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Abstract 
This paper addresses the problem of designing and incorpor- 
ating a timeout mechanism into load sharing (LS) with state- 
region change broadcasts in the presence of node failures in 
a distributed real-time system. Failure of a node is dia- 
gnosed by the other nodes through communication timeouts, 
and the timeout period used to diagnose whether a node is 
faulty or not depends on the dynamic changes in system 
load, the task attributes a t  the node, and the state the node 
was initially in. We formulate the problem of determining 
the ‘best’ timeout period TZ? for node i as a hypothesis 
testing problem, and maximize the probability of detecting 
node failures subject to a prespecified probability of falsely 
diagnosing a healthy node as faulty. 

The parameters needed for the calculation of TZT are es- 
timated on-line by node i using the Bayesian technique and 
are piggybacked in its region-change broadcasts. The broad- 
cast information is then used to determine TZT. If node 
n has not heard from node i for TZi’ since its receipt of 
node i’s broadcast, it will consider node i failed. On the 
other hand, each node n also determines its own timeout 
period TZ’, and broadcasts its state not only at the time 
of state-region changes but also when it has remained within 
a broadcast-threshold interval throughout TZ:’. 
Our simulation results show that the LS algorithm which 
combines the on-line parameter estimation, the timeout 
mechanism, and a few extra, timely broadcasts can signi- 
ficantly reduce the probability of missing task deadlines. 

1 Introduction 
In a distributed real-time system, tasks may arrive unevenly 
and randomly at the nodes and/or computation power may 
vary from node to node, thus getting some nodes tempor- 
arily overloaded while leaving others idle or under-loaded. 
Consequently, some tasks may miss their deadlines even if 
the overall system has the capacity to meet the deadlines 
of all tasks. Many load sharing (LS) algorithms have been 
proposed to counter this problem, especially aiming at min- 
imizing the probability of tasks missing their deadlines, or, 
the probability of dynamic failure, Pdyn. 
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Upon arrival at a node of a real-time task with laxity 
.!,’ real-time LS algorithms determine whether or not the 
node can guarantee (complete in time) the task under 
some local scheduling discipline. The minimum-laxity-first- 
served (MLFS) discipline is shown in [l] to, on average, out- 
perform others in reducing Pdyn, and is hence commonly 
used as a local scheduling discipline. That is, the cumulative 
execution time (CET) contributed by those tasks with lax- 
ity < .! on node a determines the node’s capability to meet 
the deadlines of these tasks. If a node cannot complete a 
newly-arrived task in time or some of its existing guarantees 
are to be violated as a result of inserting the task into its 
schedule, the node has to determine - based on some state 
information - candidate receiver(s) for task transfer(s). 

The state information required for all dynamic LS al- 
gorithms can be collected through periodic exchange of state 
information, bidding/state probing [2, 31, or aperiodic state- 
region change broadcasts [4, 51. The algorithms based on 
the periodic exchange of state information require a good 
or optimal means of determining the period of information 
exchange, since the accuracy of state information when a 
LS decision has to be made depends heavily on this period. 
On the other hand, the algorithms based on bidding/state 
probing generates at least two additional messages per bid- 
ding/probing. Consequently, the performance of these al- 
gorithms is very sensitive to the variation of communication 
delay. 

For LS algorithms using state-region change broadcasts, 
each node i broadcasts a message, informing the other nodes 
in its buddy set of a stage-region change whenever its CET 
crosses a certain broadcast threshold [5]. Such algorithms 
have the advantage of maintaining more up-to-date state in- 
formation and collecting it inexpensively before it is needed 
for a LS decision. However, there still remain several poten- 
tial problems for this kind of algorithms as follows. 

0 The communication overhead may become excessive as 
the system load gets heavy or as the number of com- 
municating nodes in the system gets large. 

0 The state information gathered may still be out-of- 
date if the queueing/task-transfer delay is large. 

0 The performance is susceptible to node failures. If node 

‘The laxity of a task is defined as the latest time a task must 
start execution in order to meet its deadline. 
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i has been silent (i.e., does not broadcast its state- 
region changes) for a long time, other nodes have no 
way of knowing whether this is an indication of node 
i's failure or a coincidence of task arrival and comple- 
tion/transfer activities alternating on node i. 

Shin and Chang [4] proposed the concept of the buddy sets 
and the preferred lists to  reduce the undesirable effects of the 
first problem. In another paper [5], we proposed a decent- 
ralized, dynamic LS algorithm which significantly alleviates 
the second problem in the presence of non-negligible com- 
munication delays. In this paper, we will design a timeout 
mechanism that can be incorporated into LS with aperiodic 
state-region change broadcasts to  counter the third prob- 
lem. 

Specifically, each node n makes the transfer and location 
decisions as specified by the LS algorithm. In addition, node 
n considers node i failed if it has not heard from node i for 
the timeout period, TZ?, since its receipt of node i 's  latest 
broadcast, and will henceforth not send its overflow task(s) 
(i.e., the tasks that cannot be completed in time) to node i 
even if node i is observed to be capable of completing the 
task(s) in time. Obviously, the determination of TZ: is 
crucial to the performance of the timeout mechanism, and 
is the main subject of this paper. 

There are two possible scenarios of node n not receiving any 
region-change broadcast from node i for TSi>: 

SI. Node i failed sometime after issuing its last broadcast 
message; 

S2. Task arrival and completion/transfer activities altern- 
ate in such a way that the state or CET of node i 
remains in a broadcast-threshold interval. 

The determination of TO':;' thus involves a tradeoff between 
the performance improvement gained by reducing TZ? 
(thus enabling early detection of a node failure) and the 
performance degradation resulting from hasty, incorrect dia- 
gnoses. We will formulate this problem as a hypothesis test- 
ing (HT) problem, and determine TZT by maximizing the 
probability of detecting node failures subject to a prespe- 
cified probability of incorrect diagnosis. 

To further reduce the probability of incorrect diagnosis, each 
node n calculates the "best" timeout period for itself as well 
as for other nodes, and broadcasts its state not only at  the 
time of state-region changes but also when it has remained 
within a broadcast-threshold interval for T Z > .  
One factor that complicates the design of a timeout mechan- 
ism is that the task arrival and completion/transfer activit- 
ies on a node (and thus the optimal value of T,<:;>) dynam- 
ically vary with the system load, the task attributes, and 
the initial state of the node. Thus, the calculation of TZ? 
calls for on-line estimation of the parameters related to task 
attributes on node i. So, the proposed timeout mechanism 
requires each node i to  collect statistics, estimate on-line its 
"compositen2 task arrival rate and distributions of task ex- 
ecution time and laxity, and convey the estimated paramet- 
ers to other nodes in its buddy set by piggybacking them in 

2both external and transferred-in 

state-region change broadcasts. This information will then 
be used by the other nodes to  calculate TZ?. 
The LS algorithm in [5] will be used here aa an example 
to demonstrate how to incorporate the proposed timeout 
mechanism into a LS algorithm with aperiodic state-change 
broadcasts. The rest of the paper is organized as fol- 
lows. Section 2 outlines the LS algorithm and the proposed 
timeout mechanism. Section 3 and 4 establishes a theor- 
etical basis for the calculation of optimal TZ?. The HT 
formulation is treated in Section 3, while the probability dis- 
tribution needed in the HT formulation is derived in Section 
4. Section 5 presents and discusses representative numerical 
examples, and the paper concludes with Section 6. 

2 The Proposed Algorithm 
We proposed in [S, 61 a decentralized, dynamic LS algorithm 
for distributed real-time systems without considering node 
failures. We first state the assumptions made about the 
system under consideration, and summarize this algorithm 
for completeness. We then incorporate the proposed timeout 
mechanism in it to tolerate node failures. 
We assume that the node clocks in the system are synchron- 
ized to  establish a global time-base. A scheme for achieving 
this synchronization is presented in [7]. We also assume 
that the underlying communication subsystem supports re- 
liable broadcasts [8] so that a non-faulty node can correctly 
broadcast its state change to all other non-faulty nodes in 
the system. Moreover, each node is assumed to have a con- 
stant exponential failure rate AF. 

To facilitate algorithm description and analysis, we intro- 
duce the following notation and assumptions: 

A,: the composite (external and transferred-in) task arrival 
rate a t  node i. We approximate the composite task 
arrival process to be Poisson, and the validity of this 
approximation was discussed in [6]. 

( p , ( j ) ,  1 _< j 5 Emar}: the distribution of execution times 
of both external and transferred-in tasks a t  node I, 
where Em,, is the maximum task execution time meas- 
ured in number of clock ticks. 

( $ i ( j ) ,  1 5 j 5 Lmar}: the distribution of laxities of both 
external and transferred-in tasks a t  node i measured in 
clock ticks, where Lmar is the maximum laxity. Both 
p i ( j )  and $ i ( j )  will be estimated on-line by each node 
1. 

CET, :  the CET on node i. 
TQ = (T1;Tz; ...;TL,,,~=): the description of the sorted task - 

A queue on a node, where TJ = eiei  ... e;+, is a record of 
tasks with laxity j E {1, . . . , Lmaz} currently queued 
on a node, and e; E (0 , . . . , E m , , } ,  1 5 k 5 j + 1, 
is the execution time required by the k-th task with 
laxity j in the queue. 

Oi:  the observation of CETi made by some node j # i. 
pc(.  1 0 , ) :  the posterior distribution of CET, given the ob- 

servation 0,. 
THk, 1 5 k 5 Kt - 1: the state (CET) thresholds for 

broadcasting region-change messages, where Kt is the 
total number of state regions. 
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TZ:: the timeout period; node i will be diagnosed as failed 
if no broadcast message from node i has been received 
for this period since the receipt of its last broadcast. 

2.1 LS with Region-Change Broadcasts 
Upon arrival of a task with laxity f at node n, the node 
checks whether or not it can complete the task in time un- 
der the MLFS scheduling discipline. If it can, the task is 
queued a t  node n. If the task cannot be completed in time 
locally by node n or some of existing guarantees are to be 
violated as a result of inserting the newly-arrived task into 
the node’s schedule, node n looks up the list of best LS 
decisions, and chooses - based on the current observation 
about other nodes’ states, 0, and the laxity of the task(s) to 
be transferred - the best candidate receiver(s) in a small 
set of nodes in its physical proximity called a buddy set. 
(If multiple tasks have to be transferred, the observation 
about other nodes will be updated each time a LS decision 
is made.) The observation, 0, about other nodes is made 
via region-change broadcasts with time-stamped messages. 
The list of best LS decisions is updated periodically based 
on the state samples gathered via region-change broadcasts 
and Bayesian decision analysis, each of which is sketched 
below. 

Buddy Sets: Each node communicates with, maintains 
the state information of, and transfers overflow tasks to, the 
nodes in its buddy set only. The communication overheads 
resulting from broadcasts/task transfers are thus reduced. 
On the other hand, the buddy sets in the system overlap with 
one another, and thus, the overflow tasks within a buddy set 
are shared by all capable nodes in the entire system, instead 
of overloading a few nodes within one buddy set [4]. 

Region-Change Broadcasts: The Kt  state regions 
defined by K: - 1 thresholds, TH1, THz ,..., T H K , - ~ ,  are 
used to characterize the workload of each node. Each node i 
broadcasts a time-stamped message, informing all the other 
nodes in its buddy set of its state-region change and all 
its on-line estimated parameters, whenever its CET crosses 
THzk for some k ,  where 1 5 k 5 - 1. The state in- 
formation kept at  each node is thus up-to-date as long as 
the broadcast delay is not significant. 

Bayesian Analysis: A node’s observation 0, may be dif- 
ferent from CET, at the time of making a LS decision due - 
to the delay in collecting it. In [SI we countered this prob- 
lem by using Bayesian decision analysis. Each broadcast 
message from node i is time-stamped and contains the in- 
formation of (1) the node number i, (2) C E Z ,  and ( 3 )  the 
time t o  when this message is sent. When the message broad- 
cast by node a arrives a t  node n, node i’s CETi at to can 
be recovered by node n. Node n can also trace back to find 
its observation 0, about node i at time t o .  This observa- 
tion 0, is what node n thought (observed) about node i 
when node i actually has CETi. 0,’s along with CETi’s 
are used by node n to compute/update periodically the pos- 
terior distribution, p c ( .  I O,), of CET, given the observation 
Oi. (See [5] for a detailed account of this operation.) Any 
inconsistency between CET, and 0, is characterized by this 
probability distribution. Besides, CET, sent by node i at 
time t o  is transformed into node n’s new observation, O , ,  

about node i a t  the time node n receives this message, ac- 
cording to the rule that 0, = k if THk 5 CEZ < THk+i, 
0 5 k < Kt - 1, where THO = 0 and THK, = 00. 
To make a LS decision, node n - instead of hastily believing 
in its observation 0, about node i - estimates CETi based 
on its (perhaps outdated) observation and determines node 
a’s LS capability using p c ( .  I Oi), i.e., node n chooses the 
node i with the largest value of 

A A 

L 

P(CETi 5 e )  = C p c ( k  I 0,)- 
k=O 

2.2 Incorporation of the Timeout Mechan- 
ism into LS 

As mentioned in Section 1, there are two possible scenarios, 
S1 and S2, that node i may not broadcast any state-region 
change for a long time. The occurrence of S1 is determined 
by the failure rate of node i ,  while S2 is determined by 
the task arrival, completion, or transfer activities on node 
i ,  all of which dynamically change with the composite task 
arrival rate, the attributes of tasks arriving at  node i ,  and 
node i ’s  initial state. The timeout mechanism thus needs 
to dynamically adjusts T,t“ based on the attributes of the 
tasks arriving at  node i and the state of node i at the time 
of its last broadcast. 
The timeout mechanism to be incorporated into LS is com- 
posed of the following sub-mechanisms. 

On-line Parameter Estimation: Node i records on- 
line the interarrival time, the required execution time, and 
the laxity of each task upon its arrival, and applies the 
Bayesian technique to estimate the task parameters: A,, 
{ p i ( j ) ,  1 5 j 5 E,,,}, and { i i ( j ) ,  1 5 j 5 J L ~ S } .  Applica- 
tion of the Bayesian technique to estimate these parameters 
can be found in [6]. 

Determination of Timeout Periods and Detection 
of Node Failures: Upon receiving a message broadcast 
by node i ,  node n uses the task parameters and Tq con- 
tained in the message to calculate TZ;’. A theoretical basis 
for determining TZ: will be established in Sections 3 and 4. 
Conceptually, the problem of determining TZT is first for- 
mulated as a HT problem by making a tradeoff between S1 
and S2. Then, the key expression needed in the HT formu- 
lation, i.e., the probability distribution that no message has 
been received from node i within time t given that node i is 
operational is derived by the randomization technique. 
Node n considers node i failed if it has not heard from node i 
(via region-change broadcasts) for TZ: since node i ’ s  latest 
broadcast, and will not transfer any overflow tasks to node 
i until it receives a broadcast message from node i again. 
Whenever a failed node i is recovered, it broadcasts its re- 
covery to all the other nodes in its buddy set. Upon receiv- 
ing such a broadcast message, node n will consider node i 
capable of receiving tasks if the subsequent region-change 
broadcasts indicate so. On the other hand, node n also cal- 
culates its own timeout period T,<,:> at the time of broad- 
casting a state-region change. If node n has remained within 

- 
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a broadcast-threshold interval for T&y>, it broadcasts an ex- 
tra message to inform other nodes of its fault-free (or 'I am 
alive') status. 

3 Determination of the Optimal 
Timeout Period 

In this section and the next section, we w$ establish a the- 
oretical basis for the determination of T S Z .  To do this, we 
need: 

1 .  On-line estimation of Xi,  {)i(j), 1 5 j 5 Lmas}, and 

2. Node i's sorted task queue, 3, which is contained in 
{ P i ( i ) ,  1 5 j I Emas). 

the most-recently-received broadcast message. 

In Section 2, we discussed how the on-line estimated para- 
meters are broadcast. Xi, fii(j)'s, and p;( j ) 's  are estimated 
by applying the Bayesian estimation technique [6]. 

The determination of TZi> requires to make a tradeoff 
between S1 and S2, and can thus be formulated as a HT 
problem with two hypotheses. Specifically, let Ob(t) E {0,1} 
indicate whether or not a broadcast message from node a is 
received within time 1, and let Tnb be the random variable 
representing the time to node i 's next broadcast. We have 
two hypotheses: 

Ho: node i is operational 
H I :  node i is faulty 

where po and p1 are the p.d.f. of Ob(t) under the hypothesis 
of HO and H I ,  respectively, and can be expressed as 

po(Ob(t) = 0)  = P (no message received from node i within 
t I node i is non-€aulty) 
P(Tnb 2 t I node i is non-faulty), 

Ob(t) N P O ,  
Ob(t) N PI, 

= 
m(Ob(t)  = 1) = 1 - m(Ob(t) = 0 ) ,  
pl(Ob(t) = 0 )  = 1, and pl(Ob(t) = 1) = 0. 

Also, the probability that HO or H I  is true without condi- 
tioning on any observation can be expressed as TO = e--xFt 
or x1 = 1 - 
Now, a decision 6(Ob(t)) E { 0 , 1 }  must be made on which 
hypothesis must be accepted based on the observation Ob(t). 
Two types of error may be encountered: (1) false-dorm, or 
HO is falsely rejected, the probability of which is denoted 
by Pp(6); ( 2 )  miss, or H1 is falsely denied, the probability 
of which is denoted by P u ( 6 ) .  The corresponding detection 
probability is Po(6) = 1-&(6). A criterion for designing a 
test for HO versus H I ,  called the Neyman-Pearson criterion, 
is to place a bound on the false-alarm probability and then 
to minimize the miss probability subject to this constraint; 
that is, the Neyman-Pearson design criterion is 

respectively. 

max6 Po(6) subject to Pp(6) 5 Qhf, (3.1) 

where Qht is the significance level of the hypothesis test. 
Specifically, let the decision a(-) be 

1, if XI . p l ( O b ( t ) )  2 xo .po(Ob(t)), 
0, otherwise, 6 ( 0 b ( t ) )  = 

where the mozimum o posteriori (MAP) probability is used 
to determine whether to accept H I  or not. Then, PF(~) can 
be expressed as 
p ~ ( 6 )  = P(accept H1 I Ho is true) = Eo( 6(Ob(t))) 

= PO( ~ l ( O b ( t ) )  1 no . ~ o ( O b ( t ) )  

= P (  m o ~ o ( O b ( l ) )  I RiPi(Ob(t)) ) * po(Ob(t)) 
Os(t)€tOJ 1 

= P(po(Ob(t) = 0 )  5 2)  .po(Ob(t) = 0) ,  (3.3) 
A0 

where EO(. )  and PO(.) denote the expectation and the 
probability under Ho,  and the last equality comes from 
 TO e p o ( 1 )  5 TI  p l ( 1 ) )  = 0. Similarly, p~(6) can be 
expressed as 

Po(6)  = El(  b(Ob(t))  ) 

= P(po(Ob(t) = 0 )  5 2). (3.4) 
T O  

If the expression of po(Ob(t)  = 0) = P(Tnb 2 t I 
node i is operational) can be derived as a function of t ,  then 
the best T,";' under the Neyman-Pearson criterion is the 
minimum t such that both 

po(Ob(l)  = 0 )  5 crht and p o ( O b ( t )  = 0) 5 5 = e X F t  - 1  
Z O  

(3-5) 
are satisfied, in which case p ~ ( 6 )  = 1 and PF(~) 5 
min{aht, eXFt - 1 ) .  

4 Derivation of P(Tnb 2 t I node i is op- 
erational) 

We now use the randomization technique [9] to calculate 
P(Tnb 2 t I node i is operational). Since this technique 
can be applied only to a finite state-space continuous-time 
Markov chain, we model the state evolution of a node as 
such. We first describe how the system model is constructed. 
Then, we derive P(T,b 2 t I node i is operational). 

4.1 System Model 
The state/CET evolution of a node is modeled as a 
continuous-time Markov chain { X ( t ) ,  t 2 0) on afinite state 
space S. Transitions in the Markov chain are characterized 
by the generator matrix Q = ( e v ) ,  where qij ,  0 5 i , j  5 N, 
is the transition rate from state i to state j .  The paramet- 
ers needed in the model, A,, p i ( j ) ,  and $ i (k ) ,  are estimated 
on-line by each node i and piggybacked in region-change 
broadcasts to the other nodes. 

We characterize the CET evolution caused by task accept- 
ance/completion under the non-preemptive MLFS discip 
line. With a minor modification, our model can also be 
applied to the case when the loading state is queue length. 
To construct a continuous-time Markov chain on a finite 
state space, we approximate the deterministic consump 
tion of CET on node i (at a pace of 1 per unit time) as 
an Erlang distribution with rate K and shape parameter 
K. The Erlang distribution becomes exact (i.e., determ- 
inistic with rate 1 )  as K + CO. We choose K such that 
P(Tnb 2 t I node a is operational) obtained from the cor- 
respondin M [ " I / E K / ~  model is very close to that obtained 
from M [ n f / E ~ + ~ / l  model. In Section 5.1, A' 2 5 is shown 
to satisfy the above criterion for all combinations of task 
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attributes studied. Each accepted/queued task contributes 
K m  service stag= with probability pi(m), 1 5 m 5 Emaz, 
and each service stage is consumed at (an exponential) rate 
K. 
Definition of state: The state of node i is defined as 
- H = (H0;Hl;Hz; . . .;HL,,,),  where Hj = hihi...hj+l is 
a sequence of j + 1 numbers with hi E {0, . . . , KEmaz} r e p  
resenting the number of service stages contributed by the 
k-th laxlty- task in the node’s queue. Since all laxity-j 
tasks queued on node s must start execution by their laxlty 
there are at most 3 + 1 la~lty-3 tasks that can be queued 
on node i (in which case all but, perhaps, the last task r e  
quire 1 unit of execution time). Moreover, let cj = xi;’=’, hi 
denote the total number of service stages contributed by all 
laxity-j tasks, last(H,) denote the index of the last nonzero 
entry in Hj, and 

h o w  U) 

0 

A 

-1,  i f&=g; 
minimum c s.t. n?’(l- ~ > ( c j ) )  x A > ( c ~ )  = 1, 

the only index L s.t. h: Q ( 0 )  U {Km : 1 5 m 5 Em.,), 

J 1 0  
if # 0, and hi E ( 0 )  U {Km : 1 5 m 5 E,,..=} Vj ;  

or, 
j-1 lo.t( Hj)-1 

cn+hFw(li)+ hf, 5 Kj, Vj E [0, Lnow(&)-l]. 
n-0 n r l  

For example, consider again the system model with Lmaz = 
3, Emas = 2, and K = 4. The state (0;10;440;8000) is 
allowed, while (0;10;480;4000) is not, because the task with 
3 time units of laxity and 4 service stages (represented by 
the underlined number 4) in the latter state violates P3 and 
P4. 
As indicated in P2, the size of the state space is bounded 
and is actually much less than the given bound because of 
P1 and P3-P4. It, however, grows significantly as Lmaz 
or Emor or K increases, but as will be clearer later in this 
section, the generator matrix Q of the corresponding Markov 
chain is very sparse, 80 one can exploit the sparseness of Q 
- e.g., use the modified SERT algorithm proposed in [9] - 
to economically store sparse matrices, and to alleviate the 
computational difficulty. 

if # 0, and 3 j  8.t. h: 4 ( 0 )  U {Km : 1 5 m 5 E,,,-,} Determination of transition rates: There are two 

denote the laxity of the task currently under service, where 

A i f z  > ( z ) o ,  
A>(Z)(z) = { i: otherwise. 

For example, consider a system model with Lmaz = 3, 

3 indicates that the task currently being served has 
3 time units of laxity and 1 remaining service stage. 
Lnow( (0;00;440;8000) ) = 2 indicates that the task to 
be served next is the one with 2 time units of laxity and 
4 service stages if there are no new laxity-1 task arrivals 
before the next state transition. 

Under the non-preemptive MLFS discipline, the state has 
the following properties: 

Emaz = 2, and K = 4. &ow( (0;40;000;1000) ) = 

P1: 

P2: 

P3: 

P4: 

h’, E n/ is an integer multiple of K except for perhaps 
hi ,  the number of service stages contributed by the 
laxity-j task currently under service. 
The size of the state space is bounded by n:zr 
(KEmaz + l)(Emaz + 1)’ and thus is finite. 
Since a task with laxity j is acceptedjqueued only if the 
CET contributed by both the tasks with laxity 5 j - 1 
and the task currently under service is no greater than 
j units of time, we have cj > 0 only if 

3-1 

Kj 2 C C n ,  Vj E [Lnow(H) + 1, Lmaz], 

n-0 

or, Kj 2 Cn + hFw@), V j  E [O, Lnow(H) - 11. 
Note that cLnow(g) > 0 by the definition of Lnow(ff) 
(except for the case of a = 2). 
Since every laxity-j task queued on node i must be able 
to  start execution by its laxity, the number of service 
stages queued ‘in front of’ it must be 5 Kj, i.e., 
,-I laat(Hj)-l 

c c n  + h’, I Kj, V j  E [Lnow(H) + 1, L “ ] r  
n = O  n t l  

task activities that cause state transitions: one is task ac- 
ceptance by node i, and the other is CET consumption by 
node i. The task transfers resulted from the acceptance of 
a newly-arrived task under the MLFS scheduling discipline 
are figured in task acceptance. 

A. The transition caused by task acceptance:As- 
sume that the system is in state EI, and will make a trans- 
ition to state = (Hi; Hi; ...; HI; ...; Hi,,,.,) upon ac- 
ceptance of a task with laxity C and execution time m, where 
1 5 I 5 Lma, and 1 5 m 5 E,,,. Then 

(1) ci = c, (or equivalently, Hi  = H J ) ,  1 5 j 5 C - 1, i.e., 
the CET contributed by tasks with laxity 5 C - 1 will 
not be affected by the acceptance of a task with laxity 
4 

(2) H i  equals H,, perhaps with the last few entries (C+1 5 
j 5 L,,,) replaced by 0 (so c: 5 cJ). That is, the 
tasks originally queued with laxity > P may have to 
be transferred out because of the insertion of a newly- 
arrived task. 

(3) The number of nonzero entries in Hc is not greater than 
C, and HI = hi...h&Ht) Km O...O, i.e., H i  consists of 
the nonzero entries in H t  followed by the number K m  
(and possibly a few 0’s to make the number of entries 
equal to C + 1). 

(4) The corresponding transition rate (under the non- 
preemptive policy) is 

A 

qg,g; ~m = x , h ( e ) ~ t ( m ) .  Check-WQ 

n“.= t= t+l  { comp(Ht, H : )  . Task-Not-Transfer(t) + 
t4=ro(C) 

(1 - comp(Ht, H i ) )  . Task-Transfer(t)} , 
(4.1) 

where 



2 

T8Sk 

Task 

(ii) H: equals Ht except with the last (Zast(Ht) - 
14st(H:)) entries replaced by zero, i.e., a number 
( l a s t ( H t )  - last(H:)) of tasks with laxity t must 
be transferred out. For example, if t > Lnow(fZ), 
exactly : tasks with laxity 2 have to be transferred 
out iff both xi?: c[i +EE:(Ht)-i-l hi 5 Kt  and 

A 
,.(E) = the set of indices j such that cj = 0; 

A if Ht = H:, 
comp(Ht*H:) = { i: 

A 
Iot-"fer(t) = 
' 1, if t = & o w W  and last (Ht)  = 1, 

if t = &OW@) and last (Ht)  > 1, 

if t < &ow(H), 

L if t > Lnow(m; 

kanafer(t) = A 

' A k ( K t  - (xi:; c[i + 

Ct.11 cI. + C;z;(H:)-i h! , > Kt  hold. l o s t (Hf ) - l  ht 1-0 f 
A W t  - (E;:; $ + j)), 

B. The transitions caused by CET consump- 
la* t (He)- l  ht, + hLnow(E))), tion:The deterministic consumption of CET at a pace of 

1 per unit time is approximated as a K-Erlang distri- 
bution with rate K .  Besides, a t  the end of each time 

ities have to  be decremented by 1 to  account for the fact 
that the laxity of a task is measured w.r.t. the current 
time. Specifically, the system makes a transition from fi 
to  = (HA; H i ;  ...; H i ;  ...; HLm0=) ,  with transition rate 

= { K ,  if[== Lnow(H), 

AL(Kt - (E;:: $ + J 1  

A W t  - (E;:: c; + Ej,l l a # t ( H t ) - l  ht j))* 
unit (i.e., at the end of every K service stages), all lax- 

[ a a t ( H : ) - l  ht 
j ) ) X  

.>ccc;s; c[i + cJ=l ht, ,) - K t ) ,  

( 4 4  if t = &ow(H) and last(H:) 2 2, 
A>(CZ.:: ci + hi - Kt), qE2L;,-l 0, otherwise, 

0, if t = Lnow(Jf) and fas t (H:)  = 0, where 
if t = Lnow(FZ) and last (Hi)  = 1, 

(I) if (h: - 1) e { K m  : 1 5 m 5 Em,,} U {0}, A W t  - (E;:: c; + Cj=l lost (H:)-- l  h j ) ) x  
l a a * ( H : )  ht) - K t ) ,  A'((E;I: c; + Cj,] J Hi  = (h: - l )h; . . . l~ :+~,  and H j  = H, V j  # e. 

if t > &ow(FI) and last(H:) # 0, 

A>(C:I: c; - K t ) ,  (2) if (h:  - 1) E {A'm : 1 5 m 5 E,,,} U {a}, 
if t > L n o w ( 3  and last (H:)  = 0, - Hi, , ,  - 0, 

Hi = HJ+l  = hitl...h;:i, v j c  [ O , P - ~ I U [ Q , L ~ ~ ~ -  11, 

(h: - 1)h; ... hi ,  if hL > 1, 
if hf. = 1. 

if t < Lnow(H) and last (H:)  # 0, 
cg, + hLnow(IL) - K t ) ,  A>(C:i', J 1 

i if t < Lnow(EI) and last (H:)  = 0; The last nonzero transition rate is 

The physical meanings of Eq. (4.1) are given below: 

(a) The first factor Aiji(I)pi(m) is the arrival rate of tasks 
with C time units of laxity and m units of execution 
time on node a. 

(b) The second factor Check-Cet(C) accounts for the 
fact that a newly-arrived task with laxity I will be 
queued/accepted on node a only if one of the follow- 
ing two conditions holds: (i) the CET contributed by 
tasks with laxity 5 C is less than or equal to I, if the 
laxity of the currently executing task 5 L; or (ii) the 
CET contributed by the tasks with laxity 5 L and the 
task currently under service is 5 C if the laxity of the 
currently executing task > L. 

( c )  The last factor accounts for the possible task transfers 
caused by the acceptance of the arrived task. Since only 
tasks with laxity > I will be affected by the insertion 
of the newly-arrived task with laxity I ,  n is performed 
from t = C + 1  to  1 = L,,, except for those t 's  with ct  = 
0. The transition could occur with rate Xi@i(l)pi(m) if, 
in addition to  the conditions in Check-Cet(I), one of 
the following conditions holds, Vt  E [I + 1, L,,,]: 

(i) Ht  = H: and all tasks queued with laxity t can 
still be completed in time after the insertion of 
the arrived task. 

The model constructed above is a continuous-time Markov 
chain, because (1) the residence time a t  each state is ex- 
ponentially distributed, and (2) the next state the system 
will visit depends only on the current state and the task 
acceptance/completion activities occurred during the res- 
idence at  the current state. The sparseness of Q comes 
from the fact that all the other entries (except for the trans- 
ition rates in Eq. (4.1)-(4.3)) in Q are zero. For example, 
the only possible transitions from state (0;10;400;4800) in 
the system model with Lma, = 3, Em,, = 2, and K = 
4 are to (0;40;480;0000), (0;14;400;4000), (0;18;000;4000), 
(0;10;440;4000), (0;10;480;0000), and (0;10;400;4800) with 
transition rate A', Xipi( I)$i (I), Xipi(a)ji( I), Xipi(l)$i(a), 
Xipi(2)jji(2), and -(A'+ Clje,,<2 Xipi(m)$i(I)), respect- 
ively. 

4.2 Probability Calculation with the Ran- 
domization Technique 

We now use the randomization technique to calculate the 
probability that a node does not broadcast any message in 
[0, t ] ,  given it is operational in [0, t ] .  Before delving into the 
derivation, we summarize below some important results of 
the randomization technique. 
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Consider a continuous-time Markov chain { X ( t ) , t  2 0) 
with generator matrix Q on a finite state space S of size 
N + 1. For notational convenience, we enumerate the e l e  
ments of S as 0,1,. . . , N .  Let A = maxosisw qi,  then there 
exists a discrete-time Markov chain {Y,, n = 0, 1, . . .) and 
a Poisson process { N ( t ) ,  t 2 0 )  with rate A, which are inde- 
pendent of each other, such that the process {Y,qt), t 2 0) 
has the same finite dimensional distributions as, and is thus 
probabilistically identical to, { X ( t ) ,  t 2 0). In the equival- 
ent process, the transition rate from state i is A, but only 
the fraction qi/A of transitions are real and the remaining 
fraction 1 - 8 are fictitious transitions. In other words, 
{X(i), t 2 0 )  can be considered as a process which spends a 
time with an exponential rate A in state i and then makes 
a transition to  state j with probability Pi,, where 

A 

= 2 r,(n, n + 1) . P ( n  state changes in time t )  

= x r , ( n , n +  l).e-"'(At)"/n! ( 4 4  

n n O  
m 

n-0 

where A is the rate of the Poisson process obtained after the 
randomization. 

rl(n, k) (and rj(n, n + l), in particular) can be easily calcu- 
lated using the recursive approach proposed in [lo]. That is, 
let rj(ta, k,&) be the probability that the underlying Markov 
chain Y are k times in S, out of n state changes and the state 
visited in the last transition is state &. r,(n, k,&) depends 

(4.4) 

The transient probabilities, P ( X ( t )  = i , 0 5 i 5 N, of 
the continuous-time Markov chain { X ( t ] , t  2 0 )  can now 
be easily obtained by conditioning on N ( t ) ,  the number of 
transitions in (0, t], i.e., 

P ( X ( t )  = i )  = P(Ypqt) = i) 

= 
m 

P(YN( , )  = i I ~ ( t )  = n) - p ( N ( t )  = n) 
n=O 
00 

= c P ( Y n  = i)e-A'(ht)"/n!. (4.5) 
n=O 

In other words, a continuous-time Markov chain { X ( t ) ,  1 2 
0 )  on a finite state space S, after its randomization, can be 
viewed as a discretetime Markov chain, {Yn,n = 0,1, ...}, 
subordinated to a Poisson process { N ( t ) ,  t 2 0}, and thus 
the transient probabilities can be easily computed using the 
discrete-time Markov chain. 

w e  are now in a position of deriving P(Tnb 2 t I 
node i is operational). Recall that in the proposed LS al- 
gorithm, a node's states are divided into Kt disjoint subsets 
by thresholds THk, 1 5 6 5 Kt - 1. A node will broad- 
cast to other nodes its change of state region whenever 
its state/CET crosses even-numbered thresholds, TH2, , 
1 5 j 5 [YL] - 1. We thus define S, = { E  : K - T R ~ ( , - I )  5 
cf;z:= (E;': h i )  < K.TH2,) as the j-th broadcast state 

region, where THO = 0 ,  the expression E;:: h; is the num- 
ber of service stages contributed by laxity-n tasks (i.e., cn), 
and the expression between inequalities CnLE:' (E;:: h:) 
is simply the total number of service stages queued on the 
node. 
Let rj(n,k),O 5 k 5 n + 1, be the probability that the 
discrete-time Markov chain, Y, obtained after the random- 
ization of X ( t )  visits k times the states in Sj out of n state 
changes. For example, rj(n, n + 1) is the Probability that Y 
always stays in Sj while there are n state changes. Then, 
P(Tnb 2 t I node i is operational and was in Sj during the 
last broadcast), 1 5 j 5 [?I, is the probability that the 
underlying Markov chain always stays in Sj, no matter how 
many state changes have occurred in [0, t ] .  Thus, 

A 

P(Tnb 2 t I node i was in S, in the last broadcast) 

rj(n - l , k  - I,&), V& E S, if 41 E Sj, since we have 
to  increment the number of states f Sj visited by one 
for the previous state change from & to  E; 
rj(n - l , k , & )  V& E S, if 41 e S,, since the number 
of states E S, visited remains the same for the current 
state change from & to B. 

r,(O,O,H) = 0,  (4.8) 

where Eq. (4.8) comes from the fact that given the CET was 
in S, during the last broadcast, the node must be initially in 
a state E S,, and the k within the expression of r,(n, k , H )  
must be 2 1. Finally, r , ( n , k )  = EHESr,(n,k,&).  

Since we are interested in obtaining t , (n,  n+l ) ,  we need only 
tocompute r , ( n , n + I , H ) , V & E S , ,  asr,(n,n+l,&)=O, 
V& e S,. Thus, Eq. (4.7) reduces to 

- 

k € S j  

5 Numerical Examples 
The proposed timeout mechanism is evaluated in the follow- 
ing sequence: 

1. Discussion on the parameters considered/varied in per- 
formance evaluation. 

2. Discussion on TZ? (a) w.r.t. task attributes, and (b) 
w.r.t. the state in which a node was during its latest 
broadcast. 

3. Performance evaluation: We comparatively evaluate (a) 
LS with no timeout mechanism, (b) LS with fixed 
timeouts, (c) LS with the calculated best timeouts, and 
(d) LS with immediate detection of each node failure 
upon its occurrence. 
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Figure 1: 
w. r. t. shape parameter K. 

P(Tnb 2 t I node a is operational) derived 

5.1 Parameters Considered/Varied 
The performance of LS algorithms depends on a large num- 
ber of parameters which are classified into the following four 
groups: 

(1). Parameters of the distributed system, such as the 
number of nodes in the system Nn, the size of buddy 
set, node failure rate XF, node recovery rate I F ,  
and the communication delay which consists of task- 
transmission delay and medium-queueing delay. 

(2). Parameters of the (node-level) system model, such as 
the shape parameter K used to approximate the CET 
consumption as a K-Erlang distribution. 

(3). Characteristic parameters of the task set, such as the 
external task arrival rate A:*', the laxity distribution of 
external tasks, and the distribution of execution time 
required by external tasks, on each node i .  For all 
results presented below, we use {e l ,  ..., e k } { , = ,  ,..., 1 
to denote the task set in which an external task re- 
quires execution time e i  with probability pei, V i .  If 
pei = p Vei ,  then {pel,pe2, . . . , p e k }  is condensed to  
P. Similarly, {&, t 2 ,  ..., tn}{pt, ,fit2 ,..., $ tm 1 is used to de- 
scribe the laxity distribution of external tasks. 

(4). 
Design parameters of the proposed LS algorithm, such 
as the number, Kt ,  and values of thresholds, THI ,..., 
THK,-I  used as reference points for broadcasts. 

A 16-node regular3 system is used in our simulations. The 
size of buddy set is chosen to  be 12, because increasing it 
beyond 10 was shown in [4] to be ineffective. Both node 
failure and recovery rates are assumed to  be exponential 
with XF varying from lo-' to  lo-' and C(F being fixed at  
lo-'. Broadcast messages compete with task transfers for 
the communication medium. No priority mechanism regu- 
lates the transmission over the medium (i.e., a FCFS rule 
is assumed). The task-transmission delay is varied from 

3A system i s  regular if the degrees of all nodes are identical. 

10% to 50% of the corresponding task execution time. The 
broadcast-message-transmission delay t assumed t o  be neg- 
ligible. The queueing delay which is experienced by 
broadcast messages and transferred tasks and which dy- 
namically changes with system traffic is modeled as a lin- 
ear function of the number of tasks/messages queued in the 
medium. The shape parameter K is chosen t o  be 5 ,  since 
P(T,b 2 t I node is operational) thus derived iS almost in- 
distinguishable from that derived with K 2 6 (Fig. 1). 

The simulation was carried out for both exponentid and hy- 
perexponential task arrivals while varying the external task 
arrival rate per node, At"', from 0.2 to  0.9, the ratio of 

(1 5 j 5 k - 1) from 2 to 5, and the ratio of of 
(1 5 j 5 n-1) from 2 to  4. For convenience, sll time-related 
parameters are expressed in units of average task ezecution 
time. 

The design parameters, Kt and THk's, may affect the ac- 
curacy of the posterior CET distributions, pc(. I Oi), given 
the observation 0,. We already discussed one method in 
[5] that determines the design parameters. For the perform- 
ance study below, we tuned the design parameters using the 
method described in [5] for each combination of system con- 
figuration and task set. 

We present only those results that we believe are the most 
relevant, interesting, and/or representative. In the res- 
ults reported below, the parameters are specified as (unless 
otherwise stated): A, = 0.8, ET = {0.4,0.8,1.2,l.6}0.2~, 
L = { 1 .O, 2.0,3.0} 3 ,  and K =Z 5. Node i has 4 state regions 
with each interval equal to  1 (except for the last interval), 
i.e., S1 = [0,2.0], Sz = (2400) .  The state of node i is 
CET=l.O in the last broadcast. aht  = 0.05. The task- 
transfer delay is set to 10% of the execution time of the 
transferred task. In spite of a large number of possible com- 
binations of parameters, the conclusion drawn from the per- 
formance curves for a task set with the given task execution 
and laxity distributions and a given system configuration is 
valid over a wide range of combinations of execution time 
and laxity distributions. 

5.2 Discussion of 2'2: 
Figs. 2 and 3 illustrate how po(O( t )  = 0) = P(Tn, >_ 
t I node i is operational) (and consequently, TZ?) varies 
markedly with the task arrival rate and the initial state 
of node i a t  the time of its latest broadcast, respectively. 
As the composite task arrival rate increases, a node tends 
to cross its state/CET boundaries more (leas) often if the 
closest boundary is to  the right (left) of the node's current 
state. Thus, in Fig. 2, the increase in Xi yields a smal- 
ler po(O(t) = 0) for a given 1. Similarly, as evidenced in 
Fig. 3, the closer the initial state of a node is t o  a broad- 
cast threshold, the more likely the node's state will cross the 
boundary, thus increasing the possibility of a region-change 
broadcast. 

Since po(O(t)) varies drastically with the task attributes and 
the initial state of a node, the on-line calculation of TZ? 
is very important to the design of a timeout mechanism. 
Table 1 give some numerical values of Td,:' for different 
task attributes and initial states. 
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5.3 Performance Evaluation 

Performance Measures of Interest: Instead of using 
the mean task response time as a performance metric, we 
use two measures which are more relevant to  fault-tolerant 
real-time performance: 

0 The probability of dynamic failure, Pdyn: the probab 
ility of tasks failing to complete before their deadlines. 

0 The probability of false alarm, PF: the probability of 
falsely diagnosing a healthy node as failed. A larger PF 
will leave a node with fewer candidate nodes for task 
transfers, thus deteriorating the LS performance. 

Performance comparison among LS with differ- 
ent timeout periods:Using trace-driven simulations, 
we comparatively evaluate the performance improvement 
achievable with the on-line calculated best timeout mech- 
anism. We compare the proposed LS algorithm with the 
best timeout period against the case of using a fixed timeout 
period, T>i2d, where T;;Zd is a constant selected independ- 
ently of node i’s task attributes and state. We also compare 
the proposed timeout mechanism with two baseline mech- 
anisms. The first baseline assumes no timeout mechanism, 
while the second is an ideal case where (1) each node immedi- 
ately detects the failure of another node upon its occurrence 
and (2) no false alarm occurs. 

For each combination of task set and system configuration, 
the simulation ran until it reached a 95% level of confidence 
in the numerical results for a maximum error of 2% within 
the specified probability (Pdyn or PF) .  The number of sim- 
ulation runs needed to achieve the above confidence level is 
calculated by the Student-t test. 

Fig. 4 plots PF curves for LS with different timeout periods. 
Fig. 5 plots PdVn curves for LS with different timeout periods 
w.r.t. A p t .  From these figures, we make the following 
observations: 

0 In general, PF decreases as (1) task arrivals/transfers 
get more frequent (i.e., as the system load increases), 
and (2) the timeout periods get larger. Thus, the case 
of T::zd = 20 performs best w.r.t. PF for medium to 
heavy system loads (A:”’ 2 0.6) where 5 < TZZ < 20 
(Table 1). For light to  medium system loads (0.2 5 
A:”’ 5 0.6), the case of TZZ performs best w.r.t. PF, 
because each node in a lightly or medium loaded system 
usually stays in the broadcast region SI = [0,2] where 
TZt’ > 20 (Table 1). 

0 The assumed 5% chance of incorrect diagnosis (ah* = 
0.05 in the HT formulation) is reduced with a few extra, 
timely messages broadcast by each node to inform other 
nodes of its fault-free status after a silence for TO“;’. 

0 The case with the on-line calculated TZZ outperforms 
all the other fixed-timeout cases tested in reducing 
PdVn over a wide range of system load. The case with 
T:iZd = 20 is inferior to that with TZZ for medium 
to heavy system loads due to its inability of early de- 
tection of a node failure. The case with Tj$$d = 5 
is inferior to  that with TZ? because of the undesir- 
able effects of false diagnosis. Frequent ‘I am alive’ 

messages in case of TZZ also consume communication 
bandwidth and compete with those tasks being trans- 
ferred for the use of communication medium. Thus, 
there is a definite performance advantage with on-line 
parameter estimation of task attributes and calcula- 
tion of TZZ. The performance with TZt’ is, however, 
worse than the ideal case due to  the fact that node n 
might send its overflow task to  a failed node i during 
the period between the occurrence of node i’s failure 
and its detection by node n. 

6 Concluding Remarks 
We have proposed a timeout mechanism which, when 
there are node failures, can be incorporated into LS with 
aperiodic state-change broadcasts. By (1) on-line collec- 
tion/estimation of parameters relevant to  task attributes, 
and (2) calculating - based on the observation and the es- 
timated task attributes in the latest broadcast - the best 
timeout period used to  diagnose a silent node as failed, the 
probability of dynamic failure can be significantly reduced, 
as compared to  LS without any timeout mechanism or with 
a fixed timeout mechanism. 
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Figure 2: 
arrival rate Ai. 

P(Tnb 2 i I node i is operational) w. r.  t. task 

(in nnits of mean b . ~  execution time. indiuta e+' - I 
dominrta the determination of Tat.) 

Table 1: Best timeout periods w. I. t. the task charac- 
kristic and the initial state of node :. Qht = 5 x IO-' and 
XF = 10-2. 

Figure 3: 
initial state node i ie in. 

P(Tnb 2 t I node i is operational) w. r. t. the 

Figure 4: 
timeout periods in a 16-node (N, = 16) system. XI' = 

Performance comparison w.r.t. PF for different 

PF = 0.1, and Oh1 = 0.05. 

Figure 5: Performance comparison w.r.t. PdVn for dif- 
ferent timeout periods in a 16-node (N, = 16) system. 
XF = p~ = 0.1, and q , t  = 0.05. 
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