COMMUNICATION-ORIENTED ASSIGNMENT OF TASK MODULES IN
HYPERCUBE MULTICOMPUTERS

Bing-rung Tsai and Kang G. Shin

Real-Time Computing Laboratory
Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122

ABSTRACT

We formulate and solve the problem of assigning a task
consisting of multiple communicating modules to a hyper-
cube multicomputer such that the total communication
traffic during the execution of the task is minimized. Ex-
clusion of the timing details from the objective function
used allows us to formulate the task assignment problem
as a combinatorial optimization problem. Since finding an
optimal solution for this problem is NP-hard, a standard
state-space search algorithm as well as other heuristic algo-
rithms are used to find optimal/suboptimal solutions. The
relative performances of various algorithms are evaluated
using simulations. The assignments obtained from these
algorithms are also evaluated using an event—driven simu-
lator to learn how they perform under real-world execution
environments.

1 Introduction

Hypercube multicomputers have been drawing consider-
able attention due to their regularity for ease of construc-
tion and their potential for the high degree of parallelism
and fault-tolerance. A hypercube multicomputer system
often consists of a host and a number of nodes connected
in binary cube configuration. When a user writes a parallel
program for a hypercube, separate program modules must
be written for the host and each of the nodes. In most
situations, each processor node is responsible for execut-
ing at most a single task module and the mapping between
modules and nodes is one-to—one. We will henceforth use
both the terms “assign” and “map” interchangeably in this

paper.

As we will show in Section 2, different assignments of
task modules to processor nodes do not affect the cost of
computation, but they affect the cost associated with in-
terprocessor communications. The communication cost of
executing a set of task modules is defined to be the to-

The work reported in this paper was supported in part by the
Office of Naval Research under Grants No. N00014-85-K-0122
and N00014-92-J-1080.

0-8186-2865-0 /92 $3.00 © 1992 IEEE

38

tal link resources (measured in number of time units) used
during the execution of these modules.

We propose and solve the problem of mapping a set of
interacting task modules into a hypercube so as to mini-
mize an objective function, called communication traffic,
which is closely related to the communication cost. Since
the actual timing details are not included explicitly in the
formulation, the problem can be formulated as a combi-
natorial optimization problem for which several algorithms
are then developed. It is shown via simulations that the as-
signments found by optimizing this objective perform sig-
nificantly better than random assignments in most real-
world situations where the actual timing is figured in.

In [1], it is pointed out that there are two types of cost in
assigning task modules to processors: the cost of executing
a module on a processor and the cost of interprocessor com-
munication. Note that the cost of executing a module on
a processor is invariant among different assignments, since
at most one module is assigned to each processor node.
Thus, only the cost of interprocessor communication needs
to be considered for task assignment. This point differen-
tiates the work presented in this paper from others related
to task assignment, such as [2, 3, 4, 5, 6, 7, 8].

The paper is organized as follows. Section 2 deals with
the system model and the assumptions used. Our prob-
lem is also formally stated there. In Section 3, the NP-
hardness of the problem is proved first. We then propose
a heuristic function that can be used for standard state-
space search algorithms. The performance of the proposed
heuristic function is evaluated using simulations. Other fast
heuristic algorithms are also considered as means to find
good suboptimal (instead of optimal) solutions for large
hypercubes. Event-driven simulations are carried out and
described in Section 4 to determine how well these assign-
ments perform in real-world execution situations. The pa-
per concludes with Section 5.

2 Preliminaries

As in virtually all existing hypercube multicomputers,
inter-module communications are accomplished via mes-

sage passing. Each message is further decomposed into
smaller packets of fixed length. By using a packet as the
unit of communication, the communication volume between
each pair of modules can be expressed as the number of
packets to be exchanged between them. In case the com-
munication volume cannot be determined precisely, one can
use the maximum number of packets that may possibly be
communicated between each pair of interacting modules.

The hypercube multicomputer under consideration is as-
sumed to possess the e-cube routing scheme {9] under which
a packet is routed from the source to the destination by
modifying different bits between the address of the source
and that of the destination in a fixed order, e.g., from the
least-significant bit to the most-significant bit. Thus, each
packet is routed through a fixed shortest path between the
source to the destination. It is also assumed that each
packet is routed through the chosen path to its destination
by message switching or circuit switching.

A task is composed of a set of modules, each of which
is to be executed on a node, and at most one module is
assigned to a node. This is not unrealistic since most par-
allel programs written for hypercubes follow this rule, and
most existing hypercube systems do not support per-node
multi-programming environments. Besides, the number of
processors can be used by a task is not a limiting factor
since the number of processors is usually quite large in
a distributed—-memory system like hypercubes. Therefore,
the number of nodes in a subcube allocated for executing
a task must be greater than, or equal to, the number of
modules of the task.

When embedding a group of task modules into an n-
dimensional hypercube or n—cube, one can, without loss of
generality, assume the task to consist of 2™ modules. For a
task with M modules such that 2"~! < M < 2" for some
integer n, one can add some “dummy” modules and make
the task consist of 2" modules. The scheme for allocating
subcubes of necessary size has been discussed in detail in
[10]. So, we will henceforth assume M = 2" where n is the
dimension of the subcube allocated by the host to execute
the task, and thus, the mapping of modules into nodes is
now one-to—one and onto.

Suppose costcpu{mi) is the computation cost to be
incurred by a node to execute module m;. Since a
hypercube is homogeneous and symmetric, any assign-
ment will have the same total computation cost, ie.,
o <i<M—1 costcpu(m;). However, a different assignment
will lead to a different communication cost. We define the
communication cost in executing a set of task modules as
the sum of time units each communication link is used dur-
ing the execution. In other words, the communication cost
is a measure of the link resources used by an instance of
execution expressed in time units.

Suppose ¢(k) is the number of time units needed to send
a packet over a path of k hops, and the time a link is kept

39

Figure 1: An example task with two assignments to a Q..

busy for purposes other than packet transmission — such
as establishing the communication path — is assumed to
be negligible.

Suppose U is the M x M communication volume matrix,
where Uij = Uji is the communication volume between m;
and m; expressed in number of packets, and M = 2" is the
number of modules. In Fig. 1, let

0 30 10 80

30 0 70 20

U= 10 70 0 40
80 20 40 0

Then for the assignments (a1 and az) shown, costcom(a1)
and costcom(a2) — which denote the total communication
cost of a; and ay, respectively — are:

costeom(a1) = 150¢(2) + 100¢(1)

and
costeom(az) = 30c(2) + 220¢(1).

Since the actual timing is not considered explicitly in the
cost, the above equations are most accurate if the com-
munication between each pair of module is done in “one
shot,” i.e., all packets are/combined and sent as a single
message. Thus, the above equations are the lower bounds
of the actual costs.

For hypercubes with message switching, it is obvious that
we have c(z) = z¢(1). This relation may be less accurate
in case of circuit switching. However, if we assume that the
“call request” signal — which is sent out to search for a free
path — occupies each link for a very short time, then this
expression will be a good approximation even for circuit
switching [11]. As a result, in either case, costcom(a1) =
400c(1), which is substantially greater than costcom(82) =
280¢(1).

By defining a unit of communication traffic as ¢(1), the
amount of communication traffic generated from executing
a task under assignment a becomes:

k(a) = z 1v;,

1<i<n

where v; is the number of packets traversing i links. Thus,
we have
costcom(a) ox k(a).

The following notation will be used throughout the pa-
per:

o n: the dimension of a subcube available for executing
the task under consideration.

e a: alx M assignment vector, the i-th component
of which represents the fact that m; is assigned to a
node whose address is a;, 0 <1 <M — 1.

o H(ni,n;) : the Hamming distance between node n;
and node n;.

o h(mi,mj,a) : the Hamming distance between the
nodes to which m; and m; are assigned under assign-
ment a.

The communication traffic under assignment a can be

rewritten as:

0<i<j<M -1

k(a) =

h(mi, m;,8) x Us;

When introducing the notion of communication cost and
communication traffic, we deliberately avoid the low-level
timing details. For example, we do not account for how
packets are grouped into messages or when these messages
are going to be sent. We only consider the total number of
packets to be sent/received between a pair of task modules
during the whole mission time, thus allowing for a simple
function that can be translated into a simple combinatorial
optimization problem. Our simulation results (in Section
4) show that optimizing this function yields optimal assign-
ments for communication-bound tasks with respect to an
actual low-level communication performance measure.

Our task assignment approach is more suitable for on-
line, automatic compile-and-run systems, especially for the
code-loading phase after compilation. If the timing details
of task—-execution behaviors are known a priori, the indi-
rect optimization can also be viewed as the first phase of
task allocation [12] which consists of task assignment and
scheduling. After applying our traffic-minimization algo-
rithm, one can apply a message scheduling algorithm to fur-
ther optimize the utilization of communication links during
an instance of task execution.

3 Task Assignment Algorithms

A graph mapping problem is intrinsically hard, as stated
in the following theorem.

Theorem 1: Given an M x M task communication vol-
ume matrix U, where M = 2", n is the dimension of the
hypercube, and given an integer L, the problem of deciding
the existence of a mapping a with k(a) < L is NP-hard.

40

Proof: To show it is NP-hard, we restrict it to the
hypercube embedding problem discussed in [13]. Con-
struct a graph G = (V, E) representing the interaction
between modules where V = {m; | 0 < i < M -1}
and E = {(mi,m;) | Ui; > 0}. If m; communicates
with m;, then there is a link between m; and m;. Let
L= Zo<.‘<j<M—1 Uij, then there is a mapping a such that
k(a) = L if and only if G can be embedded into a Qn,. O

Though the above problem is formulated as a decision
problem, it can be shown that the corresponding optimiza-
tion problem is also NP-hard [14]. Thus, there are no
known polynomial~time algorithms to find an optimal map-
ping. This in turn calls for heuristic approaches.

The use of state-space search with heuristics for improv-
ing the search performance in NP-hard task mapping prob-
lems has been investigated by Shen and Tsai[8]. It was
shown to be effective in finding optimal solutions for this
type of problems. Following this approach, we will develop
a heuristic function to be used for finding a task mapping
with minimum communication traffic. With this heuristic
function, the state-space search algorithm, or so called the
A* algorithm [15], is then implemented.

The module mapping problem is formulated as a state-
space search problem as follows:

1. State Description: A state is described by a set of
ordered pair(s), S = {(mi, z) | z € B(Qn)}, where m;
is a module and B(Qy) is the set of binary addresses
of nodes in a Qy, and (m, z) means that module m;
is assigned to node z in the Q,, or equivalently, m; is
labeled with the node address . Each state S denotes
a partial mapping.

2. Initial State: So = {(mo,0")}, where mo is an arbi-
trary module. Since a @y is symmetric, without loss
of generality, one can start with assigning any module
to 0™.

3. Operator: An operator adds a new ordered pair to
a state S and generates at least one new state. The
procedure works as follows. Let R be the set of labels
in B(Qn) that have not yet been used for mapping,
and m; be the last module assigned. For each b € R,
construct a new ordered pair (mi41,b) and generate a
new state S U {(mi41,b)}. The state-generating op-
erator should not be applied to a goal state which is
defined below.

4. Goal State: Any state which includes an ordered pair
(m2n-1,%) is a goal state, i.e., the search stops when
all modules are assigned.

For a standard A* search algorithm, the heuristic func-
tion f(8) of state S consists of two parts, g(S) and h(S),
where g(S) is the actual cost of the path to the current
state, and h(S) is an estimated cost of the path from the
current state to a goal state. To guarantee the algorithm
to lead to a goal state, h(S) < h*(S) must hold for all S

where h*(S) is the actual cost of the path from the current
state S to the corresponding goal state. This is termed the
admissibility of an search algorithm[15].

For a state S, g(S) is calculated as follows:

9(8) =0;
if| S |=1 then exit
else

for each pair of (mi,z) and (m;,y) in S
9(S) = 9(S) + H(z,y) * Us;.

The function k(S) is calculated as:

h(S) =0;
R = the set of nodes available for assignment;
V = the set of modules not yet been mapped;
for each (mj,y) € S
for each z € R, compute H(z,y) and put each
value in vector h;
for each m; € V, put U;; into vector u;

h = sort®(h);
u = sort’(u);
h(S)=h-u.

We will now prove the admissibility of the search algo-
rithm, i.e., 2(S) < h*(S) for all S, and thus, the algorithm
is guaranteed to find an optimal solution when terminated.

Theorem 2: For any complete mapping a containing S
as a partial mapping,

h*(S) = k(a) — 9(5) 2 h(S)-

Proof: We have

k(a) - 9(5) =

>

m;EW,m;eW’

h(mi, mj, a) x U,

where W is the set of modules already assigned in S and
W' is the set of modules not yet assigned. Without loss
of generality, we can assume that for each m; € W' and
for all m;’s in W, the corresponding U;;’s are arranged
in descending order into vector u;. Also, the values of
h(mi, m;,a) are put into a vector h’ in the correspond-
ing order. Then the above expression can be rewritten
as Zm,-ew' h’ . u;. But from the algorithm of calcu-
lating h(S), h(S) = Em,-ew'h - uj, in which h is the
sorted (in ascending order) vector of H(z,y) where y is
the node assigned module m; and r is some node not
yet assigned in S. Since each H(z,y) = h(mi,m;,a)
for some mi, u = sort®(u;). Since h-u; < h’ . uj,

h(S) < k(a) — g(S) = h*(S) for any S. n]

41

avg. no. of states

o p=10 | p =100 | u = 1000
104 877 914 905
.30p 878 909 906
.50p 890 873 871
T0u 872 863 863
90p 842 843 837

Table 1: Number of states generated by the search algo-
rithm.

Table 1 shows the number of states generated by the
search algorithm with the proposed heuristic function. The
inputs are the tasks consisting of eight modules with ran-
domly generated values of U;;’s. Ui;’s are generated by
a normally-distributed random variable with mean p and
variance 0. When o is relatively large and a negative num-
ber is generated, U;; is set to 0. Each entry is obtained by
averaging the results over 1000 different inputs. It is found
that the number of states generated is not co-related to p.
However, the number of generated states tends to decrease
as o increases. This agrees with our intuition since if o
is small, U;,’s have a lower variance, and thus, the differ-
ences among assignments are not significant. This in turn
leads to more states generated before an optimal mapping
is found.

Note that when mapping an 8-module task into a Qs,
the total number of states in the search tree is

147+ (TY/50) + (71/41) + (T1/31) + (7!/2!) + 7! = 13, 700.

As can be seen from Table 1, the search algorithm generates
less than 7% of the total number of states.

When mapping a 16-module task into a Qg, the total
number of states in the search tree is in the order of 10'2.
For modules with sparse communications among them and
thus a high o/p ratio, the search algorithm can still manage
to find an optimal solution in a reasonable amount of time.
For example, if U;; is given by a normally—distributed ran-
dom variable with o = 0.9y, then an optimal mapping can
be found after generating approximately 10° states. How-
ever, in general, even if only 0.1 % of the total number of
states were generated using a computer capable of calculat-
ing 10° states per second, the total amount of time required
still exceeds 10* seconds.

This fast-growing state space makes the computation
time required for finding an optimal mapping unacceptably
long even with the help of the proposed heuristic function.
Thus, we also need some fast heuristic algorithm to find a
good suboptimal solution for large problems.

Greedy algorithms have been used to tackle some NP-
hard problems and is shown to produce good results{14].
So, we will also investigate its performance on our task
assignment problem.

In the greedy algorithm, it essentially tries to find a
Hamiltonian cycle in the graph with the greatest total

weight using the greedy approach. As the algorithm tra-
verses through the graph, each module is labeled with a
distinct n-bit binary reflected Gray code. More heavily
communicating module pairs will be placed in adjacent
nodes, thus reducing the communication traffic between
them. This process is done wherever a different module
becomes the starting node of a Hamiltonian cycle while
keeping the best solution with the least traffic obtained
thus far. Since there are no data dependencies among the
iterations of the algorithm, this greedy algorithm can be
easily parallelized into an O(M?) algorithm executing on
an M-processor system.

Obviously, the greedy approach does not find a Hamil-
tonian cycle with the minimum total weight since finding
it is itself an NP-hard problem. Suppose there is an al-
gorithm « which can find a Hamiltonian cycle in U with
a total weight F, and w is a vector consisting of ele-
ments Us;; € U which do not appear in the cycle and are
sorted in ascending order. Also, let v denote the vector
[R*[M], R"[M +1),...,R"[Z — 1]] where Z is the dimension

of h™ as defined in Section 2, ie., Z = (%"

have the following result which states the upper bound of
communication traffic of assignments found with the results
of applying o to U.

) . Then, we

Proposition 1: Given U, the assignment a® which uses
the Hamiltonian circuit found with algorithm o satisfies the
following inequality:

k(a®*)<w-v+4F.

Our simulation results have indicated that the actual
value of k(a®) is almost always within 20% of the upper
bound. The simulation results also suggest that the Hamil-
tonian circuit with a minimized total weight can lead to a
better solution. In the greedy approach, the Hamiltonian
circuit found does not have the least weight. However, more
complicated algorithms are much slower and do not pro-
duce solutions with traffic improvements large enough to
justify the extra computational cost.

It is also found that the time required for the search
algorithm to find the optimal solutions increases drastically
when the cube size increases from 3 to 4. We will therefore
find good suboptimal assignments efficiently for problems
of sizes greater than n = 3, M = 8.

To assign a task consisting of 2",n > 4, modules to
a Qpn, the algorithm Partition divides the problem into
2"~3 sub-problems, each of which is a mapping problem
of size n = 3, M = 8. Using the search algorithm with
the proposed heuristic function, we find a local optimal
assignment in a Q3. These local optimal solutions are then
combined into a solution for the original problem. The
algorithm consists of three steps as follows:

1. Partitioning: the task graph corresponding to U is
recursively partitioned down to Kjs’s so as to map

42

subtasks into Qi’s. The edges in the task graph is
first sorted according to Ui;’s. The graph is then
partitioned into two equal-sized subgraphs by cutting
through the least-weighted edges which are mutually
disjoint, i.e., no two edges share a common vertex.
This procedure is repeated until each subgraph be-
comes a K.

2. Application of the search algorithm to find local opti-
mal solutions for mapping each K3 into a Q3.

3. Joining: Solutions for sub-problems are joined to-
gether to produce a solution for the original problem.
The joining process follows the reverse of the cut pro-
cedure performed in the first step.

To study the performance of various algorithms, we sim-
ulated an n—cube to which 2" task modules are to be as-
signed. The results for n = 3, =8and n =4,M =16
are shown in Figs. 2 and 3, respectively. For larger prob-
lem sizes, the results are found to be consistent. In these
plots, “A1” represents the greedy algorithm, “A2” denotes
the state-space search, and “A3” represents the algorithm
Partition. Also, the horizontal axis represents the o/u
value while the vertical axis depicts the average communi-
cation traffic.

For each data point in these plots, the algorithm is ex-
ecuted for 1000 randomly—generated tasks where each Uj;
is given by a normally—distributed random variable with
mean g = 100 and variance ¢, where o ranges from 0.1p
to 0.8u. Changing the absolute values of y is found to
have little effect on the relative performances of assign-
ments found by different schemes as long as the ratio o/p
remains constant. Therefore, only the results obtained for
u# = 100 are presented.

Our simulation results show the superiority of all three
algorithms to random assignments and the improvements
becomes more pronounced as o/p increases. The commu-
nication traffic is reduced by ~ 1 % when o/p = 0.1, but
increased to more than 16 % when o/p = 0.8. The differ-
ences in traffic among the assignments found by all three
algorithms are not very significant. For inputs with small
values of o/, the differences are less than 3 %. Overall, the
partition algorithm still consistently finds better solutions
than the greedy algorithm, especially when the variance
among inputs becomes large. Since optimal assignments
cannot do much better in this situation, the margin allow-
ing improvements is actually quite small. This agrees with
our intuition that if the variance among U;;’s is small, all
assignments tend to have almost the same communication
cost, and none of the three assignment algorithms can make
much difference.

4 Low-Level Performance Evaluation

The actual performance of an assignment during task
execution time depends greatly on the actual system im-

000 11—t 1
§7104— 4 - J-d-d_J_IJ_ .14
R
50— - =" - AT T AT
s J-J-J-ddJ_ & I
Y S
00— -~ 7 AT=2" 1 T 1T 77
4750_.&;*'_' Ry D I DR D
1 "0..‘,‘ [
4500T— 3~~~ "‘}-'1—'1—‘1--
42504 4 - J - - - PiQemSm®_
oot — 4| | 1
00 01 02 03 04 05 06 07 08 09
A =+=A Ran
Q=m0 Al
@ rovenn * A2
Figure 2: Performance comparison of algorithms, n =
3, M =8.
el T T L O I I
25004 A —d—A—d—d—d— - A
26(!!)—-—'——'——'——'——'—'——&5—'-——-
i I_+_._+.—A—‘1"l |
255001 g AT - - -0
250004 4 g A — A - A — - — -
245‘”__‘__'_',__'__.'__'_..'__'_..
] '*J&_' 1T
60001~ =Y I AT
zasoo—-a—-a—-a--a'—’%.—:‘-?'—"#;—.‘ -
P000d— J—J o1 TT¥nATE
I O N T N B
22500
00 01 02 03 04 05 06 07 08 09
A —=+—A Ran
Oemm0 Al
@ eseene * A2
X= ==X A3

Figure 3: Performance comparison of algorithms, n =
4, M = 16.

plementation. In our simulations, we will again consider
circuit switching and message switching.

We define a communication event between mod-
ules(CEBM) as an instance that a module needs to send
a message — which usually consists of several packets —
to another module, while defining a communication event
between nodes(CEBN). as an instance of a node needing
to send a message to some other node. In circuit switch-
ing, these two are indistinguishable. In message switching,
however, a single CEBM can become several CEBNs. For
example, when a pair of modules reside in two different
nodes which are 2 hops apart, in circuit switching a CEBM
from one module to the other is just a CEBN from one
node to the other node. For message switching, however,
this CEBM becomes two CEBNs: one from the source to
the intermediate node, and the other from the interme-
diate node to the destination. Also, in circuit switching,
messages can only be queued at the source node, but in
message switching they may be queued at the source as
well as at any intermediate nodes.

We say there is an outstanding CEBM or CEBN if a mes-
sage needs to be sent by a node. An outstanding CEBM (or

ime
h]]lmm]mmm node 0 to node 2
CIRCUIT SWITCHING
e (.

_ Ml

cTr

MESSAGE SWITCHING

43

Figure 4: Example demonstrating the definition of CTT.

CEBN) is said to be processed if it is sent through a certain
link in the system. An outstanding CEBM or CEBN may
not be processed immediately due to the limited link re-
sources available. A CEBM or CEBN is said to be blocked
if it is not processed immediately. When the message is
sent to its destination, the corresponding CEBM or CEBN
is said to be completed. For message switching, 2 CEBM is
actually turned into several CEBNs during the execution of
a task if the communicating modules are located more than
one hop apart. Therefore, the number of CEBNs depends
on how task modules are assigned.

The goodness of a task assignment during its execution is
measured by the communication turnaround time (CTT),
which is the time span from the first CEBN becoming out-
standing to the completion of all CEBNs. As an illustrative
example, let us consider a network of four nodes with three
CEBMs during one instance of task execution, as shown in
Fig. 4. Three CEBMs become outstanding at three differ-
ent times. The status of each link during the processing of
these CEBMs under circuit switching and message switch-
ing is each shown in this figure.

As we have shown in Section 2, the actual time needed
for a node to execute a module is invariant among different
assignments, since at most one module is assigned to each

node. Therefore, CTT is the main source of difference in
the completion time of a task.

To evaluate the resulting CTTs of a task assignment, we
conducted simulations. Our simulation model is described
below.

1. Timing: A time unit is selected as the time required
to send a packet over a single communication link.

2. Routing algorithm and mechanism:

o Under message switching, the routing mecha-
nism at an intermediate node on a path will
take a certain amount of time to forward a mes-
sage from one link to the next. We assume this
time to be relatively small and absorbed into the
length of the corresponding message.

o Under circuit switching, the time needed for find-
ing an available communication path is ignored.

¢ The propagation delay on a communication path
is assumed to be negligible.

3. Task communication behavior:

o T, given for each task, denotes the time span
between the arrivals time of the first and last
outstanding CEBMs. The arrival times of out-
standing CEBMs are uniformly distributed in
[0,7]). Hence, for a task, a larger T repre-
sents the task being less communication-bound,
while a smaller T represents it being more
communication-bound.

® Lmsg: the maximum message length measured
in number of packets. The communication
volume between each pair of modules is ran-
domly grouped into messages of lengths within
[lerSQ]'

4. Message scheduling and queueing: If a link is
busy when it is to be used for transmitting an incom-
ing message, the message is stored in a FIFO queue
at the source end of the link. When more than one
message requests the use of the same link at a time,
one of them is randomly chosen to use the link. This
selection procedure is repeated until all requests are
honored.

The goal of our simulation is to comparatively evalnate
the goodness of different assignments under the same exe-
cution environment, but not to compare the performance
of different system implementations. So, the simulation
results should not be used to determine the relative perfor-
mance of different switching methods or routing algorithms.

The assignments found by all three algorithms, as well
as random assignments, are fed into the event-driven sim-
ulation program to evaluate their performances in a close
to real-world environment. The results are shown in Table

44

2(a), (b) for message switching and circuit switching, re-
spectively. U;;’s of the inputs have o/u = 0.4. The effects
of changing T under the same assignment for a given task
are also demonstrated.

For the problems of size n = 4,M = 16 and larger,
changing T in the range [10,300] does not have any sig-
nificant impact on the relative performance of assignments
found with different algorithms. The assignments found
with all of the above algorithms have shown substantial im-
provements over random assignments for V T € [10, 300].
This is because the network is saturated with messages
when T = 300.

n=3M=238 n=4,M =16
T | ran al a2 | ran al a2 a3
10 | 220 | 176 | 173 | 831 | 665 | 642 | 657
25 1220 | 176 | 173 | 831 | 666 | 640 | 656
50 221 | 177 | 175 | 833 | 670 | 643 | 659
100 | 222 | 182 | 176 | 835 | 673 | 647 | 663
200 | 308 | 306 | 302 | 835 | 675 | 650 | 665
300 [311 | 308 | 303 | 837 | 678 | 657 | 666

Table 2(a): CTTs of assignments under message switch-
ing.

n=3,M=28 n=4M=16
T | ran al a2 | ran al a2 a3
10 | 216 | 172 | 171 | 816 | 645 | 631 | 637
25 215 | 172 | 172 | 818 | 646 | 632 | 640
50 | 217 | 173 | 173 | 822 | 646 | 633 | 643
100 | 218 | 177 | 176 | 824 | 653 | 641 | 646
200 | 237 | 214 | 213 | 828 | 665 | 645 | 650
300 [307 | 305 | 304 | 832 | 668 | 650 | 657

Table 2(b): CTTs of assignments under circuit switch-
ing.

In case of n = 3, M = 8, the network becomes less con-
gested at T x 160 and the differences of CTTs among dif-
ferent assignment algorithms and random assignments start
to diminish. So, we can conclude that minimizing commu-
nication traffic yields a peak improvement when the task
to be assigned is communication-bound and the commu-
nication network may become highly congested during the
execution of this task. For n = 4, M = 16, the T value
which results in small performance differences is approx-
imately 750, while for n = 5, M = 32 it is found to be
about 2250. However, when T is relatively large and the
network is not near saturation, the difference in the length
of node queues can be made smaller by using the assign-
ments resulting from the minimization of communication
traffic. Depending on system implementation, the perfor-
mance of a node may also be influenced by the length of
message queue it has to maintain.

The effects of changing Lmsy are more subtle than
changing T. Generally, shorter message lengths result

in better performances in circuit-switched hypercubes.
For message-switched hypercubes, changing the message
length does not affect system performance notably if the
overall communication traffic is fixed.

Our simulation results have indicated that different
switching techniques do not matter much to system perfor-
mance for communication-bound tasks, i.e., the network
is congested with messages during task execution. Circuit
switching is shown to have only a slightly better perfor-
mance than message switching for the same task assign-
ments. However, as mentioned eatlier, the actual perfor-
mance will depend on system implementation, and thus,
the simulation results should not be used to compare the
effectiveness of the two switching methods.

5 Concluding Remarks

In this paper we have formulated and solved the prob-
lem of mapping a task which is composed of interacting
modaules into a hypercube multicomputer by minimizing an
objective function called the communication traffic. This
objective function allowed us to find module assignments
with the usual straight—forward combinatorial optimization
techniques. The problem of finding an assignment that
minimizes the communication traffic was proven to be NP-
hard. Several algorithms have been investigated for finding
optimal or suboptimal solutions for this problem.

It is also verified via simulations that, by optimiz-
ing this relatively simple function, the actual task ex-
ecution communication efficiency, measured in commu-
nication turnaround time (CTT), is also optimized for
communication-bound tasks.

References

(1] G. S. Rao, H. S. Stone, and T. C. Hu, “Assignment
of tasks in a distributed processor system with limited
memory,” IEEE Trans. on Computers, vol. C-28, no.
4, pp. 291-299, April 1979.

C. E. Houstis, “Allocation of real-time applications to
distributed systems,” in Proc. of the 1987 Int’l Conf.
on Parallel Processing, pp. 863-866, August 1987.

2

V. M. Lo, “Task assignment to minimize completion
time,” in Proc. of the Fifth Int’l Conf. on Distributed
Computer Systems, pp. 329-336, May 1985.

(3]

(4] V. M. Lo, “Temporal communication graphs: A new
graph theoretic model for mapping and scheduling
in distributed memory systems,” in Proc. 6-th Dis-
tributed Memory Computing Conference, pp. 248-252,

April 1991.
(5]

D. T. Peng and K. G. Shin, “Static program assign-
ment in circuit switched multiprocessors,” in Proc. 6-
th Distributed Memory Computing Conference, pp.

244-247, April 1991.

45

[6] W. W. Chu, L. J. Holloway, M. T. Lan, and K. Efe,
«Task allocation in distributed data processing,” Com-
puter, pp. 57-69, November 1980.

[7] K. Efe, “Heuristic models of task assignment schedul-
ing in distributed systems,” Computer, vol. 15, no. 6,
pp. 50-56, June 1982.

C. Shen and W. Tsai, “A graph matching approach
to optimal task assignment in distributed computing
system using a minimax criterion,” IEEE Trans. on
Computers, vol. c-34, no. 3, pp. 197-203, March 1985.

C. Lang, “The extension of object-oriented languages
to a homogeneous concurrent architecture,” Technical
Report 5012:TR:82, California Institute of Technol-
ogy, Department of Computer Science, 1982.

M. S. Chen and K. G. Shin, “Processor allocation in an
n-cube multiprocessor using gray codes,” IEEE Trans.
on Computers, vol. C-36, no. 12, pp. 1396-1407, De-
cember 1987.

A. S. Tanenbaum, Computer Networks, Prentice Hall,
1988.

D. T. Peng and K. G. Shin, “Static allocation of pe-
riodic tasks with presedence constraints in distributed
real-time systems,” in Proc. 9-th Int’l Conf. on Dis-
tributed Comput. Syst., pp. 190-198, June 1989.

D. W. Krumme, K. N. Venkataraman, and G. Cy-
benko, “Hypercube embedding is NP-complete,” in
Proc. of the First Conf. on Hypercube Concurrent
Computers and Applications, pp. 148-157, August
1985.

M. R. Garey and D. S. Johnson, Computers and In-
tractability, W. H. Freeman and Co., 1979.

N. J. Nilsson, Principles of Artificial Intelligence,
Tioga Publishing, 1980.

(8]

(9]

(10]

(11]
(12]

(13]

(14]

(15]

