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Abstract

A new approach is proposed to solve a typical combina-
torial optimization problem using artificial neural net-
works. Unlike the popxlar idea of using a Hopfield net-
work for optimization, we design a new network archi-

tecture which consists of two parts: a feedforward net-
work for optimization, and a feedback networkfor meet-
ing the constraints. Radial-basedfunctions are adopted
in the feedforward network in order to utilize its spatial
locality and facilitate selection of the numbers of hid-
den layers and nodes. The convergence of the proposed
scheme is proved and a vector-form training algorithm
is developed. 1

1 Introduction

Production scheduling in a computer-integrated man-
ufacturing (CIM) system is a key combinatorial opti-
mization problem for manufacturing productivity and
equipment utilization. However, "optimal" production
scheduling is a very difficult problem, especially for a

CIM system with multiple machines and precedence
constraints among machine operations1- Convention-
ally, production schedules are generated by humans
with the aid of software tools and computer simula-
tions.

Neural networks (NNs) seem to be paving a new way
to handle the difficulty of combinatorial optimization
problems. There are two main issues to be addressed
when applyimg NNs: (1). What is the NN architecture
for problem characterization? (2). What is the train-
ing algorithm of the NN? For constrained optimization
problems, a straaghtforward approach would be using a

Hopfield network. The dynamics of a Hopfield network
are represented by a set of first-order, nonlinear differ-
ential equations, called motion functions. The key issue
in using such a network for optimization is to describe
the problem in the form of motion functions. Gener-
ally, there are two ways to derive the motion functions.
The first method is to define an energy function for a
specified optimization problem, and the motion func-
tions are then obtained by taking the derivative of the
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energy function. Lo and Bavarian used this method for
production scheduling [4]. However, since the connec-
tions between neurons are usually not- symmetric, con-
vergence is not guaranteed [2]. Other potential prob>
lems are (1) the convergence may be very sensitive to
the initial value of Lagrange multipliers in the energy
function; (2) the NN architecture may not be feasible
for large problems; (3) in practice, it may be difficult to
find the energy function for certain problems in which
the constraints are not readily expressible- The motion
functions can also be derived heuristically. Fang and
Li proposed a heuristic approach to derive the motion
functions for a Hopfield network to solve combinato-
rial optimization problems [3]. The key point is to
design the activation rules using heuristics such that
neurons compete to become active under some con-
straints. Since the motion function is derivled heuris-
tically, the connections between the neurons are usu-

ally not symmetric. Therefore, the convergence of the
network should be analyzed case by case. Moreover,
some constraints may not be included in the motion
functions. For combinatorial optimization problems,
dirt application of the original Hopfield network is
usually inferior to some known conventional heuristic
algorithms in terms of both-the computation time and
the quality of the solution [6].

As mentioned above, most of the related work relies
on the structure of Hopfield network and usually has
no learning ability. There are many issues to be resolve
before applying NNs to scheduliuig problems, such as
the representation of a scheduling problem with an NN
structure, systematic training of NNs, convergence and
learning ability, and so on. In this paper, a new NN
structure is proposed to solve a typical combinatorial
optimization problem. The proposed NN consists of
two parts: a feedforward network for optimization, and
a Hopfield network for meeting the constraints.

In Section 2, we formally state the combinatorial op-
timization problem under consideration. The architec-
ture of the proposed NN for this constrained optixniza-
tion problem is given Section 3. To solve the combi-
natorial optimization problem, a special cost function
is designed in Section 4. Section 5 presents the simula-,
tion results of the proposed architecture. Finally, the
paper concludes with Section 6.
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2 Problem Statement
The combinatorial optimizion problem addressed
here is a general assignment problem:

Givren: a set ofjobs: J = {AJ t J2, .X J.} and a
set of machines: M = {Ml,M1,M *, Mm)*

* Each J; E J can be proesd by any machine
M, E M with processing time pip

* Constraints: no machine can process more than
one job at a time, and each job must be assigned
to one and only one machine.

* We want to find an asigment

which minim
a cost function E0(J, 2, X X Jn) while meet-
ing the above constraints, where J,.* Mi denotes
that job iis-signed to machineM' E M.

Obviously, this is a discrete optimization problem.
There are- (n!)tm posible assignments for the above
problem. Solving such a combiarial optimization
problem is NP-complete [4].

Let Vij, lS i < n,l <jS m,beavariablerepre-
senting a job assignment

f14 iifJ-M (1)
ViJ = {0, otherwise.

Then a simple cost function can be defined as the total
makespan:

i

E-E'
j=l

and the constraints are represented.by

E ( ( j- 1) =,O. (3)

3 A New NN Architecture for
Combinatorial Optimization

The above combinatorial optimization problem can be
viewed as a mapping'from the input data (jobs, ma-
chines, processing timnes and constraants) to an optimal
assignment. We want to obtain this optimal asip-
ment by training an NN. For this purpose, we propose
an approach using feedforward neural networks. When
designing an NN architecture, we must consider the
follow'ing requirements: (1) Completeness of the 8o
lution representation; (2) Stisfaction of constraints;
(3) Deterministic selection of the number of hidden
nodes (neurons) and layers; (4) Simplicity in designa-
ing a training algorithm with guaranteed convergence.

Let the input of this feedforward NN be the process-
ing times of each job on all machines, i.e., the inputs
to node n are the processing times ofjob n:

[pna, Pn2.. Pnm] (4)

To repirese all poible solutions, each node is de-
sgned to perform vector operations. The outputs of
the NN represet all posible job assignments to ma-
ines. For example, the outputs of node n are the
assignment ofjob n:

[Vn,I Un2.. Vnm] (5)
Clarly, to satisfy the constraints, one must guarantee
that there is at most one "1" element in each output
node. This is difficult, however, to implement in a con-
ventional feedforward NN with continuous outputs. In
our approach, a local feedback is introduced among the
elements of each output node. More precisely, the pro-
posed NN consists of two parts: a multilayer feedfor-
ward NN for optization, and a Hopfield network for
meeting the comtraints. In this structure, the Hop-
field network works as sociative memory and meets
the constraint of assigning each machine at most one
job, that is, regardless of the solution given by the feed-
forward network, the constraints will be met.
A popular feedforward NN is the multilayer percep-

tron with sigmnoid functions and the back propagation
(BP) training algorithm. However, there is no system-
atic way of selecting a suitable number of hidden layers
and nodes for such an NN. Moreover, if the sigmoid
functions are used at the output layer, the NN's out-
puts are within (0, 1) which represents a pre-specified
range of values. This requires that the NN's inputs
must be scaled to (0, 1) in order to represent the same
pre-specified range. For different input data of the
combinatorial optimization problem, selection of a sca-
ing algorithm (parameter) may affect the performance
of the NN. Clearly, the above weaknesses may limit
the direct application of a multilayer perceptron with
the sigmoid function to the combinatorial optimization
problem stated in Section 2.
Intead of using sigmoid functions, radial-based

(Gausian) functions (RBF) can be used as the acti-
vation functions in feedforward NNs. A feedforward
NN with single hidden layer and RBF is capable of
universal approximation [5]. Thus multiple hidden lay-
ers are not needed. In general, this NN has one hidden
layer with RBF units and an output layer with sum-
mation units.2 Let Xi E.R, i = 1, 2, e., N, be the
inputs of the NN, and XX,X2 E 1, 2, * N1,
k = 1,2,2*-, N2, be the outputs of the HIDDEN and
OUTPUT layer, respectively. Then the computation
of this network is

( Nj (X - C21)2
X = ezp (Xiu? ),2s I i

(6)
where C1j and ojj are the weight from node i at the
INPUT layer to node j at the HIDDEN layer.

N1

X2* =E WjkXlj,
j=l

k= 1, 2, ..., N2, (7)

where W1k is the weight from node j at the HIDDEN
layer to node k at the OUTPUT layer. Let X2*k be the

2This neural network will henceforth be referred to as an RBF
network.
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desired value of the network output Xz, and define a
cost function

1N2
E = E (X2-X2k) (8)

k=1

Using the gradient decent algorithm, the weights are
updated
By using this RBF network, we eliminate the prob-

lem asociated with the selection of the number of HID-
DEN layers. Moreover, it is not neceary to scale the
inputs to any pre-specified range. It is also quite ewy
to determine the number of HIDDEN nodes in the NN
that is designed to solve the combinatorial optimization
problem.

Note that the inputs of the network (the processing
times of a set of jobs on different machines) are fixed
for the entire optimization proes. For those networks
in which adjustable parameters (weights) have global
effects on the learned input/output (I/O) map, fixed
inputs may lead to divergence or a large error. This
input fixation can be accommodated by the spatial lo-
calization property [1] of RBF networks. Note that the
multilayer perceptron with sigmoid functions does not
have this property. This is another advantage of the
RBF network when it is used, to solve combinatorial
optimization problems.

In the proposed structure, a local feedback is intro-
duced among the elements of each OUTPUT node to
meet the constraint: "each job can only be assigned
to one machine." The basic structure is a Hopfield
network [21 and, in our application, the Hopfield net-
work is cascaded to the RBF network. The external
input to the Hopfield network can be used to repre-
sent other constraints, for example, job processing pri-
orities. The outputs of the RBF network are the ini-
tial internal states of the Hopfield network. Therefore,
the computation of the entire network consists of two
stages: (1) Compute the outputs of the RBF network;
(2) The outputs of the R.BF network are sent to the
Hopfield network as the initial internal states. When
the Hopfield network reached a stable state, its out-
put represents the machine to which a job is assigned.
More formally, let X2 be the k-th (1 < k < n) output
of RBF network for job k,

X2k(to) = [Z2kl(tO), XM2k2(iO), ., Z2km(tO)]
where m is the total number of machines and to is a
time index. Let vi, denote the job assignment, where

Vij = { 1, ifJ -J,m
otherwise.

Then the motion function of the Hopfield network for
job k is

dt2~(i = -Z2ki(t)+ZTijvtkj+Ii, (9)dt
j~~~~=l

i = 1, 2, ...,, t >ito.
When the transient period of Eq. (9) is over, the out-
put of the Hopfield network, vi1, indicates the job as-
signment. That is, the Hopfield network is used as an

aociative memory. Wbenvrer the RB? network pre-
seted an output of optimization, the Hopfield network
will output a machine assignment satisfying the con-
straints specified by the weights and external inputs.

For the simplest cae, suppose there is only one job
with different processing times on m machines. Con-
sidering the two parts prately, we know that the
outputs of the Hopfield network converge because the
network is desiped with symmetric weights. The out-
puts of the RBF network also converge if its weights
are updated by using the gradient decent algorithm to
m inims its output error Eq. (8).3 However, for the
entire network, we have (1) the output of the RBF net-
work is used as the initial value of the internal state of
the Hopfield network, and (2) the weights of the RBF
network is updated by minimz'ing the output error of
the Hopfield network. An immediate question is then
"does the output of the entire network converge?"
Let vd be the desired value of vkj. A cost function in

terms of'the output of the Hopfield network is defined
by

(10)1 m

E-=~1E (Ud _ V2kp)2
p-l

Since the Hopfield network always converges to a sta-
ble state irrespective of initial internal states, the con-
vergence problem of the entire network is equivalent
to: by minimizing the cost function Eq. (10) with the
gradient decent algorithm, does the RBF network con-
verge? This question is answered by the following the-
orem (stated without proof due to the space limit).
Theorem 1: Suppose (1) the weights of the Hopfield
network are symmetric and selected according to a set
of stored patters; (2) the outputs of the RBF network
are the initial internal states of the Hopfield network;
(3) after the transient period is over, the outputs of the
Hopfield network has reached a stable state -which is one
of the stored patterms, and is used as the outputs of the
entire network; (4) a cost function is defined using this
stable state as Eq. (10). If the weights of the RBF
network are updated by minimizing the cost function
Eq. (10) with the gradient decent algorithm, then the
outputs of the RBF network will converge to a stable
state. 0
Though the proposed neural network is stable, a cost

function in the form of Eq. (10) cannot be used for the
combinatorial optimization problem, vd,, (the desired
job assignment) is unknown. Thus, a new cost function
must be defined, which is the topic of next section.

4 Solving the Problem with the
.Proposed NN

Training a multilayer perceptron is an optimization
process that minimizes a certain cost function. Under
the BP algorithm, optimization problems are solved
by the gradient decent algorithm. This optimization
process is driven by modifying the weights of the NN

3In Eqs. (8) and (10), the subscript k denotes the job number.
Though it is meaningles for the case of only one job, it keeps
the notatin consistent with the case of multiple jobs.
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according to the cost function Eq. (10). To seect a
cost function, we must consider not only the nature
of a specified problem, but also the posibility to de-
rive a trning algrithm and its convergence prop-
erty. Therefore, if a cost function is not in the form
of Eq. (10), a new training algorithm should be devel-
oped and its convergence property should be investi-
gated, though the basic idea of back propagation can
still be used.

For the combinatorial optimization problem, we
want to define a cost function directly from the cost
ofjob aignment instead of the siment error as in
Eq. (10). For example, a cost function can be defined as
the total makespan (Eq. (2)). However, in Eq. (2), the
cost function reaches a minimum by gnng all jobs
to the- mahines on which they will have the minimum
processing time. Clearly, this is not what we want; we
want not only to inimze the makespan but also to
balance the workload on the machines.

Let P denote the minimum average makespan:

1'gives the lower bound of the makespan on each ma-
chi'ne with a balanced workload, and is the value we
really want to achieve. Then we define a cost function
in terms of the minmum average makespan

(12)

the corresponding job assignment is the (suboptimal)
solution.
Theorem 2: If the gradient decent algorithm is used
to train the proposed NN to minimize the cost function
Eq. (12), the process to minimizse the cost function will
converge. 0
Proof of this theorem i similar to that of Theorem 1.
The basic idea is to show that for the cost function
Eq. (12), the search direction of the gradient decent
algorithm will not be affected and the weight update
is finite. This theorem shows that the cost function
Eq. (12) leads to a convergence proce, but not that
the NN converges to a stable state.

Since both the inputs and-outputs of the proposed
NN are vectors as shown in Eqs. (4) and (5), we need
to design a training algorithm in vector form. Using
the basic idea of back propagation, such a training al-
gorithm has been derived. In developing the training
algorithm, the proposed NN is treated as an RBF net-
work with outputs 1.0 and 0.0. That is, the portion of
Hopfield network that enforces the constraints is viewed
as a unit of static transformation, since the weights of
the RBF network are updated only after the transient
period of the Hopfield network is over.

Let Xi denote the inputs of the RBF network, and
X11 X,k denote the outputs of its HIDDEN and OUT-
PUT layers, respectively, for i, j,k = 1, 2, * The
inputs of the RBF network are the processing times
Xi= [en, Pi 2 * pj]T, where pjq is the processing
time of job i on machine q. The outputs are the job
assignments

*' Xak = [Vkli, Vk2, ... Vkm] ,

The lower bound of E0 is zero, but this lower bound is
generally not achievable, since each job must be pro-
cessed by one machine without interruption. In other
words, minimizing Ec is a discrete optimization prob-
lem, and some values of Ee may not be reachable for a
certain set of Pj 's.
When training a neural network to minimize a gen-

eral cost function rather than a cost function expressed
in terms of network output errors as in Eq. (10), we
must first ensure convergence to a (not necesarily
global) minimum. (Note that for most combinatorial
optimization problems, some local minimum is usually
acceptable as a suboptimal solution.) The cost function
defined im Eq. (10) becomes zero when the NN outputs
reach their desired values. In such case we no longer
need to modify the weights of the NN. However, for
the cost function defined in Eq. (12), the lower bound
(zero) of E) is usually not reachable. That is, even
when the cost function reaches its reachable minimum,
the weights of the NN are still modified, which may
drive the cost function away from the minimum. This
may in turn result in an oscillation. Therefore, what we
want to ensure is not "the NN will converge -to a stable
state", but "minimizing the cost function is a conver-
gent process." If the convergence is ensured, then we
can define a criterion to terminate the training of the
NN. For example, the maximum number of training
steps, Tms., can be used as a criterion. After training
the NN for Tmn^. steps, we choose the minimum value
of the cost function during this training period, and

where

Vkf = 1.0,
0.0,

(13)

if J& _ Mf
otherwise.

The details of the trainimg algorithm are omitted due
to the limited space (it is based on the gradient decent
algorithm).

5 Simulation Results
We have performed extensive simulations to test the
capability of the proposed scheme, and one of the sim-
ulated examples is summarized below. In this exam-
ple, there are 15 jobs with different processing times
on three machines as listed in Table 1. The processing
times are generated randomly. Then, using Eq. (11),
we get the minimum average makespan: P = 59.333.
Obviously, this minimum average makespan is not
reachable. The cost function is defined as Eq. (12).
The proposed NN is used to minimize this cost func-
tion. The initial weights of the NN are set to small
random numbers. Since P is an unreachable lower
bound and this is a discrete minimization problem, af-
ter 500 learning iterations, the cost function finally os-
cillates among three values: E = 58.333, E) = 71.167,
and E) = 235.833. The assignment corresponding to
E = 58.333 is shown in Table 2. In this example,
the external inputs of the Hopfield networks are Ii = 0
in Eq. (9), since the only constraint is "each job can
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Process time on each machine
Job # MiSEe I1 Machine 2 SMachie 3

1 7_ 21 17 1 1r r-10 18 26
r -r99 -83 16
7 4 51 so0 12
5 19 } 55
B 18_ 20_i 19_
7 19 14 19

T8 19 12 2
~17 10 _18-

0 57 15 _ 11
.17 5 78

12 -10 ~~~-44 --53
r w - 14 13

14 85 19
15- 21 _ 17 I2

Table 1: Processing times on different machines.

Machine assigned and
4 e]~cesm tim

Job # Machine

m _ _
2--r

_3_1_
4 _
5 0

-r7__ _-^1m _ _-
r m

-4R~ -r -g-12
9 , 10

10_~~~~~1
L12 -; --105:

13 1

15 12

M!kman_;1 61-_66

Table 2: Job assignment and makespan.

only be ed to one machine". For such a case, the
Hopfield network may not be really neceary, which
performed a "winner takes all" proes. Our imre-
diate work is adding more constraints, represented by
I #0 , to the problem.
The simulation results indicate that the proposed NN

structure is suitable for a special combinatorial opti-
mization problem. The convergence is ensured and 500
- 700 learning iterations are long enough to determine
a suboptimal assignment.

6 Conclusion

A new NN structure is proposed to sdlve combinatorial
optimization problems. The NN consists of two parts:
a feedforward network with radial-based functions for
optimization, and a Hopfield network for constraints.
The convergence of the proposed scheme is proved and
a vector-form training algorithm is developed.
To solve a combinatorial optimization problem, a

new cost function is defined because of an uneachable
lower bound of makespan when computing the mini-
mum cost. The NN drives the cost function to approach
its minimum and a suboptimal solution is determined
by the optimization proces. Using the RBF feedfor-
ward network for optimization, the proposed scheme
can learn to adapt itself to different set of input data.
Morwver, unlike using sigmoid functions, the nunbers
of HIDDEN layers and nodes can be easily selected.
Systematic design of NN structure and cost function,
guaranteed convergence and promising simulation re
sults have indicated that the proposed approach is a
good alternative to heuristics commonly used to solve
combinatorial optimization problems.
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