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1 Introduction

In this paper, we apply the load sharing (LS) mechanism

proposed in [1, 2] to HARTS, an experimental distributed

real-time system [3] currently being built at the Real-Time

Computing Laboratory of the University of Michigan.

The nodes in HARTS are interconnected by a C-wrapped

hexagonal mesh [4] and coordinated under the LS mechan-

ism to evenly share “overflow” tasks. The HARTS rout-

ing and broadcasting schemes in [4, 5] are used for trane-

ferring taske and broadcasting state-changes. The virtual

cut-through switching scheme implemented in HARTS [6] is

used for inter-node communication. The interconnection net-

work and all the schemes used for task routing, state-change
broadcasting, and message-passing are considered as an in-

tegrated part of the LS mechanism. An overview of HARTS

is given in Section 2. Components of the LS mechanism, i.e.,

buddy sets, preferred lists, and region-change broadcasts, are

introduced in Section 3.

By exploiting/integrating features of the above schemes

for/into LS, we rigorously analyze the performance of LS

in HARTS while considering all LS-related communication

activities. In particular, we analytically evaluate the integ-

rated LS performance using the probabtity of dynamic fail-

ure, Pdvn — the probabihty of a node failing to complete a

task before its deadline — as a yardstick. The analysis meth-

odology is outlined in Section 4. The paper concludes with

Section 5.

2 Overview of HARTS

HARTS is an experimental distributed real-time system,

where a set of Application Processors (APs) along with a

Network Processor (NP) form a node. These nodes are in-

terconnected via a C-wrapped hexagonal mesh topology [4].

The APs execute computational tasks, and the NP (which

contains a custom-designed router, buffer memory, a RISC

processor, and the interface to APs) handles both intra- and

inter- node communications.
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C-wrapped H-meshes have several nice properties as reported

in [4]. First, C-type wrapping results in a simple, transpar-

ent addressing scheme, where the center node is labeled as

node O, and the other nodes are labeled in sequence along the

horizontal direction. (An example of the addressing for an

H–mesh of dimension 5 is shown in Fig. 1.) Second, C-type

wrapping results in a homogeneous network. Every node may

view the mesh as a set of concentric hexagons with itself at

the center. Consequently, all nodes are topologically equival-

ent, and the wrapped mesh becomes homogeneous. Third,

the diameter of an H–mesh of dimension e, denoted as He, is

e -1. Consequently, any routing/broadcast packet traveraes

at most e — 2 intermediate nodes before reaching its destin-

ation node. Fourth, simple and efficient routing algorithm,

broadcast algorithm, and switching scheme can be devised,

as discussed in [4, 5, 6]. We exploit all features of the rout-

ing and broadcasting algorithms, and the virtual cut–through

switching scheme (which support LS-related communication

activities) in our analysis.

3 Load Sharing Mechanism

We use the LS approach in [1, 2] as the distributed schedul-

ing mechanism in HARTS, and describe the associated LS

transfer, location, and information policies.

Transfer Policy: upon arrival of a task at node i, the

node checks whether or not the cumulative execution time

(CET) is greater than the task laxity’ or not. If it is (i.e.,

node i is capable of completing the task in time), the task

will be accepted and queued for execution. Otherwise, the

task will be transferred (in the form of routing packets) to a

receiver node chosen by the location policy.

Location Policy :Preferred Lists and Buddy Sets

To reduce the possibility of more than one node simultan-

eously transferring their overflow tasks to the same destina-

tion node, we exploit the topological properties and the ho-

mogeneity y feature of a C–wrapped H-mesh, and order all the

other nodes according to the distance from node i into the
preferred list of node i, Vi, under the restriction that every

node in an He is selected as the kth preferred node of one

and only one other node, for k = 1, . . ..3e(e - 1).

Once each node’s preferred list is constructed, the node’s

buddy set can be formed by taking the first NE nodes from

1The laxity of a task is defined as the latest time a task must

start execution in order to meet its deadline.
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Figure 1: A C–wrapped hexagonal mesh of dimension 5,

H5. Also shown is how the buddy sets of node O, node 28,

and node 50 overlap with one another.

the top of its preferred list. A node with an overflow task

can then select the first node found in its buddy set that

is capable of completing the task in time, and transfers its

overflow task to that node.

By using the buddy sets constructed above, one can reduce

the traffic overhead, because each node i is restricted to

communicate with only a set of iVB nodes in its proxim-

ity. Moreover, these buddy sets overlap with one another

(Fig. 1) so that an overflow task maybe transferred from an

overloaded node to some other node which is a member of a

different buddy set.

Information Policy: Region-Change Broadcasts
Each node exchanges state information via region-change

broadcasts. Specifically, K~ state regions defined by (KT -i)
thresholds, THl, TH2 ,..., THKT-I, are used to characterize

the workload of each node. Each node broadcasts a mee-

sage, informing all the other nodes in its buddy set of its

state-region change whenever its state crosses TH, for some

ie {l,..., K~ – 1}. The state information kept at each

node is thus up-to-date as long aa the broadcaat delay is not

significant.

4 Performance Analysis

We first construct an embedded continuous-time Markov

chain to describe task arriva,l/transfer/completion activities

under the proposed LS mechanism in HARTS. With the ho-

mogeneity property of the wrapped He, the general method-

ology — which was proposed and verified (via simulations)

in [7] for homogeneous systems — of first modeling the state

evolution of a single node in isolation and then combining

node–level models into a system-level model (by including

task activities at the system level in the parameters of node-

Two sets of parameters are derived from the constructed

Markov model: (1) the probability density function of QL,

PN(n), n ~ 0, and (2) the rate of transferring tasks, ATT,

the rate of state-change broadcasts, ASC, and the probabd-

ity of transferring an overflow task to a node h hops away,

gh. The latter set of parameters is fed into the queueing net-

work, where each nodes forms a G/M/l queue, that models

the handling of (both task-transfer and broadcasting) pack-

ets at each node in HARTS and characterizes the hexagonal

mesh topology and the virtual cut-through switching scheme

implemented in HARTS.

The probability density function of packet delivery time,

~D, (t), can then be derived from the queueing network model,

which, along with pN(n), n ~ O, is used to derive the prob-

ability density function of task waiting time (i.e., the time a

task is queued for execution plus the delay the task experi-

ences if it is transferred), fWk (~). Finally, the probabfity of

dynamic failure, Pdg.j can be computed from fw, (~).

5 Concluding Remarks

The analysis presented in this paper is essential to the

design of any LS mechanism for real-time applications. First,

the model gives a quantitative measure of traffic overheads

(through ATT, AB, and ~D, (t)) introduced by the LS mech-

anism. Second, one can study the effects of varying LS

design parameters (e.g., the size of buddy sets, NB, and the

threshold values, TH,, for state-change broadcasts) on the

performance and thus fine tune the parameter values to min-

imize Pdyn. (This problem is currently under investigation.)

The analysis methodology presented in the paper can be ex-

tended to other LS mechanisms and other interconnection

topologies. To extend this methodology to other LS mech-

anisms (topologies), one only needs to properly derive the

parameters which characterize the transfer policy and the

location policy. Once they are determined, the derivation of

the others follows the same approach.
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