
Determination of an Optimal Retry Time in Multiple-Module
Computing Systems

Chao-Ju Hou Kang G. Shin

Department

Abstract

Real-Time Computing Laboratory

The University of Michigan
Ann Arbor, MI 48109-2122

of Electrical Engineering and Computer Science

The 'optimal' (in some sense) amount of time used for (or
the optimal number of times) retrying an instruction upon
detection of an error in a computing system is usually determ-
ined under the assumption that the system is composed of a
single module, within which all fault activities are confined
until some module-replacement action is taken. However, a
computing system is usually composed of a t least three mod-
ules, namely, CPU, memory, and I/O, and the execution of
an instruction often requires the cooperation of two or more
modules. It is thus more realistic to consider the fault activ-
ities in multiple-module systems.

In this paper, we first relax the single-module assumption and
model the fault activities in a multiple-module system as a
Markov process. We apply the randomization approach to
decompose the Markov process into a discrete-time Markov
chain subordinated to a Poisson process. Using this decom-
position, we can derive several interesting measures, such
as (1) the conditional probability of successful retry given
a retry period and the fact that a non-permanent fault has
occurred, and the mean time until which all modules in the
system enter a fault-free state. All the measures derived are
used to determine, along with the parameters characterizing
fault activities and costs of recovery techniques, (i) whether
or not retry should be used as a first-step recovery means
upon detection of an error and (ii) the best retry period sub-
ject to a specific probability of successful retry.

1 Introduction
The first step of fault-tolerance is to recognize the existence
of an error. A fault is defined as the malfunction of a phys-
ical component or a bug in software, and it does not affect
the system's function until its manifestation, or the occur-
rence of an error. Existence of an error is recognized through
detection mechanisms. The second step, system reconfigura-
tion, is to isolate the faulty component from the rest of the

The work reported in this paper was supported in part by the
Office of Naval Research under Grants N00014-92-5-1080 and
"14-91-5-1226, Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the ONR.
The work reported in this paper was supported in part by the
National Science Foundation under Grant MIP-9203895, and the
Office of Naval Research under Grants N00014-92-5-1080.

system and reconfigure hardware/software, 90 that the whole
system remains operational. Finally, the computational pro-
cesses which have been contaminated by the error have to be
recovered. The latter two steps can usually be achieved by
employing recovery techniques.

Various recovery techniques have been proposed to handle
different types of fault: permanent, intermittent, and tran-
sient. Permanent faults are solid/hard failures and persist
forever, which result mainly from component aging. Transi-
ent faults are caused mainly by temporary changes in envir-
onmental, electrical, or mechanical conditions. They may be
active for an unpredictable period of time and die out. In-
termittent faults are usually the results of manufacturing de-
fects such as loose connections or bonds. They cycle between
active and inactive states, also in an unpredictable manner.
Since no single recovery technique is known to he effective
against all possible faults, we must usually use a combina-
tion of several recovery techniques.

A typical procedure for handling faults consists of instruc-
tion retry, program rollback, program reload and restart, and
module replacement [I , 2,3]. Instruction retry [4, 51 is usually
applied as the first step of error recovery. Whenever a n error
is detected, the latest unsuccessful instruction is repeated. If
this retry is not successful, one can employ program rollback
and/or program reload and restart. In case of program roll-
back, the state of the program is periodically saved on other
safe devices. The state includes the values of program vari-
ables and the contents of the internal registers. The saved
states of a program are called checkpoints or recovery points.
When an error is detected, the most recently saved check-
point for the program will be loaded, and the program re-
sumes execution from that checkpoint. If all these recovery
techniques fail, one has to resort to system diagnosis and
reconfiguration, i.e., identify and remove the faulty module
and resume the execution on a new fault-free processor.
Since instruction retry requires little additional hardware and
software as compared to the other recovery techniques and
thus smaller program completion and recovery overheads,
it is usually used as a first-step recovery means. However,
retry will not always succeed in recovering the system from
faults/errors. Specifically, an instruction retry will be suc-
cessful only if the following two conditions are satisfied:

C1. The system failed during the execution of t,lie latest
This condition can be sat- uncompleted instruction.

294
0-8186-38.50-8193 $3.00 Q 1993 IEE;E

isfied if errors are detected upon their occurrence by
some signal-level detection mechanism [I], i.e., zero er-
ror latency.

C2. The existing fault disappears during the time of retry or
retry period, i.e., the retry period should be long enough
(by perhaps retrying the same instruction more than
once)' so that the fault dies out within this period.

We assume in this paper that C1 can be achieved by employ-
ing on-line detection mechanisms with high coverage. That
is, an error is confined to a module where the fault caus-
ing that error had occurred and the affected process can be
restored to integrity. One consequence of C1 is that the dam-
age caused by the fault is recoverable by restoring the process
to some prior fault-free state and all data needed to retry the
instruction are available. C 2 is impossible in case of perman-
ent faults. Fortunately, only lees than lo%, and perhaps as
few as 2%, of errors are known to be caused by permanent
faults [6, 21. Retry for a non-permanent fault is likely to suc-
ceed if a retry period is selected properly. Moreover, its low
overhead and cost makes retry the most cost-effective means
to recover from non-permanent faults. Hence, retry is usually
applied first upon detection of an error, and the retry period
should be controlled 80 as to maximize the difference between
the expected gain in performance that results from retrying
for non-permanent faults and the expected loss that results
from retrying for permanent faults. The main intent of this
paper is to derive an optimal retry period by maximizing this
difference.

The design/analysis of various recovery procedures has been
addressed by numerous researchers [2, 3,4, 51. In contrast to
their approaches, we determine the optimal retry period from
a system-oriented view. We first construct a continuous-
time Markov chain which characterizes fault activities in a
multiple-module system. Using the randomization approach
[7, 81, we then derive the probability of successful retry given
a retry period, the mean end-of-retry time, and the distri-
bution of the time for the system to enter a fault-free state.
Using these quantities, we can determine (1) whether retry
should be applied before applying a different recovery tech-
nique based on the parameters characterizing fault activities
- e.g., fault occurrence rate, the probability of a fault being
permanent, transient, or intermittent, and the distribution of
active/benign duration for non-permanent faults - and re-
covery costs, and (2) the minimum retry period that achieves
a given probability of successful retry.

Another point that differentiates our work from others is that
we relax the commonly used assumption that all fault activ-
ities are confined in a single module until some module re-
placement action is taken. Note that a computing system is
composed of at least three modules (i.e.l CPU, memory, and
I/O), and execution of an instruction usually requires the
cooperation of multiple modules. Hence we must consider
fault activities in multiple modules. To our best knowledge,
this is the first to relax the single-module assumption in de-
termining the retry period and model fault activities in a
multiple-module system.

'Since it is easy to convert a retry period to the number of
retries, the term "retry period" will be used throughout the paper.

The rest of the paper is organized as follows. In Section 2, we
outline the important results in the randomization technique.
Section 3 describes the fault model used, the assumptions
made, the continuoustime Markov chain that characterizes
the fault model, and the quantities to be derived. In Section
4 we analytically derive the optimal retry period using the
quantities derived in Section 2. Section 5 gives representat-
ive numerical examples to demonstrate the system recovery
behavior under different fault occurrence conditions. We con-
clude this paper with Section 6.

2 Preliminary: Randomization
We use the randomization approach first introduced in [8, 91
to compute the probability of successful retry given a retry
period. Randomization is commonly used as a computational
method to compute transient probabilities of Markov pro-
cesses with finite state spaces. The main idea of this ap-
proach is to transform the Markov process into a Markov
chain subordinated to a Poisson process as explained below.
Consider a Markov process { X (t) , t 2 0) on a finite state
space S = {0,1,. . . , N } . Let q,, denote the corresponding

transition rate from state a to state 1 , and let q, = q,3
denote the rate of leaving state z. Then, the generator matrix,
Q, of the Markov process can be expressed as:

A

-90 901 902 . ..
(110 -91 912 . * * 9 1 N

Q = (: qoN) . (2 . 1)

(1N1 9 N 2 9 N 3 . . . -9N

Let A be any value such that A 2 q , , V i . At some time
instant, if the process is in state i , then it leaves state i at rate
q,, but this is equivalent to assuming that transitions occur
at rate A, but only the fraction q,/h of them are real (in the
sense that the process really leaves state i and enters some
other state and hence real transitions occur at rate e,), and
the remaining fraction 1 - 9 are fictitious transitions which
keep the process in state i. That is, any Markov process can
be thought of as being a process which spends an exponential
amount of time with rate A in state i and then makes a
transition to state j with a probability

(2.7)

or in matrix form,
P = &/A-+ I.

Consequently, there exist two component processes in a
Markov process: a discrete-time Markov chain {Yn,n =
O , l , . . .} on S with transition matrix P = Q/A + I, and
a Poisson process { N (t) , t 2 0) with rate A. Moreover,
{Y,,n = O , l , ...} and { N (t) , t 2 0) are independent of
each other, and the process { Y N t t) , t 2 0) has the same fi-
nite dimensional distribution as (and is thus probabilistically
identical to) the original Markov process.

This decomposition not only gives a physical interpretation
of Markov processes, but also facilitate the computation of
transient probabilities of a Markov process. Specifically, let
the transient probabilities of the Markov process be r i (t) =

295

P (X (t) = i) , and n(t) = (xo(t) ,m(t) ,m(t) ,..., ~ (t)) .
Then, conditioning on the number of occurrences of the Pois-
son proceaa in (0, 21, and using the law of total probability, we
have

* i (t) = P (X (t) = i) = P(YN(t1 = i)
W

= C P(YN(,) = i I ~ (t) = n) P(N(I) = n)
nrO

t

e'"'(ht)" W

= C P (Y n = I).
n! '

n=O

where P(Yn = i) s &(a) is the probability of the Markov
chain being in state i at the nth step. Let @(n) =
(d~(n) ,dl(n) , . . .), then Q. (2.3) can be rewritten as

nrO

Since n(0) = @(O), and @(n) = @(O)P", where P is
the transition matrix of the discrete-time Markov chain
(Eq. (2.2)), Eq. (2.4) can be rewritten as

e-*'(ht)"
00

n(t) = c n (0) P " n! . (2.5)
nzO

3 Fault Model and Parameters of In-
terest

In this section, we first describe the fault model of a multiple-
module system. Second, we characterize the fault model with
an embedded continuous-time Markov chain under the as-
sumption that a t most one fault exists in each module at
any moment, and apply the randomization technique to the
Markov chain developed. Then, we discuss how to extend
the model to the (more general but rare) case that multiple
faults are possible on a single module. Although all the con-

Figure 1: The fault model for a three-module system. -
l=TF=transient fault, O=NF=no fault, l=IF=intermittent
fault, 2=BF=benign fault. State transitions and their trans-
ition rates are not shown for clarity.

immediately upon their occurrence by, for example, signal-
level detection mechanisms [l]. Also, faults occurred in one
module are assumed not to affect other modules, i.e., fault oc-
currences in different modules are statistically independent.
This assumption results from the fact that faults are usually
the malfunction of hardware components, and are independ-
ent of one another [6, 11. Last, we assume that there is at
most one fault in each module at any time, since the inter-
arrival time of faults is usually much larger than any other
fault-related durations. We will discuss in Section 3.3 how
to relax the last assumption.

3.2 Construction of a Continuous-Time
Markov Process

cepts and expressions are derived for an arbitrary number of
modules, we confine our illustrative examples to the case of
three modules for the clarity of presentation.

Under the assumptions of fault behavior in Section 3.1, we
model a multi-module system with a Markov process with an
example state space Fig. 1 where the system consists of three

3.1 Fault Model modules. (State transitions and their rates are not shown for

We assume that faults arrive at the ith module according to a
time-invariant Poisson process with rate Xi . We also assume
that transient, intermittent, and permanent faults occur with
probability p t j , p i j , ppj, respectively, and their occurrences
are independent of one another. Consequently, transient, in-
termittent, and permanent faults occur a t exponential rate
Xip:j, Xipit, and Xippj, respectively. If a permanent fault oc-

clarity.) Because permanent faults cannot be recovered by
retry, they are excluded from the Markov chain which will
be used to derive effective retry periods. The state space S
consists of state vectors of the form (SI, 92, ..., sn), where n is
the number of modules in the system, and si E {-1,0,1,2}
represents the state of the ith module with the following in-
terpretation:

curs, it remains persistent in the system until the component
containing the fault is replaced. If a transient fault occurs, it

is exponentially distributed with rate si. If an intermittent
fault occurs, it may become benign after an active duration,
and then reappear after a benign duration, where the act-
ive and benign time are exponentially distributed with rate
pi and respectively. That is, an intermittent fault cycles
between active and benign states.

Because instruction retry is effective only if an error is detec-
ted upon its occurrence, we assume that errors are detected

-1 represents the transient-fault (TF) state, i.e., there exists
a transient fault in the module.

the module.

ists an active intermittent fault in the module.

fault has become inactive in the module.

disappears after an active duration, where the active duration 0 represents the no-fault (NF) state, i.e., no fault exists in

1 represents the intermittent-fault (IF) state, i.e., there ex-

2 represents the benign-fault (BF) state, i.e., an intermittent

For example, in Fig. 1, the state vector (1,2,0) indicates
that there exists an active intermittent faiilt. in the first mod-

296

3 "I

Figure 2: One-dimemional state transition diagram.

ule (CPU), a benign intermittent fault in the second module
(memory), and no fault in the third module (I/O).
The Markov model ie flexible in the sense that it allows for
a variety of fault patterns. Also, the model allows for a situ-
ation where different sets of faults may occur to different
modules. For example, if only transient, transient, intermit-
tent faults could occur in the first, second, third module, re-
spectively, in a threemodule system, then 31 E (0, -1}, s2 E

Recall that retry will succeed only if all faults have disap
peared during the retry period t , that is, the system has
moved to a state vector none of whose components are 1 or
-1 during the period t. On the other hand, if the system
only moves among states in which at least one component is
1 or -1 during the retry period t , the retry would fail. Based
on this observation, we divide S into Failed Set (FS) and
Successful Set (SS), where

(0, -l}, 33 E {0,1,2}.

FS = {(SI, s2, ..., sn) : 3i such that IsiI = l},

and
ss = {(91,S2, ..., S n) : [S i1 # 1 vi}.

For example, in the case of a three-module system, if all three
types of faults are possible, we have

ss = { (O,O, 01, (O,O, 21, (0,2,0), (2,0,0), (092, 21,
(2,0,2), (292, 01, (2 ,2,2) 1,

and all the other 56 states belong to FS.
Note that state transitions along the ith coordinate are asso-
ciated with the state evolution in the ith module. Due to the
assumption that faults occur independently among modules,
state transitions along the same coordinate exhibit the same
behavior. For example, state transitions in Fig. 1 between
(O,O,O) and (1,0,0) are the same as those between (O , S ~ , S ~)
and (1 ,s2,s3) , v S 2 , S 3 {-1,0,1,2}, because they all de-
scribe the fault evolution from NF to IF in the first mod-
ule. Moreover, state transitions and their physical meanings
along one coordinate are virtually the same as those along an-
other coordinate except that fault activities/transitions cor-
respond to a different module and are perhaps with different
rates along different coordinates. Consequently, it suffices
to characterize the state evolution of the system by a one-
dimensional state-transition diagram shown in Fig. 2, where
the transition rates from O(NF) to -1(TF), -I(TF) to O(NF),
O(NF) to I(IF), 1(IF) to 2(BF), 2(BF) to l(1F) are denoted
as X i P t j , sir Xipi,, p i , and I/,, respectively.
The system etate evolution can be described as a Markov
process { X (t) , t 2 0) on the state space S = {(SI, s2, ..., s?) :
si E { -1 ,0 ,1 ,2} ,n E hris the number of modules}. Using

the randomization technique summarized in Section 2, we
can decompose { X (t) , t > 0) into a discrete-time Markov
chain, {Yn, n = 0,1,. . .}: embedded in a Poisson process,
{ N (t) , t 2 0) with rate

Ti + C pi + vi 1 9 (3.1)
i SA. 8, = 1 i s.t. S i = 2

where each term in Eq. (3.1) is the transition rate of some
state (SI, 32, ..., sn).

3.3 Extension to Multiple-Fault Case
The Markov model described in Section 3.2 can be extended
to the more general case that allows multiple faults in a single
module as follows. The state space S now consists of state
vectors (a,%, ...,&), where n is the number of modules in
the system, and 2 describes the state of the ith module and
is a three-tuple

A - 31 = 3: 3; si,

where si, si, and si are the number of transient faults, active
intermittent faults, and benign intermittent faults, in the ith
module, respectively. We assume that 0 5 s: 5 A', j =
1,2,3, where K is a sufficiently large number so that the
quantities of interest derived from the model that uses K
and those derived from the model that uses K + 1 are within
a specific error of

Similar to the model described in Section 3.2, state trans-
itions along the ith coordinate are associated with the state
evolution in the ith module, and can be uncoupled with
state transitions along other coordinates under the assump
tion that faults occur independently among modules. Con-
sequently, the state evolution in the system can be charac-
terized by the state transition diagram that describes fault
activities in one module, as shown in Fig. 3 (where only ttans-
itions around 9. = 3; si s; are shown). Note that the number
of allowable states for one module (i.e., along one coordinate)
is now (K + (instead of 4). The transition rates are de-
rived in a straightforward manner as in Fig. 2. For example,
the transition from si si si to (si + 1) si si takes place when
a transient fault occurs in the rth module and is thus with
rate Xtpt f . The transition from s; si si to si (8; - 1) (8 ; + 1)
occurs when an active intermittent fault in the ith module
becomes benign and is thus with rate sipI.

The system under consideration can then be described as a
Markov process { X (t) , t 2 0) on the state space

to which randomization can be applied to get a discrete-time
Markov chain, {Yn, n = 0, 1 , 2 , ...}, and a Poisson process,
{ N (t) , t 2 0}, with rate

n

2According to our simulation results, the value of K needs not
be large, because the fault occurrence rate, X i , is usually several
orders smaller than the other rates, and thus, the probability that
multiple faults exist is usually negligible.

Figure 3: "One dimensional" state transition diagram for
the case which allows multiple faults on a single module.
0 5 s, 5 K , j = 1,2,3. Only transitions around 3 =
sf sa si are shown. Transitions are applicable only when the
corresponding states exist.

where Ci(Xi(ptj + Pij) + + S ~ Y ,) , a~ shown in
Fig. 3, is the transition rate of state (a,%, ..., 9 ~) .
The set of failed states, FS, and the set of successful states,
SS, can be identified as

+

F S = {(Sl,s, ..., %) : 3: such that si + si # 0},

and
ss = {&,SI ...,%) : s'; + s; = 0, V i } .

3.4 Parameters to be Derived
Many transient quantities can be derived by applying the
randomization technique on the decomposed discrete-time
Markov chain and Poisson process. Specifically, we want to
derive:

Pr,(t): the probability that retry succeeds given that the
retry period is t and a non-permanent fault has oc-
curred. Using this information, we can determine the
retry period for a specified Probability of successful
retry.

E (L (t)) : the mean end-of-retry period. Specifically, let r E
(0, m) be the time for the system to first enter a state
that belongs to SS, and let L (i) = min(2, r) be the end-
of-retry time given a maximum retry period of t , i.e.,
the time at which the retry stops because either all the
faults have disappeared (so a successful retry, 7 < 1)
or the retry period is exhausted (r 2 t). Obviously,
E (L (t)) = t if a t least one permanent fault occurs in
the system (i.e., retry will never succeed). On the other
hand, E(L(t)) is finite for non-permanent faults, and
provides a mean estimate of retry costs.

P(Tss 5 t) : the distribution of the first SS-passage time.
Specifically, let Tss be the first time the system visits a
state that belongs to SS, i.e.

TSS = min{t : X (t) E SS},

With this probability distribution, we can compute the
mean SSpassage time, E[Tss]. By the definitions and
interpretations of Prs(t), Tss, and L (t) , the follow-
ing relations hold: (1) P,-,(t) = P(Tss 5 t) , and (2)
E(Tss) = E(L(t)) , both of which will be used
to verify the correctness of our derivation.

4 Derivation
In Section 3, we modeled the fault evolution as a Markov
process { X (t) , t 2 0) on a finite space S = ((SI!S~? ..:,sn) :

s> 5 h',j = 1,2,3} in the case of multiple faults in a single
module), where S can be decomposed into two mutually ex-
clusive subsets, FS and SS. Also, the constructed Markov
process { X (t) , t 2 0) can be decomposed by the randomiz-
ation technique into a discrete-time Markov chain Yn s u b
ordinated to a Poisson process N (t) , which is used in this
section to derive parameters of interest.

4.1 Probability of Successful Retry

Let p (n , k) , 0 5 k 5 n + 1, denote the probability that the
underlying discrete-time Markov chain (obtained after ran-
domization) visits k fault states (i.e., states in FS) given n
state changes. For example, p(n, n + l) is the probability that
the underlying Markov chain always stays in fault, states dur-
ing these n state changes. Consequently, the probability that.
a retry of period t fails is the probability that the underlying
Markov chain always stays in fault states regardless of the
number of state changes in [O,t] , i.e.,

~ i € { - 1 , 0 , 1 , 2) } (0 r S = { (~ , 9 2 , . . . , ~ ") : ~ i = ~ ; sisi, O <

cu

1 - Prs(t) = p(n , n + 1) . P(n state changes in time t)
n=O

n=O

n = O

where A is the rate of the underlying Poisson process obtained
after uniformization, and is given in Eq. (3.1). The error
resulting from the truncation of the infinite sum in Eq. (4.1)
can be easily bounded. Specifically, let R , denote the error
resulting from truncating Eq. (4.1) to m steps, then

Rm
n=m+l

e - " t (w " = - e-At(At)n
n! '

n=O
5 2 n!

n= m+ 1

where 5 in the above expression results from the inequality
p (n , n + 1) 5 1. m can be evaluated a priori for a given error
tolerance.

Now, the remaining task is to calculate p(n, k). Let p(n, k, ai)
be the probability of the underlying Markov chain visiting
fault states k times out of n steps and let a; be the state

298

visited after the last transition. We have

The initial conditions are given by

and

Note that whenever an instruction is retried, the system must
be in a fault state, i.e., k in p(n, k , a i) must be 2 1, thus
p(O,O, a,) = 0, Vu, . Finally, by the law of total probabilities,

P(O,O, U,) = 0.

1st

p(n, it) = c P (n , k,al) .
I= 1

4.2 Mean End-of-Retry Time
Recall that r is defined in Section 3 as the time the system
first enters a state E Ss' and L(tj = min(t,r) is defined as
the end-of-retry time given that the retry period is i. Ana-
lytically,

E[L(1)] = l t (1 - P(3)) d s (4.2)

n=O

As t -+ oc, E [L (t)] becomes the mean time for the system to
enter a state E SS, and can be used to indicate whether or
not retry should be used for a particular system configura-
tion, i.e.,

5 3

1
t-cm lim W t)] = . p(., n + 1) . (4.3)

n = O

4.3 Distribution of First SS-Passage Time
Recall that TSS is defined as the time the system first enters a
state E SS, i.e., Tss = min{t : X (t) E SS}. Randomization
can be used t o compute the distribution of Tss as follows:
we define an associated process {Xs : ; (t) , t 2 0) on the state
space FS U {Sa}, where Sa is the ,ibsorbmg state formed
by collapsing all states in SS into it. The corresponding
generator matrix Qss can be expressed as

qss,*,3 - - qt93 for s , 3 S.9,
qss,,,s, = C,,,, ql,I for a # SS,
qsS,s.J = 0 for all 3 .

Note that the transition intensities of {X , s (t) , t 2 0) are
identical to { X (t) , t 2 0) except that there does not exist
any transfer out of Sa (or equivalently, all states in SS).
Consequently, we have

~ (T s s 5 t) = P (X s s (t) = Sa). (4.4)

That is, the: distribution of the time until the system first
enters a state in SS (left-hand side of E<I. (4.4)) is equivalent
t o computing a transient state probability for the Markov
process, X s s (t) , where all states in SS are lumped into
Sa, and hat+ the generator matrix Qss (right-hand side of
Eq. (4.4)). Using the uniformization technique, we have (via
Eq. (2 . 5))

n=O

n=O

where rss,s.(n) can be computed from

l-ss(n) = I I s s (n - 1 j Pss,

and PSS is the transition probability matrix and can be com-
puted from Qss by the same approach as in Eq (L ?)

4.4 Determination of Retry Period
The significance of the quantities derived above lies in that
they can be used to determine (1) whether or not to apply
instruction retry as A first-step re< overy means, and (2) the
smallest retry period that achieves a specified prohability of
successful retry. Spec-ifically, let G'i(i) and C'2 denote the
cost function of instruction retry giveii retry period t and
the cost function of applying other time-redundancy recovery
techniques [e g , program rollback program reload and

r ~ s t a r t) , ~ respectively. and let P,,, denote the required prob-
ability of siiccessful wtry (which IS given as a design para-
meter). Obwiously, (7, (2) is n moiiotonically non-clerreasing
function of 1 .

I he first question t a n be answerti1 as follows. I f ,htLre does
not exist any t > 0 such that

r 7

or, in a simpler form,

G (t) 5 (I - p p f) ' P T S (t) . C 2 , (4 . 7)

then retry should not be applied, where p,! is the probability
of a fault being permanent, and { 1 - (I - pp) . P,,(t)) is the
probability that retry fails given a ret,ry periad 1. That is,
if, for every t , the cost of retrying for the period t as the
first-step recovery means (the left hand side of Eq. (4.6)) is
greater than the cost. of not applying inst,ruction retry (the
right hand side of Eq. (4.6)), then retry should not be applied
at all. The second question can he answered by finding t,he
smallest t that satisfies both E:q. (4 . 7) and

3Cz would be dependent on the retry period t if the assumption
C 1 does no(hold. That is, if errors rannot be detected upon their
occurrence, the latest checkpoint us< d in program rollback might
have been contaminat eti by error piopagirtion, and the program
may be forced to roll back to an earlier rheckpoini , resulting 111 a
higher cost.

299

I I E(L(t)) Parameter Kt
I T I I TTT I 1% Y

6

4
10
16
22

A I 11 111 1 v
3.4041 3.W49 3.2307 2.9803
6.4806 6.5145 6.3159 6.2928
7.9954 9.4925 8.5484 8.8660
8.7007 12.015 10.201 10.838

I 28 I 9.0160 I 14.142 I 11.426 1 12.340 I
34 I 9.1624 I 16.930 I 12.333 I 13.483

limE(L(t)J = E(T ,,) I 9.2632 I 23.5042 1 14.2085 I 16.8511

Table 1: Numerical results of P (t) and E(L(t)) . The fault
that triggers instruction retry is assumed to be on the ith
module with probability 1/3, a = 1,2 ,3 .

5 Numerical Examples
In this section, we present the numerical results derived from
the multiplemodule model under various fault occurrence
conditions. Our numerical experiments indicate that the dis-
crepancy between the model that allows multiple faults in
a single module (Section 3.3) and the model that assumes
at most one fault in a module at any time (Section 3.2) is
negligible for all Xi 5 0.1. Hence, we will focus on the latter
model. Also, for clarity of presentation, we confine our illus-
trative examples to a three-module system. However, as the
numerical results indicate, the conclusions drawn from the
three-module system are consistent with those from the case
of an arbitrary number of modules.

As expected (commented in Section 3), the following rela-
tions hold: (1) P(T,. 5 t) = Pr,(t), and (2) E(T,,) =
limt,, E(L(t)) , both of which verify the correctness of our
derivation. Representative numerical results are given in
Table 1 and Fig. 4, where the following four sets of para-
meters are used:

I. A, = T, = 0.2, pi = 0.2, and V, =
11. AI = lo-', TI = 0.8, p1 = 0.8, VI =

p1 = 5 x

IV. XI = lo-', 11 = 0.8, p l = 0.8, VI =

i = 1,2,3;
A, =

r, = 5 x lo-', pi = 5 x lo-', and U, = lo-', t = 2,3;

A, = i = 2,3;

n = 5 ~ 1 0 ' ~ , p2 = 5 ~ 1 0 - ~ , and v2 = lo-'; A3 = lo-',
r3 = 0.2, p3 = 0.2, and u3 =

111. X I = 10-2, TI = 5 x VI = 10-l;
ri = 0.8, p , = 0.8, and U, =

A2 =

p t f = 0.7 and plf = 0.3 are used in all four parameter sets,
and the fault that triggers instruction retry is assumed to be
on the ith module with probability 1/3, i = 1,2,3. Note that
parameter set I and IV represent a homogeneous system and
a heterogeneous system, respectively, while parameter set I1
and I11 represent a fault-prone system with two "bad" mod-
ules (i.e., modules that are more prone to faults and that take

.-..-*
A -*-A
0 - - - 0 ,

Figure 4: (a) P,,(t) for different parameter sets. The fault
that triggers instruction retry is assumed to be on the ith
module with probability 1/3, i = 1,2 ,3 .

.-..-*
A -.-A
0- - -0

Figure 4:
sets.

(continued) (b) E (L (t)) for different parameter

a longer time for their faults to become inactive.) and a less
fault-prone system with two "good" modules, respectively.
Several observations are in order:

If Prs(t) is relatively small for a certain type of systems
(so retry is unlikely to succeed for a given time t) , the
corresponding mean end-of-retry time E(L (t)) would be
large.
Pr,(t) derived for a parameter set significantly differs
from that for another. Consequently, modeling the com-
puting environment as a multiple-module system is ne-
cessary to compute an accurate retry period that will
achieve a given probability of successful retry.

To investigate how fault parameters affect Pr,(t), we vary A,,
r,, p , , and Y , from lo-' to lo-' , to 5.0, 0.05 to 2.0,
0.05 to 2.0, respectively, for parameter set I, one at a time
while keeping the other parameters unchanged. Figs. 5-7
plot the effects of varying A,, p , , and r, on P,,(t) . The
effect of varying v, on Prs(t) is similar to that of varying
A,, and thus omitted. The effects of varying fil and r, are

300

more pronounced than varying the other parameters. This
is because retry succeeds only after both transient and inter-
mittent faults become inactive, and thus, pi and s, - that
characterize the active duration of transient and intermit-
tent faults - play a dominant role in determining the retry
period. On the other hand, varying pi has a more notable
effect than varying r;. This is because an intermittent fault
does not die out, but instead cycles between active and be-
nign states. Thus, p, has a greater and long-lasting influence
on the system.

6 Conclusion
We proposed in this paper a continuous-time Markov model
to characterize the fault activities in a multiplemodule com-
puting system. The randomization technique is then applied

a=-
Ti” 1

to this model to derive several quantities of interest, i.e., the

end-of-retry time, and the distribution of time for the sys-
tem to first enter a fanlt-free state. These quantities can be
used to determine whether or not instruction retry should
be applied as a first-step recovery technique with respect
to fault characteristics and recovery costs, and the smallest
retry period that achieves a specified success probability.

probability ofs~cceSSf~l retry given a retry period, the mean Figure 5: Effect of variation of A, on p,,(t). parameters
are specified in parameter set I ,

Our analysis is valid as long as errors are detected upon their
occurrence. Extension to the case where there is a nonzero
latency between error occurrence and detection (i.e., relax-
ation of condition C1 in Section 1) is worthy of further in-
vestigation, and will be reported in a forthcoming paper.

References
[l] K. C. Shin and Y.-H. Lee, “Error detection process - Model,

design, and its impact on computer performance,” IEEE
Transactions on Computers, vol. C--33, no. 6, pp. 52%-540,
June 1984.

[2] I. Doren, Z. Koren, and Y. H. Su, “Analysis of a class of recov-
ery procedures,” IEEE Transactions o n Computers, vol. c-35,
no. 8, pp. 703-710, August 1986.

[3] M. Berg and I. Koren, “On switching policies for modular re-
dundancy fault-tolerant computing systems,” IEEE Transac-
tions on Computers, vol. c-36, no. 9, pp. 1052-1062, Septem-
ber 1987.

[4] A. M. Saleh and J. H. Patel, “Transient-fault analysis for retry
techniques,” IEEE Transactions on Reliabilify, vol. 37, no. 3,
pp. 323-330, August 1988.

[5] Y.-H. Lee and K. G. Shin, “Optimal design and use of retry in
fault-tolerant computer systems,” Journal of the Associaiion
/ o r Computing Machinery, vol. 35, no. 1, pp. 45-69, January
1988.

[6] D. P. Siewiorek and R. S. Swarz, The Theory and PTacirce of
Reliable System Design, Digital Press, 1982.

[7] W. K . Grassman, “lkansient solutions in markovian queueing
systems,” Comput. and Ops. Res., vol. 4, pp. 47-53, 1977.

[8] D. C h s a and D. R. Miller, “The randomization technique as
a modeling tool and solution procedure for transient markov
processes,” Operaiions Research, vol. 32, no. 2, , March-April
1984.

[9] B. Melamed and M. Yadin, “Randomization procedures in
the computationof cumulativetime distributions over discrete
state markov processes,” Operat. Res., vol. 32, no. 4, pp. 926-
944, July-Aug. 1984.

.-..-
6 -. -4
0 - - -0

Figure 6: Effect of variation of pl on P r S (t) .

0 . - .-.
4 - -4
0- - -0
8.’ ,...

T- 1

Figure 7: Effect of variation of r, on P,,(t)

301

