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Direct Control and Coordination Using Neural 
Networks 

Xianzhong Cui, Member, IEEE, 

Abstract- The performance of an industrial process cootrol 
system equipped with a conventional controller may be de- 
graded severely by a long system-time delay, dead zone and/or 
saturation of actuator mechanisms, model and/or parameter 
uncertainties, and process noises. The coordinated control of 
multiple robots is another challenging problem. In a multiple- 
robot system, each robot is a stand-alone device equipped with 
commercially designed servo controllers. When such robots hold 
a solid object, failure of their effective coordination may damage 
the object and/or the robots. To overcome these problems, we 
propose to design a direct adaptive controller and a coordinator 
using neural networks. One of the key problems in designing 
such a controller/coordinator is to develop an efficient training 
algorithm. A neural network is usually trained using the output 
errors of the network, not controlled plant. However, when a 
neural network is used to directly control a plant, the output 
errors of the network are unknown, because the desired control 
actions are unknown. A simple training algorithm is proposed 
that enables the neural network to be trained with the output 
errors of the controlled plant. The only a priori knowledge of 
the controlled plant is the direction of its output response. A 
detailed analysis of the algorithm is presented and the associated 
theorems are proved. Due to its simple structure, algorithm and 
good performance, the proposed scheme has high potential for 
handling the difficult problems arising from industrial process 
control and multiple--system coordination. 

I. INTRODUCTION 
HERE ARE MANY industrial control and coordination T systems for which one may have difficulty in achiev- 

ing high performance with conventional control designs. For 
example, the main problems in process control are negative 
effects such as a long system-response delay, dead zone 
and/or saturation of actuator mechanisms, and the nonlinear 
response of control valves. Process and measurement noises 
also degrade system performance. The dynamic property of 
a controlled plant may not be very complex, even though 
its detailed structure and parameters are unknown. However, 
when such a plant is put in operation, the control system 
is difficult to achieve high performance due mainly to the 
negative effects mentioned above. 

Contemporary industrial process control systems dominantly 
rely on PID-type controllers, though the hardware to imple- 
ment control algorithms has been improved significantly in 
recent years. Despite the difficulty in achieving high control 
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quality, the fine tuning of controller parameters is a tedious 
task, requiring experts with knowledge both in control theory 
and process dynamics. Similarly, in coordinated control of 
multiple robots, each of the robot is a stand-alone device 
equipped with commercially designed servo controllers. When 
more than one robot must cooperate to accomplish a common 
goal, in addition to the good behavior of each individual robot, 
their effective coordination is crucial to achieve the desired 
level of overall performance. This coordination problem is 
usually organized hierarchically. The low level is the servo 
controllers that are designed independently of, and separately 
from, each other. Addition of a high-level coordinator should 
not require the internal structure and/or parameters of the low- 
level controllers to be altered. The main difficulties associated 
with this coordination problem come from nonlinear sys- 
tem dynamics, kinematic redundancy, multiple-input multiple- 
output (MIMO), inaccurate system parameter values, and so 
on. To cope with the above problems, we shall develop a 
new controller (coordinator) using neural networks (NNs). We 
shall 

1) 

2)  

focus on: 
industrial process control in the presence of the non- 
linearity of dead zone and saturation, and the negative 
effects of long response delays and process noises, 
the coordinated control of two robots holding an object, 
in which each robot is equipped with commercially 
designed servo controllers. 

The potential of NNs for control applications lies in that 1)  
NNs could be used to approximate any continuous mapping 
through learning, and 2) they can realize parallel processing 
and fault tolerance. One of the most popular NN architectures 
is a multilayer perceptron with the back propagation (BP) 
algorithm. It is proved that a four-layer (with two hidden 
layers) perceptron can be used to approximate any contin- 
uous function with the desired accuracy [4]. BP has been 
successfully used for pattern classification, though its original 
development placed more emphasis on control applications 
[18]. It is also proved that, in general, nonlinear control 
systems can be stabilized using four-layer networks [15]. 

A controller is usually connected serially to the controlled 
plant under consideration. For a multilayer perceptron, the 
weights of the network need to be updated using the network’s 
output error. For an NN-controller, the NN’s output is the 
control command to the system. However, when the NN 
is serially connected to a controlled plant, the network’s 
output error is unknown, because the desired control action 
is unknown. This implies that the BP algorithm for training an 
NN cannot be applied to the control problems directly. Thus, 
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one of the key problems in designing a direct NN-controller 
is to develop an efficient training algorithm. 

Several related schemes have been proposed. One of them 
is training an NN to learn the system’s inverse, and then 
the desired system output is achieved using the control input 
produced by the system’s inverse. Certainly, this requires the 
system to be invertible. Examples can be found from [3], [12], 
and [8]. In [3], the controlled plant was treated as an additional, 
unmodifiable layer, and the output error of the network was 
computed from the output error of the system. In [12], the 
system’s output error was propagated back through the plant 
using its partial derivatives at an operating point. In [8], a 
set of actual system outputs are selected as training data and 
fed into the NN during its training period. By comparing the 
output of the NN with the desired system output, the network’s 
output error is computed, which is then used to train the NN. 
After the NN becomes well-trained, the input of the NN is 
switched to the desired system output. Then, the NN acts as 
the inverse of the plant, and its output will drive the system 
to reach the desired value. However, in practice, even if the 
system is invertible, the inverse control scheme may be not 
acceptable. For example, if the system is a non-minimum 
phase system, then the resulting design is not internally stable. 
The invertibility of nonlinear systems was discussed in [5], 
and a sufficient-input criterion for designing an NN to learn a 
system’s inverse was established. 

Narendra and Parthasarathy [lo] proposed a scheme of 
indirect adaptive control using a multilayer perceptron with 
the BP algorithm. The NN was trained first to attain the same 
dynamic behavior as the controlled plant. Then a controller 
was designed by using the NN’s output to cancel the nonlinear 
part of the controlled plant and by including the same terms 
of a reference model. Other examples of NN-controllers are 
presented in [2], [6], which used reference models to train the 
NN. Kraft and Miller designed controllers using a structure 
similar to Ch4AC (cerebellar model articulation controller) 
[7], [9]. Five dominant system architectures with NNs for 
control applications were summarized in [18] and [19], and 
the importance and applications of NNs to control and system 
identification were also addressed there. 

Most of the work mentioned above is in the form of indirect 
adaptive control or has complex training methods and system 
structures, and none of them was developed to coordinate 
multiple systems. This fact was summarized in [lo] as: “At 
present, methods for directly adjusting the control parameters 
based on the output error (between the plant and the reference 
model output) are not available. This is because the unknown 
nonlinear plant lies between the controller and the output 
error.” In contrast to the indirect adaptive control, we will de- 
velop a direct adaptive controller and a coordinator. A simple 
algorithm is proposed based on the BP for a class of nonlinear 
systems typified by industrial process control applications, and 
for a multiple-robot coordination problem. The proposed NN- 
controller (coordinator) is trained by using the system’s output 
errors directly with little apriori knowledge of the controlled 
plant. 

In Section 11, the control problem using NNs is stated 
formally, and the basic structure of the proposed NN-controller 

(coordinator) is analyzed. The training algorithm is developed 
in Section 111, and the corresponding theorems are proved. Sec- 
tion IV presents the procedures of designing the NN-controller 
and addresses the problems related to its implementation. 
Section V summarizes the simulation results of a temperature 
control system in a thermal power plant to test the proposed 
NN-controller. This is a typical system with a long response 
delay, nonlinearity of dead zone and saturation, and process 
noise. In Section VI, the coordinated control of two robots 
holding an object is presented, including the dynamics of 
the coordinated systems, specification of the desired forces, 
force error analysis, and the system structure with an NN- 
coordinator. The proposed NN-coordinator is evaluated for 
two 2-link robots holding an object via simulation, and the 
results are presented in Section VII. The paper concludes with 
Section VIII. 

11. PROBLEM STATEMENT AND THE “-CONTROLLER 

A controlled plant can be viewed as a mapping from the 
control input to the system output: 

2 = f(z, u, t )  

Y = dz, u7 t )  

where z E Rm, y E R”, and u E RN2 are the state, 
system output and input, respectively. If a controller exists 
for such a system, then the controller can also be represented 
as a mapping from system feedback and/or feedfonvard to the 
control input: 

= c(Y, Yd, t> (1) 

where yd is the desired system output. As is usually the case, 
only the system output is assumed to be measured. 

We want to design an NN-controller as the replacement of 
a conventional controller. In other words, the NN-controller 
is cascaded with the controlled plant as shown in Fig. 1, and 
trained to learn the mapping in (1). The desired control input 
% d ( t )  is required to yield the desired output yd(t) .  The system- 
output error and the control-input error are then defined, 
respectively, by 

e y ( t >  = yd(t)  - y ( t )  

and 

e,(t)  = ?4d( t )  - u(t). 

The control-input error e,(t) is also called the network-output 
error, since u(t) is the output of the NN-controller. An NN is 
usually trained by minimizing the network-output error e, (t). 
However, when the NN controller is cascaded in series with the 
controlled plant as shown in Fig. 1, e,(t) is not known, since 
the desired control input U d ( t )  is unknown. so, the immediate 
problem in designing such an NN-controller is how to train 
the NN. 

One of the well-developed NNs is a multilayer perceptron 
with BP [13], [17]. The basic structure of a three-layer 
perceptron is shown in Fig. 2. The BP algorithm is based on 
the gradient algorithm to minimize the network-output error, 
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I I 

Fig. 1. A control system with an NN controller. 

'2.k t t  t 

x i I  I 
Fig. 2. Basic structure of a multilayer perceptron. 

and derived from the special structure of the networks. Let 01j 
and 02k be the thresholds at the HIDDEN and the OUTPUT 
layer, respectively, where 1 5 j 5 N1 and 1 5 lc 5 N2. Using 
the structure in Fig. 2, computing the NN output and updating 
the NN weights are summarized in the following five steps. 

Compute the output of the HIDDEN layer-xlj: 

1 
1 

1 + exp(-Olj - 01j X l j ( t )  = 

where 
N 

0 1 j  = W i j X i ( t ) ,  j = 1,2,. . . , N1. 
i=l 

Compute the output of the OUTPUT layer-X2k: 

blk = (X2kd(t) - X2k(t))X2k(t)( l  - X2k(t))  (4) 

and X2kd is the desired value of X2k. 

Update the weights from the INPUT to the HIDDEN 
layer-Wij : 

Wij(t + At) = Wij(t) + AWij 

where 
AWij = @jXi( t )  

sj = & k W l j k ( t  -k At) x~j(t)(l - X i j ( t ) ) .  
[k:l 1 

Update the thresholds: oak and O l j .  

02k(t + At) = e 2 k ( t )  + 771Oalk 

e l j ( t  + at) = e l j ( t )  + 7784 
(5)  

where 77, 771, 770, and 7710 > 0 are the gain factors. 
In any control system design, it is desired to specify the 

system performance in terms of system-output errors ey( t )  = 
y d ( t )  - y(t), rather than the unknown network-output error 
eu(t) .  To design such a controller with NNs, we adopt the 
basic principle of multilayer perceptron with BP, because 
of its ability of universal approximation and its convergent 
property based on the gradient algorithm [16]. The major 
obstacle in designing such an NN-controller is to train the NN 
with the system-output errors ey  (t), rather than the network- 
output errors eu(t).  The next section presents a solution to 
this problem. 

111. TRAINING AN NN-CONTROLLER WITH SYSTEM-OUTPUT 
ERRORS 

To derive the BP algorithm, the cost function of the network 
is defined as: 

1 Nz 
&(t) = 5 E (euk(t))2 

k=l 

where euk(t) = U k d ( t )  - Uk(t) is the network-output error 
at the lcth node of the OUTPUT layer. As mentioned earlier, 
E,(t) is not available since ?&d( t )  is unknown for all I C .  Let 
the Zth component of the system-output error be defined by 

eyl(t) = Y l d ( t )  - Y l ( t ) ,  1 = 1, .  . . , n. 

Then, the cost function in terms of the system-output error 
is defined as: 

n n 

n 

(6) 

~ ( t )  = ~ ( u ( t ) ) ,  ~y(t) = [ ~ l ( t ) , . . .  , ~ n ( t > l ~ ,  and u(t> = 

2 
= ( G l ( U d )  - Gl(u)) 7 

1=1 2 

where Gl(u) is the Zth component of the dynamic system 

[UI  ( t ) ,  , 7 1 ~ ~ ( ~ ) ]  . Equation (6) is computable from the 
measurement of the system output. In other words, we know 
a function of the network-output error, though the detailed 
structure and parameters of the mapping G(.) may not be 
known. We want to train the NN by minimizing the cost 
function (6). 
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Using the gradient algorithm, the weights from the HIDDEN Proof: In the gradient algorithm, the solution converges 
to a minimum of the cost function if and only if the search is 
made along the negative direction of the gradient of the cost 
function. BP is based on the gradient algorithm and listed in 
(2) to (5). Because u k d ( t )  - U k ( t )  = X 2 4 t )  - X2k(t), (4) 

to the OUTPUT layer are modified by 

wijk(t + At) = wijk(t) + Awijk, 

and setting A W~jk  0: - 

(7) 

(8) becomes aE ( t )  
awl,, (t ) ' 

Noting that u k ( t )  = X2k(t)  in the "-controller,' we get 

Substituting (10) into (8), one can get 

where 

where > 0 is a gain factor. The only unknown in (12) is 
a y l ( t ) / a u k ( t ) ,  the ( 1 ,  lc)th component of the Jacobian matrix 
of the controlled plant. 

Recall that the network-output error at the lcth node of the 
OUTPUT layer is defined as 

Referring to (12), the component of system-output error con- 
tributed by the lcth control input is defined by 

To apply the gradient algorithm, we have the following the- 
orem. 

Theorem 1: Suppose the system response delay correspond- 
ing to the lcth control input is d. To train the NN using the 
system-output error and ensure the convergence of the training 
algorithm, the necessary and sufficient condition is 

sign ( e , k ( t ) )  = sign (e,k(t  - d)) .  (15) 

'In fact, XZk(t)  is the scaled value of u k ( t ) .  At this stage, it is assumed 
that the value of u k ( t )  is within the range of (0 , l ) .  The scaling problem will 
be discussed later. 

where X ~ k d  is the desired value of x2k. Substituting (14) into 
(12), we get 

byk  = e s k ( t ) X 2 k ( t ) ( 1  - X 2 k ( t ) ) -  (17) 

Because both (16) and (17) are derived by applying the 
gradient algorithm, in order to ensure the convergence of the 
training algorithm given in (7) and ( l l ) ,  the necessary and 
sufficient condition is (15), when the system response delay is 
accounted for. 0 

The accurate value of layl( t ) /auk(t) l  is not important, 
because the step size can be adjusted by setting Q~ 
11: Idyl(t)/duk(t)l. Certainly, this requires layl(t)/duk(t)l < 
co,Vt. Therefore, if the sign of a y l ( t ) / a u k ( t )  at each instant 
is known, then we get a simple algorithm to train the NN 
by using the system output error instead of the network output 
error. However, for general nonlinear systems, it is not easy to 
determine the sign of a y l ( t ) / a u k ( t )  at each instant. Therefore, 
in what follows, we shall develop a training algorithm for a 
class of systems in which the sign of output response is known 
and lay l ( t ) /auk( t ) l  < co,Vt. Specifically, in the next section, 
an NN-controller is designed for a class of SISO (single input, 
single output) systems, and MIMO systems are treated in 
Sections VI and VII. 

Iv.  DESIGN OF THE "-CONTROLLER 

For a SISO system, the training algorithm presented in the 
previous section can be simplified by using the following 
definition of system direction. 

Definition 1: If the system output monotonically increases 
(decreases) as the control input to the controlled plant in- 
creases, then the system is said to be positive-responded 
(negative- responded). Both positive-responded and negative- 
responded systems are said to be monotone-responded. 

Definition 2: For a SISO system y(t) = G(u(t)) ,  if the 
system is positive-responded (negative-responded), then the 
system direction is written as D(G)  = 1 (D(G)  = -1). 

Definition 1 characterizes a class of systems. For example, 
a linear system is cascaded with an element of pure response 
delay, dead zone andlor saturation. Fortunately, there are many 
industrial process control systems that possess the property of 
monotone-response. To train an NN-controller for such a class 
of systems, we have the following theorem. 

Theorem 2: For a SISO monotone-responded system, in 
order to train the NN-controller in Fig. 2 using the system- 
output error, the weights on the arcs from the HIDDEN to the 
OUTPUT layer are updated by 

wiji(t + At) = wiji(t) + Awiji (18) 
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where C) Update the weights from HIDDEN to OUTPUT layer: 

Proof: For a SISO system, (13) and (14) are simplified to 

From (15), we get the condition of convergence: sign (es(t)) = 
sign (eu(t - d)).  If the system response delay is d, then for a 
positive-responded system we have 

eu(t) = U d ( t )  - u(t)  and es(t) = (Yd(t)  - y ( t ) ) & / ( t ) / W t ) .  

sign ( u d ( t  - d )  - u(t - d ) )  = sign ( y d ( t )  - y(t)). (19) 

Similarly, for a negative-responded system, we have 

sign (ud(t - d)  - u(t - d))  = -sign (yd(t) - y(t)). (20) 

From (19) and (20), we conclude that the condition for 
convergence is 

sign ( u d ( t  - d )  - u(t - d ) )  = sign ( y d ( t )  - y(t))D(G). 

(21) 

Equation (21) then implies that the corresponding training 
0 

Figs. 1 and 2 show the basic structures of the system and 
the NN-controller, respectively. For a SISO system, there is 
one node at the OUTPUT layer, that is, N2 = 1. The choice of 
the "'s inputs should reflect the desired and actual status of 
the controlled system. So, the inputs of the NN-controller are 
usually the system's desired & actual outputs, and tracking 
errors: 

algorithm be based on (18). 

Yd(t),Yd(t - At), . . ., Yd(t - m a t )  
Y( t ) ,  Y ( t  - At), * * * , Y ( t  - m2At) 

e,(t),e,(t - A t ) , . . - , e y ( t  - m3At) 

where m1,ma and m3 > 0 are integer constants, and e,(t) = 
yd(t) - y(t). The number of the HIDDEN nodes depends on 
the controlled plant under consideration. However, selection 
of a suitable number may require extensive experiments. 

Based on Theorem 2, the formulas for updating the weights 
from the INPUT to the HIDDEN layer and the thresholds are 
derived using the same procedure given in Section 111. The 
computation of the NN-controller for a SISO system is then 
summarized as follows. 

A) Compute the output of the HIDDEN layer: X l j  (t). 

N 

where 01j = x W i j X i ( t ) , j  = 1 , 2 , . - . , N 1 .  
i=l 

B) Compute the output of OUTPUT layer: X21(t). 

Ni 

j=1 
where 0 2 1  = WljX,j(t). 

where AWlj1 = 7$Sy1Xlj(t), 

by1 = ( ~ ( t )  - ~( t ) )D(G)X21( t ) ( l  - X21(t))- 

D) Update the weights from INPUT to HIDDEN layer: 
wij ( t )  . 

Wij(t + At) = Wij(t) + AWij, 
where AWij = qYSjYX;(t), 

6; = q 1 w l j l x l j ( t ) ( l  - Xlj(t)) 

where T,I~ and > 0 are the gain factors. 
E) Update the thresholds : 821 and 81j. 

&1(t + At) = 421(t) + $e6:1, 
81j(t + At) = 81j(t) + $SjY, 

where and 0; > 0 are the gain factors of the thresholds at 
the OUTPUT and the HIDDEN layer, respectively. 

Another problem in designing such an NN-controller is 
the choice of scaling factors. The sigmoid function in NN 
computation forces the NN outputs to be within the range 
of (0, l ) ,  although the control input u(t) is limited by the 
range of actuators, (Umin, U,,,). Therefore, the NN outputs 
should coincide with, or little narrower than, the range of 
the actuators' limits. The output of the NN-controller is then 
computed by 

u(t)  = X21(t)(Umax - Urnin) + Umin. 

Generally, an NN works in the mode of train-first-then- 
operate. In other words, an NN is put in operation only after it 
is "well-trained." By "well-trained," we mean that the weights 
of the NN need not be modified any more. However, for a. 
time-varying system, it is meaningless to say that an NN is 
"well-trained," since the system always changes with time. 
Thus, not updating the weights for a time-varying system 
may result in the system going out of control. It is therefore 
necessary to always update the weights of the NN-controller. 
In other words, the weights of the NN-controller should be 
updated instead of the train-first-then-operate mode, though 
the weights may not have to be updated during every sampling 
interval. 

v. SIMULATION RESULTS OF A TEMPERATURE 

CONTROL SYSTEM 

Many industrial process control systems are characterized 
by a linear system cascaded with a nonlinear element as a 
result of dead zone and actuator limits, and/or a pure time 
delay (due to transport and system response delays). To test 
the capability of the proposed NN-controller, we conducted 
simulations while emphasizing the ability to overcome the 
negative effects of dead zone, saturation, long response delay, 
and process noise. The simulated system is a simplified 
temperature control system of a once-through boiler in a 
thermal power plant. The input is the variation of feedwater 
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Controlled plant 

.f, 

Fig. 3. The structure of "-based control system. 

flow rate. The output is the variation of the temperature at 
the middle point where water becomes steam. The system is 
represented by an ARMAX model: 

A(z-l)y(IC) = B(z-l)u(IC - d )  + C(z-')[(k) 
where A(z-') = 1 - 0 . 4 5 1 8 1 ~ - ~  - 0 .47546~-~ ,  

(22) 

B(2-l)  = -0 .04560~-~ - 0 .00404~-~ ,  
C(Z-') = 1 - 0.357402-1 - 0.O3392zp2, 

d = 18 sampling intervals. 

Here the sampling interval is chosen to be 8 seconds, y( IC) and 
u ( k )  are the system output and control input at a discrete time 
IC, respectively, and [(IC) is an uncorrelated random sequence 
with zero mean and variance R that represents the process 
noise. Note that this model is only for the pupose of simulation. 
The NN-controller has no knowledge about this system except 
its response direction. 

To reflect the status of the controlled system, the inputs of 
the NN-controller are chosen as the desired system outputs 
and the output errors: 

P d ( k ) ,  Yd(k - I ) ,  Yd(k - 21, Yd(k) - Y(k), 
Yd(k - 2) - y(k - 2). Yd(k - 1) - Y(k - I ) ,  

That is, there are six inputs at the INPUT layer of the NN- 
controller (N = 6). The number of the HIDDEN nodes is 
selected to be three, that is, N1 = 3. A nonlinear element of 
dead zone and saturation is cascaded with the systerp (22) to 
model an actuator, which is described by 

0 if Iu(t)l < deadzone 
ua(t) = u(t)  if deadzone 5 lu(t)J < U,, { umax if Iu(t)l 2 urnax. 

The overall system structure is given in Fig. 3. The dead 
zone and saturation are treated as unknown properties of the 
controlled plant. We want to show that the NN-controller 
will overcome their negative effects by NN's learning ability. 
Actually, since system response direction will not be changed 
by dead zone and saturation, the proposed algorithm should 
still work. Moreover, no special consideration for process 
noise is given to the design of the NN-controller, like other 
deterministic controller designs, though the controllers must 
be tested for the ability of noise rejection. 

The main simulation results are summarized below. 
1) When deadzone = 5.0, U,, = 10.0, and no process 

noise ( R = O.O), the results are in Fig. 4. The initial 

6 -  
> 8; m 400 600 sm I& I& I& I& I& 2d, 

time (X 8 xc.) 

Fig. 4. System response with NN-controller when deadzone = 5.0, and 
R = 0.0. 

Fig. 5. System response with NN-controller when deadzone = 7.0, and 
R = 0.0. 

weights of the NN are selected randomly, and the NN 
weights converge within 150 sampling intervals. 
When deadzone = 7.0, U,,, = 10.0, and R = 
0.0, Figs. 5 and 6 show the system response and the 
corresponding control input, respectively. Obviously, a 
large dead zone affects the system performance severely, 
but the NN-controller still works well. 
When deadzone = 5.0, U,,, = 10.0, and R = 0.5, we 
evaluated the ability of noise rejection, and the desired 
and actual system output responses are plotted in Fig. 7. 
The corresponding control input and the process noise 
are shown in Fig. 8, where 

n ( k )  = [ ( k )  - 0.35740[(IC - 1) - 0.03392[(k - 2). 

Fig. 9 shows the results using NI = 6, deadzone = 
5.0, U,, = 10.0 and R = 0.0. Comparing these results 
with Fig. 4, one can see that adding more HIDDEN 
nodes may not improve the system performance. 

From the aforementioned simulation results, we conclude 
that the proposed NN-controller performs well for this class 
of nonlinear systems. In the NN-controller, the system-output 
error is computed from the measurements. As a priori knowl- 
edge, the system response direction is easily determined from 
either a step response experiment or the physical property of 
the controlled plant. To test the need of (18), -D(G) is used 
in the training algorithm, which instantly leads to the NN's 
divergence. 
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tim (x 8 xc.) 

System control input with NN-controller when deadzone = 7.0, Fig. 6. 
and R = 0.0. 

10, I 

0 200 400 600 800 1m lux) 1400 1600 1800 2 m  
lime (x 8 sec.) 

’ - 8 ’  ’ ’ ’ ’ ’ ’ ’ ’ .  ’ 

Fig. 9. System response with NN4ontroller for six hidden nodes. 

I object 

J 
330 lo00 1500 24mo 2500 3 m  

-10‘ 
0 

time (x 8 scc.) 

7. System response with NN-controller when deadzone = 5.0, and 
R = 0.5. 

.” 

5 

0 

-5p ,b+J vu 1 
500 loo0 1500 Zoo0 2500 3000 

-10 
0 

time (x 8 scc.) 
8. System control input with NN-controller when deadzone = 5.0, 

and R = 0.5. 

VI. DESIGN OF THE “-COORDINATOR FOR TWO ROBOTS 
HOLDING AN OBJECT 

The proposed algorithm is also tested for multiple- 
system coordination. As an example, in this section, an 
NN-coordinator is designed to deal with the problem of 
coordinating two 2-link robots holding an object. The purpose 
of this example is to investigate the suitability of the proposed 
method for MIMO systems, though controlling two 2-link 
robots may be not a real problem in industrial applications. 
With the NN-controller, the system forms a hierarchical 

Fig. 10. Two 2-link robots holding an object 

structure: the high level is the NN-coordinator, and the low- 
level subsystems include two robots each with a separately 
designed servo controllers. 

A. Dynamics of the Coordinated Systems and Problem 
Statement 

The basic configuration of this example is given in Fig. 
10. Let fi = [tiz, be the vector of forces and torques2 
exerted by end-effector i on the object in Cartesian space, 
z = 1,2. Then the motion of the object is described by 

m P + m g = f ,  f = W F =  [12,12] 

where m is the mass of the object, P the position of the 
object in Cartesian space, g the gravitational acceleration, f 
the external force exerted on the object by the two robots, 
and 1 2  is a 2 x 2 unit matrix. From (23), one can see that, to 
achieve the object’s specified acceleration, the combination of 
forces shared by the two robots is not unique. 

Suppose two robots have an identical mechanical configu- 
ration, then the force-constrained dynamic equation of robot i 
in joint space is given by: 

H i i  + h(qi, 4i) + JT f = T;, i = 1 , 2  (24) 

where qi is the vector of the robot’s joint positions; H the 
inertia matrix; h the centrifugal, Coriolis, and gravitational 

2The term “force” will henceforth mean “force and torque,” and “position” 
will mean “position and orientation,” unless stated otherwise. 
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forces; J ,  the Jacobian matrix; and T ,  the vector of joint 
torques [I. In the proposed NN-coordinator, the controlled joint 
torques consist of two parts: 

where T , ,  is contributed by the NN-coordinator and T , ~  is 
given by a position controller 

7 7 p  = B ( t , d  - K D ( G ,  - G l d )  - K p ( q ,  - q l d ) )  + (25) 

where H and h are the estimated values of H and h, q,* is 
the desired value of q7, K D  and K ,  are the controllers' gains. 

Suppose the object is a rigid body and there is no relative 
motion between the end-effectors and the object. For (23), let 
f a  and Fd be the desired values of f and F ,  respectively. 
Then, we have 

F,i = F.ll<j + F I ~  E W* f d  + ( 1 4  - W*W)y".  (26) 

where W* E R4x2 is the pseudo-inverse of W ,  1 4  is a 
4 x 4 unit matrix, and yo E R4 an arbitrary vector in the 
null space of W .  Therefore, the forces exerted by the end- 

effectors consist of two parts: F J * ~  = E R4 is the 

force to move the object and Fld = [ F:::] E R4 is the 

internal force. The following two problems arise: (1) sharing 
the moving force by the two robots, and ( 2 )  changing the 
internal force so as to satisfy a set of constraints, such as joint 
torque limits or energy capacity. 

In (26), f d  can be specified by the desired trajectory. 
F I ~  is given as the desired internal force, for example, 
F I ~  = 0 for the least energy consumption. Because W* is 
a constant matrix and both f,{ and Fld are specified, the 
desired force F,i is determined uniquely. However, this ideal 
situation of load sharing may not be achieved due to force 
and trajectory tracking errors. These errors may be caused 
by modelingiparameter errors, control performance tradeoff, 
and/or disturbances. It is, therefore, necessary to share the load 
by, or to reassign the load to, each robot dynamically. Our goal 
is to design an NN-coordinator for coordinate the two robots 
moving the object while minimizing the internal force. 

Let the desired force sharing of the two robots be 

FA'f1d [ FIJ 

f l d = f f f d + f b .  a n d f 2 d = ( 1 2 - f f ) f , i - f b .  (27) 

where o is a selection matrix, 0 = diag[o1. 021.  0 5 oJ 5 1, 
j = 1.2; f b  a bias force. Then, the desired external and 
internal forces are 

1 1 
f d  = f l d + f 2 d  and f l d  = j ( f I d - f z d )  = f b + p - W f d .  

Therefore, the desired external force f d ,  the selection matrix 
o and the desired bias force f ,, should be specified to compute 
the desired force exerted by each robot: f 1(1 and f 2 d .  

Suppose the measured forces are f l  and f 2 ,  then the actual 
external and internal forces exerted on the object are 

Fig. 11. The basic structure of the NN+oordinator. 

Then. the force errors are 

If the external force reached its desired value, then f l e  + f 2r - 

0. So, these force errors do not contribute to moving the object, 
that is, they result from internal force errors. This implies thoit 
if we design a controller based on f l e  to regulate the internd 
force and if the controller is a linear controller with control 
output f l :  then the control action acted on robot 2 should b e  
f i  = - f l  [ l l ] .  Note that the force on the end-effector and 
joint torques are related by 7, = JT f , .  Therefore, when Be 
control action is transformed into the joint space, we usuall!i 
have T I  # - 7 2  due to different Jacobian mat_rices. 

Referring to (24) and (25), if H = H and h = h, then tke 
closed-loop system can be written as 

Since the desired external force is specified according to ti- I; 
desired trajectory, the desired external force can be achieved 
by a well-designed position controller. We can therefore design 
a coordinator so as to regulate the internal force by changing 
TTc. 

B. Design of the "-Coordinator 

The basic structure of a two-robot system equipped with a n  
"-coordinator is shown in Fig. 11. From the coordinator i 
point of view, the controlled plant is a mapping from the input 
torque T ,  = [T:,. 7Tc] to the forces exerted on the object, 1'. 
This is a time-varying MIMO mapping F = G(T,) .  We want 
to design an NN-coordinator to directly control such a system 
using the results developed in Sections I11 and IV. For such 
an MIMO system, we define the direction matrix as follows. 

T 
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Definition 3: The direction matrix of an MIMO system 
F = G(T,) is defined by 

D(G) = sign(dF/dT,) 

where the sign of a matrix M is defined as the matrix formed 
with the sign of the corresponding elements of M. 

When such conditions as the range of joint motion are 
imposed on the system, it is possible to determine this matrix 
as shown in Section VII. From the force analysis, the following 
variables may be used as the inputs of the NN-coordinator: the 
measured forces F exerted on the object, its desired value Fd, 
the measured joint positions of the two robots q = [qy , &] , 
and the actual torques r exerted on each joint of the two robots. 
Obviously, all the inputs and outputs of this NN-coordinator 
are vectors. For such a vector-structured multilayer perceptron, 
a vector form of the BP algorithm has been derived in [14]. 
The main steps of the "-coordinator are summarized below. 

All inputs and outputs of this NN are vectors, X, E 
R",Xlj E R", and X21 E Rp are the output of INPUT, 
HIDDEN and OUTPUT layer, respectively, with i nodes at 
the INPUT layer, 1 5 i 5 N; j nodes at the HIDDEN 
layer, 1 5 j 5 N1; and one node at the OUTPUT layer. 
The computation includes five steps: 

T 

Compute the output of the HIDDEN layer Xlj: 

X l j  = f j (0 l j )  

where 
N 

Olj = WijXi, j = 1 , 2 , .  . . , Nl 
i=l 

and 
T 

fj(01j) = [Zljl,. . * , Zljml 

. . .  1 
= [l+exp(-o1jl-Rljl)'  ' 

1 T .  

1 
1 + exp (-01jm - 01,") 

where Wij E Rmx" is the weights from the INPUT 
to the HIDDEN layer, Olj = [Oljl,. . . , OljmlT the 
threshold at the HIDDEN layer. 
Compute the output of the OUTPUT layer X21: 

X2l = fl(O21) 

where 

and 

where Wljl E RPXm is the weights from the HIDDEN 
to the OUTPUT layer, 0 2 1  = [ 0 2 1 1 , . . - , 0 2 1 p ] T  the 
threshold at the OUTPUT layer. 
Update the weights from the HIDDEN to the OUTPUT 
layer Wljl: 

Wiji(t + At) = Wiji(t) + AWiji 

where 

AWiji = ~ i [ 6 i i T i ] ~ ,  
T 

Si1 = [X& - X21] D(G)diag[~211(1- ~ 2 1 1 ) ,  

Z212(1 - 2212),  * . . , Z2lp(l - Z21p)l, 

and T1 is a p x m x p tensor with the Eth matrix as 

1 0 1  

T11 =  XI^)^ t- at the Zth row, Z = 1 , 2 , .  . , p .  

i o 1  

D) Update the weights from the INPUT to the HIDDEN 
layer W;j: 

Wij (t + At) = Wij ( t )  + AWij 

where 

and T2 is an m x n x m tensor with the Zth matrix as 

r o i  

E) Update the thresholds at the OUTPUT and the HIDDEN 
layer 021,  and Olj: 

0 2 1 ( t  + At) = O21(t) + AO21 

where 

(A021)T = ~ i d i i  

Olj(t + At) 1 Olj(t) + AO1j 

T where (AOlj) 

the gain factors. 
= VeSj and 771, q,  7710 and Ve > 0 are 

The problems of scaling input and output and updating 
weights have been discussed in Section IV. In what follows, 
the design procedures are detailed for the example and tested 
via simulation. 
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Link 1 
Link 2 

Length Mass center I Mass 1 Moment of inertia 
1 m 0.5 m I 20 kg [ 0.8 kg m sz 
1 m 0.5 m I 10 kg I 0.2 kg m 5' - 

. 4 4 . ,  . , . , . * .  , . , . , . t 
0 500 1000 1500 2000 2500 3000 3500 4 0 0 0  

time (x 0.01 see.) 

Fig. 12. The internal force error in X direction withoutthe NNxoordinator. 

+1 +1 +1 +1 
D = s i g n  (E)= 1 -1 -1 +1 +1 VII. SIMULATION RESULTS OF TWO %LINK ROBOTS 

HOLDING AN OBJECT 

Referring to Fig. 10, the Cartesian frame is fixed at the 
base of robot 1, and the desired trajectories of the object 
and the robots' end-effectors are specified relative to this 
frame. The dynamic and kinematic parameters of the robots 
are presented in Table I. The task is to move the object forward 
and backward in X direction while keeping the height in Y 
direction constant. The desired trajectory that is selected by a 
high-level planner is to move the object in X direction from 
an initial position to a final position (for one meter distance) 
in five seconds, and then move back to the initial position. 
The desired velocity and acceleration of the object are zero 
at both initial and final positions. The sampling interval is 
10 ms. The selection matrix is set to 0 = diag[0.5,0.5] and 
the bias force f = 0. Each robot is position controlled with 
the controller in (25). Note that the NN-coordinator has no 
knowledge about the dynamics given by (23) and (24), except 
the direction matrix that is determined as follows. 

Let F = [fil, f ly,  f22, f2y]T be the forces exerted on 
the object by each robot in X and Y directions, and rc = 
[71 lC ,  ~ 1 2 ~ ,  T2lC,  T22c]T be the torque exerted on each joint of 
the two robots by the NN-coordinator. Then the direction 
matrix is defined as: 

. 

1- D = sign (s) = sign 

From the configuration shown in Fig. 10, we can assume that 

1 4  

- 4 1 1 .  * , , . , . , . . . , . I .  4 
0 500 1000 1500 2000  2500 3000 3500 4000  

time (x 0.01 see.) 

Fig. 13. The internal force error in X direction with the NN-coordinator. 

the limitation of the joint angles are 

0' < 411 < 180°, 
0' < 421 < 180°, 

-180' < 412 < O', 
0' < 422 < 180'. 

Then the direction matrix can be determined as 

r-1 -1 +1 +I1 

. .  
L+i +I +I +1J 

This will be used in the computation of the NN-coordinator. 
For this example, a three-layer perceptron is used. There are 
four INPUT nodes with inputs 

which reflect the desired and actual status of the coordinated 
system. The OUTPUT layer has one node with output 

T T 
T c  = [qc, = [ T l l c ,  712c, 721c, 722Cl 

The proposed NN-coordinator is evaluated via simulation and 
the results are summarized below. 

Suppose the mass of the object is 5 kg, without the NN- 
coordinator, the internal force error in X direction is plotted 
in Fig. 12. By adding the NN-coordinator with 15 hidden 
nodes, the performance is greatly improved as shown in Fig. 
13. The RMS (root-mean-square) error of the internal force in 
X direction is reduced by 94.6%. In Y direction, the RMS 
internal force error is reduced by 46.2%, though the internal 
force error is small enough due to no motion in this direction. 
Moreover, both the external force error and the position 
tracking error are kept almost the same as those without the 
coordinator. The detailed results are summarized in Table 11. 

If the mass of the object is increased to 10 kg, the NN- 
coordinator also works well with 20 hidden nodes. The internal 
force error in X direction is reduced by 89.8%, as shown in 
Figs. 14 and 15, and Table 111. 
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Sample interval 

0 - 1000 

1001 - 2000 

2001 - 3000 

at X direction 
at Y direction 
at X direction 
at Y direction 
at X direction 
at Y direction 
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RMS errors of internal force (N)  
' without the coordinator with the coordinator 

9.58411 2.01236 
0.93142 0.51720 
9.57103 0.51404 
0.92337 0.49638 
9.57048 0.51248 
0.92337 0.49629 

TABLE I1 
RMS ERRORS OF INTERNAL FORCES, EXTERNAL FORCES 

AND OBJECT'S POSITIONS, WITH MASS = 5 kg 

.~ 

1001 - 2000 

2001 - 3000 

" 
at Y direction 2.54845 3.53886 
at X direction 0.34370 0.36121 
at Y direction 0.01436 0.01104 
at X direction 0.34370 0.36120 
at Y direction 0.01436 0.01105 

I at Y dirwtion n 2.54845 1 3.53886 
1001 - 2000 

2nn1 - 3000 

_ . ~ . .  ~ 

at X direction 0.34370 0.36121 
at Y direction 0.01436 0.01104 
at X direction I 0.34370 I 0.36120 _... 

I at Y direction H 0.01436 I 0.01105 -. . __ -. ..... . ~~ .. 

Sample interval RMS tracking errors of object's position (m) 
without the eoordinator I with the coordinator 

Sample interval 

VIII. CONCLUSION 
To handle difficult control and coordination problems, we 

developed a direct controller and a coordinator with neural net- 
works. Particularly, the NN-controller aims to handle indus- 
trial process control systems, in which the negative effects of a 
long system response delay, nonlinear elements with dead zone 
and/or saturation, and process noises are the main obstacles 
in achieving high performance. The proposed NN-controller 
can replace conventional controllers, and has overcome all 
of the problems mentioned above. The NN-coordinator is 
applied to the coordinated control of two robots holding an 
object. Such a coordinated system is organized hierarchically, 
where the high level is the NN-coordinator and the low level 
is the coordinated robots. It is assumed that each robot is a 

RMS tracking errors of object's position (m) 
without the eoordinator I with the coordinator 

-104 . . . , . , . , . , . , * , . c 
0 500 1000 1500 2000 2500 3000 3500 4000 

time (x 0.01 sec.) 

and mass = 10 kg. 
Fig. 14. The internal force error in X direction without the NN-coordinator, 

1001 - 2000 

2001 - 3000 

30 t at Y direction 0.05733 0.00692 
at X direction 0.03694 0.03773 
at Y direction 0.05759 0.00312 
at X direction 0.03694 0.03773 

2 5. 

5 20. 

E 10. 

15: 

P - 5. 

5 o... 
e - 5. .- 

time (x 0.01 sec.) 

and mass = 10 kg. 
Fig. 15. The internal force error in X direction with the NN-coordinator, 

w u-% bsLc'v * - V' 

- l o + .  , . , . , . , . , . . . , . r 

stand-alone device equipped with a commercially designed 
(perhaps by different vendors) servo controller. The internal 
structure and/or parameters of the low-level subsystems are 
not affected by adding the NN-coordinator. This implies that 
some industrial robots could be coordinated to perform more 
sophisticated tasks than originally intended.. 

In contrast to the scheme of indirect adaptive control [lo], 
the proposed scheme enables the NN to be trained with 
system-output errors, rather than the network-output errors. 
The training algorithm is derived based on BP. However, 
in the BP algorithm, it is required to modify the weights 
by network4utput error that is not known when a multi- 
layer perceptron is cascaded in series to the controlled plant. 
Therefore, the proposed algorithm enhances the NN's ability 
to handle a wider range of control applications. A detailed 
analysis of the algorithm is presented and the associated 
theorems are proved. The only a priori knowledge about the 
controlled plant is the direction of its response, which is 
usually easy to determine for a SISO system. The direction 
matrix of an MIMO system can be determined, if some system 
constraints are imposed. Extensive simulations have been 
carried out and the results are shown to be quite promising. 
Good performance, a simple structure and algorithm, and the 
potential for fault tolerance make the proposed NN-controller 
and the NN-coordinator attractive to industrial applications. 

The remaining problems include: 

Choice of the number of HIDDEN-layer nodes: there 
is no systematic way to choose the number of the 

at Y direction ' 0.05759 0.00312 

Sample interval 

0 - 1000 at X direction 
at Y direction 

1001 - 2000 I at X direction I 

RMS errors of internal force (N) 

15.96137 3.75179 
1.12425 1.11996 
16.08066 1.89737 

without the coordinator with the coordinator 

2001 - 3000 
at Y direction r 1.10789 1.11099 
at X direction 16.07986 1.84620 
at Y direction 1.10790 1.10275 

Sample interval 

n - 1000 I at X direction I 

RMS errors of external force (N)  
without the coordinator I with the coordinator 

1.40957 I 1.84460 .~ 

1001 - 2000 

2001 - 3000 

Y 
at Y direction 6.67420 9.57597 
at X direction 0.67540 0.88516 
at Y direction 0.06293 0.26797 
at X direction 0.67540 0.85093 
at Y direction 0.06294 0.13169 

Sample interval RMS tracking errors of 
without the coordinator 

0 - 1000 at X direction 0.03696 
at Y direction 0.11624 

1001 - 2000 at X direction 0.03696 
at Y direction 0.11669 

2001 - 3000 at X direction 0.03696 
at Y direction 0.11669 

object's position (m) 
with the coordinator 

0.03903 
0.01390 
0.03896 
0.00657 
0.03882 
0.00652 
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nodes at the HIDDEN layer(s) to approximate a 
given mapping. As shown in Section V, adding more 
HIDDEN-layer nodes may not always improve the 
system performance. 
Starting the “-controller (coordinator): since the 
initial values of the weights are random numbers, 
the learning period may result in a large oscillation 
of the system output. This may be unacceptable for a 
certain controlled plant even for an open-loop stable 
system. 

These problems will be treated in our forthcoming papers. 
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