
number of times a process has to save its state and 2) the
architecture of the system. In particular, it does not depend on
R, or any other parameter specific to the proposed algorithm.
Since the proposed algorithm requires a process to save its
states only once every pseudo-recovery line as compared to
N - 1 in the PRB approach [14], where N is the number
of cooperating processes in the system, this overhead is
substantially less in the proposed algorithm than in the PRB
approach.

The foregoing equations can be used to determine a good
value for the design parameter k,. This value of k, would have
been optimal if we use the exact expressions (instead of the
upper bound) for the E[O,,] and if our objective is to minimize
the expected wait time. On the other hand, if our objective
is to minimize a different objective like the probability of a
long wait or the probability of a process sending a message,
then we need to derive and minimize the appropriate analytic
expressions. Although the basic probabilistic model used in
this paper is general enough to accommodate almost any
objective, we will presume that the objective is to select a k ,
that minimizes the expected wait time at the yth PRP. Since
evaluating the exact expressions for the expected wait time is
very complicated even for some simple distributions, we will
minimize the upper bound specified in Theorem 1 to obtain a
sub-optimal solution. In other words,

Minimize
E[S, - R,Is, > R,] + E[R, - T~,+IIT~~+I L R3] with
respect to R,
Subject to:

if MJ > mJ+l
RJ = { Z + k , * (m ~ + l - M J) if mj+l 2 M ,

where 5, is a design parameter. Since k, is the only design
parameter in R,, choosing a value for R, is equivalent to
choosing a value for 5,. The value of k , that minimizes
the foregoing objective can be determined numerically using
iterative optimization techniques as in [11].

12.0
12.0
12.0
12.0
12.0

VI. NUMERJCAL EXAMPLES

The overheads described in the previous section were eval-
uated using numerical integration techniques for some known
distribution and the following results were obtained. To ac-
count for differences in the processes undcr consideration,
the expected time for processes to reach the 7th acceptance
test was assumed to be uniformly distributed over the interval
[j * znter-at - a3 , * znter-ot + u J] , where 0, is a known
parameter. Given the expected time for a process to reach its
j t h acceptance test, the actual time (without the checkpointing
overhead) was assumed to be uniformly distributed around the
expected time with parameter b,, i.e., f ~ , , ~ ~ ~ ~ , , (t l W , , = t l) is
uniformly distributed over the interval [tl - b,, tl + b 3] . This
accounted for the variation in number of times certain loops
were executed, waiting times for shared resources, interrupt
service overhead, etc.

The expected waiting time at the sixth PRP for the best
value of k, (obtained by solving the minimization problem

8.0
8.0
8.0
8.0
8.0

TABLE I
EXPECTED OVERHEADS I N THE PROPOSED CHECKPOIN~ ING SCHEME

10.0
12.0
14.0
16.0
18.0

ED,l
(Prop.)

1.32
1.95
2.79
4.42
6.56
1.22
1.95
2.62
2.92
4.06

EP,,I
(Rand.)
15.80
17.25
18.03
18.82
20.49
15.41
17.25
19.14
21.07
23.03

13.87
11.30
15.47
23.48
32.01
7.90
11.29
13.71
13.87
17.64

Prob. of
mess. %

4.14
4.86
5.95
5.76
5.04
2.61
4.86
7.70
7.65
13.53

in Section V-B) is shown in Table I. The values in this table
correspond to a zntrr-ot of 25. The minimization problem for
determining the best k , was solved using the Fibonacci descent
method. This method would lead to the optimal solution if the
objective being minimized is unimodal. Otherwise, the results
would be upper bounds to the actual value.

The table also shows the variation in the expected waiting
times with changes in the parameters a6 and bs. It is clear from
the table that the expected waiting time increases with 0 6 for
a constant b6. This is because an increase in a6 corresponds to
a greater variance between the processes, and hence it is more
difficult to coordinate the completion of acceptance tests by
the processes. Similarly, an increase in b6 results in an increase
in the expected waiting time. This is because an increase in
b6 implies that our estimate of the execution time to reach
the y th differs more from the actual execution time. For the
purpose of comparison, the table also contains the expected
wait time in Randell’s checkpointing scheme [12]. Even for
large values of 0 6 and b6 the expected wait times in the
proposed checkpointing scheme is much lew than in Randell’s
scheme. For example, 06 = 12, b6 = 12 and ~ n t r r - a t = 25
corresponds to the case where the actual execution time to
reach the sixth acceptance could vary between 126 time units
to 174 time units. Even for this severe variation in the actual
execution time, the expected wait time is only 32% of the
expected wait time in Randell’s scheme.

In addition to the reduced wait times, the proposed scheme
also has fewer message exchanges for checkpointing purposes.
Column 6 in Table I shows the probability of process sending
a message at the sixth PRP for the best value of I C , . These
values should be contrasted to a 100% probability of message
exchange in Randell’s scheme.

VII. CONCLUSION

The checkpointing algorithm proposed in this paper has
all the desirable features with little time and space overhead.
Processes have to establish only one PRP per pseudo-recovery
line and preserve only two PRP’s. The paper also presented a
model to evaluate the expected waiting time and the probabil-
ity of exchanging messages for checkpointing purposes. For a
typical numerical example the expected waiting times and the

582 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 6, JUNE 1993

probability of a process exchanging messages are shown to be
much less than Randell’s checkpointing scheme [12].

The additional overheads in this scheme as compared to
others are 1) the need for a common time base and 2) the
need to know the expected times for reaching the acceptance
tests a priori. If a hardware synchronization algorithm is used
to establish the common time base, then the time overhead
on the system is almost minimal. The cost of the additional
hardware (see [16] for an analysis of hardware cost) is easily
compensated by the reduced overhead in the checkpointing
algorithm. Moreover, as was pointed out in [8], this common
time base can be used to efficiently handle problems other
than checkpointing.

The expected times for reaching acceptance tests have to
be estimated only once for every process. This can be easily
done by executing the process repeatedly prior to their actual
execution (mission). Since processes are usually repeatedly
executed prior to the mission to ensure that there are no bugs in
the program, these estimates can be obtained at no extra cost.
Hence, the checkpointing algorithm proposed in this paper has
high potential use for real-time applications.

APPENDIX

and

Furthermore,

REFERENCES

[l] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchronism
needed for distributed consensus,” J. ACM, vol. 34, no. 1, pp. 77-97,
Jan. 1987.

[2] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no.
2, pp. 374-382, Apr. 1985.

[3] J. Homing, H. C. Lauer, P. M. Melliar-Smith, and B. Randell, “A
program structure for error detection and recovery,” Lecture Notes in
Computer Science, vol. 16. New York: Springer-Verlag, 1974, pp.
171 - 187.

RAMANATHAN AND SHIN: USE OF COMMON TIME BASE FOR CHECKF’OINTING AND ROLLBACK RECOVERY 583

[71

J. L. W. Kessels, “Two designs of a fault-tolerant clocking system,”
IEEE Trans. Comput., vol. C-33, no. 10, pp. 912-919, Oct. 1984.
K. H. Kim, “Approaches to mechanization of conversation scheme based
on monitors,” IEEE Trans. Software Eng., vol. SE-8, no. 3, pp. 189-197,
May 1982.
R. Koo and S. Toueg, “Checkpointing and rollback-recovery for dis-
tributed systems,” IEEE Trans. Sofiware Eng., vol. SE-13, no. 1, pp.
23-31, Jan. 1987.
C. M. Krishna, K. G. Shin, and R. W. Butler, “Ensuring fault tolerance
of phase-locked clocks,” IEEE Trans. Comput., vol. C-34, no. 8, pp.

L. Lamport, ‘‘Using time instead of timeout for fault-tolerant distributed
systems,” ACM Trans. Programming Languages Syst., vol. 6, no. 2, pp.
254-280, Apr. 1984.
I. Lee and S. B. Davidson, “Adding time to synchronous process
communications,” IEEE Trans. Comput., vol. C-36, no. 8, pp. 941 -948,
Aug. 1987.
Y.-H. Lee and K. G. Shin, “Design and evaluation of a fault-tolerant
multiprocessor using hardware recovery blocks,” IEEE Trans. Comput.,
vol. C-33, no. 2, pp. 113-124, Feb. 1984.
D. G. Luenberger, Linear and Non-linear Programming, 2nd ed. Read-
ing, MA: Addison Wesley, 1984.
B. Randell, “System structure for software fault tolerance,” IEEE Trans.
SofhvareEng., vol. SE-1, no. 2, pp. 220-232, June 1975.
B. Randell. P. A. Lee. and P. C. Treleaven. “Reliabilitv issues in

752-756, Aug. 1985.

computing system design,” ACM Comput. Surveys, vol. 10, no. 2, pp.
123-165, June 1978.
K. G. Shin and Y.-H. Lee, “Evaluation of error recovery blocks used
for cooperating processes,” IEEE Trans. Software Eng., vol. SE-10, no.
6, pp. 692-700, Nov. 1984.
K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of real-
time tasks,” IEEE Trans. Comput., vol. C-36, no. 11, pp. 1328-1341,
Nov. 1987.
K. G. Shin and P. Ramanathan, “Clock synchronization of a large
multiprocessor system in the presence of malicious faults,” IEEE Trans.
Comput., vol. C-36, no. 1, pp. 2-12, Jan. 1987.

Parameswaran Ramanathan (S’85-M’89) re-
ceived the B.Tech degree from the Indian Institute of
Technology, Bombay, India, in 1984, and the M.S.E.
and Ph.D. degrees from the University of Michigan,
Ann Arbor, in 1986 and 1989, respectively.

He is an Assistant Professor in the Department of
Electrical and Computer Engineering, Department
of Computer Sciences, University of Wisconsin,
Madison. He has been active in the area of fault-
tolerant computing, distributed systems, real-time
computing, VLSI design and computer architecture

From 1984 to 1989 he was a Research Assistant in the Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor.

Kang G. Shin (S’75-M’78-SM’83-F’92) re-
ceived the B.S. degree in electronics engineering
from Seoul National University, Seoul, Korea,
in 1970, and both the M.S. and Ph.D degrees
in electrical engineering from Cornell University,
Ithaca, NY, in 1976 and 1978, respectively.

He is Professor and Chair of Computer Sci-
ence and Engineering Division, Department of
Electrical Engineering and Computer Science, The
University of Michigan, Ann Arbor. He has
authoredicoauthored over 180 technical papers

(more than 85 of these in archival journals) and several book chapters
in the areas of distributed real-time computing and control, fault-tolerant
computing, computer architecture, and robotics and automation. In 1985, he
founded the Real-Time Computing Laboratory, where he and his colleagues
are currently building a 19-node hexagonal mesh multicomputer, called
HARTS, to validate various architectures and analytic results in the area of
distributed real-time computing. From 1978 to 1982 he was on the faculty
of Rensselaer Polytechnic Institute, Troy, NY. He has held visiting positions
at the U.S. Airforce Flight Dynamics Laboratory, AT&T Bell Laboratories,
Computer Science Division within the Department of Electrical Engineering
and Computer Science at U.C. Berkeley, and International Computer Science
Institute, Berkeley, CA.

In 1987, he received the Outstanding IEEE TRANSACTIONS ON AUTOMATIC
CONTROL Paper Award for a paper on robot trajectory planning. In 1989,
he also received the Research Excellence Award from The University of
Michigan. He was the Program Chairman of the 1986 IEEE Real-Time
Systems Symposium (RTSS), the General Chairman of the 1987 RTSS, the
Guest Editor of the 1987 August special issue of IEEE TRANSACTIONS ON
COMPUTERS on Real-Time Systems, and is a Program Co-chair for the 1992
International Conference on Parallel Processing. He currently chairs the IEEE
Technical Committee on Real-Time Systems, is a Distinguished Visitor of
the Computer Society of the IEEE, an Editor of IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS, and an Area Editor of International
Journal of Time-Critical Computing Systems.

