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Optimal Scheduling of Cooperative Tasks in a 
Distributed System Using an Enumerative Method 

Dar-Tzen Peng and Kang G. Shin, Fellow, IEEE 

Absfruct- This paper considers preemptive (resume) sched- 
uling of cooperative tasks that have been preassigned to a set 
of processing nodes in a distributed system, where each task is 
assumed to consist of several modules. During the course of their 
execution, these tasks communicate with each other to collectively 
accomplish a common goal. Such intertask communications lead 
to precedence constraints between the modules of different tasks. 
Our scheduling objective is to minimize the maximum normalized 
task response time, called the system hazard. Real-time tasks 
and the precedence constraints among them are expressed in a 
PERT/CPM form with activity on arc (AOA), called the taskgraph 
(TG), in which dominance relationship between simultaneously 
schedulable modules is derived and used to reduce the size 
of the set of active schedules to be searched for an optimal 
schedule. Lower-bound costs are estimated, which are then used 
to bound the search. Finally, a demonstrative example and some 
computational experiences are presented. 

Index Terms- Branch-and-bound (B&B) method, distributed 
real-time systems, dominance relation, lower-bound cost esti- 
mates, precedence constraints, preemptive (resume) scheduling of 
real-time tasks, regular performance measures, system hazard. 

I. INTRODUCTION 
E a - T I M E  systems are characterized by their require- R ment that the execution of their computational tasks 

must be not only logically correct but also completed in time; 
otherwise, catastrophe may ensue [ 11. In a distributed real-time 
system, the tasks communicate with each other to accomplish 
the overall system goal. This paper addresses the “optimal” (in 
the sense to be defined later) preemptive scheduling of com- 
municating real-time tasks that have already been preassigned 
to the processing nodes (PN’s) of a distributed system. The 
scheduling objective used is to minimize the system hazard, 
or the maximum normalized task response time over all tasks. 
By properly selecting the normalization factor for each task, 
one can show that the system hazard subsumes many other 
scheduling criteria related to meeting task deadlines [2 ] .  

Let T = {Ti: i = 1 , 2 , - . .  , m )  be a set of m 2 2 
cooperative tasks to be executed by a set, N = { N k :  IC = 
1 ,2 , . . - , n ) ,  of n 2 2 PN’s. Using the method in [3], one 
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can decompose each task Ti with release time ri into several 
modules on the basis of intertask communications. Intertask 
communications introduce precedence constraints between the 
modules of different tasks. Each module of Ti must be 
executed by the PN to which Ti is assigned. There may 
also be a communication delay between the completion of 
a module and its subsequent enabling of another module on a 
different PN. The execution time of a module by the associated 
PN and each communication delay are assumed to be given. 
Worst-case values of these are usually used for the purpose of 
scheduling real-time tasks. 

A PERT/CPM graph with Activity On Arc (AOA)’ [4], 
called the task graph (TG), is used to describe communication 
delays and the precedence constraints between modules and 
the release and completion of each task. Unlike a general 
PERT/CPM graph-which usually has only a single pair of 
starting and ending nodes-the TG has multiple pairs of 
starting and ending nodes, each representing the release and 
the completion events of a task. Thus, a starting (ending) 
node is said to be “realized when the corresponding task 
is released (completed). Note that the completion of a task 
Ti means the completion of all modules2 and communication 
delays which precede Ti’s ending node in the TG. Depending 
on how the TG is constructed to reflect Ti’s completion, the set 
of these preceding modules may not contain all Ti’s constituent 
modules. This means that even the last module(s) necessary 
to complete Ti may not belong to Ti. Hence, when solving 
the task scheduling problem (TSP), what is more important is 
which PN executes a given module and which ending node the 
module precedes in the TG, rather than which task the module 
belongs to. Following the convention in any PERTKPM graph 
with AOA, each module or communication delay of the TG 
will henceforth be called an activity. 

Fig. 1 shows an example TG consisting of four tasks 
TI, Tz, T3, and T4. TI and T2 are assigned to N I ,  while T3 
and T4 are assigned to Nz.  Thus, all modules on the left- 
hand side (LHS) of the shaded areas in Fig. 1 are to be 
executed by N I ,  whereas those on the right-hand side (RHS) 
to be executed by N2. Each arc in the TG represents an 
activity and the weight associated with an arc is the execution 
time (magnitude) of the corresponding module (delay). In 
this TG, there are four starting nodes nl,nz,n3, and n11 

‘The reason why the AOA-type-instead of the commonly used AON 
(Activity On Node) type-graph is used to describe a TG is that a node 
in an AOA-type TG corresponds more naturally to the readiness (completion) 
state of all modules immediately following (preceding) the node as can be 
seen below. 

Which may belong to T, as well as to other tasks. 
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Fig. 1. An example TG 

(labeled 5'1. 5'2.5'3. and 5'4. respectively), and four ending 
nodes n17.  n18. n ~ .  and n 1 9 .  which represent the release and 
completion events of TI. T2. T3. and T4. respectively. A task 
is considered completed only after all activities preceding 
its ending node have been completed. All but T4-which is 
released at time t = 20-are released at t = 0. meaning 
that nl,n2.n3. and 7111 are "realized" at t = 0 .0 .0 .  and 
20, respectively. For convenience, we write l i p  = TI if rip 

is the ending node representing T, 's completion. Also, the 
completions of TI. T2. T3. and TA represent the completions 
of all activities preceding n17.7~18. n y .  and I l l y .  respectively. 

Let cr  be the time when T, is completed under a scheduling 
algorithm C. Then, the system hazard of a set T of tasks is 
defined as O i  = iriaxTIET E : .  where E! = (cy - r , ) / ~ , ~  is 
the normalized task response time, T ,  the release time, and 
i i i j  > 0 the normalization factor of T,.  We want to find 
an optimal preemptive (resume) scheduling algorithm <* for 
T such that (-IC' = riiini (-IC. That is, <* minimizes the 
maximum normalized response time over all tasks. Notice that 
O i  is a regular' performance measure. 

For example, the two schedules generated by (1 and ( 2  

for the four tasks in Fig. 1 are given in Fig. 2. where 
io1 = 30. ~112 = 40. and 'ulg = i l l 4  = 20. (1 schedules modules' 

1 

' A  performance measure Z is said to he r e p h r .  it I) the \cheduling 
objective is to minimize Z. and 2) Z increases only  if one o r  more task 
completion times in the schedule increases [SI. 

'Time delays are not schedulable objects. 

on each PN according to ascending order of their indices, 
whereas (2 considers the normalization factor for each task as 
wcll as the precedence constraints that affect the scheduling 
of modules on other PN's. As shown in Fig. 2, we get 

and 

Thus. 

showing the C2.s superiority over (1. 

Even without considering the communication delays, the 
above scheduling problem is hard, regardless of whether or not 
preemptions are allowed. For example, the general job-shop 
scheduling problem [6]-a special case of the above sched- 
uling problem-is already NP-hard for the problems even as 
simple as T2 I 'mJ 2 3 I C,;,, or T3 I m, 2 2 I C,,,, [7], [8]. 
Consequently, except in case . i a single PN [9], no polynomial 
time algorithms are likely to exist for our scheduling problem; 
some form of heuristic andlor enumeration is the only recourse 
to the problem. 

The scheduling problem considered here falls in the realms 
of resource-constrained task scheduling [lo] as well as job- 
shop scheduling, and thus, its solution approaches must be 
related to these two types of scheduling problems. Like any 
other NP-hard problem, approaches to these problems are 
concerned with how to improve the efficiency of search for 
an optimal or suboptimal solution by 1) using dominance 
properties (DP's) to reduce the size of the state space to 
be searched and 2) deriving a lower-bound cost as tight as 
possible at each stage to bound the search more efficiently. 
Giffler and Thompson [ 111 are the first to propose a systematic 
approach to generating the set of all active schedules based 
on which (and variations thereof) most implicit enumerative 
algorithms have been developed. A set A of active schedules 
is said to dominate another set S ( > A )  of all schedules in 
the sense that inclusion of an optimal schedule in S implies 
the inclusion of the same schedule in A .  In other words, 
to find optimal schedules with respect to (w.r.t) any regular 
measure, it suffices to consider only the set of active schedules, 
thus reducing the size of the state space to be searched. For 
example, to solve a job-shop scheduling problem, Brooks and 
White [12] used two bounds. called the job bound and the 
machine hound, to bound the search for an optimal schedule 
among the set of all active schedules. Schrage [13], [14] 
developed a similar approach to generating the set of all 
active schedules for preemptive and nonpreemptive cases, 
and proposed DP's and lower-bound costs to find optimal 
schedules for a network scheduling problem. An extensive 
survey of job-shop scheduling with branch-and-bound (B&B) 

'A two-machine job-shop in which the number of operations in any job 
is greater than or equal to 3 and the scheduling objective is to minimize the 
maximum job completion time among all jobs [ 151. 
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Fig. 2. Two schedules of the TG in Fig. 1. 

methods can be found in [16], where job-shop scheduling was 
modeled by settling pairs of disjunctive arcs and a tighter 
bound of cost was also developed by including many other 
bounds as special cases. Possible extensions of the problems 
and variations of the solution techniques are described in [6] .  

Unfortunately, none of these approaches are directly appli- 
cable to our scheduling problem due mainly to the structural 
differences. Furthermore, while most known scheduling objec- 
tives are to minimize the makespan or to meet task deadlines, 
our scheduling objective is to minimize the system hazard. 
As stated in [2], there are distinct advantages in using the 
system hazard over other objectives. For example, if all tasks 
to be scheduled are periodic, then minimizing the makespan 
is not appropriate unless all task periods are the same. On 
the other hand, an objective simply to meet all task deadlines 
may not be good enough because one such schedule may 
still be better than another in the following sense. Suppose 
there are only two dependent periodic tasks TI and TZ to b i  
scheduled, where the periods of TI (to be scheduled on N I )  
and T2 (to be scheduled on N z )  are 10 and 20, respectively. 
Consider two schedules <I and 52 of these two tasks in the 
time period [0, 20). In <I, T2 is completed at time 12, and 
the two invocations of TI are completed at times 9.9 and 14, 
respectively. In <2 however, TZ is completed at time 14, and 
the two invocations of TI are completed at times 6 and 16, 
respectively. Since all deadlines are met, both [I and (2 are 
optimal schedules if the objective is simply to meet all task 
deadlines. However, it is reasonable to argue that <z, which 
with a lower system hazard than 51 (0.7 < 0.99), should be 
superior to 51 because a slight increase in TI’S andlor TZ’S 
execution time may cause TI to miss one of its deadlines in 
<I, but not in <z. Hence if the normalization factors are chosen 
to be the task periods as in the above example, then using the 
system hazard maximizes the system’s ability to meet task 
deadlines and allows for better load sharing in the system. 
This is especially true when variations in task execution times 

are possible, and the variances are proportional to the task 
flow times. 

In this paper, we develop a B&B algorithm to find an 
optimal schedule w.r.t. the system hazard. We do this by 
deriving and then using the dominance relationship between 
simultaneously schedulable modules. Also, lower-bound costs 
are derived to effectively guide the search for an optimal 
schedule. Although the general structure of B&B algorithms 
is well known, it is the derivation of good DP’s and tight 
lower-bound costs that are essential to the success of any 
B&B algorithm. 

A set of DP’s w.r.t. all regular measures are identified in 
Section 11. Section I11 discusses more DP’s w.r.t. the system 
hazard. Using all the DP’s derived in Sections I1 and 111, we 
show in Section IV how the B&B algorithm is guided by a 
tight lower-bound cost to efficiently find an optimal schedule. 
A demonstrative example and some computational experiences 
are presented in Section V. Finally, the paper concludes with 
Section VI. 

11. DOMINANCE PROPERTIES FOR ALL REGULAR MEASURES 

Since preemptions create an infinite number of possible 
schedules for a given problem, the main idea behind the 
DP’s w.r.t. all regular measures is to eliminate unnecessary 
preemptions and reduce the processor idle times caused by 
precedence constraints between modules. 

An unfinished module ob in the TG is said to be schedulable 
if 1) the task containing Ob has been released, and 2) all 
of Ob’s preceding modules and communication delays have 
already been completed. The DP’s to be identified are based 
on the following observations: 

OB1: Preemptions that do not improve performance must 
be disallowed to reduce the number of possible 
branches in the B&B search tree. 
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Fig. 3. Two schedules generated by (1 and ( 2 .  (a) Original partial schedule by ( 1 .  (b) Alternative partial schedule by ( 2 .  

A PN should not be left idle if there are modules 
schedulable on the PN. 
A schedule must always be replaced by another 
schedule if the latter can reduce the completion time 
of a task without delaying the completion of any 
other task. 

These observations are obvious since preemptions are allowed 
and regular measures used. 

Let ob and 0, be two modules schedulable on Nk, (1 and 
<2 be two preemptive scheduling algorithms, and ZCl and Zc2 
be the performances of (1 and 52, respectively. OB1 leads to 
the following theorem w.r.t. any regular measure. 

Theorem I :  Given any schedule with preemptions between 
01, and 0,, there always exists another schedule without such 
preemptions such that the new schedule achieves a cost equal 
to, or lower than, that of the original schedule. 

Proof: Let ob and 0, be simultaneously schedulable on 
Nk at tl = 0. Consider the partial schedule in Fig. 3(a) 
generated by a scheduling algorithm (1, where the shaded 
areas represent preemptions by modules other than ob and 
0,. As shown in Fig. 3(a), (1 allows 0, to interrupt ob at 
t 2  > tl .  Without loss of generality, we may assume that ob 
is completed before 0,. We want to show that there always 
exists another scheduling algorithm 52 that does not allow 
preemptions between ob and 0, and achieves an equal or 
lower cost as compared to the original algorithm Cl. 

Since ob is completed before 0, in the original schedule, 
construct the new schedule with 52, which simply rearranges 
the execution orders of o b  and 0, such that ob is executed 
to completion without 0,’s interruptions after tl (Fig. 3(b)). 
(ob could still be interrupted by modules other than 0, as 
shown in the shaded areas in Fig. 3(b).) It is shown that the 
completion time of ob has been reduced while that of 0, can 
be maintained. Thus, using 52 will never result in a larger 
task completion time than using <I because there are always 
more schedulable modules available to 52 than (1. Similar 

arguments also hold if 0, is assumed to complete before ob 
in the original schedule. In such a case, however, 52 must 
rearrange the execution order of ob and 0, such that 0, is 
now executed to completion without Ob’s preemptions. Notice 
that which of ob and 0, to execute first at tl = 0 under (1 

for both of the above cases makes no difference. The theorem 
follows since ZC2 5 ZCl by OB3. Q.E.D. 

For the purpose of disallowing unnecessary preemptions, 
the implications of Theorem 1 are as follows. If there are T 

modules M = {Ojlj = 1 , 2 , .  . . , T }  that are simultaneously 
schedulable on Nk at tl = 0, then for each of these T branches 
we are expanding, the corresponding module shall be allowed 
to run to completion unless modules other than those in M 
become schedulable at t > tl .  In other words, for each branch 
j under expansion, no module in M is allowed to preempt the 
execution of the module Oj  corresponding to branch j .  Only 
those modules that become schedulable at a future time t > tl 
may preempt 0j. In the following, the DP’s are identified 
based on OB2 and OB3. 

While the term “precede” holds its usual meaning between 
two nodes or two arcs in the TG, we also want to use it 
between a node and an arc as follows. 

Definition I :  An activity (module or communication delay) 
A ,  is said to immediately precede a node np if np is at the 
“head” of A, in the TG, written as head(A,) = np,  and A, 
is said to precede np if either A, immediately precedes np,  
or head(A,) precedes np in the TG. 

Therefore, np is said to be realized if a task whose starting 
event is represented by np has been released, and all activities 
that immediately precede np have been completed. 

Since the precedence relation in the TG is transitive [17], 
there are usually many nodes preceded by a module, say Ox, 
although only one of them may be immediately preceded by 
0,. Besides, some of the nodes preceded by 0, may not even 
be “located” in the same PN, say Nk, that executes 0,. Let 
n,(0,) be the set of nodes which are preceded by Ox, are 



PENG AND SHIN OPTIMAL SCHEDULING OF COOPERATIVE TASKS IN A DISTRIBUTED SYSTEM 257 

t& 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ~ 1s 16 tF17 
(b) 

Fig. 4. Two partial schedules generated by (1 and ( 2 .  (a) Original partial schedule generated by C1. @) Modified partial schedule p2 generated by ( 2 .  

indeed located in Nk, and represent some task completions. 
Also, let Rl(0,)  be the set of PN “boundary” nodes that are 
preceded by o,, are located in Nk, and are placed at the “tails” 
of some communication delays. For the example TG in Fig. 
1, n0(02)  = {nl?,fl18} = {T11T2) and n l ( o 2 )  = in141 
since 7114 is a boundary node of N I ,  preceded by 0 2  and 
located at the tail of communication delay ~ ~ 2 3 .  Likewise, 
Ro(O1) = {n17} = {TI} and n ~ ( O l )  = 0. Moreover, 
nO(o4) = {Tl, T2}, n1(04) = (7261 n14)r and nO(o5) = 
{T3,T4}, n l ( o 5 )  = {715),n0(06) = {T3}, n l ( o 6 )  = 
8,%(018) = {T4} and Ql(018) = (7213). Note that Clo(0,)  
does not contain T4 since n19 is not located in N I .  Likewise, 
none of TI and T2 are contained in n o ( 0 5 ) .  Ro(0,) and 
Rl(0,)  indicate which and how tasks will benefit from the 
completion of 0,. Specifically, Ro(0,) represents the set of 
tasks on a PN, say Nk, whose completions must be preceded 
by that of 0,. On the other hand, tasks on PN’s other than 
Nk can only benefit from the completion of 0, through the 
realization of nodes in R1(0,). 

Based on the above observation and given any two modules 
o b  and 0, simultaneously schedulable on Nk, we write 
0, jZ (=’)ob if nj(O,) 2 (=)aj(ob),j = 0,1. Notice 
that if ob precedes 0, then Ob Jz O,, but the converse is 
not necessarily true. The relation jz is transitive and =’ is 
an equivalence relation. Besides, ob =’ 0, iff ob J’ 0, 

Definition 2: Let (1 be an algorithm that schedules ob 

before 0, on Nk at time to .  It is said to be advantageous 
w.r.t. a regular measure 2 for Nk to execute 0, before ob at 
t o  if for any such (1, there always exists another algorithm (2 

which contains the (1’s partial schedule prior to t o ,  schedules 
0, before ob at t o ,  and satisfies Zc2 5 ZCl. 

Based on OB2 and OB3, the following theorem associates 
the relation 3’ between Ob and 0, with the Nk’s scheduling 
decision. 

Theorem 2: Given any regular measure Z , O ,  +’ ob 
implies that it is always advantageous for Nk to execute 0, 
before ob, where ob and 0, are modules simultaneously 
schedulable on Nk. 

Proofi Suppose (1 is a scheduling algorithm under which 
Nk executes ob before 0, at time t o .  Consider the partial 

and 0, Jz o b .  

schedule p1 within the time interval [to,  t j ]  generated by (1, 

where t o  is the time both Ob and 0, are schedulable, and 
t j  the time 0, is completed (Fig. 4(a)). In addition to Ob 

and 0,, there are only two other types of modules that could 
possibly be executed by Nk within [ to , t f ] :  1) those modules 
that have no precedence relation with either of o b  and 0,, 
and 2) those modules that are preceded by Ob but has no 
precedence relation with 0,. Modules of type 1) can preempt 
ob and/or 0, at any time within [ to , t f ] ,  whereas those of 
type 2) can only be executed after Ob’s completion, but may 
preempt 0, at any time within [ to ,  t j ] .  Let 0, and 0, denote, 
respectively, the representative modules of these two types. 

Construct a new partial schedule p2 for N k  within [to,  t f ]  as 
follows. While keeping the schedule for all 0,’s unchanged, 
rearrange all the other modules to be executed in order 
of Oc,Ob, and 0,’s (Fig. 4(b)). p2 is feasible since all 
precedence constraints are still met within [to,  t f ] .  Given 
R,(O,) 2 f i I J ( o b )  and Ql(0,)  2 Rl(Ob), we want to show 
that there exists another scheduling algorithm 52 that contains 
pz as well as <1’s partial schedule prior to t o ,  and satisfies the 
inequality ZC2 5 ZCl. 

Let AO = no(0,) - nO(ob), 61 = R1(Oc) - %(ob),  and 
A1 be the set of tasks located in nodes other than N k ,  the 
completion event of each of which is preceded by at least a 
node in 61. Also, let A = A0 U A1 and a = T - A, where 
T is the set of all tasks. That is, h represents the set of tasks 
preceded by both, or neither, of Ob and 0,, while A contains 
the set of tasks preceded by 0, and, possibly, by both 0, 
and ob. We now separately compare the possible completion 
times of tasks in A and those in when either p1 or p2 is 
Nk’s partial schedule within [ to ,  t f ] .  Because of the way p 2  is 
constructed, 0, has a smaller completion time under pz, but 
ob and 0,’s will have larger completion times as compared 
to the case of using p1. Since ob precedes 0,, 0 6  3’ O,, 
and thus, 0, j z  0,. That is, any task whose completion 
event preceded by 0, and/or Ob is also preceded by 0,, 
meaning that the preceded task cannot be completed without 
completing o,’s, ob, and 0, anyway. This implies that there 
exist a schedule (2 containing both &’s prior partial schedule 
and pa, under which the completion times of tasks in A could 
be reduced further, without increasing those in E. Since these 

I 
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arguments are valid for any time t o ,  the theorem follows by 
OB3. Q.E.D. 

For the example TG in Fig. 1, since f l o ( O 4 )  = Ro(O2) 2 
Ro(0i)  and fli(o4) 2 Qi(02)  2 R i ( 0 1 ) , 0 4  *’ 0 2  j Z  

01. Therefore, it is advantageous for N I  to execute these three 
modules in order of 04, 0 2  and 01 (with the possibility that 
some other modules such as 0 3  may be executed in between 
them). 

It is worth pointing out implications of Theorem 2. First, the 
partial schedules p1 and p2 in Theorem 2 were constructed 
while implicitly honoring Theorem 1. Second, 5 2 2 ( 0 , )  2 
f l z ( 0 b )  does not necessarily imply that it is advantageous for 
Nk to execute 0, before ob, where fl2(Or) is the set of all 
tasks preceded by 0,. Third, if it is advantageous at t o  for 
Nk to execute o b  before 0, and vice versa, then it makes no 
difference as to which of ob and 0, is executed first at t o .  
In other words, to search for an optimal schedule, it suffices 
at t o  to consider only the case where either of Ob and 0, is 
executed first. 

The DP in Theorem 2 is based only on the property 
expressed in the form of j Z ,  which does not always exist 
between simultaneously schedulable modules. It is very diffi- 
cult to derive any finer-grain DP’s other than the above for all 
regular measures. However, if the problem is restricted to a 
specific regular measure, some finer DP’s w.r.t. that measure 
can be derived. In Section 111 we derive such DP’s w.r.t. 0, 
which will then be used to simplify the search further in our 
B&B algorithm. 

111. DOMINANCE PROPERTIES W.R.T. SYSTEM HAZARD 

The approach to determining which of ob and 0, to be 
scheduled first w.r.t. 0 is equivalent to determining the relative 
“urgency” of each task in f l o  (Ob)uflO( 0,). Before proceeding 
any further, it is necessary to introduce an optimal single- 
machine scheduling algorithm developed by Baker et al. [9], 
which we call Algorithm A in the rest of this paper. A set of 
jobs with arbitrary release times and precedence constraints is 
to be scheduled on a single machine so as to minimize the 
maximum job completion cost, where the cost associated with 
each job can be any monotone nondecreasing function of its 
completion time. As can be seen from the following steps, the 
computational complexity of Algorithm A is O ( N 2 ) ,  where 
N is the number of jobs to be scheduled. 
SA1: Modify job release times, where possible, to meet 

the precedence constraints among the jobs, and then 
arrange the ’jobs in nondecreasing order of their 
modified release times to create a set of disjoint 
blocks of jobs. For example, suppose jobs X, Y, and Z 
are released at t = 0,2,15, respectively, X precedes 
Y which precedes Z, and 5 units of time are required 
to complete each of X and Y. Then, the job Y’s 
release time is modified to t = 5, Z’s release time 
remains unchanged at t = 15, and two blocks of jobs 
{X, Y } and {Z} will then be created. 

SA2: Consider a block B with block completion time t (B ) .  
Let B’ be the set of jobs in B that do not precede 
any other jobs in B.  Select a job 1 from B‘ such 

SA3 : 

SA4: 

that f i ( t (B) )  is the minimum, where fi(t) is the 
nondecreasing cost function of job 1 if it is completed 
at t. This implies that 1 be the last job to be completed 
in B.  
Create subblocks of jobs in the set B - { I }  by 
arranging the jobs in nondecreasing order of modified 
released times as in SA1. (If 1 is preempted several 
times before its completion, the deletion of 1 is 
equivalent to punching several holes in B.) The time 
interval(s) alloted to 1 is (are) then the difference 
between the interval of B and the interval(s) allotted 
to these subblocks. 
For each subblock, repeat SA2 and SA3 until time 
slot(s) is (are) allotted to every job. 

Our scheduling problem is much more complicated than 
that treated by Algorithm A, since two modules belonging to 
two different tasks could be assigned to two different PN’s and 
must meet the precedence constraints between them. However, 
the following useful lemma can be derived from S A 2 .  

Lemma I: Let ob and 0, be two modules simultane- 
ously schedulable on Nk at time t o  such that Ql (0 , )  2 
ni(ob),flo(Ob) = {Tm}, and f l o ( 0 , )  = {Tn}, for Some 
tasks T,, T, E T.  Then, it is advantageous w.r.t. 0 to execute 
0, before ob at t o  if the following inequality (see Fig. 5 )  
holds: 

t - r ,  t - r ,  
W n  2- W m  Vt 2 t o  + R 

where R is the sum of the remaining execution times of all 
unfinished modules on Nk that precede at least one of T, 
and T,. 

Proof: Since fll(O,) 2 fll(Ob), the lemma follows if 
we can show that executing 0, before ob is advantageous for 
T, and T,. Consider again the partial schedule p1 in Fig. 4(a) 
generated by (1, and the modified partial schedule p2 in Fig. 
4(b) generated by 52, where 52, in this case, differs from 51 
only in p1 and p2. In both p1 and p2, recall that 0,’s represent 
those modules that can preempt ob and 0, at any time within 
[ to ,  t j ] ,  whereas 0,’s are those modules that can be executed 
only after the Ob’s completion but can preempt 0, at any time 
within [ to ,  t j ] .  To prove that Osz 5 Os1, four cases must be 
considered depending on whether or not the completions of 
0, and 0, represent those of T, and T,, respectively. 

Case 1: 

Case 2: 

Neither 0, nor 0, is a completing module whose 
completion represents the completion of T, or T,. 
In this case, all task completion times are the same 
under 51 and (2, thus Ocz = OC1. 
The completion of T, is represented by that of O,, 
but 0, is not a completing module. The normalized 
response time of T, under 52 is larger than that 
under ( 1  while that of T, remains unchanged. 
However, by (l), the normalized response time of 
T, is larger than that of T, under 52 which, in turn, 
is larger than that of T, under (1. This implies 
that the maximum of these remain unchanged 
regardless whether (2 (in place of 51) is used or 
not. Thus, @ = @Cl. 
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Case 3: 

Case 4: 

t o + R  

Fig. 5. An example cost structure of T, and T,. 

0, is a completing module, but 0, is not. The 
normalized response time of T, is thus reduced 
while that of T, remains unchanged under (2 when 
compared to (1, thereby making 0 c 2  5 gc l .  
Both 0, and 0, are completing modules. From 
(1) and SA2 of Algorithm A, it is advantageous 
to execute 0, before Ob (and O,), thus gc2 5 
Wl.  Q.E.D. 

Notice that in the above proof, 0,, rather than ob, is checked; 
if such an 0, is nonexistent (ob itself is a completing 
module of T,), then we only need to replace 0, with Ob 
in the proof. Also, it is important to point out that Lemma 1 
always holds no matter how many such T, ’s are in no (ob). 

Specifically, suppose 1) nl(0,) 2 Rl(Ob) and 2) O O ( 0 b )  = 
{Tml,  TmZ, .  * .  , Tmq},  and no(0,) = {T,}, for some tasks 
Tml , Tmz, . . . , T,,, T, E T. Then, it is still advantageous to 
execute 0, before Ob at t o  if (1) holds for each pair of T, 
and T,, , 1 5 j 5 q. The proof is similar to that of Lemma 
1, except that we now have to consider the completion event 
of each of T,, . It can be seen that, in each of the four cases 
considered, Ocz 5 still holds because the system hazard 
represents the maximum, rather than the sum, of a set of 
numbers. As we shall see later, this fact is essential in proving 
Theorem 3 below. Finally, as is shown in Fig. 5, to is not 
restricted to the time after both T, and T, are released; to 
can be any time before either T, or T, is completed. 

Equation (1) holds if and only if the following inequality 
holds (see Fig. 5): 

to + R 2 (wmrn - wnrm)/(wm - wn) ifwm > wn 

or 

r, 2 r,  ifw, = w, (2) 

where the RHS of the first inequality represents a particular 
time t such that ( t  - r,)/w, = ( t  - r,)/w,. It may be noted 

that (2) conforms to the various optimal policies known in 
scheduling theory. This fact leads to the following definition 
of the “relative superiority” (or urgency) w.r.t. 0 between two 
unfinished tasks T, and T,. 

Defnition3: For two unfinished tasks T, and T, on 
Nk,Tn is said to be 1)  superior to T, w.r.t. 0,  written as 
T, SPOT,, at to if (2) holds, and 2) equal to T, w.r.t. 0, 
written as T, eq @ T,, if wm = wn and r, = r,. 

T, SPOT, is defined only when wn 5 w m  and that T, 
eq’ T, iff T, sp@ T, and T, sp0 T,Vto. Notice that while 
eq’ is an equivalence relation, sp’ is not transitive, meaning 
that T, SPOT, and T, SPOT, do not necessarily imply T, 
spe Tp. Furthermore, if T, sp@ T, at to, then T, sp’ T, at 
all tl 2 to. Based on the superiority relation between two 
tasks, we have the following definitions on their preceding 
modules Ob and 0,. 

Definition 4: 0, is said to 
1) dominate ob w.r.t. 0,  written as 0, +’ o b ,  at to if (a) 

for every T, E no(ob) there exists a T, E no(0,) such 
that T,  SPOT, at t o  and (b) Rl(0 , )  2 ol(ob), and 

2) be similar to ob w.r.t. 0,  written as 0, S’ Ob, at to if 

Definition 4 specifies the relative urgency of a schedulable 
module 0, in term of those of the tasks in Ro(0,) and 
the tasks preceded by fll(0,). It is useful to examine the 
properties of +O . First, 0, +’ ob implies 0, +’ ob 

at any time to 2 0, but the converse is not always true. 
In particular, it is even possible that both 0, +e ob and 
no(0,) C f l O ( 0 b )  hold. Second, is not transitive, and 
thus, neither is so. Finally, if 0, +’ ob at to, then 
0, +-’ ob at any time tl 2 to. 

Based on the discussions thus far, the DP’s between ob and 
0, are summarized in the following theorem. 

Theorem3: Let ob and 0, be two modules schedulable 
on Nk. Then, w.r.t. 0,  

0, *@ ob and ob +e 0, at to. 
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1) it is advantageous to execute 0, before ob at t o  if 

2 )  it makes no difference as to which of ob and 0, is 

Proof of I ) :  Since 0, j 0  ob at t o ,  for every task 
T, E fh)(Ob) there exists a corresponding T, E no(O,) such 
that (1) and (2 )  hold. From Lemma 1, executing 0, before 
Ob at t o  can reduce the maximum normalized response times6 
of such T,’s and 27,’s. The completion time of every task 
other than such T,’s and T,’s does not increase because 

Proof of 2): From the definition of Se  and the result of 
Part l), the proof directly follows. Q.E.D. 

From the discussion of Definition 4, there are cases where 
both 0, +@ Ob and Ob j Z  0, hold. This simply indicates 
that executing 0, before Ob (Theorem 3) is just as good as 
executing Ob before 0, (Theorem 2). Although Theorem 3 is 
useful, its implementation is not as straightforward as Theorem 
2, because neither +@ nor So is transitive. Corollaries 1 and 
2 below indicate that, even though neither j0 nor Se is 
transitive, the orders of executing modules implied by these 
two relations are transitive. 

Corollary 1: Let S k ( t O )  = {oj: 1 5 j 5 s }  be a subset of 
s 2 2 modules schedulable on NI, at time t o .  

1) If 0, j0 Os--l, O,-I j0 0 , - 2 , .  . . , and 0 2  j0 0 1  

at t o ,  then it is advantageous for Nk to execute 0, before 
0 1  at to .  

2)  If 0 1  j0 0, in addition to the condition in (a), then 
it makes no difference as to which module in S k ( t 0 )  is 
executed first. 

(The proof follows directly from Theorem 3 and Definition 2, 
and thus, is omitted.) 

Corollary 2: Let s k ( t 0 )  be the same as in Corollary 1. If 
0, So 0 , - 1 , 0 , - 1  Se 0 , - 2 ,  . . . , and 0 2  So 0 1  at t o ,  then it 
makes no difference as to which module in Sk(t0) is executed 
first. (The proof follows directly from Part 2 )  of Theorem 3 
and thus is omitted.) 

It is worth pointing out that 0, =+@ Os--l,OS-l je 
0 , - 2 , .  .. , 0 2  0 1 ,  and 0 1  =+e 0, do not imply 
that 0, So Os--l, 0 , - 1  So OS-2, .  . . , and 0 2  Se  01 at t o ;  the 
converse does not hold either. For convenience, the set of 
schedulable modules for which execution order is immaterial 
is called an immaterial set (IM). As we shall see in Section 
IV, knowledge of an IM of size as large as possible greatly 
simplifies the search for an optimal schedule. An important 
property associated with two IM’s is given in the following 
corollary. 
. Corollary 3: Let I I i ( t 0 )  = { 0; , 0: , . . . , Ogl } and 

r I i ( t 0 )  = {Os, 02, . . . , O:*} be two distinct IM’s of size 
s1 and s2 on Nk at t o .  If there exist ob E H:( to )  and 
0, E IIE(t0) such that executing 0, before ob at t o  is 
advantageous, then it is advantageous to execute 0: before 
Oil at t o , V i , j .  

0, =+@ ob at t o ,  and 

executed first at t o  if O,SO ob at t o .  

nl(oc) 2 fil(Ob). 

6Recall that 0 is the maximum, rather than the sum, of a set of scalar 
quantities. Hence this statement always holds no matter how many such T,,, ’s 
are in Q o ( 0 b )  for each T,, in Oo(0,). 

Proof: By assumption, it is advantageous at time to  to 
execute 0; before o,, 0, before 0 6 ,  and ob before 0:. Since 
0; is arbitrarily chosen from I I % ( t o )  and 0: from II;(to), the 
corollary follows. Q.E.D. 

Because 0, j0 ( s e ) @ ,  at t o  implies the same relation at 
any tl  2 t o .  Corollary 3 simply says that it is advantageous to 
execute all modules in II; ( t o )  before any module in IIi ( t o ) .  
Corollary 3-which deals with the “uninterruptability” of 
an immaterial set-can be thought of as another version of 
Theorem 1, which deals with the uninterruptability of a single 
module. 

It can be seen that the DP’s in Theorem 3 are identified 
only under the condition 01(0,) 2 n l ( 0 b ) .  Without this 
condition, it is very difficult to find any DP useful for our 
scheduling problem because of the interdependencies between 
scheduling decisions on different PN’s. In Section IV we show 
how the DP’s presented so far are used in the B&B algorithm 
to find an optimal schedule. 

Iv .  SEARCH FOR AN OPTIMAL 
SCHEDULE WITH A B&B ALGORITHM 

The proposed B&B algorithm is described in terms of its 
two phases: branching and bounding. The branching process 
expands an active parent vertex’ to generate child vertices 
while the bounding process derives a lower-bound cost for 
each child vertex to guide the search [18]. In Section IV-A, 
we show how the DP’s derived thus far are incorporated into 
the B&B algorithm for efficient branching. Lower-bounds of 
system hazard are then derived and used in Section IV-B for 
efficient bounding. 

A. Generation of a Small Set of Schedules Using DP’s 

As mentioned earlier, the set of active nonpreemptive sched- 
ules contains all optimal schedules w.r.t. any regular measure. 
Thus, to minimize any regular measure, it is sufficient to 
consider only this set of active schedules. The above statement 
is true for nonpreemptive scheduling problems that may be as 
difficult as the job-shop scheduling problems. In this paper, 
however, we are concerned with the derivation of an optimal 
preemptive, rather than nonpreemptive, schedule. Therefore, 
the set of “active” schedules for our scheduling problem must 
be generated differently from that for the nonpreemptive case. 
Specifically, in the course of searching for an optimal schedule, 
we consider only those scheduling options that do not violate 
any of the three rules (IP1-IP3) listed shortly. This is because 
a schedule violating any of the three rules must be nonoptimal 
according to the discussions in Section 111. Furthermore, since 
we are interested in finding only one optimal schedule, we 
will consider only one of the scheduling options in the same 
IM. Given the active set generated earlier, an optimal schedule 
w.r.t. 0 can then be obtained by applying the bounding process 
only on this set. 

The three scheduling rules listed below are important im- 
plications of the DP’s presented in the previous section. After 

’The term “vertex” instead of the more commonly used term “node” is 
used to avoid possible confusion with the nodes of the TG and the nodes of 
a history tree to be introduced. 
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elaborating on these three rules, we will give a detailed account 
of generating a set of active schedules. (As before, Sk(t0) 
represents the set of all modules schedulable on Nk at time 
to.) 

IP1: 
IP2: 

IP3: 

Nk must not be left idle at t o  if Sk(t0) # 0. 
Nk must execute 0, E Sk(t0) before ob E Sk(t0) at 
time to  if (Tl): 0, j z  ob and 0, Zz ob, andlor 
(T2): 0, +@ o b  and, Ob and 0, do not belong to 
the same IM. 
Once 0, has been chosen by Nk at t o ,  no other 
module in Sk(to) is allowed to preempt 0, before its 
completion. A new module that becomes schedulable 
at time tl > t o  (and thus belongs to Sk( t l ) ,  not to 
Sk(t0)) could preempt 0,; tl is the only time at which 
0, can be preempted by this new module. 

IP1 and IP3 are based on OB2 and Theorem 1, respectively, 
while IP2 comes from Theorems 2 and 3 and needs further 
elaboration on its implementation because of the aforemen- 
tioned properties of +’, =’, 

P1: jz and =z are transitive. Besides, if 0, 3’ (=’)ob, 

then 0, +@ (se)ob at any t o  2 0; but the converse 
is not true. 

and Se:  

P2: Neither +@ nor S e are transitive. 
~ 3 :  If 0, *e (se)oa at t o ,  then 0, j0 (so)ob at any 

P1 suggests that T1 of IP2 be tested before T2, and that ob 
be immediately excluded from consideration for scheduling if 
T1  holds. P2 and part (a) of Corollary 1 suggest that the test 
for T2 on the set of modules survived (called the survival set) 
the test for T1 be different from the test for T1. Specifically, 
all ob- 0, pairs in the survival set are tested first for T2 and 
then any ob asserted by T2 is excluded from consideration 
for scheduling. P3 implies that T2 (and T1, of course) need 
not be tested again until a new module becomes schedulable 
on Nk. Let &(to) denote the set of modules which survive 
tests for both T1 and T2. Then, by Corollary 2 and part (b) of 
Corollary 1, &(to) may be further partitioned into qk (yet 
to be determined) IM’s, I I i ( t o ) , j  = 1,2,  . . . , qk, in each 
of which changing the execution order does not affect the 
optimality. ?us, it is sufficient to pick an arbitrary module 
from each I I i ( t 0 )  and consider whether or not to execute 
it next. Because of P2, each I I i ( t 0 )  can be constructed as 
follows. First, using Corollary 2 and starting with an arbitrary 
module, a r I i ( t 0 )  is formed by adding a new module ob to 
it whenever there exists an 0, already in I I i ( t 0 )  such that 
0, Se ob. Second, use part 2) of Corollary 1 to merge a 
cyclic set of IM’s into I I i ( t 0 ) .  A set of IM’s is said to be 
cyclic if elements from IM’s of the set form a cycle of the 
dominance relation as described in part 2) of Corollary 1. This 
merger is to further reduce the number of branches generated 
at the vertex since the single module to be arbitrarily picked 
from the IM is now picked from a larger size IM after the 
merger. 

To meet the unintermptability requirement, a tree, called 
the history tree (HTk) ,  for Nk is used to keep track of 
execution order for the modules on Nk. As shown in Fig. 6, 
each HTk has only one vertical thread of branches, in which 

t l  2 t o .  

Horizontal Threads 
mot , nil 

, ail 

p-w- dl 

Fig. 6.  The history tree of Nk. 

each node represents a module that is partially completed and 
preempted by the one immediately above it, and the root is the 
module being executed by Nk. For each module on the vertical 
thread, a horizontal thread of branches is also constructed 
to record the set of modules that were not selected by Nk 
even after surviving both tests of T1 and T2. As we shall 
see later, each HTk is constructed and updated such that a 
module schedulable on Nk may appear at most at one node of 
HTk.HTk’s are used as F1, a tool for checking whether or 
not Theorem 3 and the uninterruptability requirement of IM’s 
have been violated in any PN’s prior partial schedule, and 
F2, a guide for each PN to select a module without violating 
the two conditions of F1 at least up to the time of the next 
scheduling decision. The violations stated in F1 are possible 
because more dominance relations will be established as time 
goes by. 

In what follows, we briefly describe how HTk’s are con- 
structed and updated, and explain how F1 and F2 are done to 
further simplify the search in the B&B algorithm. Let tl be 
the time when a module or communication delay is completed, 
or a new task is released, and thus, a new scheduling decision 
has to be made. Also, let R k ( t l )  Sk(t1) be the set of all 
schedulable modules, each of which survived both T1 and T2 
at t l ,  andIIk(tl) ,II%(tl) ,  . . - ,II?(t ,)  be the qk IM’s resulting 
from partitioning Rk(t1).  If the original HTk is a null tree, 
then checlfing F1 is unnecessary and selecting a module from 
any of IIi(t1) will violate neither of the two conditions of 
F1. Let yk denote the module selected by Nk. Thus, an HTk 
is created by using yk as its root and including each module 
in Rk(t1) - { y k }  in the horizontal branch rooted by yk. If 
the original HTk is not null, then both F1 and F2 need to be 
performed. For F1, there are at least two cases, V1 and V2, 
to be checked: 

V1: There are at least a pair of modules, say, ob and 0, 
with 0, *e o b  at t l ,  such that the node representing 
Ob is on the vertical thread of HTk and has the node 
representing 0, on one of its branches (Fig. 6). 

1 
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V2: There are at least three modules, say, Ox, 0, and O,, 
such that (1) both 0, and 0, are on the vertical thread 
of HTk and 0, is rooted by 0, (i.e., 0, has ever been 
directly or indirectly preempted by Ox), and (2) 0, is 
rooted by 0, and belongs to the same IM as 0, (i.e., 
the IM containing 0, and 0, has ever been interrupted 
by that containing 0,). 

If any of V1 and V2 is true for any PN, then the par- 
ent vertex yo being expanded is discarded because yo will 
never lead to an optimal schedule, or there exists at least 
another optimal schedule that does not include yo as its partial 
schedule. If the parent vertex yo is not discarded, then F2 
needs to be performed on each Nk such that the selected 
module for Nk will not violate either of the two conditions 
in F1 at t l .  F2 is done by building a set of “prohibited” 
IM’s on Nk. Specifically, a prohibited IM is the one that 
has ever been preempted on Nk. Thus, if a module is chosen 
from a prohibited IM by Nk at t l ,  then the uninterruptability 
requirement of this IM is violated at t l .  Further, to satisfy 
Theorem 1, if a module is to be selected by Nk from an 
IM of which one module is being executed, then Nk can 
only continue the module that Nk has been executing. After 
applying F1 and F2, let yk denote the module selected for Nk 
(if such a yk does not exist, then Nk is kept idle until the time 
of next scheduling decision) and let ak represent the module 
that was being executed at the time of selecting yk .  Then, 
HTk is updated according to the following rules: 

is not completed at tl .  A new 
node representing Yk is created on top of ak, indicating the 
preemption of ak by yk .  For this new node, a horizontal thread 
is constructed to include each module in Rk(t1) - { r k }  if it is 
not already in HTk. This is to indicate that, among all modules 
in R k ( t l ) ,  only yk is selected and the thread contains the other 
modules which are not selected by Nk at t l .  

Case 2: yk # 0, and D k  is completed at t l .  If yk is not 
the module previously preempted by ak, then the node 
representing is replaced by that representing y k ,  and each 
module in Rk(t1) - ( _ Y k }  must be appended to the original 
horizontal thread of ok in case it is not already in HTk. 
Otherwise, is simply deleted from HTk, and each module 
of Rk(t1) - { y k }  in the horizontal thread of is appended 
to the horizontal thread of Yk if it is not already in HTk. 

Case 3: yk = 0, and ok is not completed at t l .  No 
new node is created to preempt D1,. However, modules in 
Rk(t1) - { y k }  must be appended to the horizontal thread of 

Case 4: No yk is selected. Delete ak, if any, from HTk 
to let HTk become null and Nk be idle. This is because 
must be completed at tl and no more schedulable modules are 
available to Nk . 

Also, to ensure that yk appears only once in HTk, the yk 
already included in one of the horizontal threads must be 
deleted in the above rules. Except when or the module 
is preempted by ak in Case 2, Y k  can never be any node in 
the vertical thread. 

Based on the above discussions of IP1-3, we can now 
construct the algorithm which generates a small set of active 
schedules using DP’s. It is helpful to summarize and/or 

Case I :  yk # ak and 

- ok, 

introduce the notation to be used in the algorithm as follows: 
Set of modules without preceding activities on the TG. 
A module in A becomes schedulable whenever the task 
containing it is released. 

B: Set of modules with preceding activities on the TG. A 
module in B becomes schedulable upon completion of 
all its preceding activities as well as the release of the 
task containing it. 

Y :  Set of communication delays. Each communication 
delay must have at least one preceding module. 

to :  The current time or the time a scheduling decision has 
been made. 

tl: The earliest time since t o  when at least a module or 
communication delay is completed or a task is released. 
That is, t l  is the time when a new scheduling decision 
has to be made. 

Sk: Set of schedulable modules at t l  on Nk including those 
partially completed. 

L d :  Set of ready communication delays, m,’s, at tl .  The 
remaining period of m, is denoted by U,. Since com- 
munication delays are not schedulable objects, each U, 

is reduced to the passage of time. 
Rk: Subset of schedulable modules on Nk, each of which 

survives tests for both T1 and T2 of IP2 at t l .  Thus, 
Rk s k .  

II;: The j th  IM on Nk at t l .  Each II; and the total number 
of IM’s on Nk, denoted by I&, may change with time. 

yo:  The “parent” vertex in the state space to be searched. 
y1:  The “child” vertex of yo.  
(Yb:  Release time of Ob E A .  
p k  : Completion time of a module which is executed by Nk . 
&: The earliest completion time among all communication 

Since preemptions are allowed, a vertex y is represented by 

Psk:  The partial schedule of Nk containing all scheduled 

HTk: The history tree of Nk.  

Using the DP’s and notation introduced thus far, we present 
the algorithm for generating a small set of active schedules 
that contains at least one optimal schedule. 

PROCEDURE create-root-of-search-tree 
For IC = 1,2,...,n do 

A: 

delays in Ld. 

the following information: 

(completed and uncompleted) modules. 

1. InitializeSk := 0, Rk := 0. 
2. Set Psk = HTk := 0. 

end-do. 
Set t l  := O , t o  := 0, and Ld := 0 to create the root vertex 
Y O  = Y 1 .  
end-create-root-of-search-tree. 

MAIN PROGRAM generate-active-schedules 
S1. Initialize A,  B and Y .  
S2. create-root-of-search-tree. 
S3. While the generated vertex y 1  does not represent a 
complete schedule and each HTk survives V1 and V2 of F1 
do: 
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3a. 

3b. 

3c. 

3d. 

3e. 

Create s k ’ s  (Ld) by moving all modules (communica- 
tion delays) that become schedulable (ready) at tl from 
A to B (Y) to the corresponding s k ’ s  (Ld) .  
Perform the dominance tests T1 and T2 on each , s k  to 
generate R k ,  and partition each R k  to derive IIi, j = 

Perform F2 to choose II;, i = 1,2,  . . , fjk, from that 
in Step 3b, where i is-the new index and fjk 5 Qk.  Let 
r k  = { Oi,  0; , . . . , O r  } be the set of modules chosen 

Set yo := y1, and create a child vertex y1 of yo for 
each PN. Let Y k  denote the module chosen by N k  in 
91. (If q k  = 0 then Y k  := null, meaning that N k  is 
left idle in yl.) 
For each created y1 do: 

3.e.l Update H T k , k  = 1 , 2 , . - . , n ,  according to the 

3.e.2 Set t o  := tl and prepare to obtain a new tl as 

3.e.3 Determine a* = minObEA{ab}, 

1 ,2 , .  ’ .  1 q k .  

by N k .  

rules described above. 

below. 

P* = min{Pd, min {a}} ,  
k = l , . . . , n  

and set tl := min{a*,P*}, the earliest time a 
new scheduling decision has to be made. 

3.e.4 Modify P s k  by scheduling Y k  during the in- 
terval [to,  t l ]  (let N k  be idle if Y k  = null), 
k = 1 , 2 , . . . , n  . 

3.e.5 Return to Step S3. 

While satisfying the DP’s derived earlier, the algorithm 
recursively generates a set of preemptive active schedules in a 
depth-first fashion. This set of active schedules contains at least 
one optimal schedule. Also, because of the uninterruptability 
in Theorem 1, the depth of the search tree generated is at most 
twice the total number of modules to be scheduled. 

B. Estimation of Lower-Bound Cost 

Once the rule for expanding a vertex is determined, the 
efficiency of search for an optimal schedule with a B&B 
algorithm depends solely on 0(y), the lower-bound cost of 
vertex y, and the computation needed to obtain 6 ( y ) .  Based on 
Algorithm A, various Q( y) ’s can be derived depending on how 
the precedence constraints are relaxed and how the release time 
and cost function of each module (communication delay) are 
determined. For one extreme, we may ignore all precedence 
constraints between any two PN’s, assume that all tasks have 
been released, apply Algorithm A to obtain the minimal 
maximum cost for each PN, and use the maximal mini-max 
cost among all PN’s as a lower-bound cost 61(y). For the 
other extreme, we may consider all precedence constraints 
and task release times, and use the same method to derive 
another lower-bound cost 02(y). Obviously, &(y) is tighter 
than 61(y) but requires more effort to compute. Since all 
other bounds in between these two extremes can be derived 
similarly, we shall consider only these two extreme bounds. 

Consider a vertex y at t = t l ,  let g;(y) be the actual path 
cost of Ti from the root to y.gi(y) can be easily computed 

from the partial schedule represented by y as follows. Since 
some tasks may have been completed before tl,gi(y) is 
determined as Ti’s normalized partial response time at t l :  

(3) gi(y) 2 { if Ti is completed before t; 
(tl - T ~ ) / Z U ;  otherwise 

where E a ,  T ~ ,  and w, are the normalized response time, release 
time and normalization factor of Tal respectively. Note that 
ga(y) < 0 if T, is not yet released before t l .  

To derive 01 (y), precedence constraints between two PN’s 
are ignored, and all unfinished tasks are assumed to have been 
released. These assumptions make it possible to schedule tasks, 
rather than individual modules, with Algorithm A. Specifically, 
in step SA2 of Algorithm A, set the cost function of unfinished 
T, as 

and let t l  + &(B)  be the block completion time t ( B ) ,  where 
&(B)  is the sum of all remaining execution times of the set 
of unfinished modules each of which precedes at least a task in 
B. Suppose & k ( y )  is the maximum between 1) the mini-max 
cost of N k  obtained from Algorithm A, and 2) the maximum 
g,(y) obtained from (3) among all tasks completed before tl on 
N k .  Then 61(y )  2 maxNkEN e l k ( ? / )  is a lower-bound cost 
of y, and the computational complexity is 0(nITl2), where n 
is the total number of PN’s. IT1 the average number of tasks 
oneach PN. 

02(y) is derived while all precedence constraints and task 
release times are considered. This also implies that modules, 
rather than tasks, are the objects to be scheduled by Algorithm 
A. In a simpler case, the release time sb and cost function f b ( t )  

of an unfinished module Ob can be determined as follows. 
Since Ob is not schedulable until each task that contains at 
least a module preceding 0 6  has been released, S b  is set to 
the maximum release time among all such tasks. Because it 
is the completion of a task, rather than that of a module, that 
accounts for the cost, fb(t) may be set as: 

(5) f b ( t )  := { - Tz)/wa if head(%) = Tz 
otherwise 

where t is the completion time of T,, and head(O6) = 
T, means that head(Ob) is the node representing the 
Completion event of T,. After applying Algorithm A, 
define & ? k ( y )  similarly to & k ( Y ) , k  = 1 1 2 , . . . , n  . Then, 

than 01(y), and the computational complexity is 0(nlPl2), 
where (PI is the average number of modules on each PN. 
Note that more accurate, but more computational demanding 
release time and cost function for each unfinished module are 
possible. For example, the minimum time from a task’s release 
to a module’s release may also be considered to determine 
the release time of the module. Furthermore, the effect of 
a module’s completion on the completions of tasks in the 
other PN’s may be included in deriving a more accurate cost 
function of that module. These issues are partially addressed 
in [2]. 

As mentioned earlier, 62(y) 2 &(y),Vy, because Q1(y) is 
a lower-bound of &(y). There is always a trade-off between 

62(Y)* = A maxNkEN & k ( y )  is a tighter lower-bound cost 



264 IEEE TRAYSA( TIONS O N  SOFTWARE ENGINEERING. VOL. 19. NO. 3. MARCH 1'143 

r = o  olr 
@ 
lb T1 

w l =  30 w2= 20 

Fig. 7. The example TG 

the accuracy and computational complexity of an) lower- 
bound. 

v. AN EXAMPLE AND COMPUTATIONAI. EXPERILNC'LS 

In this section, a demonstrative example and some computa- 
tional experiences of the proposed B&B method are presented. 

A. AI! Example 
Consider the scheduling problem for the TG i n  Fig. 7. 

where six tasks T I .  TL . .  . . . T, are to be executed hy -2'1 

ahd K 2 .  All modules on the LHS of the shaded area of 
Fig. 7 are to be executed by LVl and those on the RHS by 
-V2. Each task is released by realizing its starting node and 
completed by realizing its ending node. The release times and 
normalization factors are r1 = 0. 1.2 = 5. I,:< = (1. 1.1 = :I. r j  = 
1'6 = 10. t i - 1  = 30. tis2 = 20. = 30. 1 1 ' ~  = 2.5. 1i*-,l.5 and 
ti'(; = 20. Notice that, while all the other tasks are released 
and completed on the same PN. TI ( T4) is released on .\I ( X z )  
but completed on .\; ( ~ V 1 ) .  Fig. 8 shows ! l o ( o )  and < ? , ( o )  of 
each module and Fig. 9 gives the cost function for each task. 
Using 61(g). we show in Fig. 10 all the vertices that have 
been generated in ascending order of their indices, and in Fig. 
11 the corresponding optimal schedule. 

Before reaching an optimal schedule-which is represented 
by 17 vertices from the root to vertex t'2,j-a total of only 
25 vertices are generated. The first five vertices I ' I - / . - ,  were 
generated because DP's exist neither between O l  and 0:j 
nor between 0 1 6  and 0 3 .  Since O:( is denied and 0 1 ( 1  is 
chosen at r l ; .  vertices where (I:] preempts 0 1 ( ,  will never 
be generated by expanding r j :  except at. or after. ()l(,'s 

completion (Theorem 1). When expanding r * t i .  where 0 3  and 
0 2  are both schedulable, only where 0 : j  is chosen by .\-I 

is generated because ( I ; <  j Z  0 2 .  This branch of the tree 
is expanded until 7 9 .  whose lower-bound cost becomes 0.73. 
Even with the same lower-bound cost 0.70, t'4. rather than r $ : { ~  
is chosen for expansion because the depth-first policy is used 
to break a tie on lower-bound costs. 

w 

w, = I n  w *= 20 

n = T.7 

w - 15 

As r'l(1 is expanded. both 1'l1 and t i 12  have to be generated 
because no DP's between 0 s  and 01(; exist (since neither 
Tz sp'-' TL nor T I  sp(-' TI . )  From r'12. only 7'1:l. where OX 
i \  selected, is generated because 0 8  =$' 0 2  and 0 8  3' 

O ~ , I  although O z .  Ox and (I1,, are all schedulable at t = 7 
(i.e.. f l  of r-12 and l o  of r - l : j ) .  While expanding 1'13. four 
modules ( O ~ . O ~ ~ ~ . O l l  and OI2)  on -V1 and two modules 
( 0 1 . 5  and 0 1 9 )  on are schedulable, making a total of eight 
Combinations. Since 0 2 .  010.  and 011 belong to the same 
1M and dominate (=.'-') 0 1 2 .  an arbitrary module, say 0.). is 
chosen for  SI. On the other hand, 01:3  010 .  so only 0 1 : 3  
is chosen by although both are schedulable. Therefore, out 
of these eight combinations, only one vertex t i l 4  needs to be 
generated without sacrificing optimality, and thus, significantly 
simplifies the search. 

Another situation to be noted is when both Oz and 0 6  

become schedulable on -1-2 a t  t = 1 0  as / l l 3  is expanded. 
Since O(; j Z  O-,(Ol.5) and 0 3 ( ~ ~ 1 : 3 )  j" oI9 at t = IO. 
the only vertex to be generated is for O6 to preempt (Il3 on 
.Y? although a total of four modules ( O z .  O(j. 01:j and 0 1 9 )  

are schedulable on AV?. After completing 0 6 .  Olli resumes 
its execution. We can easily see how the DP's are followed 
similarly by the rest of the optimal schedule. 

For completeness, we show how 61(?y) and & ( g )  can be 
derived for the above example. Consider ('14 (see Figs. 10 and 
11)  for instance. where t = 9 when Tl is completed while 
neither Tj nor Tc, is released. The normalized partial response 
times of tasks at / = f l  = 9 are gl ( u14) = ( 7  - 0)/30 = 
?/:jO.!/?( ( ' 14 )  = (!) - s)/L>o = .1/20. !]:3(7'14) ('3 - 0 ) / 3 0  = 
!1/31. !/A( 1 ' 1 4 )  = (!I - 3) /25  = 6/25, g.j( 1'1.1) = (9 - 1!)/15 = 
- 1 / 1 5 . ~ g ( j ( , q ~ ~ )  = (!I - 10) /20  = 1/20.  To derive ( - )1( 'u14) .  

precedence constraints between and IV2 are relaxed and all 
tabks are assumed to have been released. The block completion 
time I (  0) for unfinished tasks TI and Tl on N 1  is determined 
to be f l  + R l ( B )  = 9 + 8 = 17. where nl(L3) is the sum of 
remaining cxecution times of all unfinished modules on N I .  
(i.e., 01,). 0 1 1 .  0 1 2 . 0 1 ~  and ( I l x ) .  each of which precedes T2 
or Ti.  Since . f 2 ( 1 7 )  > J4 ( l7 )  (Fig. 9), by Algorithm A, TJ 
should be completed last. Delete those modules that precede 
only TA and compute the block completion time for those 
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(a) (b) 
Fig. 9. Cost functions of tasks. (a) Tasks on XI. (b) Tasks on A i .  

6,. X& 

root 
A ' = O  A ." 

units 
t l  

Fig. 10. The search tree of the TG of Fig. 7. 

5 IO I S  25 tl= 0 20 30 
I I I I  I I " I  s 

t+ = T, + T2 
+TI 

Y = 5 + 4  
+ T6 

Q = ?.! =0.70 
30 

Fig. 11. The optimal schedule of Fig. 10. 

that precede only T2 to obtain t l  + 5 = 14. This implies Similarly, we proceed with tasks T3,T5 and T6 on N2. 
that the mini-max lower-bound cost for T2 and T4 on N I  They should be completed in the order of T5,T3, and 
be max {f2(14), f4(17)} = max{g2(q4) + 5/2O2g4(v14) + T6, and with Acompletion times 19, 21 and 22, respec- 
8/25} = max {9/20,14/25} = 14/25. Thus, 611(2114) = tively. Thus, 612(V14) = max{f3(21), f5(19), f6(22)} = 
max { 14/25,7/30} = 14/25. max{21/30,9/15,12/20} = 21/30. It follows that @1(u14) = 

1 
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m a x { d l l ( v l 4 ) ,  812(v14)} = 21/30 as shown in Fig. 10. 
62(2)14)  is derived while honoring all precedence con- 

straints and all task release times. The release times of un- 
finished modules on NI at 2114 are s 1 0  = sll = s 1 2  = 
0 , 5 1 7  = 5 and SI8 = 3, and by (5) ,  the cost functions 
for these modules are 0 except 0 1 7  and 0 1 8 ,  whose cost 
functions are those of T2 and T 4 ,  respectively. By applying 
Ygorithm A and comparing the result with g1(2)14), we obtain 
621(2114) = max {7/30,14/25} = 14/25, which is the same 
as 811(V14). For the unfinished modules on N 2  at U14,s5  = 
s6 = $14 = s2Q = sal = 10, and 513 = s19  = 0. Similarly, the 
cost functions for 0 5 ,  OS,  0 1 3  and 0 1 4  are 0 while those for 
0 1 9 , 0 2 0  and 0 2 1  are thpse for T 3 ,  T5 and T6, respectively. By 
applying Algorithm A, 822(2)14) = 21/30 is obtained, which is 
again equal to 612(2)14). Thus, 8 2 ( V 1 4 )  = 61(2)14)  = 21/30. 
These results are expected because the unfinished modules 
always create the same:ingle blo,ck in Step SA2 of Algorithm 
A regardless whether Ol(y) or &(y) is derived. 

B. Computational Experiences 

The proposed B&B algorithm, which embodies Theorems 
1-3 and Corollaries 1-3, was coded in Pascal and run on 
a VAX-8600 computer with 4.3 BSD UNIX (UNIX is a 
trademark of AT&T Bell Laboratories) operating system. In 
order to test a wider class of sample problems, a total of 
90 sets of tasks were randomly generated according to the 
classification of tasks: 1) the average number of modules per 
task is either 4, 6, or 8 and 2)  the number of PN’s in the 
system is either 2, 5, or 8. 

Consider a class where the modules per task is 5 1  and the 
number of PN’s 2 2 .  A total of 30,20, and 10 locally numbered 
nodes are initially set up on each PN for 2 1  = 4,6 and 8, 
respectively. The module between nodes n, and n3, i < j ,  
on the same PN is generated if the outcome from a random 
experiment using a uniform distribution is greater than the 
threshold p p r ,  where p 5 1 is the initial probability, p = 0.5 
the discount factor, and r = j - i - 1 the discountperiod. That 
is, given p ,  the larger the difference j - i ,  the less likely is a 
module generated between nz and nJ. Therefore, by tuning p 
and considering the total number of tasks to be created, we can 
generate task sets with the desired 2 1  value. After removing 
each “dangling” node, tasks are created by randomly assigning 
their starting and ending nodes to the remaining nodes. The 
number of tasks created for each class is pre-determined such 
that the average numbers of tasks on each PN are 2, 1.5, and 1 
for 2 1  = 4,6, and 8, respectively. For example, two tasks on 
the average are created for the class where 2 1  = 8 and 2 2  = 2. 
Ten tasks are created for the class where 2 1  = 4 and 5 2  = 5, 
and so on. Also, communication delays are generated for each 
task and randomly inserted between the task and other tasks on 
different PN’s to establish the required precedence constraints. 

For each of these 9 classes, 10 task sets were tested. Table I 
summarizes the (rounded) average numbers of activities, and 
tasks created for each class. The test results, which include 
the (rounded) average number of vertices generated and the 
CPU time (the sum of user and system times) consumed, 
are recorded in Table I1 and plotted in Fig. 12. According to 
our experiences, the variance of each entry in Table I1 grows 

TABLE I 
THE NINE CLASSES OF TG’S TESTED 

x2 

n = 2  n = 5  n = 8  
XI 

4 2oa, 4b 55, 10 92, 16 
6 20, 3 55, 7 90, 12 

8 18, 2 47, 5 78, 8 

aNumber of activities 

bNumber of tasks 

TABLE I1 
THE EST RESULTS OF THE NINE CLASSES 

x2 

n = 2  n = 5  n = 8  
x1 

~~~ ~ ~ 

4 19a, 0.23b 48, 2.51 130, 18.23 
6 20, 0.20 47, 2.24 126, 16.25 
8 18, 0.11 37, 0.86 49, 3.02 

aNumber of vertices generated. 

bCPU time used (seconds). 

t” 
x 1 = 4  7// 

U 

0 2 4 5 6 IN1 8 

(b) 

Fig. 12. Test results. (a) Number of vertices generated. (b) CPU time used 
(seconds). 

rapidly as the number of PN’s increases. For example, for 
2 1  = 8, the variance of the number of vertices generated 
(CPU time used) for the entry x2 = 2 is about 27 (1389) 
times higher than that for the entry 2 2  = 8. Therefore, the 
test results are very sensitive to the way in which the random 
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samples are generated as well as to the set of task sets actually 
tested as the number of PN’s increases. 

VI. CONCLUSION 

[14] -, “Solving resource-constrained network problems by implicit 
enumeration-Preemptive case,” Operations Res., vol. 20, pp. 668-677, 
1972. 

[15] E. L. Lawler et al., “Recent developments in deterministic sequencing 
and scheduling: A survey,’’ in Deterministic and Stochastic Scheduling, 
Dempster et al., Eds. Dordrecht, The Netherlands: Reidel, 1982, pp. 
35-74. Since the task scheduling problem with precedence con- 

straints in a distributed system is generally NP-hard, some 
form of heuristic is necessary to solve it. In this paper, we have 
presented a new approach to the scheduling problem using a 
B&B algorithm on the basis of 

Modeling the task set with an acyclic graph, 
Identifying the DP’s w.r.t. all regular measures and the 
system hazard, 
Developing the vertex expansion algorithm using the 
DP’s into which the B&B algorithm is embedded, and 
Deriving lower-bound costs for each vertex so that the 
B&B algorithm may be efficiently guided to find an 
optimal schedule. 

Our computational experiences, albeit limited, have indi- 
cated that this approach is very efficient in searching for an 
optimal schedule. Because our approach depends on the B&B 
algorithm, it can be extended (with certain modifications, of 
course) to solve similar problems with other types of resource 
constraints. For example, suppose only T units of memory is 
available at time to, then this constraint can be easily imposed 
to the branching process: only those schedulable modules at 
t o  whose individual memory requirement is equal or less than 
T- is allowed to be considered for further branching in the 
proposed B&B algorithm. 
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