
IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993 253

Optimal Scheduling of Cooperative Tasks in a
Distributed System Using an Enumerative Method

Dar-Tzen Peng and Kang G. Shin, Fellow, IEEE

Absfruct- This paper considers preemptive (resume) sched-
uling of cooperative tasks that have been preassigned to a set
of processing nodes in a distributed system, where each task is
assumed to consist of several modules. During the course of their
execution, these tasks communicate with each other to collectively
accomplish a common goal. Such intertask communications lead
to precedence constraints between the modules of different tasks.
Our scheduling objective is to minimize the maximum normalized
task response time, called the system hazard. Real-time tasks
and the precedence constraints among them are expressed in a
PERT/CPM form with activity on arc (AOA), called the taskgraph
(TG), in which dominance relationship between simultaneously
schedulable modules is derived and used to reduce the size
of the set of active schedules to be searched for an optimal
schedule. Lower-bound costs are estimated, which are then used
to bound the search. Finally, a demonstrative example and some
computational experiences are presented.

Index Terms- Branch-and-bound (B&B) method, distributed
real-time systems, dominance relation, lower-bound cost esti-
mates, precedence constraints, preemptive (resume) scheduling of
real-time tasks, regular performance measures, system hazard.

I. INTRODUCTION
E a - T I M E systems are characterized by their require- R ment that the execution of their computational tasks

must be not only logically correct but also completed in time;
otherwise, catastrophe may ensue [11. In a distributed real-time
system, the tasks communicate with each other to accomplish
the overall system goal. This paper addresses the “optimal” (in
the sense to be defined later) preemptive scheduling of com-
municating real-time tasks that have already been preassigned
to the processing nodes (PN’s) of a distributed system. The
scheduling objective used is to minimize the system hazard,
or the maximum normalized task response time over all tasks.
By properly selecting the normalization factor for each task,
one can show that the system hazard subsumes many other
scheduling criteria related to meeting task deadlines [2] .

Let T = {Ti: i = 1 , 2 , - . . , m) be a set of m 2 2
cooperative tasks to be executed by a set, N = { N k : IC =
1 ,2 , . . - , n) , of n 2 2 PN’s. Using the method in [3], one

Manuscript received January 22, 1990; revised October 26, 1992. This
work was supported in part by the National Science Foundation under Grant
DMC-8721492 and by the Office of Naval Research under Contract N00014-
85-K-0122. Recommended by Simon Lam.

D.-T. Peng was with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109-2122. He is now
with the Microelectronics and Technology Center, Allied Signal Aerospace
Company, Columbia, MD 21045-1998.

K. G. Shin is with the Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI 48109-2122.

IEEE Log Number 9206896.

can decompose each task Ti with release time ri into several
modules on the basis of intertask communications. Intertask
communications introduce precedence constraints between the
modules of different tasks. Each module of Ti must be
executed by the PN to which Ti is assigned. There may
also be a communication delay between the completion of
a module and its subsequent enabling of another module on a
different PN. The execution time of a module by the associated
PN and each communication delay are assumed to be given.
Worst-case values of these are usually used for the purpose of
scheduling real-time tasks.

A PERT/CPM graph with Activity On Arc (AOA)’ [4],
called the task graph (TG), is used to describe communication
delays and the precedence constraints between modules and
the release and completion of each task. Unlike a general
PERT/CPM graph-which usually has only a single pair of
starting and ending nodes-the TG has multiple pairs of
starting and ending nodes, each representing the release and
the completion events of a task. Thus, a starting (ending)
node is said to be “realized when the corresponding task
is released (completed). Note that the completion of a task
Ti means the completion of all modules2 and communication
delays which precede Ti’s ending node in the TG. Depending
on how the TG is constructed to reflect Ti’s completion, the set
of these preceding modules may not contain all Ti’s constituent
modules. This means that even the last module(s) necessary
to complete Ti may not belong to Ti. Hence, when solving
the task scheduling problem (TSP), what is more important is
which PN executes a given module and which ending node the
module precedes in the TG, rather than which task the module
belongs to. Following the convention in any PERTKPM graph
with AOA, each module or communication delay of the TG
will henceforth be called an activity.

Fig. 1 shows an example TG consisting of four tasks
TI, Tz, T3, and T4. TI and T2 are assigned to N I , while T3
and T4 are assigned to Nz. Thus, all modules on the left-
hand side (LHS) of the shaded areas in Fig. 1 are to be
executed by N I , whereas those on the right-hand side (RHS)
to be executed by N2. Each arc in the TG represents an
activity and the weight associated with an arc is the execution
time (magnitude) of the corresponding module (delay). In
this TG, there are four starting nodes nl,nz,n3, and n11

‘The reason why the AOA-type-instead of the commonly used AON
(Activity On Node) type-graph is used to describe a TG is that a node
in an AOA-type TG corresponds more naturally to the readiness (completion)
state of all modules immediately following (preceding) the node as can be
seen below.

Which may belong to T, as well as to other tasks.

0098-5589/93$03.00 0 1993 IEEE

1

RANSACTIONS ON 9 0 F r W A K E ENGINEERING. VOL 19, NO 3, MARCH 19Y3

n .
17

Fig. 1. An example TG

(labeled 5'1. 5'2.5'3. and 5'4. respectively), and four ending
nodes n17. n18. n ~ . and n 1 9 . which represent the release and
completion events of TI. T2. T3. and T4. respectively. A task
is considered completed only after all activities preceding
its ending node have been completed. All but T4-which is
released at time t = 20-are released at t = 0. meaning
that nl,n2.n3. and 7111 are "realized" at t = 0 .0 .0 . and
20, respectively. For convenience, we write l i p = TI if rip

is the ending node representing T, 's completion. Also, the
completions of TI. T2. T3. and TA represent the completions
of all activities preceding n17.7~18. n y . and I l l y . respectively.

Let cr be the time when T, is completed under a scheduling
algorithm C. Then, the system hazard of a set T of tasks is
defined as O i = iriaxTIET E : . where E! = (cy - r ,) / ~ , ~ is
the normalized task response time, T , the release time, and
i i i j > 0 the normalization factor of T,. We want to find
an optimal preemptive (resume) scheduling algorithm <* for
T such that (-IC' = riiini (-IC. That is, <* minimizes the
maximum normalized response time over all tasks. Notice that
O i is a regular' performance measure.

For example, the two schedules generated by (1 and (2

for the four tasks in Fig. 1 are given in Fig. 2. where
io1 = 30. ~112 = 40. and 'ulg = i l l 4 = 20. (1 schedules modules'

1

' A performance measure Z is said to he r e p h r . it I) the \cheduling
objective is to minimize Z. and 2) Z increases only if one o r more task
completion times in the schedule increases [SI.

'Time delays are not schedulable objects.

on each PN according to ascending order of their indices,
whereas (2 considers the normalization factor for each task as
wcll as the precedence constraints that affect the scheduling
of modules on other PN's. As shown in Fig. 2, we get

and

Thus.

showing the C2.s superiority over (1.

Even without considering the communication delays, the
above scheduling problem is hard, regardless of whether or not
preemptions are allowed. For example, the general job-shop
scheduling problem [6]-a special case of the above sched-
uling problem-is already NP-hard for the problems even as
simple as T2 I 'mJ 2 3 I C,;,, or T3 I m, 2 2 I C,,,, [7], [8].
Consequently, except in case . i a single PN [9], no polynomial
time algorithms are likely to exist for our scheduling problem;
some form of heuristic andlor enumeration is the only recourse
to the problem.

The scheduling problem considered here falls in the realms
of resource-constrained task scheduling [lo] as well as job-
shop scheduling, and thus, its solution approaches must be
related to these two types of scheduling problems. Like any
other NP-hard problem, approaches to these problems are
concerned with how to improve the efficiency of search for
an optimal or suboptimal solution by 1) using dominance
properties (DP's) to reduce the size of the state space to
be searched and 2) deriving a lower-bound cost as tight as
possible at each stage to bound the search more efficiently.
Giffler and Thompson [111 are the first to propose a systematic
approach to generating the set of all active schedules based
on which (and variations thereof) most implicit enumerative
algorithms have been developed. A set A of active schedules
is said to dominate another set S (> A) of all schedules in
the sense that inclusion of an optimal schedule in S implies
the inclusion of the same schedule in A . In other words,
to find optimal schedules with respect to (w.r.t) any regular
measure, it suffices to consider only the set of active schedules,
thus reducing the size of the state space to be searched. For
example, to solve a job-shop scheduling problem, Brooks and
White [12] used two bounds. called the job bound and the
machine hound, to bound the search for an optimal schedule
among the set of all active schedules. Schrage [13], [14]
developed a similar approach to generating the set of all
active schedules for preemptive and nonpreemptive cases,
and proposed DP's and lower-bound costs to find optimal
schedules for a network scheduling problem. An extensive
survey of job-shop scheduling with branch-and-bound (B&B)

'A two-machine job-shop in which the number of operations in any job
is greater than or equal to 3 and the scheduling objective is to minimize the
maximum job completion time among all jobs [151.

PENG AND SHIN: OYIIMAL SCHEDULING OF COOPERATIVE TASKS IN A DISTRIBUTED SYSTEM 255

T3 W m p W T4 cbmpkted
T1 colnpw T2 completed

T4 cdmplued

I I I I I I I I d
5 10 15 m 25 30 35 40

0

Fig. 2. Two schedules of the TG in Fig. 1.

methods can be found in [16], where job-shop scheduling was
modeled by settling pairs of disjunctive arcs and a tighter
bound of cost was also developed by including many other
bounds as special cases. Possible extensions of the problems
and variations of the solution techniques are described in [6] .

Unfortunately, none of these approaches are directly appli-
cable to our scheduling problem due mainly to the structural
differences. Furthermore, while most known scheduling objec-
tives are to minimize the makespan or to meet task deadlines,
our scheduling objective is to minimize the system hazard.
As stated in [2], there are distinct advantages in using the
system hazard over other objectives. For example, if all tasks
to be scheduled are periodic, then minimizing the makespan
is not appropriate unless all task periods are the same. On
the other hand, an objective simply to meet all task deadlines
may not be good enough because one such schedule may
still be better than another in the following sense. Suppose
there are only two dependent periodic tasks TI and TZ to b i
scheduled, where the periods of TI (to be scheduled on N I)
and T2 (to be scheduled on N z) are 10 and 20, respectively.
Consider two schedules <I and 52 of these two tasks in the
time period [0, 20). In <I, T2 is completed at time 12, and
the two invocations of TI are completed at times 9.9 and 14,
respectively. In <2 however, TZ is completed at time 14, and
the two invocations of TI are completed at times 6 and 16,
respectively. Since all deadlines are met, both [I and (2 are
optimal schedules if the objective is simply to meet all task
deadlines. However, it is reasonable to argue that <z, which
with a lower system hazard than 51 (0.7 < 0.99), should be
superior to 51 because a slight increase in TI’S andlor TZ’S
execution time may cause TI to miss one of its deadlines in
<I, but not in <z. Hence if the normalization factors are chosen
to be the task periods as in the above example, then using the
system hazard maximizes the system’s ability to meet task
deadlines and allows for better load sharing in the system.
This is especially true when variations in task execution times

are possible, and the variances are proportional to the task
flow times.

In this paper, we develop a B&B algorithm to find an
optimal schedule w.r.t. the system hazard. We do this by
deriving and then using the dominance relationship between
simultaneously schedulable modules. Also, lower-bound costs
are derived to effectively guide the search for an optimal
schedule. Although the general structure of B&B algorithms
is well known, it is the derivation of good DP’s and tight
lower-bound costs that are essential to the success of any
B&B algorithm.

A set of DP’s w.r.t. all regular measures are identified in
Section 11. Section I11 discusses more DP’s w.r.t. the system
hazard. Using all the DP’s derived in Sections I1 and 111, we
show in Section IV how the B&B algorithm is guided by a
tight lower-bound cost to efficiently find an optimal schedule.
A demonstrative example and some computational experiences
are presented in Section V. Finally, the paper concludes with
Section VI.

11. DOMINANCE PROPERTIES FOR ALL REGULAR MEASURES

Since preemptions create an infinite number of possible
schedules for a given problem, the main idea behind the
DP’s w.r.t. all regular measures is to eliminate unnecessary
preemptions and reduce the processor idle times caused by
precedence constraints between modules.

An unfinished module ob in the TG is said to be schedulable
if 1) the task containing Ob has been released, and 2) all
of Ob’s preceding modules and communication delays have
already been completed. The DP’s to be identified are based
on the following observations:

OB1: Preemptions that do not improve performance must
be disallowed to reduce the number of possible
branches in the B&B search tree.

256

OB2:

OB3:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

9, completed
4 .

ob 0, Q
0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15

t 1=0 t2 t 3 t 4

w A : preemptionbyorher modules

(a)

9, completed
4

~~ ~~

0 1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 1 4 15

t 1=0 t 2 t 3 t4

(b)

Fig. 3. Two schedules generated by (1 and (2 . (a) Original partial schedule by (1 . (b) Alternative partial schedule by (2 .

A PN should not be left idle if there are modules
schedulable on the PN.
A schedule must always be replaced by another
schedule if the latter can reduce the completion time
of a task without delaying the completion of any
other task.

These observations are obvious since preemptions are allowed
and regular measures used.

Let ob and 0, be two modules schedulable on Nk, (1 and
<2 be two preemptive scheduling algorithms, and ZCl and Zc2
be the performances of (1 and 52, respectively. OB1 leads to
the following theorem w.r.t. any regular measure.

Theorem I : Given any schedule with preemptions between
01, and 0,, there always exists another schedule without such
preemptions such that the new schedule achieves a cost equal
to, or lower than, that of the original schedule.

Proof: Let ob and 0, be simultaneously schedulable on
Nk at tl = 0. Consider the partial schedule in Fig. 3(a)
generated by a scheduling algorithm (1, where the shaded
areas represent preemptions by modules other than ob and
0,. As shown in Fig. 3(a), (1 allows 0, to interrupt ob at
t 2 > tl . Without loss of generality, we may assume that ob
is completed before 0,. We want to show that there always
exists another scheduling algorithm 52 that does not allow
preemptions between ob and 0, and achieves an equal or
lower cost as compared to the original algorithm Cl.

Since ob is completed before 0, in the original schedule,
construct the new schedule with 52, which simply rearranges
the execution orders of o b and 0, such that ob is executed
to completion without 0,’s interruptions after tl (Fig. 3(b)).
(ob could still be interrupted by modules other than 0, as
shown in the shaded areas in Fig. 3(b).) It is shown that the
completion time of ob has been reduced while that of 0, can
be maintained. Thus, using 52 will never result in a larger
task completion time than using <I because there are always
more schedulable modules available to 52 than (1. Similar

arguments also hold if 0, is assumed to complete before ob
in the original schedule. In such a case, however, 52 must
rearrange the execution order of ob and 0, such that 0, is
now executed to completion without Ob’s preemptions. Notice
that which of ob and 0, to execute first at tl = 0 under (1

for both of the above cases makes no difference. The theorem
follows since ZC2 5 ZCl by OB3. Q.E.D.

For the purpose of disallowing unnecessary preemptions,
the implications of Theorem 1 are as follows. If there are T

modules M = {Ojlj = 1 , 2 , . . . , T } that are simultaneously
schedulable on Nk at tl = 0, then for each of these T branches
we are expanding, the corresponding module shall be allowed
to run to completion unless modules other than those in M
become schedulable at t > tl . In other words, for each branch
j under expansion, no module in M is allowed to preempt the
execution of the module Oj corresponding to branch j . Only
those modules that become schedulable at a future time t > tl
may preempt 0j. In the following, the DP’s are identified
based on OB2 and OB3.

While the term “precede” holds its usual meaning between
two nodes or two arcs in the TG, we also want to use it
between a node and an arc as follows.

Definition I : An activity (module or communication delay)
A , is said to immediately precede a node np if np is at the
“head” of A, in the TG, written as head(A,) = np, and A,
is said to precede np if either A, immediately precedes np,
or head(A,) precedes np in the TG.

Therefore, np is said to be realized if a task whose starting
event is represented by np has been released, and all activities
that immediately precede np have been completed.

Since the precedence relation in the TG is transitive [17],
there are usually many nodes preceded by a module, say Ox,
although only one of them may be immediately preceded by
0,. Besides, some of the nodes preceded by 0, may not even
be “located” in the same PN, say Nk, that executes 0,. Let
n,(0,) be the set of nodes which are preceded by Ox, are

PENG AND SHIN OPTIMAL SCHEDULING OF COOPERATIVE TASKS IN A DISTRIBUTED SYSTEM 257

t& 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ~ 1s 16 tF17
(b)

Fig. 4. Two partial schedules generated by (1 and (2 . (a) Original partial schedule generated by C1. @) Modified partial schedule p2 generated by (2 .

indeed located in Nk, and represent some task completions.
Also, let Rl(0,) be the set of PN “boundary” nodes that are
preceded by o,, are located in Nk, and are placed at the “tails”
of some communication delays. For the example TG in Fig.
1, n0(02) = {nl?,fl18} = {T11T2) and n l (o 2) = in141
since 7114 is a boundary node of N I , preceded by 0 2 and
located at the tail of communication delay ~ ~ 2 3 . Likewise,
Ro(O1) = {n17} = {TI} and n ~ (O l) = 0. Moreover,
nO(o4) = {Tl, T2}, n1(04) = (7261 n14)r and nO(o5) =
{T3,T4}, n l (o 5) = {715),n0(06) = {T3}, n l (o 6) =
8,%(018) = {T4} and Ql(018) = (7213). Note that Clo(0,)
does not contain T4 since n19 is not located in N I . Likewise,
none of TI and T2 are contained in n o (0 5) . Ro(0,) and
Rl(0,) indicate which and how tasks will benefit from the
completion of 0,. Specifically, Ro(0,) represents the set of
tasks on a PN, say Nk, whose completions must be preceded
by that of 0,. On the other hand, tasks on PN’s other than
Nk can only benefit from the completion of 0, through the
realization of nodes in R1(0,).

Based on the above observation and given any two modules
o b and 0, simultaneously schedulable on Nk, we write
0, jZ (=’)ob if nj(O,) 2 (=)aj(ob),j = 0,1. Notice
that if ob precedes 0, then Ob Jz O,, but the converse is
not necessarily true. The relation jz is transitive and =’ is
an equivalence relation. Besides, ob =’ 0, iff ob J’ 0,

Definition 2: Let (1 be an algorithm that schedules ob

before 0, on Nk at time to . It is said to be advantageous
w.r.t. a regular measure 2 for Nk to execute 0, before ob at
t o if for any such (1, there always exists another algorithm (2

which contains the (1’s partial schedule prior to t o , schedules
0, before ob at t o , and satisfies Zc2 5 ZCl.

Based on OB2 and OB3, the following theorem associates
the relation 3’ between Ob and 0, with the Nk’s scheduling
decision.

Theorem 2: Given any regular measure Z , O , +’ ob
implies that it is always advantageous for Nk to execute 0,
before ob, where ob and 0, are modules simultaneously
schedulable on Nk.

Proofi Suppose (1 is a scheduling algorithm under which
Nk executes ob before 0, at time t o . Consider the partial

and 0, Jz o b .

schedule p1 within the time interval [to, t j] generated by (1,

where t o is the time both Ob and 0, are schedulable, and
t j the time 0, is completed (Fig. 4(a)). In addition to Ob

and 0,, there are only two other types of modules that could
possibly be executed by Nk within [to , t f] : 1) those modules
that have no precedence relation with either of o b and 0,,
and 2) those modules that are preceded by Ob but has no
precedence relation with 0,. Modules of type 1) can preempt
ob and/or 0, at any time within [to , t f] , whereas those of
type 2) can only be executed after Ob’s completion, but may
preempt 0, at any time within [to , t j] . Let 0, and 0, denote,
respectively, the representative modules of these two types.

Construct a new partial schedule p2 for N k within [to, t f] as
follows. While keeping the schedule for all 0,’s unchanged,
rearrange all the other modules to be executed in order
of Oc,Ob, and 0,’s (Fig. 4(b)). p2 is feasible since all
precedence constraints are still met within [to, t f] . Given
R,(O,) 2 f i I J (o b) and Ql(0,) 2 Rl(Ob), we want to show
that there exists another scheduling algorithm 52 that contains
pz as well as <1’s partial schedule prior to t o , and satisfies the
inequality ZC2 5 ZCl.

Let AO = no(0,) - nO(ob), 61 = R1(Oc) - %(ob), and
A1 be the set of tasks located in nodes other than N k , the
completion event of each of which is preceded by at least a
node in 61. Also, let A = A0 U A1 and a = T - A, where
T is the set of all tasks. That is, h represents the set of tasks
preceded by both, or neither, of Ob and 0,, while A contains
the set of tasks preceded by 0, and, possibly, by both 0,
and ob. We now separately compare the possible completion
times of tasks in A and those in when either p1 or p2 is
Nk’s partial schedule within [to , t f] . Because of the way p 2 is
constructed, 0, has a smaller completion time under pz, but
ob and 0,’s will have larger completion times as compared
to the case of using p1. Since ob precedes 0,, 0 6 3’ O,,
and thus, 0, j z 0,. That is, any task whose completion
event preceded by 0, and/or Ob is also preceded by 0,,
meaning that the preceded task cannot be completed without
completing o,’s, ob, and 0, anyway. This implies that there
exist a schedule (2 containing both &’s prior partial schedule
and pa, under which the completion times of tasks in A could
be reduced further, without increasing those in E. Since these

I

258 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

arguments are valid for any time t o , the theorem follows by
OB3. Q.E.D.

For the example TG in Fig. 1, since f l o (O 4) = Ro(O2) 2
Ro(0i) and fli(o4) 2 Qi(02) 2 R i (0 1) , 0 4 *’ 0 2 j Z

01. Therefore, it is advantageous for N I to execute these three
modules in order of 04, 0 2 and 01 (with the possibility that
some other modules such as 0 3 may be executed in between
them).

It is worth pointing out implications of Theorem 2. First, the
partial schedules p1 and p2 in Theorem 2 were constructed
while implicitly honoring Theorem 1. Second, 5 2 2 (0 ,) 2
f l z (0 b) does not necessarily imply that it is advantageous for
Nk to execute 0, before ob, where fl2(Or) is the set of all
tasks preceded by 0,. Third, if it is advantageous at t o for
Nk to execute o b before 0, and vice versa, then it makes no
difference as to which of ob and 0, is executed first at t o .
In other words, to search for an optimal schedule, it suffices
at t o to consider only the case where either of Ob and 0, is
executed first.

The DP in Theorem 2 is based only on the property
expressed in the form of j Z , which does not always exist
between simultaneously schedulable modules. It is very diffi-
cult to derive any finer-grain DP’s other than the above for all
regular measures. However, if the problem is restricted to a
specific regular measure, some finer DP’s w.r.t. that measure
can be derived. In Section 111 we derive such DP’s w.r.t. 0,
which will then be used to simplify the search further in our
B&B algorithm.

111. DOMINANCE PROPERTIES W.R.T. SYSTEM HAZARD

The approach to determining which of ob and 0, to be
scheduled first w.r.t. 0 is equivalent to determining the relative
“urgency” of each task in f l o (Ob)uflO(0,). Before proceeding
any further, it is necessary to introduce an optimal single-
machine scheduling algorithm developed by Baker et al. [9],
which we call Algorithm A in the rest of this paper. A set of
jobs with arbitrary release times and precedence constraints is
to be scheduled on a single machine so as to minimize the
maximum job completion cost, where the cost associated with
each job can be any monotone nondecreasing function of its
completion time. As can be seen from the following steps, the
computational complexity of Algorithm A is O (N 2) , where
N is the number of jobs to be scheduled.
SA1: Modify job release times, where possible, to meet

the precedence constraints among the jobs, and then
arrange the ’jobs in nondecreasing order of their
modified release times to create a set of disjoint
blocks of jobs. For example, suppose jobs X, Y, and Z
are released at t = 0,2,15, respectively, X precedes
Y which precedes Z, and 5 units of time are required
to complete each of X and Y. Then, the job Y’s
release time is modified to t = 5, Z’s release time
remains unchanged at t = 15, and two blocks of jobs
{X, Y } and {Z} will then be created.

SA2: Consider a block B with block completion time t (B) .
Let B’ be the set of jobs in B that do not precede
any other jobs in B. Select a job 1 from B‘ such

SA3 :

SA4:

that f i (t (B)) is the minimum, where fi(t) is the
nondecreasing cost function of job 1 if it is completed
at t. This implies that 1 be the last job to be completed
in B.
Create subblocks of jobs in the set B - { I } by
arranging the jobs in nondecreasing order of modified
released times as in SA1. (If 1 is preempted several
times before its completion, the deletion of 1 is
equivalent to punching several holes in B.) The time
interval(s) alloted to 1 is (are) then the difference
between the interval of B and the interval(s) allotted
to these subblocks.
For each subblock, repeat SA2 and SA3 until time
slot(s) is (are) allotted to every job.

Our scheduling problem is much more complicated than
that treated by Algorithm A, since two modules belonging to
two different tasks could be assigned to two different PN’s and
must meet the precedence constraints between them. However,
the following useful lemma can be derived from S A 2 .

Lemma I: Let ob and 0, be two modules simultane-
ously schedulable on Nk at time t o such that Ql (0 ,) 2
ni(ob),flo(Ob) = {Tm}, and f l o (0 ,) = {Tn}, for Some
tasks T,, T, E T. Then, it is advantageous w.r.t. 0 to execute
0, before ob at t o if the following inequality (see Fig. 5)
holds:

t - r , t - r ,
W n 2- W m Vt 2 t o + R

where R is the sum of the remaining execution times of all
unfinished modules on Nk that precede at least one of T,
and T,.

Proof: Since fll(O,) 2 fll(Ob), the lemma follows if
we can show that executing 0, before ob is advantageous for
T, and T,. Consider again the partial schedule p1 in Fig. 4(a)
generated by (1, and the modified partial schedule p2 in Fig.
4(b) generated by 52, where 52, in this case, differs from 51
only in p1 and p2. In both p1 and p2, recall that 0,’s represent
those modules that can preempt ob and 0, at any time within
[to , t j] , whereas 0,’s are those modules that can be executed
only after the Ob’s completion but can preempt 0, at any time
within [to , t j] . To prove that Osz 5 Os1, four cases must be
considered depending on whether or not the completions of
0, and 0, represent those of T, and T,, respectively.

Case 1:

Case 2:

Neither 0, nor 0, is a completing module whose
completion represents the completion of T, or T,.
In this case, all task completion times are the same
under 51 and (2, thus Ocz = OC1.
The completion of T, is represented by that of O,,
but 0, is not a completing module. The normalized
response time of T, under 52 is larger than that
under (1 while that of T, remains unchanged.
However, by (l), the normalized response time of
T, is larger than that of T, under 52 which, in turn,
is larger than that of T, under (1. This implies
that the maximum of these remain unchanged
regardless whether (2 (in place of 51) is used or
not. Thus, @ = @Cl.

PENG AND SHIN: OPTIMAL SCHEDULING OF COOPERATIVE TASKS IN A DISTRIBUTED SYSTEM 259

Case 3:

Case 4:

t o + R

Fig. 5. An example cost structure of T, and T,.

0, is a completing module, but 0, is not. The
normalized response time of T, is thus reduced
while that of T, remains unchanged under (2 when
compared to (1, thereby making 0 c 2 5 gc l .
Both 0, and 0, are completing modules. From
(1) and SA2 of Algorithm A, it is advantageous
to execute 0, before Ob (and O,), thus gc2 5
Wl. Q.E.D.

Notice that in the above proof, 0,, rather than ob, is checked;
if such an 0, is nonexistent (ob itself is a completing
module of T,), then we only need to replace 0, with Ob
in the proof. Also, it is important to point out that Lemma 1
always holds no matter how many such T, ’s are in no (ob).

Specifically, suppose 1) nl(0,) 2 Rl(Ob) and 2) O O (0 b) =
{Tml, TmZ, . * . , Tmq}, and no(0,) = {T,}, for some tasks
Tml , Tmz, . . . , T,,, T, E T. Then, it is still advantageous to
execute 0, before Ob at t o if (1) holds for each pair of T,
and T,, , 1 5 j 5 q. The proof is similar to that of Lemma
1, except that we now have to consider the completion event
of each of T,, . It can be seen that, in each of the four cases
considered, Ocz 5 still holds because the system hazard
represents the maximum, rather than the sum, of a set of
numbers. As we shall see later, this fact is essential in proving
Theorem 3 below. Finally, as is shown in Fig. 5, to is not
restricted to the time after both T, and T, are released; to
can be any time before either T, or T, is completed.

Equation (1) holds if and only if the following inequality
holds (see Fig. 5):

to + R 2 (wmrn - wnrm)/(wm - wn) ifwm > wn

or

r, 2 r, ifw, = w, (2)

where the RHS of the first inequality represents a particular
time t such that (t - r,)/w, = (t - r,)/w,. It may be noted

that (2) conforms to the various optimal policies known in
scheduling theory. This fact leads to the following definition
of the “relative superiority” (or urgency) w.r.t. 0 between two
unfinished tasks T, and T,.

Defnition3: For two unfinished tasks T, and T, on
Nk,Tn is said to be 1) superior to T, w.r.t. 0, written as
T, SPOT,, at to if (2) holds, and 2) equal to T, w.r.t. 0,
written as T, eq @ T,, if wm = wn and r, = r,.

T, SPOT, is defined only when wn 5 w m and that T,
eq’ T, iff T, sp@ T, and T, sp0 T,Vto. Notice that while
eq’ is an equivalence relation, sp’ is not transitive, meaning
that T, SPOT, and T, SPOT, do not necessarily imply T,
spe Tp. Furthermore, if T, sp@ T, at to, then T, sp’ T, at
all tl 2 to. Based on the superiority relation between two
tasks, we have the following definitions on their preceding
modules Ob and 0,.

Definition 4: 0, is said to
1) dominate ob w.r.t. 0, written as 0, +’ o b , at to if (a)

for every T, E no(ob) there exists a T, E no(0,) such
that T, SPOT, at t o and (b) Rl(0 ,) 2 ol(ob), and

2) be similar to ob w.r.t. 0, written as 0, S’ Ob, at to if

Definition 4 specifies the relative urgency of a schedulable
module 0, in term of those of the tasks in Ro(0,) and
the tasks preceded by fll(0,). It is useful to examine the
properties of +O . First, 0, +’ ob implies 0, +’ ob

at any time to 2 0, but the converse is not always true.
In particular, it is even possible that both 0, +e ob and
no(0,) C f l O (0 b) hold. Second, is not transitive, and
thus, neither is so. Finally, if 0, +’ ob at to, then
0, +-’ ob at any time tl 2 to.

Based on the discussions thus far, the DP’s between ob and
0, are summarized in the following theorem.

Theorem3: Let ob and 0, be two modules schedulable
on Nk. Then, w.r.t. 0,

0, *@ ob and ob +e 0, at to.

260 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

1) it is advantageous to execute 0, before ob at t o if

2) it makes no difference as to which of ob and 0, is

Proof of I) : Since 0, j 0 ob at t o , for every task
T, E fh)(Ob) there exists a corresponding T, E no(O,) such
that (1) and (2) hold. From Lemma 1, executing 0, before
Ob at t o can reduce the maximum normalized response times6
of such T,’s and 27,’s. The completion time of every task
other than such T,’s and T,’s does not increase because

Proof of 2): From the definition of Se and the result of
Part l), the proof directly follows. Q.E.D.

From the discussion of Definition 4, there are cases where
both 0, +@ Ob and Ob j Z 0, hold. This simply indicates
that executing 0, before Ob (Theorem 3) is just as good as
executing Ob before 0, (Theorem 2). Although Theorem 3 is
useful, its implementation is not as straightforward as Theorem
2, because neither +@ nor So is transitive. Corollaries 1 and
2 below indicate that, even though neither j0 nor Se is
transitive, the orders of executing modules implied by these
two relations are transitive.

Corollary 1: Let S k (t O) = {oj: 1 5 j 5 s } be a subset of
s 2 2 modules schedulable on NI, at time t o .

1) If 0, j0 Os--l, O,-I j0 0 , - 2 , . . . , and 0 2 j0 0 1

at t o , then it is advantageous for Nk to execute 0, before
0 1 at to .

2) If 0 1 j0 0, in addition to the condition in (a), then
it makes no difference as to which module in S k (t 0) is
executed first.

(The proof follows directly from Theorem 3 and Definition 2,
and thus, is omitted.)

Corollary 2: Let s k (t 0) be the same as in Corollary 1. If
0, So 0 , - 1 , 0 , - 1 Se 0 , - 2 , . . . , and 0 2 So 0 1 at t o , then it
makes no difference as to which module in Sk(t0) is executed
first. (The proof follows directly from Part 2) of Theorem 3
and thus is omitted.)

It is worth pointing out that 0, =+@ Os--l,OS-l je
0 , - 2 , . .. , 0 2 0 1 , and 0 1 =+e 0, do not imply
that 0, So Os--l, 0 , - 1 So OS-2, . . . , and 0 2 Se 01 at t o ; the
converse does not hold either. For convenience, the set of
schedulable modules for which execution order is immaterial
is called an immaterial set (IM). As we shall see in Section
IV, knowledge of an IM of size as large as possible greatly
simplifies the search for an optimal schedule. An important
property associated with two IM’s is given in the following
corollary.
. Corollary 3: Let I I i (t 0) = { 0; , 0: , . . . , Ogl } and

r I i (t 0) = {Os, 02, . . . , O:*} be two distinct IM’s of size
s1 and s2 on Nk at t o . If there exist ob E H:(to) and
0, E IIE(t0) such that executing 0, before ob at t o is
advantageous, then it is advantageous to execute 0: before
Oil at t o , V i , j .

0, =+@ ob at t o , and

executed first at t o if O,SO ob at t o .

nl(oc) 2 fil(Ob).

6Recall that 0 is the maximum, rather than the sum, of a set of scalar
quantities. Hence this statement always holds no matter how many such T,,, ’s
are in Q o (0 b) for each T,, in Oo(0,).

Proof: By assumption, it is advantageous at time to to
execute 0; before o,, 0, before 0 6 , and ob before 0:. Since
0; is arbitrarily chosen from I I % (t o) and 0: from II;(to), the
corollary follows. Q.E.D.

Because 0, j0 (s e) @ , at t o implies the same relation at
any tl 2 t o . Corollary 3 simply says that it is advantageous to
execute all modules in II; (t o) before any module in IIi (t o) .
Corollary 3-which deals with the “uninterruptability” of
an immaterial set-can be thought of as another version of
Theorem 1, which deals with the uninterruptability of a single
module.

It can be seen that the DP’s in Theorem 3 are identified
only under the condition 01(0,) 2 n l (0 b) . Without this
condition, it is very difficult to find any DP useful for our
scheduling problem because of the interdependencies between
scheduling decisions on different PN’s. In Section IV we show
how the DP’s presented so far are used in the B&B algorithm
to find an optimal schedule.

Iv . SEARCH FOR AN OPTIMAL
SCHEDULE WITH A B&B ALGORITHM

The proposed B&B algorithm is described in terms of its
two phases: branching and bounding. The branching process
expands an active parent vertex’ to generate child vertices
while the bounding process derives a lower-bound cost for
each child vertex to guide the search [18]. In Section IV-A,
we show how the DP’s derived thus far are incorporated into
the B&B algorithm for efficient branching. Lower-bounds of
system hazard are then derived and used in Section IV-B for
efficient bounding.

A. Generation of a Small Set of Schedules Using DP’s

As mentioned earlier, the set of active nonpreemptive sched-
ules contains all optimal schedules w.r.t. any regular measure.
Thus, to minimize any regular measure, it is sufficient to
consider only this set of active schedules. The above statement
is true for nonpreemptive scheduling problems that may be as
difficult as the job-shop scheduling problems. In this paper,
however, we are concerned with the derivation of an optimal
preemptive, rather than nonpreemptive, schedule. Therefore,
the set of “active” schedules for our scheduling problem must
be generated differently from that for the nonpreemptive case.
Specifically, in the course of searching for an optimal schedule,
we consider only those scheduling options that do not violate
any of the three rules (IP1-IP3) listed shortly. This is because
a schedule violating any of the three rules must be nonoptimal
according to the discussions in Section 111. Furthermore, since
we are interested in finding only one optimal schedule, we
will consider only one of the scheduling options in the same
IM. Given the active set generated earlier, an optimal schedule
w.r.t. 0 can then be obtained by applying the bounding process
only on this set.

The three scheduling rules listed below are important im-
plications of the DP’s presented in the previous section. After

’The term “vertex” instead of the more commonly used term “node” is
used to avoid possible confusion with the nodes of the TG and the nodes of
a history tree to be introduced.

PENG AND SHIN: OPTIMAL SCHEDULING OF COOPERATIVE TASKS IN A DISTRIBUTED SYSTEM 261

elaborating on these three rules, we will give a detailed account
of generating a set of active schedules. (As before, Sk(t0)
represents the set of all modules schedulable on Nk at time
to.)

IP1:
IP2:

IP3:

Nk must not be left idle at t o if Sk(t0) # 0.
Nk must execute 0, E Sk(t0) before ob E Sk(t0) at
time to if (Tl): 0, j z ob and 0, Zz ob, andlor
(T2): 0, +@ o b and, Ob and 0, do not belong to
the same IM.
Once 0, has been chosen by Nk at t o , no other
module in Sk(to) is allowed to preempt 0, before its
completion. A new module that becomes schedulable
at time tl > t o (and thus belongs to Sk(t l) , not to
Sk(t0)) could preempt 0,; tl is the only time at which
0, can be preempted by this new module.

IP1 and IP3 are based on OB2 and Theorem 1, respectively,
while IP2 comes from Theorems 2 and 3 and needs further
elaboration on its implementation because of the aforemen-
tioned properties of +’, =’,

P1: jz and =z are transitive. Besides, if 0, 3’ (=’)ob,

then 0, +@ (se)ob at any t o 2 0; but the converse
is not true.

and Se:

P2: Neither +@ nor S e are transitive.
~ 3 : If 0, *e (se)oa at t o , then 0, j0 (so)ob at any

P1 suggests that T1 of IP2 be tested before T2, and that ob
be immediately excluded from consideration for scheduling if
T1 holds. P2 and part (a) of Corollary 1 suggest that the test
for T2 on the set of modules survived (called the survival set)
the test for T1 be different from the test for T1. Specifically,
all ob- 0, pairs in the survival set are tested first for T2 and
then any ob asserted by T2 is excluded from consideration
for scheduling. P3 implies that T2 (and T1, of course) need
not be tested again until a new module becomes schedulable
on Nk. Let &(to) denote the set of modules which survive
tests for both T1 and T2. Then, by Corollary 2 and part (b) of
Corollary 1, &(to) may be further partitioned into qk (yet
to be determined) IM’s, I I i (t o) , j = 1,2, . . . , qk, in each
of which changing the execution order does not affect the
optimality. ?us, it is sufficient to pick an arbitrary module
from each I I i (t 0) and consider whether or not to execute
it next. Because of P2, each I I i (t 0) can be constructed as
follows. First, using Corollary 2 and starting with an arbitrary
module, a r I i (t 0) is formed by adding a new module ob to
it whenever there exists an 0, already in I I i (t 0) such that
0, Se ob. Second, use part 2) of Corollary 1 to merge a
cyclic set of IM’s into I I i (t 0) . A set of IM’s is said to be
cyclic if elements from IM’s of the set form a cycle of the
dominance relation as described in part 2) of Corollary 1. This
merger is to further reduce the number of branches generated
at the vertex since the single module to be arbitrarily picked
from the IM is now picked from a larger size IM after the
merger.

To meet the unintermptability requirement, a tree, called
the history tree (HTk) , for Nk is used to keep track of
execution order for the modules on Nk. As shown in Fig. 6,
each HTk has only one vertical thread of branches, in which

t l 2 t o .

Horizontal Threads
mot , nil

, ail

p-w- dl

Fig. 6. The history tree of Nk.

each node represents a module that is partially completed and
preempted by the one immediately above it, and the root is the
module being executed by Nk. For each module on the vertical
thread, a horizontal thread of branches is also constructed
to record the set of modules that were not selected by Nk
even after surviving both tests of T1 and T2. As we shall
see later, each HTk is constructed and updated such that a
module schedulable on Nk may appear at most at one node of
HTk.HTk’s are used as F1, a tool for checking whether or
not Theorem 3 and the uninterruptability requirement of IM’s
have been violated in any PN’s prior partial schedule, and
F2, a guide for each PN to select a module without violating
the two conditions of F1 at least up to the time of the next
scheduling decision. The violations stated in F1 are possible
because more dominance relations will be established as time
goes by.

In what follows, we briefly describe how HTk’s are con-
structed and updated, and explain how F1 and F2 are done to
further simplify the search in the B&B algorithm. Let tl be
the time when a module or communication delay is completed,
or a new task is released, and thus, a new scheduling decision
has to be made. Also, let R k (t l) Sk(t1) be the set of all
schedulable modules, each of which survived both T1 and T2
at t l , andIIk(tl) ,II%(tl) , . . - ,II?(t ,) be the qk IM’s resulting
from partitioning Rk(t1). If the original HTk is a null tree,
then checlfing F1 is unnecessary and selecting a module from
any of IIi(t1) will violate neither of the two conditions of
F1. Let yk denote the module selected by Nk. Thus, an HTk
is created by using yk as its root and including each module
in Rk(t1) - { y k } in the horizontal branch rooted by yk. If
the original HTk is not null, then both F1 and F2 need to be
performed. For F1, there are at least two cases, V1 and V2,
to be checked:

V1: There are at least a pair of modules, say, ob and 0,
with 0, *e o b at t l , such that the node representing
Ob is on the vertical thread of HTk and has the node
representing 0, on one of its branches (Fig. 6).

1

262 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

V2: There are at least three modules, say, Ox, 0, and O,,
such that (1) both 0, and 0, are on the vertical thread
of HTk and 0, is rooted by 0, (i.e., 0, has ever been
directly or indirectly preempted by Ox), and (2) 0, is
rooted by 0, and belongs to the same IM as 0, (i.e.,
the IM containing 0, and 0, has ever been interrupted
by that containing 0,).

If any of V1 and V2 is true for any PN, then the par-
ent vertex yo being expanded is discarded because yo will
never lead to an optimal schedule, or there exists at least
another optimal schedule that does not include yo as its partial
schedule. If the parent vertex yo is not discarded, then F2
needs to be performed on each Nk such that the selected
module for Nk will not violate either of the two conditions
in F1 at t l . F2 is done by building a set of “prohibited”
IM’s on Nk. Specifically, a prohibited IM is the one that
has ever been preempted on Nk. Thus, if a module is chosen
from a prohibited IM by Nk at t l , then the uninterruptability
requirement of this IM is violated at t l . Further, to satisfy
Theorem 1, if a module is to be selected by Nk from an
IM of which one module is being executed, then Nk can
only continue the module that Nk has been executing. After
applying F1 and F2, let yk denote the module selected for Nk
(if such a yk does not exist, then Nk is kept idle until the time
of next scheduling decision) and let ak represent the module
that was being executed at the time of selecting yk . Then,
HTk is updated according to the following rules:

is not completed at tl . A new
node representing Yk is created on top of ak, indicating the
preemption of ak by yk . For this new node, a horizontal thread
is constructed to include each module in Rk(t1) - { r k } if it is
not already in HTk. This is to indicate that, among all modules
in R k (t l) , only yk is selected and the thread contains the other
modules which are not selected by Nk at t l .

Case 2: yk # 0, and D k is completed at t l . If yk is not
the module previously preempted by ak, then the node
representing is replaced by that representing y k , and each
module in Rk(t1) - (_ Y k } must be appended to the original
horizontal thread of ok in case it is not already in HTk.
Otherwise, is simply deleted from HTk, and each module
of Rk(t1) - { y k } in the horizontal thread of is appended
to the horizontal thread of Yk if it is not already in HTk.

Case 3: yk = 0, and ok is not completed at t l . No
new node is created to preempt D1,. However, modules in
Rk(t1) - { y k } must be appended to the horizontal thread of

Case 4: No yk is selected. Delete ak, if any, from HTk
to let HTk become null and Nk be idle. This is because
must be completed at tl and no more schedulable modules are
available to Nk .

Also, to ensure that yk appears only once in HTk, the yk
already included in one of the horizontal threads must be
deleted in the above rules. Except when or the module
is preempted by ak in Case 2, Y k can never be any node in
the vertical thread.

Based on the above discussions of IP1-3, we can now
construct the algorithm which generates a small set of active
schedules using DP’s. It is helpful to summarize and/or

Case I : yk # ak and

- ok,

introduce the notation to be used in the algorithm as follows:
Set of modules without preceding activities on the TG.
A module in A becomes schedulable whenever the task
containing it is released.

B: Set of modules with preceding activities on the TG. A
module in B becomes schedulable upon completion of
all its preceding activities as well as the release of the
task containing it.

Y : Set of communication delays. Each communication
delay must have at least one preceding module.

to : The current time or the time a scheduling decision has
been made.

tl: The earliest time since t o when at least a module or
communication delay is completed or a task is released.
That is, t l is the time when a new scheduling decision
has to be made.

Sk: Set of schedulable modules at t l on Nk including those
partially completed.

L d : Set of ready communication delays, m,’s, at tl . The
remaining period of m, is denoted by U,. Since com-
munication delays are not schedulable objects, each U,

is reduced to the passage of time.
Rk: Subset of schedulable modules on Nk, each of which

survives tests for both T1 and T2 of IP2 at t l . Thus,
Rk s k .

II;: The j th IM on Nk at t l . Each II; and the total number
of IM’s on Nk, denoted by I&, may change with time.

yo: The “parent” vertex in the state space to be searched.
y1: The “child” vertex of yo.
(Yb: Release time of Ob E A .
p k : Completion time of a module which is executed by Nk .
&: The earliest completion time among all communication

Since preemptions are allowed, a vertex y is represented by

Psk: The partial schedule of Nk containing all scheduled

HTk: The history tree of Nk.

Using the DP’s and notation introduced thus far, we present
the algorithm for generating a small set of active schedules
that contains at least one optimal schedule.

PROCEDURE create-root-of-search-tree
For IC = 1,2,...,n do

A:

delays in Ld.

the following information:

(completed and uncompleted) modules.

1. InitializeSk := 0, Rk := 0.
2. Set Psk = HTk := 0.

end-do.
Set t l := O , t o := 0, and Ld := 0 to create the root vertex
Y O = Y 1 .
end-create-root-of-search-tree.

MAIN PROGRAM generate-active-schedules
S1. Initialize A, B and Y .
S2. create-root-of-search-tree.
S3. While the generated vertex y 1 does not represent a
complete schedule and each HTk survives V1 and V2 of F1
do:

263 PENG AND SHIN: OPTIMAL SCHEDULING OF COOPERATIVE TASKS IN A DISTRIBUTED SYSTEM

3a.

3b.

3c.

3d.

3e.

Create s k ’ s (Ld) by moving all modules (communica-
tion delays) that become schedulable (ready) at tl from
A to B (Y) to the corresponding s k ’ s (Ld) .
Perform the dominance tests T1 and T2 on each , s k to
generate R k , and partition each R k to derive IIi, j =

Perform F2 to choose II;, i = 1,2, . . , fjk, from that
in Step 3b, where i is-the new index and fjk 5 Qk. Let
r k = { Oi, 0; , . . . , O r } be the set of modules chosen

Set yo := y1, and create a child vertex y1 of yo for
each PN. Let Y k denote the module chosen by N k in
91. (If q k = 0 then Y k := null, meaning that N k is
left idle in yl.)
For each created y1 do:

3.e.l Update H T k , k = 1 , 2 , . - . , n , according to the

3.e.2 Set t o := tl and prepare to obtain a new tl as

3.e.3 Determine a* = minObEA{ab},

1 ,2 , . ’ . 1 q k .

by N k .

rules described above.

below.

P* = min{Pd, min {a}} ,
k = l , . . . , n

and set tl := min{a*,P*}, the earliest time a
new scheduling decision has to be made.

3.e.4 Modify P s k by scheduling Y k during the in-
terval [to, t l] (let N k be idle if Y k = null),
k = 1 , 2 , . . . , n .

3.e.5 Return to Step S3.

While satisfying the DP’s derived earlier, the algorithm
recursively generates a set of preemptive active schedules in a
depth-first fashion. This set of active schedules contains at least
one optimal schedule. Also, because of the uninterruptability
in Theorem 1, the depth of the search tree generated is at most
twice the total number of modules to be scheduled.

B. Estimation of Lower-Bound Cost

Once the rule for expanding a vertex is determined, the
efficiency of search for an optimal schedule with a B&B
algorithm depends solely on 0(y), the lower-bound cost of
vertex y, and the computation needed to obtain 6 (y) . Based on
Algorithm A, various Q(y) ’s can be derived depending on how
the precedence constraints are relaxed and how the release time
and cost function of each module (communication delay) are
determined. For one extreme, we may ignore all precedence
constraints between any two PN’s, assume that all tasks have
been released, apply Algorithm A to obtain the minimal
maximum cost for each PN, and use the maximal mini-max
cost among all PN’s as a lower-bound cost 61(y). For the
other extreme, we may consider all precedence constraints
and task release times, and use the same method to derive
another lower-bound cost 02(y). Obviously, &(y) is tighter
than 61(y) but requires more effort to compute. Since all
other bounds in between these two extremes can be derived
similarly, we shall consider only these two extreme bounds.

Consider a vertex y at t = t l , let g;(y) be the actual path
cost of Ti from the root to y.gi(y) can be easily computed

from the partial schedule represented by y as follows. Since
some tasks may have been completed before tl,gi(y) is
determined as Ti’s normalized partial response time at t l :

(3) gi(y) 2 { if Ti is completed before t;
(tl - T ~) / Z U ; otherwise

where E a , T ~ , and w, are the normalized response time, release
time and normalization factor of Tal respectively. Note that
ga(y) < 0 if T, is not yet released before t l .

To derive 01 (y), precedence constraints between two PN’s
are ignored, and all unfinished tasks are assumed to have been
released. These assumptions make it possible to schedule tasks,
rather than individual modules, with Algorithm A. Specifically,
in step SA2 of Algorithm A, set the cost function of unfinished
T, as

and let t l + &(B) be the block completion time t (B) , where
&(B) is the sum of all remaining execution times of the set
of unfinished modules each of which precedes at least a task in
B. Suppose & k (y) is the maximum between 1) the mini-max
cost of N k obtained from Algorithm A, and 2) the maximum
g,(y) obtained from (3) among all tasks completed before tl on
N k . Then 61(y) 2 maxNkEN e l k (? /) is a lower-bound cost
of y, and the computational complexity is 0(nITl2), where n
is the total number of PN’s. IT1 the average number of tasks
oneach PN.

02(y) is derived while all precedence constraints and task
release times are considered. This also implies that modules,
rather than tasks, are the objects to be scheduled by Algorithm
A. In a simpler case, the release time sb and cost function f b (t)

of an unfinished module Ob can be determined as follows.
Since Ob is not schedulable until each task that contains at
least a module preceding 0 6 has been released, S b is set to
the maximum release time among all such tasks. Because it
is the completion of a task, rather than that of a module, that
accounts for the cost, fb(t) may be set as:

(5) f b (t) := { - Tz)/wa if head(%) = Tz
otherwise

where t is the completion time of T,, and head(O6) =
T, means that head(Ob) is the node representing the
Completion event of T,. After applying Algorithm A,
define & ? k (y) similarly to & k (Y) , k = 1 1 2 , . . . , n . Then,

than 01(y), and the computational complexity is 0(nlPl2),
where (PI is the average number of modules on each PN.
Note that more accurate, but more computational demanding
release time and cost function for each unfinished module are
possible. For example, the minimum time from a task’s release
to a module’s release may also be considered to determine
the release time of the module. Furthermore, the effect of
a module’s completion on the completions of tasks in the
other PN’s may be included in deriving a more accurate cost
function of that module. These issues are partially addressed
in [2].

As mentioned earlier, 62(y) 2 &(y),Vy, because Q1(y) is
a lower-bound of &(y). There is always a trade-off between

62(Y)* = A maxNkEN & k (y) is a tighter lower-bound cost

264 IEEE TRAYSA(TIONS O N SOFTWARE ENGINEERING. VOL. 19. NO. 3. MARCH 1'143

r = o olr
@
lb T1

w l = 30 w2= 20

Fig. 7. The example TG

the accuracy and computational complexity of an) lower-
bound.

v. AN EXAMPLE AND COMPUTATIONAI. EXPERILNC'LS

In this section, a demonstrative example and some computa-
tional experiences of the proposed B&B method are presented.

A. AI! Example
Consider the scheduling problem for the TG i n Fig. 7.

where six tasks T I . TL T, are to be executed hy -2'1

ahd K 2 . All modules on the LHS of the shaded area of
Fig. 7 are to be executed by LVl and those on the RHS by
-V2. Each task is released by realizing its starting node and
completed by realizing its ending node. The release times and
normalization factors are r1 = 0. 1.2 = 5. I,:< = (1. 1.1 = :I. r j =
1'6 = 10. t i - 1 = 30. tis2 = 20. = 30. 1 1 ' ~ = 2.5. 1i*-,l.5 and
ti'(; = 20. Notice that, while all the other tasks are released
and completed on the same PN. TI (T4) is released on .\I (X z)
but completed on .\; (~ V 1) . Fig. 8 shows ! l o (o) and < ? , (o) of
each module and Fig. 9 gives the cost function for each task.
Using 61(g). we show in Fig. 10 all the vertices that have
been generated in ascending order of their indices, and in Fig.
11 the corresponding optimal schedule.

Before reaching an optimal schedule-which is represented
by 17 vertices from the root to vertex t'2,j-a total of only
25 vertices are generated. The first five vertices I ' I - / . - , were
generated because DP's exist neither between O l and 0:j
nor between 0 1 6 and 0 3 . Since O:(is denied and 0 1 (1 is
chosen at r l ; . vertices where (I:] preempts 0 1 (, will never
be generated by expanding r j : except at. or after. ()l(,'s

completion (Theorem 1). When expanding r * t i . where 0 3 and
0 2 are both schedulable, only where 0 : j is chosen by .\-I

is generated because (I ; < j Z 0 2 . This branch of the tree
is expanded until 7 9 . whose lower-bound cost becomes 0.73.
Even with the same lower-bound cost 0.70, t'4. rather than r $: { ~
is chosen for expansion because the depth-first policy is used
to break a tie on lower-bound costs.

w

w, = I n w *= 20

n = T.7

w - 15

As r'l(1 is expanded. both 1'l1 and t i 12 have to be generated
because no DP's between 0 s and 01(; exist (since neither
Tz sp'-' TL nor T I sp(-' TI .) From r'12. only 7'1:l. where OX
i \ selected, is generated because 0 8 =$' 0 2 and 0 8 3'

O ~ , I although O z . Ox and (I1,, are all schedulable at t = 7
(i.e.. f l of r-12 and l o of r - l : j) . While expanding 1'13. four
modules (O ~ . O ~ ~ ~ . O l l and OI2) on -V1 and two modules
(0 1 . 5 and 0 1 9) on are schedulable, making a total of eight
Combinations. Since 0 2 . 010. and 011 belong to the same
1M and dominate (=.'-') 0 1 2 . an arbitrary module, say 0.). is
chosen for SI. On the other hand, 01:3 010 . so only 0 1 : 3
is chosen by although both are schedulable. Therefore, out
of these eight combinations, only one vertex t i l 4 needs to be
generated without sacrificing optimality, and thus, significantly
simplifies the search.

Another situation to be noted is when both Oz and 0 6

become schedulable on -1-2 a t t = 1 0 as / l l 3 is expanded.
Since O(; j Z O-,(Ol.5) and 0 3 (~ ~ 1 : 3) j" oI9 at t = IO.
the only vertex to be generated is for O6 to preempt (Il3 on
.Y? although a total of four modules (O z . O(j. 01:j and 0 1 9)

are schedulable on AV?. After completing 0 6 . Olli resumes
its execution. We can easily see how the DP's are followed
similarly by the rest of the optimal schedule.

For completeness, we show how 61(?y) and & (g) can be
derived for the above example. Consider ('14 (see Figs. 10 and
11) for instance. where t = 9 when Tl is completed while
neither Tj nor Tc, is released. The normalized partial response
times of tasks at / = f l = 9 are gl (u14) = (7 - 0)/30 =
?/:jO.!/?((' 14) = (!) - s)/L>o = .1/20. !]:3(7'14) ('3 - 0) / 3 0 =
!1/31. !/A(1 ' 1 4) = (!I - 3) /25 = 6/25, g.j(1'1.1) = (9 - 1!)/15 =
- 1 / 1 5 . ~ g (j (, q ~ ~) = (!I - 10) /20 = 1/20. To derive (-)1('u14) .

precedence constraints between and IV2 are relaxed and all
tabks are assumed to have been released. The block completion
time I (0) for unfinished tasks TI and Tl on N 1 is determined
to be f l + R l (B) = 9 + 8 = 17. where nl(L3) is the sum of
remaining cxecution times of all unfinished modules on N I .
(i.e., 01,). 0 1 1 . 0 1 2 . 0 1 ~ and (I l x) . each of which precedes T2
or Ti. Since . f 2 (1 7) > J4 (l7) (Fig. 9), by Algorithm A, TJ
should be completed last. Delete those modules that precede
only TA and compute the block completion time for those

PENG AND SHIN: OPTIMAL SCHEDULING OF COOPERATIVE TASKS IN A DISTRIBUTED SYSTEM 265

1.0
A /

d . I I 15

O 3 5 I0 13 IS 18 20 25 28 30 0 5 15 m 25 t 30 10

(a) (b)
Fig. 9. Cost functions of tasks. (a) Tasks on XI. (b) Tasks on A i .

6,. X&

root
A ' = O A ."

units
t l

Fig. 10. The search tree of the TG of Fig. 7.

5 IO I S 25 tl= 0 20 30
I I I I I I " I s

t+ = T, + T2
+TI

Y = 5 + 4
+ T6

Q = ?.! =0.70
30

Fig. 11. The optimal schedule of Fig. 10.

that precede only T2 to obtain t l + 5 = 14. This implies Similarly, we proceed with tasks T3,T5 and T6 on N2.
that the mini-max lower-bound cost for T2 and T4 on N I They should be completed in the order of T5,T3, and
be max {f2(14), f4(17)} = max{g2(q4) + 5/2O2g4(v14) + T6, and with Acompletion times 19, 21 and 22, respec-
8/25} = max {9/20,14/25} = 14/25. Thus, 611(2114) = tively. Thus, 612(V14) = max{f3(21), f5(19), f6(22)} =
max { 14/25,7/30} = 14/25. max{21/30,9/15,12/20} = 21/30. It follows that @1(u14) =

1

266 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 3, MARCH 1993

m a x { d l l (v l 4) , 812(v14)} = 21/30 as shown in Fig. 10.
62(2)14) is derived while honoring all precedence con-

straints and all task release times. The release times of un-
finished modules on NI at 2114 are s 1 0 = sll = s 1 2 =
0 , 5 1 7 = 5 and SI8 = 3, and by (5) , the cost functions
for these modules are 0 except 0 1 7 and 0 1 8 , whose cost
functions are those of T2 and T 4 , respectively. By applying
Ygorithm A and comparing the result with g1(2)14), we obtain
621(2114) = max {7/30,14/25} = 14/25, which is the same
as 811(V14). For the unfinished modules on N 2 at U14,s5 =
s6 = $14 = s2Q = sal = 10, and 513 = s19 = 0. Similarly, the
cost functions for 0 5 , OS, 0 1 3 and 0 1 4 are 0 while those for
0 1 9 , 0 2 0 and 0 2 1 are thpse for T 3 , T5 and T6, respectively. By
applying Algorithm A, 822(2)14) = 21/30 is obtained, which is
again equal to 612(2)14). Thus, 8 2 (V 1 4) = 61(2)14) = 21/30.
These results are expected because the unfinished modules
always create the same:ingle blo,ck in Step SA2 of Algorithm
A regardless whether Ol(y) or &(y) is derived.

B. Computational Experiences

The proposed B&B algorithm, which embodies Theorems
1-3 and Corollaries 1-3, was coded in Pascal and run on
a VAX-8600 computer with 4.3 BSD UNIX (UNIX is a
trademark of AT&T Bell Laboratories) operating system. In
order to test a wider class of sample problems, a total of
90 sets of tasks were randomly generated according to the
classification of tasks: 1) the average number of modules per
task is either 4, 6, or 8 and 2) the number of PN’s in the
system is either 2, 5, or 8.

Consider a class where the modules per task is 5 1 and the
number of PN’s 2 2 . A total of 30,20, and 10 locally numbered
nodes are initially set up on each PN for 2 1 = 4,6 and 8,
respectively. The module between nodes n, and n3, i < j ,
on the same PN is generated if the outcome from a random
experiment using a uniform distribution is greater than the
threshold p p r , where p 5 1 is the initial probability, p = 0.5
the discount factor, and r = j - i - 1 the discountperiod. That
is, given p , the larger the difference j - i , the less likely is a
module generated between nz and nJ. Therefore, by tuning p
and considering the total number of tasks to be created, we can
generate task sets with the desired 2 1 value. After removing
each “dangling” node, tasks are created by randomly assigning
their starting and ending nodes to the remaining nodes. The
number of tasks created for each class is pre-determined such
that the average numbers of tasks on each PN are 2, 1.5, and 1
for 2 1 = 4,6, and 8, respectively. For example, two tasks on
the average are created for the class where 2 1 = 8 and 2 2 = 2.
Ten tasks are created for the class where 2 1 = 4 and 5 2 = 5,
and so on. Also, communication delays are generated for each
task and randomly inserted between the task and other tasks on
different PN’s to establish the required precedence constraints.

For each of these 9 classes, 10 task sets were tested. Table I
summarizes the (rounded) average numbers of activities, and
tasks created for each class. The test results, which include
the (rounded) average number of vertices generated and the
CPU time (the sum of user and system times) consumed,
are recorded in Table I1 and plotted in Fig. 12. According to
our experiences, the variance of each entry in Table I1 grows

TABLE I
THE NINE CLASSES OF TG’S TESTED

x2

n = 2 n = 5 n = 8
XI

4 2oa, 4b 55, 10 92, 16
6 20, 3 55, 7 90, 12

8 18, 2 47, 5 78, 8

aNumber of activities

bNumber of tasks

TABLE I1
THE EST RESULTS OF THE NINE CLASSES

x2

n = 2 n = 5 n = 8
x1

~~~ ~ ~ 

4 19a, 0.23b 48, 2.51 130, 18.23 
6 20, 0.20 47, 2.24 126, 16.25 
8 18, 0.11 37, 0.86 49, 3.02 

aNumber of vertices generated. 

bCPU time used (seconds). 

t” 
x 1 = 4  7// 

U 

0 2 4 5 6 IN1 8 

(b) 

Fig. 12. Test results. (a) Number of vertices generated. (b) CPU time used 
(seconds). 

rapidly as the number of PN’s increases. For example, for 
2 1  = 8, the variance of the number of vertices generated 
(CPU time used) for the entry x2 = 2 is about 27 (1389) 
times higher than that for the entry 2 2  = 8. Therefore, the 
test results are very sensitive to the way in which the random 



PENG AND SHIN: OFTIMAL SCHEDULING OF COOPERATIVE TASKS IN A DISTRIBUTED SYSTEM 267 

samples are generated as well as to the set of task sets actually 
tested as the number of PN’s increases. 

VI. CONCLUSION 

[14] -, “Solving resource-constrained network problems by implicit 
enumeration-Preemptive case,” Operations Res., vol. 20, pp. 668-677, 
1972. 

[15] E. L. Lawler et al., “Recent developments in deterministic sequencing 
and scheduling: A survey,’’ in Deterministic and Stochastic Scheduling, 
Dempster et al., Eds. Dordrecht, The Netherlands: Reidel, 1982, pp. 
35-74. Since the task scheduling problem with precedence con- 

straints in a distributed system is generally NP-hard, some 
form of heuristic is necessary to solve it. In this paper, we have 
presented a new approach to the scheduling problem using a 
B&B algorithm on the basis of 

Modeling the task set with an acyclic graph, 
Identifying the DP’s w.r.t. all regular measures and the 
system hazard, 
Developing the vertex expansion algorithm using the 
DP’s into which the B&B algorithm is embedded, and 
Deriving lower-bound costs for each vertex so that the 
B&B algorithm may be efficiently guided to find an 
optimal schedule. 

Our computational experiences, albeit limited, have indi- 
cated that this approach is very efficient in searching for an 
optimal schedule. Because our approach depends on the B&B 
algorithm, it can be extended (with certain modifications, of 
course) to solve similar problems with other types of resource 
constraints. For example, suppose only T units of memory is 
available at time to, then this constraint can be easily imposed 
to the branching process: only those schedulable modules at 
t o  whose individual memory requirement is equal or less than 
T- is allowed to be considered for further branching in the 
proposed B&B algorithm. 

REFERENCES 

K. G. Shin, C. M. Krishna, and Y.-H. Lee, “A unified method for 
evaluating real-time computer controllers and its applications,” IEEE 
Trans. Automat. Contr., vol. AC-30, no. 4, pp. 357-366, Apr. 1985. 
D. T. Peng and K. G. Shin, “Static allocation of periodic tasks with 
precedence constraints in distributed real-time systems,’’ in Proc. IEEE 
9th Int. Conf Distributed Comput. Syst., Newport Beach, CA, 1989, 
pp. 19G198. 
D. T. Peng, “Modeling, assignment and scheduling of tasks in distributed 
real-time systems,” Ph.D. dissertation, Dept. of Electrical Engineering 
and Computer Science, The University of Michigan, Ann Arbor, MI, 
Dec. 1989. 
H. A. Taha, Operations Research: An Introduction. New York 
Macmillan, 1976, pp. 357-366. 
K. R. Baker, Introduction to Sequencing and Scheduling. New York: 
Wiley, 1974. 
R. Bellman, A. 0. Esogbue, and I. Nabeshima, Mathematical Aspects 
of Scheduling and Applications. 
T. Gonzalez and S. Sahni, “Flowshop and jobshop schedules: Com- 
plexity and approximation,” Operations Res., vol. 26, no. 1, Jan.-Feb. 
1978, pp. 36-52. 
J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, “Complexity 
of machine scheduling problems,” Ann. Discrete Math., vol. 1, pp. 

K. R. Baker et al., “Preemptive scheduling of a single machine to mini- 
mize maximum cost subject to release dates and precedence constraints,” 
OperationsRes., vol. 31, no. 2, Mar.-Apr. 1983, pp. 381-386. 
J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Scheduling 
subject to resource constraints: Classification and complexity,” Discrete 
Applied Math., vol. 5 ,  1983, pp. 11-24. 
B. Giffler and G. L. Thompson, “Algorithms for solving production 
scheduling problems,” OperationsRes., vol. 8, no. 4, pp. 487-503, 1960. 
G. H. Brooks and C. R. White, “An algorithm for finding optimal or 
near optimal solutions to the production scheduling problems,” J. Indust. 
Eng., vol. 16, 1965, pp. 34-40. 
L. Schrage, “Solving resource-constrained network problems by im- 
plicit enumeration-Nonpreemptive case,” Operations Res., vol. 18, pp. 
263-278, 1970. 

Elmsford, NY: Pergamon, 1982. 

343-362, 1977. 

[16] B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Job-shop 
scheduling by implicit enumeration,” Management Scie., vol. 24, no. 
4, pp. 441450,  1977. 

[17] J. P. Tremblay and R. Manohar, Discrete Mathematical Structures with 
Applications to Computer Science. New York McGraw-Hill, 1975, pp. 
149-162. 

[18] W. H. Kohler and K. Steiglitz, “Enumerative and interactive com- 
putational approach,” in Computer and Job-Shop Scheduling Theory, 
Coffman Eds. New York Wiley, 1976, pp. 229-287. 

Dar-Tzen Peng received the B.E.E. degree, the 
M.S. degree in management science both in Tai- 
wan, the M.S.E. degree in computer, information 
and control engineering, and the Ph.D. degree in 
computer science and engineering in 1984 and 1990, 
respectively, from the University of Michigan, Ann 
Arbor. 

From 1984 to 1989 he was a Research Assistant 
at the University of Michigan, working on geomet- 
ric modeling and distributed real-time computing. 
He joined the Allied Signal Microelectronics and 

Technology Center in 1989 as an Member of the Technical Staff where his 
work consists of the research, design, and implementation of fault-tolerant 
distributed real-time computing systems. Currently, he is involved in the 
design of Real-Time Executive Module (RTEM), a software implementation of 
a multiprocessor architecture for fault tolerance. His research interests include 
fault-tolerant real-time computing, computer networks, and the automatic 
design of such systems. 

Dr. Peng is a member of the Association for Computing Machinery and 
the IEEE Computer Society. 

Kang G. Shin received the B.S. degree in elec- 
tronics engineering from Seoul National University, 
Seoul, Korea in 1970, and the M.S. and Ph.D. 
degrees in electrical engineering from Come11 Uni- 
versity, Ithaca, NY in 1976 and 1978, respectively. 
He is currently Professor and Chair of Computer 
Science and Engineering Division, Department of 
Electrical Engineering and Computer Science, The 
University of Michigan, Ann Arbor. From 1978 to 
1982 he was on the faculty of Rensselaer Poly- 
technic Institute, Troy, NY. He has held visiting 

positions at the U.S. Air Force. Flight Dynamics Laboratory, AT&T Bell 
Laboratories, the Computer Science Division within the Department of 
Electrical Engineering and Computer Science at the University of California, 
Berkeley, and the International Computer Science Institute, Berkely, CA. He 
has authoredkoauthored over 240 technical papers (more than 100 of these in 
archival journals) and several book chapters in the areas of distributed real- 
time computing and control, fault-tolerant computing, computer architecture, 
and robotics and automation. In 1985, he founded the Real-Time Computing 
Laboratory, where he and his colleagues are currently building a 19-node 
hexagonal mesh multicomputer, called HARTS, to validate various architec- 
tures and analytic results in the area of distributed real-time computing. He 
was the Program Chairman of the 1986 IEEE Real-Time Systems Symposium 
(RTSS), the General Chairman of the 1987 RTSS, the Guest Editor of the 
1987 August special issue of IEEE Transactions on Computers on Real- 
Time Systems, a Program Co-chair for the 1992 International Conference 
on Parallel Processing, and served numerous technical program committees. 
He chaired the IEEE Technical Committee on Real-Time Systems during 
1991-1993, is a Distinguished Visitor of the Computer Society of the IEEE, 
an Editor of IEEE Trans. on Parallel and Distributed Computing, and an Area 
Editor of the International Journal of Time-Critical Computing Systems. 

In 1987, Dr. Shin received the Outstanding IEEE Transactions on Automatic 
Control Paper Award for a paper on robot trajectory planning. In 1989, he also 
received the Research Excellence Award from The University of Michigan. 


