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are now commonly used for such embed- 
ded real-time applications as computer-in- 
tegrated manufacturing, industrial process 
control, defense systems, and electric 
power distribution and monitoring. These 
applications usually impose stringent tim- 
ing and reliability requirements because a 
system failure could lead to catastrophe. 

Distributed systems with point-to- 
point interconnection networks are natu- 
ral candidate archtectures for these appli- 
cations primarily because they are most 
hkely to meet stringent timehess and re- 
liability requirements. The key to success 
in using a distributed system for real-time 
applications is the timely execution of 
computational tasks, whch usually reside 
on different nodes and intercommunicate 
to accomplish a common goal. 

Providing deadline guarantees for real- 

time tasks is very difficult because it in- 
volves interaction among archtectures, 
operating systems, and tools to evaluate 
both performance and dependability. To 
study these interactions, we have been de- 
signing, implementing, and evaluating a 
19-node hexagonal mesh, called Hexago- 
nal Archtecture for Real-Time Systems. 
The HARTS architecture is briefly de- 
scribed in the box on pp. 60-61. 

In &IS article, we describe two versions 
of the HARTS operating system, which is 
based on Software Components Groups 
pSOS uniprocessor kernel. In one version, 
we have enhanced pSOS services to pro- 
vide interprocessor communication and a 
distributed naming service. In the second 
version, we add real-time fault-tolerant 
communication, includmg reliable broad- 
casting, clock synchronization, and group 
communication. 
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We are also developing a suite of tools 
to evaluate the performance and depend- 
ability of HARTS, the HARTS operating 
system, and other real-time systems. The 
goal of these tools is to let HARTS users 
perform a broad range of experiments to 
measure the performance and fault-toler- 
ance of various programs. 

HARTS OPERATING SYSTEM 

HARTS operating system, HARTOS, 
is designed to exploit the network proces- 
sor on each HARTS node. It consists of 
pSOS executing on the application pro- 
cessors, the HARTOS protocol code exe- 
cuting on the Ethemet processor, and an 
interface between them. Work on a 
customized network processor is under- 
way to replace the Ethemet processor. Be- 
cause the design will be the same when the 
custom network processor is complete, 
the “network processor’’ we refer to in 
subsequent description is the current 
Ethernet processor. 

pSOS node kernel. T h e  pSOS uni- 
processor kemel serves as the executive on 
each application processor and provides 
facilities for process and memorymanage- 
ment, event handling, and interprocess 
communication. A process is the unit for 
sequential execution, resource ownershp, 
and schedhg .  Processes are named and 
use a name to locate a process they wish to 
comnunicate with. The kemel uses a pre- 
emptive priority-based scheduler that lets 
processes of equal priority cycle in a 
round-robin fashion. Processes can dy- 
namically change their priority and pro- 
tect themselves from interruption whle in 
critical sections by setting their mode to 
nonpreemptive. Processes communicate 
with each other primarily through mes- 
sage exchange, an object that holds a 
queue of messages or processes, to allow 
many-to-many process communication. 

Version 1. In  the first version of 
HARTOS, we extended the pSOS kemel 
to work in a multiprocessor and distrib- 
uted environment. New services include 
interprocessor communication (both 
datagram and remote procedure calls) and 

a distributed naming service. We built this 
version atop Communication Machin- 
ery’s Kl kemel, whch provides protocol- 
support facilities such as the Ethemet in- 
terface and mechanisms for setting 
time-outs and handling interrupts. 

HARTOS extends the pSOS process 
control, interprocess 
cominu n i cation. ti me 

tion processor enters names explicitly into 
the table. Each network processor main- 
tains a table of map entries for entities de- 
clared on that node by the associated ap- 
plication processors. 

,4 process may locate a named server by 
submitting a find request to the network 

processor. During a find 
omration. the network 

aueries. and name-look- - &ocessor searches the 
;p functions to work be- 
tween processors on the 
same node and across the 

Processes communicfle 
DrimoriIV throuoh 

iocal name table for a 
match. If there is no local 
match, it broadcasts a re- 
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network. Calls may be quest for a name mapping 
blocking or nonblocking, message exchange/ to other network proces- 
and the user can specify a an object that holds a sors on behalf of the pro- 
time-out and maximum cess that made the re- 
number of retries to be queue of messages 01 quest. Only network 

processors that detect a 
match r edv  to the re- 

used for each remote call. 
Nonblochg calls are not processes. 
queued. This policy is 
consistent with the requirements of many 
real-time applications, such as control ap- 
plications in whch sensor data is gathered 
periodically and only current data is of 
value. A function is available to let the 
sending process block until an outstanding 
operation completes. 

pSOS provides exchanges for passing 
short messages between processes on the 
same processor. Shared memory may be 
used to pass larger data blocks. An exten- 
sion of pSOS message-passing primitives 
would still handle only small messages, so 
we needed a mechanism for large data 
transfers across the network. Version 1 in- 
cludes operations that transfer up to 16 
Kbytes of data between processes and a 
mechanism for prioritizing data transfers 
to order operations from different pro- 
cesses. Providing a mechanism to assign 
priorities for other operations was not a 
concem, since these operations have few 
resource and timing requirements, and 
version 1 does not support timeliness 
guarantees. 

We specify destinations for system calls 
usingan intemal address that consists of an 
application processor ID and an exchange 
or process ID. The HARTOS naming 
service provides the addresses. The net- 
work processors maintain a distributed 
name table, which is used to map logical 
names to intemal addresses; the applica- 
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quest, and the first reply 
received is taken. The request is handled 
entirely by the network processors and is 
not visible to the application processors. 

Version 2. As the communication ser- 
vices became more complex, we found we 
needed a more sophsticated environment 
for implementing and experimentingwith 
different communication protocols. In the 
second version of I!IARTOS, we are add- 
ing the communications subsystem shown 
in Figure 1. The  additional real-time 
communication services -which contain 
some components that are different im- 
plementations of version I components 
- are a global time base and a real-time 
channel service to provide communica- 
tion with guaranteed delays. The global 
time base, which we plan to maintain using 
the clock-synchronization algorithm de- 
scribed by Parmesh Ramanathan and col- 
leagues,‘ enables the real-time channel 
service. Version 2 will also include fault- 
tolerant services such as reliable broad- 
casting and group communication. 

Another difference between the two 
versions is that we are using a derivative of 
the x-kernel as the executive for the net- 
work processor in version 2. The K1 ker- 
nel provides only primitive support, and 
the x-kernel has proved effective in sup- 
porting communication protocols.’ Ap- 
plications can be implemented as protocol 
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modules that can be integrated in the pro- 
tocol stack. The x-kemel provides several 
fadties for implementing protocols, such 
as a uniform protocol interface and librar- 
ies, to efficiently manipulate messages and 
maintain mappings. It also comes with 
utilities to configure and test different pro- 
tocol stacks. 

Commlmication subsystem. Communica- 
tion services are provided in the form of 
protocols running on the x-kemel. Figure 
1 shows the protocols’ interdependencies. 
At the lowest level is the Id-level proto- 
col, whch uses a multiclass earliest-due- 
date scheddng algorithm’ to support a 
mix of normal (best-effort) and real-time 
(guaranteed maximum latency) traffic. 
The normal hk-level protocol also sup- 
ports a reliable broadcast mechanism. The 

figure shows the real-time-channel Id 
level as logically distinct fi-om the normal 
h k  level m a d y  because the two differ in 
how they manage the buffer and in-transit 
messages. 

At the next level up are the clock-syn- 
chronization protocol -which maintains 
a system-wide synchronized time base, ac- 
cessible by application tasks and other 
protocol modules - and the Frag proto- 
col - which fragments large messages 
into linl-level-size packets and transports 
them. When Frag receives the message 
fragments, it collects them and coalesces 
them into a single message. 

The module for the clock-synchroni- 
zation protocol interacts with its other 
nodes’ clock-synchronization protocols to 
provide the global time base. The proto- 
col relies on a hardware time-stamping 

HARTS ENVIRONMENT 
Hexagonal Architecture for Each €PXFS node has several 

Real-Tune Systems is an experi- application p’ocessors, which 
mental distributed real-time sys- run application tasks, and a net- 
tem,consistingofmultiprocesor work processor, which contains 
nodes connected by a point-to- the intehce to the network, 
point interconnection network buffer memory, and a RISC 

Figwe A. A wrapped hexagml m h  of dimenscm 3 with 19 nodes. 

mechanism to disseminate the clockvalue 
of a local node to other nodes’ and uses the 
interactive convergence algorithm on the 
clock values it receives from other nodes. 

The programmable routing controller, 
which is under development, affixes a 
transmit-time stamp to a clock packet just 
before its transmission and appends a re- 
ceive-time stamp to any clock packet it 
receives. This hardware time-stamping 
ensures that the protocol can factor out 
delays in the processing and propagation 
of clock messages, so that they do not af- 
fect the tightness of the synchronization. 

The protocol also uses a hardware- 
maintained local clock with a resolution of 
1 ms. The clock, which can be read di- 
rectly by processes running on the net- 
work processor, is used to set deadhes for 
messages and processes and to determine 

p m r .  The RISC processor 
handles mast of the processing 
related to ammunication. 

The HARTS interconnec- 
tion has a continuously 
wrapped hexagonal mesh topol- 
ogy, which is a regular homoge- 
neous graph in which each 
node has six neighbors. You can 
visualize the graph as a simple 
hexagonal mesh with wrap 
links added to the nodes on the 
periphery. figure A iUustrates 
the wrapping scheme for the 
peripheral nodes, in which the 
dunension of a hexagonal mesh 
is the number of nodes on a pe- 
ripheral edge. The version of 
HARTS under construction is 
a hexagonal mesh of dimension 
3 with 19 nodes. 

We chose this wrapped hex- 
agonal topology because of its 
potential to meet the timeliness 
requirement and high reliabil- 

sign. It also offers scalability 
and is easy to construct. 

The interconnection net- 
work of a distributed system 
must often connect thousands 
of homogeneously replicated 
processor-memory pairs, each 
ofwhich is called a processing 
node. Processing-node syn- 
chronization and communica- 
tion is done through message 
passing. The homogeneity of 
processor nodes and the inter- 
connection network is impor- 
tant because you can replicate 
bothhardwareandsoh 
components inexpemively. h c h  
processingnode in the multipm- 
cessor should have fixed connec- 
tivitysothatthedesignercanuse 

munication software 
The interconnection net- 

work should have reasonably 
high connectivity to provide 
the alternative routes necesMIy 
todetourfaultyndesandlhks. 
Routing and bmadcasting must 
be efficient to ensure high-pdx- 
mance task execution. 

For structural flexibility, a 

mdardVLSIchipsandcom- 
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the order of services. The protocol pro- 
vides control operations that let applica- 
tion processors' processes access the time. 

The user datagram protocol at the next 
level supports the unreliable datagram ser- 
vice. The user-datagram protocol and all 
hgher level protocol modules provide ser- 
vices that the user can access directly. 
These are reliable broadcasting, remote 
procedure calls, and a real-time- channel 
service. 

ard Kle inr~ck .~  We will provide such 
broadcasting through the HARTS pro- 
grammable routing controller. 

Reliable broadcasting is essential for 
implementing algorithm for clock syn- 

R e W e  hodcusting. Although broadcast- 
ing is very simple for networks like 
Ethernet and token ring, in which every 
node sees a transmitted message, it is more 
involved for point-to-point interconnec- 
tion networks. For h s  type of network, a 
simple nonredundant broadcast algo- 
rithm, whch delivers a single copy of a 

Therefore, broadcast algorithms must 
work even when you cannot identify all 
the faulty processors. In our algorithm, 
multiple copies of the message are deliv- 
ered through disjoint paths to every sys- 

- 

system must also possess fine 
scalability - the processor 
nodes needed to increase the 
network's dimension by one. 

To meet all these require- 
mens, we considered several 
topologies, including hyper- 
cubes, square meshes, three- 
dimensional torus, hexagonal 
meshes, and octal meshes. The 
need for fixed connectivity and 
planar architecture for easy 
VLSI and communication im- 
plementation, finer scalability, 
reasonably high fault tolerance, 
and ease of construction made 
the hexagonal mesh the best 
choice. Ming-Syan Chen and 
colleagues give a detailed com- 
parison of these topologies. 
James Dolter and colleagues 
describe HARTS message- 
delivery perfomce.2 

Figure B shows the current 
configuration of HARTS, with 
VMEbus-based nodes, each of 
which has one to three applica- 
ion pmessors, a system con- 
roller card, a network proces- 

sor card, 

message to every node, essentially con- 
structs a spanning tree for the network 
graph rooted at the source 

chronizadon, distributed fault diagnosis, 
and distributed agreement when there are 

faults. A nonfaulty node 
node. The goal is to keep 
the spanning tree as short 

must correctly deliver its 
private value to all other - 

as possible by minimizing Reliable broadcastin0 nonfaulty nodes, yet 

.d an Ethernet pro- 
cessor card. The processor 
cards have a Motorola 68020 
32-bit processor and 4Mbytes 
of dual-ported RAM accessible 
from the VMEbus. The 
Ethernet processor card uses a 
lO-MHz 68000 processor and 
an AMD Ethernet controller 
device. The Ethernet links 
the development work- 
stations. We are developing a 
custom network processor 
board that will replace the 
Ethernet board. The custom 
board will have a programma- 
ble routing controller dup to 

mechanisms such as virtual cut- 
through. The chip d be used 
in the network processor card 
as the front-end interface to the 
hexagonal mesh. 

m p ~ r t  high-speed "itching 
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tem node. The receiving nodes identify 
the original message from the multiple 
copies using a scheme appropriate for the 
fault model, such as majority voting. The 
algorithm, called the k-reliable broadcast 
algorithm, delivers k copies of the message 
to each node through disjoint paths.' If 
encryption is used to guard against mes- 
sage corruption, a k-reliable broadcast will 
be resilient to the loss of k-l mes- 
sage copies. 

Remote procedure co/k. The protocol for re- 

these calls are now redundant because 
their functions have been subsumed in 
other protocols. For example, the n m -  
ing-service calls are handled by the ndm-  
ing-service protocol. Data-transfer opera- 
tions can be similarly implemented using 
the user-datagram and frag protocols. 

R e o / - h h n m /  service. Unpredictable de- 
lays in message delivery can adversely af- 
fect the execution of the real-time tasks 
that depend on those messages. Malung 
communication predictable is difficult, 

Channel establishment is complex be- 
cause the system must reserve resources at 
multiple nodes in the network, which is 
why makmg channel establishment a sep- 
arate service is often the preferred ap- 
proach. Our procedure establishes a route 
through the network from source to desti- 
nation, ensuring that adequate communi- 
cation bandwidth, buffer space, and pro- 
cessing bandwidth are available at all 
intermediate nodes in the path.3 By cen- 
tralizing t h s  function, we can better use 
network resources because we can select 
routes appropriately to balance network 
load. This approach also makes it easier to 
handle network reconfiguration if the net- 
work fails. 

In HARTOS, Network Manager es- 
tablishes channels. Network Manager is 
present only on a special node or a set of 
nodes, which the dashed lmes in Figure 1 
indicate. We made Network Manager 
fault tolerant by assigning redundant cop- 
ies of it on multiple nodes and maintaining 
consistency among these copies with 
atomic broadcasts.3 

The protocol's control functions are 
handled by the real-time-channel control 
module, whch uses a mechanism for re- 
mote procedure calls to contact Network 
Manager. When a channel is successfully 
established, Network Manager returns 
the selected route for the channel along 
with the worst-case delay for each h k  on 
the route. T h s  information is used to set 
deadlines for messages belonging to real- 
time channels. 

The real-time-channel protocol usu- 
ally treats each send request as a separate 
message. It enforces a rate-based flow con- 
trol mechanism and adjusts the time con- 
straints of the message accordingly. It 
splits long messages into fragments and 
assigns them a common deadhe. When 
receiving message fragments, the protocol 
collects them and delivers the total mes- 
sage to the client. If some fragments of a 
message do not arrive within the deadline, 
the partial message is delivered with an 
appropriate warning. 

The real-time-channel protocol can be 
extended to support bidirectional com- 
munication (a real-time channel is a zmidi- 
rectional connection between two end- 

call arguments into a request packet and 
extract return results from the reply 
packet. 

To provide the services implemented 
in HARTOS version 1, we place a client 
protocol module atop the protocol mod- 
d e  for remote procedure calls. Some of 
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does not attempt to retransmit packets. 
An important task of the real-time- 

channel protocol is to establish a channel. 
To do &IS, it must know the channel's 
source and destination, worst-case traffic 
patterns, and the maximum allowable 
delay in end-to-end message transit. 



points). Although we have not done th~s  
extension, it is a trivial task. The extended 
protocol creates a pair of real-time chan- 
nels simultaneouslyin two directions. The 
parameters for these two channels are 
specified separately. 

A drawback of the current real-time- 
channel protocol is that the real-time- 
channel service deals with one-to-one 
communication. W e  it provides guar- 
antees of real-time performance, it does so 
only if there are no faults. We are consid- 
ering alternatives to relax th~s  restriction 
and provide a fault-tolerant real-time ser- 
vice. One option is to reroute a real-time 
channel if a component fails, but this could 
take more than the guaranteed delay. In 
addition, the failure of an application node 
would cause a total loss of service. 

A more promising altemative is to ex- 
tend the real-time channel concept to pro- 
vide one-to-many communication. This 
extension could provide a group channel 
for replicated applications to communi- 
cate in real-time. The issues we must ad- 
dress in such an extension are multicast 
route selection (similar to broadcasting 
but with a subset of nodes), message con- 
sistency, and message ordering. 

thetic-workload driver and the library of 
synthetic operations. The result is an exe- 
cutable synthetic workload, ready to be 
downloaded to HARTS node processors. 

EVALUATION TOOLS 

sees the software's resource use. The syn- 
thetic workload exercises the system's re- 
sources and thus accurately models how 
the application program would perform. 

We are developing three tools to eval- 
uate the performance and dependability 
(fault tolerance) of HARTS hardware and 
software: a synthetic-workload generator, 
a monitor, and a fault injector. The gener- 
ator produces a synthetic workload, the 
monitor collects the performance data, 
and the fault injector simulates faulty be- 
havior for further study. Together these 
tools create a facility that lets the user per- 
form a wide range of experiments. The 
tools are independent, so they are equally 
effective separately or together, depending 
on the requirements. 

Synthetic-worklood generotor. Figure 2 
shows the design of the synthetic-work- 
load generator. The generator compiles a 
high-level description of a workload to 
produce a synthetic workload - pro- 
grams that model the application 
programs' smcture and behavior.' The 

synthetic workload is specified using the 
Synthetic Workload Specification Lan- 
guage. 

As part of this compilation, the genera- 
tor compiles a graph of the task and its 
parameters, performs correctness check- 
ing on the task graph, de- 

No intermediate user intervention is re- 
quired. 

Synthetic worklood. A synthetic workload is 
a set of programs that execute on the tar- 
get computer whde the user measures per- 

formance. The structure 
and behavior of the pro- - grams that make up the 

teimines if the-workload 
components are con- 
nected legally, and reports The synthetic synthetic workload - .  
any errors. model those of the appli- 

The generator has two workload exercises cation programs. Syn- 
0utputs:"One is a set of 
data structures that de- 
scribe the task maDh and 

the system's resources 
and thus aCCUfatdV 

thetic workdiads are akin 
to rapid prototypes. The 
difference is that rapid 

" I  

workload and experiment prototypes demonstrate 
parameters. The other is models how the the functionality of the 

F i p e  2. Synthetic-wmkload generation. I 

I E E E  S O F T W A R E  6 3  



The user controls the workload’s behavior 
and smcture, and so is free to evaluate the 
system under many workload conditions. 
The tasks of the synthetic workload are 
parameterized, so that the user can easily 
change workload characteristics as 
needed. 

Since HARTS is an 
experimental testbed, we 
expect it to be used to im- 
Dlement and evaluate a - 

of operations that exercise different s y -  
tem resources. In practice, these opera- 
tions are taken from a library of synthetic 
operations. The library contains parame- 
terized operations, each of whch uses a 
specific resource. Synthetic operations 
may be interspersed with user-supplied C 

code t o  produce 
customized functions. 
SWSL also lets you spec- 

The language to wide range of system fea- 
tures. Designers will want 
to evaluate the system sDe(ifV SVfltheh( 

wo~kloads is based on under a range ofworkload 
conditions. A synthetic 
workload is ided for this 
experimentation because 

workloads or specific, 
possibly anomalous, 
workload conditions. 

The  synthetic work- 
load is composed of a driver and synthetic 
application tasks. The driver performs the 
control functions related to the experi- 
ment. Using the data structures produced 
by the generator, the driver creates, initial- 
izes, and activates all the objects in the task 
graph. It also communicates with the driv- 
ers on other processors so that control can 
be synchronous. The synthetic applica- 
tion tasks are responsible for creating the 
resource demands on the system. They 
execute during the experiment with little 
interference from the driver. 

strumpd-analysis 
it can represent either real and rapidprototyping 

design notations. 

Synthetic Wodlcud Sperificaiion hnguoge. SWSL 
is based on a number of structured-analy- 
sis and rapid-prototyping notations, en- 
hanced to provide greater flexibility and 
easier specification. 

One of its major roles is to specify 
parameters for the workload compo- 
nents. The  tasks in our workload model, 
for example, have parameters that spec- 
ify their execution and resource-use 
characteristics. Of particular impor- 
tance are the parameters that specify the 
tasks’ real-time characteristics, such as 
invocation periods, deadlines, and other 
real-time scheduling requirements. 

SWSL also specifies the functions the 
tasks will execute. A function is a sequence 

ify control constructs 
within the function. 
Using these constructs, 
the synthetic tasks can 
simulate the data-depen- 
dent branching and loop- 
ing behavior of actual ap- 
plication tasks. Through 
the combination of syn- 
thetic operations, control 
constructs, and user-sup- 
plied C code, SWSL lets 
users specify a wide range 

of task behaviors. 
We use thls parameterized approach 

for two reasons. First, a hgh-level specifi- 
cation of the application software, such as 
the structured-analysis model, will gener- 
ally be a good approximation of the 
workload’s structure. Thus, by using a 
similar model, we can produce a synthetic 
workload that closely approximates the 
structure and behavior of the workload 
being modeled. Experimental evaluations 
performed using this synthetic workload 
should then provide useful and meaning- 
ful results. 

Second, as real-time software becomes 
more complex, the use of structured 
methods will become widespread. A tool’s 
ability to integrate with a computer-aided 
software engineering tool will become 
critical. Our synthetic-workload genera- 
tor can easily become an integral part of a 
CASE tool. 

Moreover, because SWSL is similar to 
current design notations, the generator 
can use high-level designs created by 
CASE tools to create synthetic workloads. 
As components of the application software 
are completed, they may be integrated 
into the synthetic-workload specification. 
Synthetic workloads can thus be used at all 
stages of system development, letting de- 

signers evaluate the effects of their deci- 
sions experimentally a t  each stage. 

Since the synthetic workload will be 
used to evaluate embedded distributed 
real-time systems, we assume it will be 
compiled on a workstation and the execut- 
able code downloaded to the system. Be- 
cawe users cannot interact with the exe- 
cuting synthetic workload, they must 
specify any parameters that may change 
during execution beforehand and compile 
them into the workload. 

SWSL dehes  an experiment as con- 
sisting of a number of statistically inde- 
pendent runs. During each run, the syn- 
thetic workload executes and the user 
collects performance data. A workload 
specifiation may contain parameter val- 
ues for a number of runs. For each run, the 
user may define different values for the 
workload parameters, or use a single-value 
parameter for a set of consecutive runs. 
The generator compiles and downloads 
this single specification at the begvlning of 
the experiment. The synthetic workload 
pauses between each run to let the user 
upload performance data or reset and ad- 
just data-collection instruments. The user 
can specify values like the duration of each 
run and the random-number generators 
used to produce stochastic behavior in the 
synthetic workload. 

To d e h e  synthetic workloads for a dis- 
tributed system, SWSL specifies the pro- 
cessor on which each workload compo- 
nent resides. Components are statically 
allocated and can be easily moved from 
one processor to another between workload 
executions, so the user can change load dis- 
tribution between experiments. SWSL also 
provides replicated objem. Multiple identi- 
cal objects may be defined on multiple pro- 
cessors. Such objects may be used to repre- 
sent objects that have been replicated for 
fault tolerance, or they may be representa- 
tive members of a speci6c class of objects 
within the workload being modeled. 

Hmon. Monitoring and debugging are 
topics of active research. Monitors are 
popular because they let users view the 
monitored system atvarious levels ofcom- 
plexity or abstraction. However, such 
monitors are typically intrusive and not 
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applicable to real-time systems because of 
their unpredictable interference. 

Monitoring distributed real-time sys- 
tems is a challenge but one that must be 
met if designers, system architects, and 
performance evaluators are to measure, 
debug, test, and develop systems effi- 
ciently. Monitoring - the measurement, 
collection, and processing of information 
about task execution - can be compli- 
cated by system characteristics. A real- 
time system, for example, requires the 
monitor itself to operate under strict reli- 
ability and performance constraints. The 
reliability constraints require that both the 
monitored system and the monitor con- 
tinue to operate in the presence of static or 
dynamic failures. The performance con- 
straints require that the interference 
caused by the monitor's presence be pre- 
dictable, minimal, and bounded. 

Distribution also imposes constraints 
on the monitor. Distributed systems lack 
both global-state information and total or- 
dering defined over events on different 
nodes. Users must have a way to collect 
monitored data from several sites and inte- 
grate it to get a coherent systemview. Fur- 
ther, when tasks run in parallel, their be- 
havior can be nondeterministic. The  
monitor must support deterministic task 
replay to enable effective debugging. 

Passive hardware monitors can provide 
detailed, low-level information about a 
system, such as communication activities, 
memory accesses, and YO pattems. They 
also cause little interference to the moni- 
tored system. However, hardware moni- 
tors do not support the interactive modi- 
fication of task execution, whch supports 
debugging. 

To address these issues, we developed 
Hmon, a distributed monitor that runs on 
a dedicated processor.* Somesystem hard- 
ware is also dedicated to Hmon to mini- 
mize interference with the measured sys- 
tem. Figure 3 shows how data collection is 
monitored. Hmon provides transparent, 
continuous monitoring using dedicated 
hardware and integrated operating-sys- 
tem-level software. It runs on a dedicated 
application processor, called the monitor 
processor, on each node of HARTS. Addi- 
tional code to collect data runs on the net- 

compresses the logged data and sends it 
from its node to an extemal user-level pro- 
cess running on a workstation outside 
HARTS. This process receives and ar- 
chives data coming in from all monitor 
processors so that the events can be re- 
played for debugging. The monitor pro- 
cessors use the Ethernet controller on 
each node to send their data to the user 

work processor and the application pro- 
cessors of each node. 

Each processor's local memory is ac- 
cessible to other processors. The moni- 
tored processors write data directly to the 
memory on the monitor processor. The 
monitor processor, in tum, logs the data on 
an extemal user workstation. Though the 
data-collection code interferes with the sys- 
tem being monitored, in our system, thls 
interference is low, predictable, and ac- 
counted for in CPU and network schedul- 
ing. Since interference is the same during 
normal execution as it is during develop- 
ment and debugging, the debugging code 
is a predictable part of the application. 

Hmon has three stages: extract data 
from the application processors and net- 
work processor, compress data on the 
monitoring processor, and log data on an 
external workstation. Data on monitored 
events is acquired through code inserted 
into the monitored system. We acquire 
much of our data by monitoring system 
calls transparently through modified 
pSOS and HARTOS call interfaces. 
%on also monitors interrupts, context 
switches, and shared variable references to 
allow deterministic task replay - a char- 
acteristic critical in debug- 
ging real-time prog". 

shared variable references. 

Fadl injettor. The fault injector inserts 
errors into an otherwise error-free system. 
The user controls the error type and loca- 
tion. The injector lets the user evaluate 
dependability mechanisms on HARTS. 
Real-time systems used in life- and mission- 
critical tasks have many fault-tolerance and 

Figure 3. Data-collection monitwing. 

workstation. The HARTS interconnec- 
tion network remains unaffected by data 
transmission over the Ethemet. 

We maintain predictability by keeping 
interference deterministic. Intrusive de- 
bugging is done only during replay, not 
on-line. Replay is done deterministically 
to make debugging feasible. Our ap- 
proach is unique in that we perform trans- 
parent monitoring and deterministic re- 
play without adding any special hardware 
such as a bus probe or a hardware-instruc- 

Hmon S U D D O ~ ~ S  ser- 
tion counter. 
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~ ___ ___ 

local time HARTOS times (ms) I 
Ims) lntranode Internode Difference Call 

rjam-x 0.103 2.799 4.614 1.815 
rliber-x 0.113 2.949 4.786 1.837 
rresume-p 0.079 2.333 4.053 1.720 

fault-recovery mechanisms to ensure high 
dependability. These mechanisms must 
be rigorously tested to verify that the srj- 
tem meets its dependability goals. Such 
testing can be very dacult, given the large 
mean time between failure of highly de- 
pendable systems. To verify the properties 

The fault injector in HARTS supports 
a variety of faults and errors, each ofwhich 
can be injected as transient, intermittent, 
or hard faults. In addition, the injector lets 
different faults be injected at each node in 
the system. The injection time and dura- 
tion can also be specified. This can greatly 

, I  

some way to accelerate the 
occurrence of faults or er- 

plications, which often 
must be able to tolerate 

rors. A fault injector lets The fault iniedOr I& erroneous behavior by 

hardware-fault injection, faults are typi- 
cally inserted into the system at the pin 
level. In software-fault injection, errors are 
typically inserted by altering the contents 
of memory or registers. Errors can also be 
introduced by corrupting messages or al- 
tering object code. 

theuser introduce faults or multiple nodes in the 
errors into the system. you transient, system over an extended 

Most fault-injection intermittent, and hard period of time. ~n addi- 
experiments fall into one tion, the injector is easy 

fOUItS at each node. to integrate with anv of two categories: hard- 

The injector provides a tool suite to 
simplify and automate the design and exe- 
cution of dependability experiments. Its 
two main components are the experiment 
generator and the control modules. The 
experiment generator creates the execut- 
able and script files to run the fault-injec- 

tion experiments from a user-supplied ex- 
periment-description file. The control 
modules consist of the routines that pro- 
vide the actual fault-injection capability. 
The experiment generator compiles the 
appropriate portions of the control mod- 
ules with the workload for each node. 

To create and run an experiment using 
the injector, you create an experiment-de- 
scription file that provides the injector the 
names of the W T S  nodes to be used, 
the location of the workload, and the type 
of faults to be injected on each node. The 
workload can be a real application or a 
synthetic workload generated by the syn- 
thetic-workload generator described ear- 
lier. Once the experiment description file 
is created, you run the experiment gener- 
ator to create all the executable and script 
files needed to run the fault-injection ex- 
periment. During the experiment, you can 
use Hmon to collect performance data. 

The fault types used by the injector are 
memory faults, communication faults, and 
processor faults. The memory faults are 
injected as single-bit or burst errors. Com- 
munication faults cause lost, altered, or 
delayed messages. Processor faults repre- 
sent faults in the CPU's functional units. 

Each fault type has many possible vari- 
ations, whch the user can specify. The 
injection of memory and communication 
faults can be transient, intermittent, or 
permanent. If the fault is to occur inter- 
mittently, the user can specify a probabil- 
ity distribution that describes the inter- 
arrival times between faults. For memory 
faults, the user can emulate permanent faults 
by specifylng smal l  interarrival times for an 
intermittent fault This emulation is not the 
same as a true permanent fault, however, 
because the workload can overwrite the 
faulty location between injections. 

By using combinations of these faults 
on each node, the user can implement a 
variety of failure semantics. 

STATUS 

Version 1 of HARTOS is completed 
and has been stable for more than two years. 
We used it to provide interprocessor a m -  
munication for the development of the syn- 
thetic-workload generator and Hmon. We 
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are not planning to develop it further. 
We timed several classes of operations 

for I-IARTOS version 1 using the baseline 
measurement of a single task sending a 
message to a single task. All measure- 
ments were done on an Ethernet, which 
was otherwise idle. 

Table 1 shows the first set of measure- 
ments, which are the Communication 
times for remote calls. We timed a varia- 
tion of the call that sends a short message 
to an exchange and compared it with the 
time required to send a resume signal to a 
task. Local time (second column in the 
table) is the time required to execute the 
corresponding pSOS calls on a single pro- 
cessor. Intranode refers to operations be- 
tween two processor cards in the same 
node; Intemode refers to operations be- 
tween processors in different nodes con- 
nected by the Ethemet. All intranode and 
internode calls were made in blockmg 
mode. 

The intranode communication using 
the network processor shows the overhead 
involved in assembling and interpreting a 
message and maintaining the connection 
structure in the network processor. Differ- 
ence is the difference between the in- 
tranode and internode times - the time 
required to transmit and receive two mes- 
sages (request and reply) on the Ethemet 
and the cost ofsetting up a packet timeout. 
In addition to the actual network-trans- 
mission time, values under Difference in- 
clude the cost of initiating packet trans- 
mission and setting up receiving buffers 
with the Ethemet controller. For small 
packets, the Ethemet controller’s process- 
ing time is actually longer than the net- 
work-transmission time. 

Table 2 shows the second set of mea- 
surements, whch are for data-transfer op- 
erations. These values represent the time 
required to transfer x bytes of data across 
the network to another process. The data- 
mnsfer operations show a close-to-linear 
increase in communication time with an 
increase in message size. Ths relationshp 
holds over two ranges ofmessage sizes: less 
than 1 Kbyte and 2 to 16 Kbytes. There is 
a small jump in the communication time 
for sizes greater than 1 Kbyte because they 
require a multipacket message, whch has 

two acknowledgment packets. However, 
the communication cost per byte is less for 
larger messages because not all packets re- 
quire acknowledgments. 

’CErsion 2 of HARTOS is under devel- 
opment. It currently provides all the 
functionality of version 1. The clock-syn- 
chronization protocol has not yet been 
implemented because it depends on the 
programmable routing controller, whch 
is under development. However, we have 
implemented many of the functions of the 
real-time-channel service and measured 
their performance. 

We have also performed some prelim- 
inary measurements to estimate the time 
to establish a channel in a 19-node hexag- 
onal mesh. For a channel with three links 
- the longest possible in a mesh that size 
-we estimate that it will take 43.5 ms to 
establish a channel. We cannot make any 
other measurements without the custom 
network-processor archtecture, which is 
still being developed. 

uch work remains on version 2 of M the HARTS operating system and 
on the evaluation tools. The synthetic- 
workload generator is operational and has 
been used for the performance measure- 
ments obtained for HARTOS version 1. 
As HARTS and M T O S  develop, we 
will use the generator extensively to evalu- 
ate them. A range of experiments have 
been planned. We plan to first create sim- 
ple synthetic workloads to measure basic 
performance values and test functionality. 
We will then use the generator to produce 
synthetic workloads that are representa- 
tive of sample applications. We d l  use 
these to measure HARTS performance 
under the load offered by each sample ap- 
plication. We plan to study the perfor- 
mance of the HARTOS network-com- 
munication facilities, the effects of 
asynchronous tasks on the ability to sched- 
ule masks, message scheddng, and the per- 
formance of fault-tolerance mechanisms. 

The debugging features ofthe monitor 
are incomplete and will be expanded. We 
plan to improve the debugger interface 
and further develop the monitor processor 
to enhance deterministic replays and sup- 
port CPU schedhg .  We will also ex- 

plore a utility to analyze monitored data 
on a workstation. 

The fault injector is partially complete. 
The experiment generator has been im- 
plemented, as has the injection of most of 
the fault types. We are still implementing 
the rest of the fault types and improving 
the data-collection and -analysis tools. 
The fault injector is intended as a support 
tool for dependability experiments on 
HARTS. As a result, it will be continu- 
ously expanded as new applications arise 
that require different capabilities. + 
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