
__ __

*An enhanced
uniprocessor kernel
combines with a set
of evaluation tools
that let you
experiment with
the pe$omance
and fault tolerance
of real-time
programs.

A Distributed
Real-Time
Operating
n System
KANG G . SHIN, DILIP D. KANDLUR , DANIEL L. KISKIS ,
PAUL S. DODD , HAROLD A. ROSENBERG , and
ATRI INDIRESAN, Uniwersity of Michigan

are now commonly used for such embed-
ded real-time applications as computer-in-
tegrated manufacturing, industrial process
control, defense systems, and electric
power distribution and monitoring. These
applications usually impose stringent tim-
ing and reliability requirements because a
system failure could lead to catastrophe.

Distributed systems with point-to-
point interconnection networks are natu-
ral candidate archtectures for these appli-
cations primarily because they are most
hkely to meet stringent timehess and re-
liability requirements. The key to success
in using a distributed system for real-time
applications is the timely execution of
computational tasks, whch usually reside
on different nodes and intercommunicate
to accomplish a common goal.

Providing deadline guarantees for real-

time tasks is very difficult because it in-
volves interaction among archtectures,
operating systems, and tools to evaluate
both performance and dependability. To
study these interactions, we have been de-
signing, implementing, and evaluating a
19-node hexagonal mesh, called Hexago-
nal Archtecture for Real-Time Systems.
The HARTS architecture is briefly de-
scribed in the box on pp. 60-61.

In &IS article, we describe two versions
of the HARTS operating system, which is
based on Software Components Groups
pSOS uniprocessor kernel. In one version,
we have enhanced pSOS services to pro-
vide interprocessor communication and a
distributed naming service. In the second
version, we add real-time fault-tolerant
communication, includmg reliable broad-
casting, clock synchronization, and group
communication.

n

We are also developing a suite of tools
to evaluate the performance and depend-
ability of HARTS, the HARTS operating
system, and other real-time systems. The
goal of these tools is to let HARTS users
perform a broad range of experiments to
measure the performance and fault-toler-
ance of various programs.

HARTS OPERATING SYSTEM

HARTS operating system, HARTOS,
is designed to exploit the network proces-
sor on each HARTS node. It consists of
pSOS executing on the application pro-
cessors, the HARTOS protocol code exe-
cuting on the Ethemet processor, and an
interface between them. Work on a
customized network processor is under-
way to replace the Ethemet processor. Be-
cause the design will be the same when the
custom network processor is complete,
the “network processor’’ we refer to in
subsequent description is the current
Ethernet processor.

pSOS node kernel. T h e pSOS uni-
processor kemel serves as the executive on
each application processor and provides
facilities for process and memorymanage-
ment, event handling, and interprocess
communication. A process is the unit for
sequential execution, resource ownershp,
and schedhg . Processes are named and
use a name to locate a process they wish to
comnunicate with. The kemel uses a pre-
emptive priority-based scheduler that lets
processes of equal priority cycle in a
round-robin fashion. Processes can dy-
namically change their priority and pro-
tect themselves from interruption whle in
critical sections by setting their mode to
nonpreemptive. Processes communicate
with each other primarily through mes-
sage exchange, an object that holds a
queue of messages or processes, to allow
many-to-many process communication.

Version 1. In the first version of
HARTOS, we extended the pSOS kemel
to work in a multiprocessor and distrib-
uted environment. New services include
interprocessor communication (both
datagram and remote procedure calls) and

a distributed naming service. We built this
version atop Communication Machin-
ery’s Kl kemel, whch provides protocol-
support facilities such as the Ethemet in-
terface and mechanisms for setting
time-outs and handling interrupts.

HARTOS extends the pSOS process
control, interprocess
cominu n i cation. ti me

tion processor enters names explicitly into
the table. Each network processor main-
tains a table of map entries for entities de-
clared on that node by the associated ap-
plication processors.

,4 process may locate a named server by
submitting a find request to the network

processor. During a find
omration. the network

aueries. and name-look- - &ocessor searches the
;p functions to work be-
tween processors on the
same node and across the

Processes communicfle
DrimoriIV throuoh

iocal name table for a
match. If there is no local
match, it broadcasts a re-

I I U

network. Calls may be quest for a name mapping
blocking or nonblocking, message exchange/ to other network proces-
and the user can specify a an object that holds a sors on behalf of the pro-
time-out and maximum cess that made the re-
number of retries to be queue of messages 01 quest. Only network

processors that detect a
match r edv to the re-

used for each remote call.
Nonblochg calls are not processes.
queued. This policy is
consistent with the requirements of many
real-time applications, such as control ap-
plications in whch sensor data is gathered
periodically and only current data is of
value. A function is available to let the
sending process block until an outstanding
operation completes.

pSOS provides exchanges for passing
short messages between processes on the
same processor. Shared memory may be
used to pass larger data blocks. An exten-
sion of pSOS message-passing primitives
would still handle only small messages, so
we needed a mechanism for large data
transfers across the network. Version 1 in-
cludes operations that transfer up to 16
Kbytes of data between processes and a
mechanism for prioritizing data transfers
to order operations from different pro-
cesses. Providing a mechanism to assign
priorities for other operations was not a
concem, since these operations have few
resource and timing requirements, and
version 1 does not support timeliness
guarantees.

We specify destinations for system calls
usingan intemal address that consists of an
application processor ID and an exchange
or process ID. The HARTOS naming
service provides the addresses. The net-
work processors maintain a distributed
name table, which is used to map logical
names to intemal addresses; the applica-

I E E E S O F T W A R E

L ,

quest, and the first reply
received is taken. The request is handled
entirely by the network processors and is
not visible to the application processors.

Version 2. As the communication ser-
vices became more complex, we found we
needed a more sophsticated environment
for implementing and experimentingwith
different communication protocols. In the
second version of I!IARTOS, we are add-
ing the communications subsystem shown
in Figure 1. The additional real-time
communication services -which contain
some components that are different im-
plementations of version I components
- are a global time base and a real-time
channel service to provide communica-
tion with guaranteed delays. The global
time base, which we plan to maintain using
the clock-synchronization algorithm de-
scribed by Parmesh Ramanathan and col-
leagues,‘ enables the real-time channel
service. Version 2 will also include fault-
tolerant services such as reliable broad-
casting and group communication.

Another difference between the two
versions is that we are using a derivative of
the x-kernel as the executive for the net-
work processor in version 2. The K1 ker-
nel provides only primitive support, and
the x-kernel has proved effective in sup-
porting communication protocols.’ Ap-
plications can be implemented as protocol

5 9

modules that can be integrated in the pro-
tocol stack. The x-kemel provides several
fadties for implementing protocols, such
as a uniform protocol interface and librar-
ies, to efficiently manipulate messages and
maintain mappings. It also comes with
utilities to configure and test different pro-
tocol stacks.

Commlmication subsystem. Communica-
tion services are provided in the form of
protocols running on the x-kemel. Figure
1 shows the protocols’ interdependencies.
At the lowest level is the Id-level proto-
col, whch uses a multiclass earliest-due-
date scheddng algorithm’ to support a
mix of normal (best-effort) and real-time
(guaranteed maximum latency) traffic.
The normal hk-level protocol also sup-
ports a reliable broadcast mechanism. The

figure shows the real-time-channel Id
level as logically distinct fi-om the normal
h k level m a d y because the two differ in
how they manage the buffer and in-transit
messages.

At the next level up are the clock-syn-
chronization protocol -which maintains
a system-wide synchronized time base, ac-
cessible by application tasks and other
protocol modules - and the Frag proto-
col - which fragments large messages
into linl-level-size packets and transports
them. When Frag receives the message
fragments, it collects them and coalesces
them into a single message.

The module for the clock-synchroni-
zation protocol interacts with its other
nodes’ clock-synchronization protocols to
provide the global time base. The proto-
col relies on a hardware time-stamping

HARTS ENVIRONMENT
Hexagonal Architecture for Each €PXFS node has several

Real-Tune Systems is an experi- application p’ocessors, which
mental distributed real-time sys- run application tasks, and a net-
tem,consistingofmultiprocesor work processor, which contains
nodes connected by a point-to- the intehce to the network,
point interconnection network buffer memory, and a RISC

Figwe A. A wrapped hexagml m h of dimenscm 3 with 19 nodes.

mechanism to disseminate the clockvalue
of a local node to other nodes’ and uses the
interactive convergence algorithm on the
clock values it receives from other nodes.

The programmable routing controller,
which is under development, affixes a
transmit-time stamp to a clock packet just
before its transmission and appends a re-
ceive-time stamp to any clock packet it
receives. This hardware time-stamping
ensures that the protocol can factor out
delays in the processing and propagation
of clock messages, so that they do not af-
fect the tightness of the synchronization.

The protocol also uses a hardware-
maintained local clock with a resolution of
1 ms. The clock, which can be read di-
rectly by processes running on the net-
work processor, is used to set deadhes for
messages and processes and to determine

p m r . The RISC processor
handles mast of the processing
related to ammunication.

The HARTS interconnec-
tion has a continuously
wrapped hexagonal mesh topol-
ogy, which is a regular homoge-
neous graph in which each
node has six neighbors. You can
visualize the graph as a simple
hexagonal mesh with wrap
links added to the nodes on the
periphery. figure A iUustrates
the wrapping scheme for the
peripheral nodes, in which the
dunension of a hexagonal mesh
is the number of nodes on a pe-
ripheral edge. The version of
HARTS under construction is
a hexagonal mesh of dimension
3 with 19 nodes.

We chose this wrapped hex-
agonal topology because of its
potential to meet the timeliness
requirement and high reliabil-

sign. It also offers scalability
and is easy to construct.

The interconnection net-
work of a distributed system
must often connect thousands
of homogeneously replicated
processor-memory pairs, each
ofwhich is called a processing
node. Processing-node syn-
chronization and communica-
tion is done through message
passing. The homogeneity of
processor nodes and the inter-
connection network is impor-
tant because you can replicate
bothhardwareandsoh
components inexpemively. h c h
processingnode in the multipm-
cessor should have fixed connec-
tivitysothatthedesignercanuse

munication software
The interconnection net-

work should have reasonably
high connectivity to provide
the alternative routes necesMIy
todetourfaultyndesandlhks.
Routing and bmadcasting must
be efficient to ensure high-pdx-
mance task execution.

For structural flexibility, a

mdardVLSIchipsandcom-

6 0 S E P T E M B E R 1 9 9 2

n

the order of services. The protocol pro-
vides control operations that let applica-
tion processors' processes access the time.

The user datagram protocol at the next
level supports the unreliable datagram ser-
vice. The user-datagram protocol and all
hgher level protocol modules provide ser-
vices that the user can access directly.
These are reliable broadcasting, remote
procedure calls, and a real-time- channel
service.

ard Kle inr~ck .~ We will provide such
broadcasting through the HARTS pro-
grammable routing controller.

Reliable broadcasting is essential for
implementing algorithm for clock syn-

R e W e hodcusting. Although broadcast-
ing is very simple for networks like
Ethernet and token ring, in which every
node sees a transmitted message, it is more
involved for point-to-point interconnec-
tion networks. For h s type of network, a
simple nonredundant broadcast algo-
rithm, whch delivers a single copy of a

Therefore, broadcast algorithms must
work even when you cannot identify all
the faulty processors. In our algorithm,
multiple copies of the message are deliv-
ered through disjoint paths to every sys-

-

system must also possess fine
scalability - the processor
nodes needed to increase the
network's dimension by one.

To meet all these require-
mens, we considered several
topologies, including hyper-
cubes, square meshes, three-
dimensional torus, hexagonal
meshes, and octal meshes. The
need for fixed connectivity and
planar architecture for easy
VLSI and communication im-
plementation, finer scalability,
reasonably high fault tolerance,
and ease of construction made
the hexagonal mesh the best
choice. Ming-Syan Chen and
colleagues give a detailed com-
parison of these topologies.
James Dolter and colleagues
describe HARTS message-
delivery perfomce.2

Figure B shows the current
configuration of HARTS, with
VMEbus-based nodes, each of
which has one to three applica-
ion pmessors, a system con-
roller card, a network proces-

sor card,

message to every node, essentially con-
structs a spanning tree for the network
graph rooted at the source

chronizadon, distributed fault diagnosis,
and distributed agreement when there are

faults. A nonfaulty node
node. The goal is to keep
the spanning tree as short

must correctly deliver its
private value to all other -

as possible by minimizing Reliable broadcastin0 nonfaulty nodes, yet

.d an Ethernet pro-
cessor card. The processor
cards have a Motorola 68020
32-bit processor and 4Mbytes
of dual-ported RAM accessible
from the VMEbus. The
Ethernet processor card uses a
lO-MHz 68000 processor and
an AMD Ethernet controller
device. The Ethernet links
the development work-
stations. We are developing a
custom network processor
board that will replace the
Ethernet board. The custom
board will have a programma-
ble routing controller dup to

mechanisms such as virtual cut-
through. The chip d be used
in the network processor card
as the front-end interface to the
hexagonal mesh.

m p ~ r t high-speed "itching

REFERENCES
1. M. Chen, K Shin, and D. Kandlur,

"Addressing, Routingand Broad-
casongmHexagonalMeshMutti-
processors," lEEE Pam. Cmpw-
m,Jan. 1990,pp. 1@18.

I E E E S O F T W A R E

2. J. Dolter, P. Ramamthan, and K.
Shn, ''Performance Analysis of

Hexagonal Mesh Muibcomputer,"
IEEEPam. Computes, June 1991,

Message Passing in HARTS: A pp. 669-680.

I HARTS node I /

Figure 3. T h e HARIT sojwaree-davelopmpnt emtiroPrment and node urchiter-
me.

6 1

I I I I

tem node. The receiving nodes identify
the original message from the multiple
copies using a scheme appropriate for the
fault model, such as majority voting. The
algorithm, called the k-reliable broadcast
algorithm, delivers k copies of the message
to each node through disjoint paths.' If
encryption is used to guard against mes-
sage corruption, a k-reliable broadcast will
be resilient to the loss of k-l mes-
sage copies.

Remote procedure co/k. The protocol for re-

these calls are now redundant because
their functions have been subsumed in
other protocols. For example, the n m -
ing-service calls are handled by the ndm-
ing-service protocol. Data-transfer opera-
tions can be similarly implemented using
the user-datagram and frag protocols.

R e o / - h h n m / service. Unpredictable de-
lays in message delivery can adversely af-
fect the execution of the real-time tasks
that depend on those messages. Malung
communication predictable is difficult,

Channel establishment is complex be-
cause the system must reserve resources at
multiple nodes in the network, which is
why makmg channel establishment a sep-
arate service is often the preferred ap-
proach. Our procedure establishes a route
through the network from source to desti-
nation, ensuring that adequate communi-
cation bandwidth, buffer space, and pro-
cessing bandwidth are available at all
intermediate nodes in the path.3 By cen-
tralizing t h s function, we can better use
network resources because we can select
routes appropriately to balance network
load. This approach also makes it easier to
handle network reconfiguration if the net-
work fails.

In HARTOS, Network Manager es-
tablishes channels. Network Manager is
present only on a special node or a set of
nodes, which the dashed lmes in Figure 1
indicate. We made Network Manager
fault tolerant by assigning redundant cop-
ies of it on multiple nodes and maintaining
consistency among these copies with
atomic broadcasts.3

The protocol's control functions are
handled by the real-time-channel control
module, whch uses a mechanism for re-
mote procedure calls to contact Network
Manager. When a channel is successfully
established, Network Manager returns
the selected route for the channel along
with the worst-case delay for each h k on
the route. T h s information is used to set
deadlines for messages belonging to real-
time channels.

The real-time-channel protocol usu-
ally treats each send request as a separate
message. It enforces a rate-based flow con-
trol mechanism and adjusts the time con-
straints of the message accordingly. It
splits long messages into fragments and
assigns them a common deadhe. When
receiving message fragments, the protocol
collects them and delivers the total mes-
sage to the client. If some fragments of a
message do not arrive within the deadline,
the partial message is delivered with an
appropriate warning.

The real-time-channel protocol can be
extended to support bidirectional com-
munication (a real-time channel is a zmidi-
rectional connection between two end-

call arguments into a request packet and
extract return results from the reply
packet.

To provide the services implemented
in HARTOS version 1, we place a client
protocol module atop the protocol mod-
d e for remote procedure calls. Some of

S E P T E M B E R 1 9 9 2 6 2

does not attempt to retransmit packets.
An important task of the real-time-

channel protocol is to establish a channel.
To do &IS, it must know the channel's
source and destination, worst-case traffic
patterns, and the maximum allowable
delay in end-to-end message transit.

points). Although we have not done th~s
extension, it is a trivial task. The extended
protocol creates a pair of real-time chan-
nels simultaneouslyin two directions. The
parameters for these two channels are
specified separately.

A drawback of the current real-time-
channel protocol is that the real-time-
channel service deals with one-to-one
communication. W e it provides guar-
antees of real-time performance, it does so
only if there are no faults. We are consid-
ering alternatives to relax th~s restriction
and provide a fault-tolerant real-time ser-
vice. One option is to reroute a real-time
channel if a component fails, but this could
take more than the guaranteed delay. In
addition, the failure of an application node
would cause a total loss of service.

A more promising altemative is to ex-
tend the real-time channel concept to pro-
vide one-to-many communication. This
extension could provide a group channel
for replicated applications to communi-
cate in real-time. The issues we must ad-
dress in such an extension are multicast
route selection (similar to broadcasting
but with a subset of nodes), message con-
sistency, and message ordering.

thetic-workload driver and the library of
synthetic operations. The result is an exe-
cutable synthetic workload, ready to be
downloaded to HARTS node processors.

EVALUATION TOOLS

sees the software's resource use. The syn-
thetic workload exercises the system's re-
sources and thus accurately models how
the application program would perform.

We are developing three tools to eval-
uate the performance and dependability
(fault tolerance) of HARTS hardware and
software: a synthetic-workload generator,
a monitor, and a fault injector. The gener-
ator produces a synthetic workload, the
monitor collects the performance data,
and the fault injector simulates faulty be-
havior for further study. Together these
tools create a facility that lets the user per-
form a wide range of experiments. The
tools are independent, so they are equally
effective separately or together, depending
on the requirements.

Synthetic-worklood generotor. Figure 2
shows the design of the synthetic-work-
load generator. The generator compiles a
high-level description of a workload to
produce a synthetic workload - pro-
grams that model the application
programs' smcture and behavior.' The

synthetic workload is specified using the
Synthetic Workload Specification Lan-
guage.

As part of this compilation, the genera-
tor compiles a graph of the task and its
parameters, performs correctness check-
ing on the task graph, de-

No intermediate user intervention is re-
quired.

Synthetic worklood. A synthetic workload is
a set of programs that execute on the tar-
get computer whde the user measures per-

formance. The structure
and behavior of the pro- - grams that make up the

teimines if the-workload
components are con-
nected legally, and reports The synthetic synthetic workload - .
any errors. model those of the appli-

The generator has two workload exercises cation programs. Syn-
0utputs:"One is a set of
data structures that de-
scribe the task maDh and

the system's resources
and thus aCCUfatdV

thetic workdiads are akin
to rapid prototypes. The
difference is that rapid

" I

workload and experiment prototypes demonstrate
parameters. The other is models how the the functionality of the

F i p e 2. Synthetic-wmkload generation. I

I E E E S O F T W A R E 6 3

The user controls the workload’s behavior
and smcture, and so is free to evaluate the
system under many workload conditions.
The tasks of the synthetic workload are
parameterized, so that the user can easily
change workload characteristics as
needed.

Since HARTS is an
experimental testbed, we
expect it to be used to im-
Dlement and evaluate a -

of operations that exercise different s y -
tem resources. In practice, these opera-
tions are taken from a library of synthetic
operations. The library contains parame-
terized operations, each of whch uses a
specific resource. Synthetic operations
may be interspersed with user-supplied C

code t o produce
customized functions.
SWSL also lets you spec-

The language to wide range of system fea-
tures. Designers will want
to evaluate the system sDe(ifV SVfltheh(

wo~kloads is based on under a range ofworkload
conditions. A synthetic
workload is ided for this
experimentation because

workloads or specific,
possibly anomalous,
workload conditions.

The synthetic work-
load is composed of a driver and synthetic
application tasks. The driver performs the
control functions related to the experi-
ment. Using the data structures produced
by the generator, the driver creates, initial-
izes, and activates all the objects in the task
graph. It also communicates with the driv-
ers on other processors so that control can
be synchronous. The synthetic applica-
tion tasks are responsible for creating the
resource demands on the system. They
execute during the experiment with little
interference from the driver.

strumpd-analysis
it can represent either real and rapidprototyping

design notations.

Synthetic Wodlcud Sperificaiion hnguoge. SWSL
is based on a number of structured-analy-
sis and rapid-prototyping notations, en-
hanced to provide greater flexibility and
easier specification.

One of its major roles is to specify
parameters for the workload compo-
nents. The tasks in our workload model,
for example, have parameters that spec-
ify their execution and resource-use
characteristics. Of particular impor-
tance are the parameters that specify the
tasks’ real-time characteristics, such as
invocation periods, deadlines, and other
real-time scheduling requirements.

SWSL also specifies the functions the
tasks will execute. A function is a sequence

ify control constructs
within the function.
Using these constructs,
the synthetic tasks can
simulate the data-depen-
dent branching and loop-
ing behavior of actual ap-
plication tasks. Through
the combination of syn-
thetic operations, control
constructs, and user-sup-
plied C code, SWSL lets
users specify a wide range

of task behaviors.
We use thls parameterized approach

for two reasons. First, a hgh-level specifi-
cation of the application software, such as
the structured-analysis model, will gener-
ally be a good approximation of the
workload’s structure. Thus, by using a
similar model, we can produce a synthetic
workload that closely approximates the
structure and behavior of the workload
being modeled. Experimental evaluations
performed using this synthetic workload
should then provide useful and meaning-
ful results.

Second, as real-time software becomes
more complex, the use of structured
methods will become widespread. A tool’s
ability to integrate with a computer-aided
software engineering tool will become
critical. Our synthetic-workload genera-
tor can easily become an integral part of a
CASE tool.

Moreover, because SWSL is similar to
current design notations, the generator
can use high-level designs created by
CASE tools to create synthetic workloads.
As components of the application software
are completed, they may be integrated
into the synthetic-workload specification.
Synthetic workloads can thus be used at all
stages of system development, letting de-

signers evaluate the effects of their deci-
sions experimentally a t each stage.

Since the synthetic workload will be
used to evaluate embedded distributed
real-time systems, we assume it will be
compiled on a workstation and the execut-
able code downloaded to the system. Be-
cawe users cannot interact with the exe-
cuting synthetic workload, they must
specify any parameters that may change
during execution beforehand and compile
them into the workload.

SWSL dehes an experiment as con-
sisting of a number of statistically inde-
pendent runs. During each run, the syn-
thetic workload executes and the user
collects performance data. A workload
specifiation may contain parameter val-
ues for a number of runs. For each run, the
user may define different values for the
workload parameters, or use a single-value
parameter for a set of consecutive runs.
The generator compiles and downloads
this single specification at the begvlning of
the experiment. The synthetic workload
pauses between each run to let the user
upload performance data or reset and ad-
just data-collection instruments. The user
can specify values like the duration of each
run and the random-number generators
used to produce stochastic behavior in the
synthetic workload.

To d e h e synthetic workloads for a dis-
tributed system, SWSL specifies the pro-
cessor on which each workload compo-
nent resides. Components are statically
allocated and can be easily moved from
one processor to another between workload
executions, so the user can change load dis-
tribution between experiments. SWSL also
provides replicated objem. Multiple identi-
cal objects may be defined on multiple pro-
cessors. Such objects may be used to repre-
sent objects that have been replicated for
fault tolerance, or they may be representa-
tive members of a speci6c class of objects
within the workload being modeled.

Hmon. Monitoring and debugging are
topics of active research. Monitors are
popular because they let users view the
monitored system atvarious levels ofcom-
plexity or abstraction. However, such
monitors are typically intrusive and not

6 4 S E P T E M B E R 1 9 9 2

applicable to real-time systems because of
their unpredictable interference.

Monitoring distributed real-time sys-
tems is a challenge but one that must be
met if designers, system architects, and
performance evaluators are to measure,
debug, test, and develop systems effi-
ciently. Monitoring - the measurement,
collection, and processing of information
about task execution - can be compli-
cated by system characteristics. A real-
time system, for example, requires the
monitor itself to operate under strict reli-
ability and performance constraints. The
reliability constraints require that both the
monitored system and the monitor con-
tinue to operate in the presence of static or
dynamic failures. The performance con-
straints require that the interference
caused by the monitor's presence be pre-
dictable, minimal, and bounded.

Distribution also imposes constraints
on the monitor. Distributed systems lack
both global-state information and total or-
dering defined over events on different
nodes. Users must have a way to collect
monitored data from several sites and inte-
grate it to get a coherent systemview. Fur-
ther, when tasks run in parallel, their be-
havior can be nondeterministic. The
monitor must support deterministic task
replay to enable effective debugging.

Passive hardware monitors can provide
detailed, low-level information about a
system, such as communication activities,
memory accesses, and YO pattems. They
also cause little interference to the moni-
tored system. However, hardware moni-
tors do not support the interactive modi-
fication of task execution, whch supports
debugging.

To address these issues, we developed
Hmon, a distributed monitor that runs on
a dedicated processor.* Somesystem hard-
ware is also dedicated to Hmon to mini-
mize interference with the measured sys-
tem. Figure 3 shows how data collection is
monitored. Hmon provides transparent,
continuous monitoring using dedicated
hardware and integrated operating-sys-
tem-level software. It runs on a dedicated
application processor, called the monitor
processor, on each node of HARTS. Addi-
tional code to collect data runs on the net-

compresses the logged data and sends it
from its node to an extemal user-level pro-
cess running on a workstation outside
HARTS. This process receives and ar-
chives data coming in from all monitor
processors so that the events can be re-
played for debugging. The monitor pro-
cessors use the Ethernet controller on
each node to send their data to the user

work processor and the application pro-
cessors of each node.

Each processor's local memory is ac-
cessible to other processors. The moni-
tored processors write data directly to the
memory on the monitor processor. The
monitor processor, in tum, logs the data on
an extemal user workstation. Though the
data-collection code interferes with the sys-
tem being monitored, in our system, thls
interference is low, predictable, and ac-
counted for in CPU and network schedul-
ing. Since interference is the same during
normal execution as it is during develop-
ment and debugging, the debugging code
is a predictable part of the application.

Hmon has three stages: extract data
from the application processors and net-
work processor, compress data on the
monitoring processor, and log data on an
external workstation. Data on monitored
events is acquired through code inserted
into the monitored system. We acquire
much of our data by monitoring system
calls transparently through modified
pSOS and HARTOS call interfaces.
%on also monitors interrupts, context
switches, and shared variable references to
allow deterministic task replay - a char-
acteristic critical in debug-
ging real-time prog".

shared variable references.

Fadl injettor. The fault injector inserts
errors into an otherwise error-free system.
The user controls the error type and loca-
tion. The injector lets the user evaluate
dependability mechanisms on HARTS.
Real-time systems used in life- and mission-
critical tasks have many fault-tolerance and

Figure 3. Data-collection monitwing.

workstation. The HARTS interconnec-
tion network remains unaffected by data
transmission over the Ethemet.

We maintain predictability by keeping
interference deterministic. Intrusive de-
bugging is done only during replay, not
on-line. Replay is done deterministically
to make debugging feasible. Our ap-
proach is unique in that we perform trans-
parent monitoring and deterministic re-
play without adding any special hardware
such as a bus probe or a hardware-instruc-

Hmon S U D D O ~ ~ S ser-
tion counter.

I E E E S O F T W A R E 6 5

~ ___ ___

local time HARTOS times (ms) I
Ims) lntranode Internode Difference Call

rjam-x 0.103 2.799 4.614 1.815
rliber-x 0.113 2.949 4.786 1.837
rresume-p 0.079 2.333 4.053 1.720

fault-recovery mechanisms to ensure high
dependability. These mechanisms must
be rigorously tested to verify that the srj-
tem meets its dependability goals. Such
testing can be very dacult, given the large
mean time between failure of highly de-
pendable systems. To verify the properties

The fault injector in HARTS supports
a variety of faults and errors, each ofwhich
can be injected as transient, intermittent,
or hard faults. In addition, the injector lets
different faults be injected at each node in
the system. The injection time and dura-
tion can also be specified. This can greatly

, I

some way to accelerate the
occurrence of faults or er-

plications, which often
must be able to tolerate

rors. A fault injector lets The fault iniedOr I& erroneous behavior by

hardware-fault injection, faults are typi-
cally inserted into the system at the pin
level. In software-fault injection, errors are
typically inserted by altering the contents
of memory or registers. Errors can also be
introduced by corrupting messages or al-
tering object code.

theuser introduce faults or multiple nodes in the
errors into the system. you transient, system over an extended

Most fault-injection intermittent, and hard period of time. ~n addi-
experiments fall into one tion, the injector is easy

fOUItS at each node. to integrate with anv of two categories: hard-

The injector provides a tool suite to
simplify and automate the design and exe-
cution of dependability experiments. Its
two main components are the experiment
generator and the control modules. The
experiment generator creates the execut-
able and script files to run the fault-injec-

tion experiments from a user-supplied ex-
periment-description file. The control
modules consist of the routines that pro-
vide the actual fault-injection capability.
The experiment generator compiles the
appropriate portions of the control mod-
ules with the workload for each node.

To create and run an experiment using
the injector, you create an experiment-de-
scription file that provides the injector the
names of the W T S nodes to be used,
the location of the workload, and the type
of faults to be injected on each node. The
workload can be a real application or a
synthetic workload generated by the syn-
thetic-workload generator described ear-
lier. Once the experiment description file
is created, you run the experiment gener-
ator to create all the executable and script
files needed to run the fault-injection ex-
periment. During the experiment, you can
use Hmon to collect performance data.

The fault types used by the injector are
memory faults, communication faults, and
processor faults. The memory faults are
injected as single-bit or burst errors. Com-
munication faults cause lost, altered, or
delayed messages. Processor faults repre-
sent faults in the CPU's functional units.

Each fault type has many possible vari-
ations, whch the user can specify. The
injection of memory and communication
faults can be transient, intermittent, or
permanent. If the fault is to occur inter-
mittently, the user can specify a probabil-
ity distribution that describes the inter-
arrival times between faults. For memory
faults, the user can emulate permanent faults
by specifylng smal l interarrival times for an
intermittent fault This emulation is not the
same as a true permanent fault, however,
because the workload can overwrite the
faulty location between injections.

By using combinations of these faults
on each node, the user can implement a
variety of failure semantics.

STATUS

Version 1 of HARTOS is completed
and has been stable for more than two years.
We used it to provide interprocessor a m -
munication for the development of the syn-
thetic-workload generator and Hmon. We

6 6 S E P T E M B E R 1 9 9 2

are not planning to develop it further.
We timed several classes of operations

for I-IARTOS version 1 using the baseline
measurement of a single task sending a
message to a single task. All measure-
ments were done on an Ethernet, which
was otherwise idle.

Table 1 shows the first set of measure-
ments, which are the Communication
times for remote calls. We timed a varia-
tion of the call that sends a short message
to an exchange and compared it with the
time required to send a resume signal to a
task. Local time (second column in the
table) is the time required to execute the
corresponding pSOS calls on a single pro-
cessor. Intranode refers to operations be-
tween two processor cards in the same
node; Intemode refers to operations be-
tween processors in different nodes con-
nected by the Ethemet. All intranode and
internode calls were made in blockmg
mode.

The intranode communication using
the network processor shows the overhead
involved in assembling and interpreting a
message and maintaining the connection
structure in the network processor. Differ-
ence is the difference between the in-
tranode and internode times - the time
required to transmit and receive two mes-
sages (request and reply) on the Ethemet
and the cost ofsetting up a packet timeout.
In addition to the actual network-trans-
mission time, values under Difference in-
clude the cost of initiating packet trans-
mission and setting up receiving buffers
with the Ethemet controller. For small
packets, the Ethemet controller’s process-
ing time is actually longer than the net-
work-transmission time.

Table 2 shows the second set of mea-
surements, whch are for data-transfer op-
erations. These values represent the time
required to transfer x bytes of data across
the network to another process. The data-
mnsfer operations show a close-to-linear
increase in communication time with an
increase in message size. Ths relationshp
holds over two ranges ofmessage sizes: less
than 1 Kbyte and 2 to 16 Kbytes. There is
a small jump in the communication time
for sizes greater than 1 Kbyte because they
require a multipacket message, whch has

two acknowledgment packets. However,
the communication cost per byte is less for
larger messages because not all packets re-
quire acknowledgments.

’CErsion 2 of HARTOS is under devel-
opment. It currently provides all the
functionality of version 1. The clock-syn-
chronization protocol has not yet been
implemented because it depends on the
programmable routing controller, whch
is under development. However, we have
implemented many of the functions of the
real-time-channel service and measured
their performance.

We have also performed some prelim-
inary measurements to estimate the time
to establish a channel in a 19-node hexag-
onal mesh. For a channel with three links
- the longest possible in a mesh that size
-we estimate that it will take 43.5 ms to
establish a channel. We cannot make any
other measurements without the custom
network-processor archtecture, which is
still being developed.

uch work remains on version 2 of M the HARTS operating system and
on the evaluation tools. The synthetic-
workload generator is operational and has
been used for the performance measure-
ments obtained for HARTOS version 1.
As HARTS and M T O S develop, we
will use the generator extensively to evalu-
ate them. A range of experiments have
been planned. We plan to first create sim-
ple synthetic workloads to measure basic
performance values and test functionality.
We will then use the generator to produce
synthetic workloads that are representa-
tive of sample applications. We d l use
these to measure HARTS performance
under the load offered by each sample ap-
plication. We plan to study the perfor-
mance of the HARTOS network-com-
munication facilities, the effects of
asynchronous tasks on the ability to sched-
ule masks, message scheddng, and the per-
formance of fault-tolerance mechanisms.

The debugging features ofthe monitor
are incomplete and will be expanded. We
plan to improve the debugger interface
and further develop the monitor processor
to enhance deterministic replays and sup-
port CPU schedhg . We will also ex-

plore a utility to analyze monitored data
on a workstation.

The fault injector is partially complete.
The experiment generator has been im-
plemented, as has the injection of most of
the fault types. We are still implementing
the rest of the fault types and improving
the data-collection and -analysis tools.
The fault injector is intended as a support
tool for dependability experiments on
HARTS. As a result, it will be continu-
ously expanded as new applications arise
that require different capabilities. +

ACKNOWLEDGMENTS
The work reported here is supported in part

I q the Oflice ofh-aval Research under contract
N(N014-92-J-1080 and grant N00014-91-J-1ll5,
and the Natiimal Science Foundation under granu
JtP-901254Y and JIIP-0203895. Any opinions,
finduiF, and conclusionc or recornmmdations ex-
pressed in this article are ours and do not necessar-
ily reflect the views of the funding agencies.

REFERENCES
1. N. Hutchinson and L. Peterson, “The r-Ker-

nel: An Architecture for Implementing Net-
work Protocols,” IEEE 7i;znr. Sofi??are Enp’-
nem-ing,Jan. 1991,pp. 1-13.

“Hardwrc-Assisted Software Clock Synchro-
nization for Elomogeneous Distributed Sys-
tems,” IF.‘EE 7io7n. Cinnputms, Apr. 1990, pp.
514-521.

3 . U. Kandlur and K. Shin, “Design ofa Corn-
iriunication Subsystem for HAKTS,” Tech.
Report CSE-TK-109-01, (:SE Division, De-
parunent of EECS, Universit). of1%chigan,
.4nn Artwr, 1991.

4. E? Keriiuni and L. Kleinrock, ‘TPUtual Cut-
Through: ANew Computer Gmmunication
Switching Technique,” Computer Ner~wkr,
Sept. 1979, pp. 267-286.

5. D. Kandlur and K. Shm, “Reliable Broadcast
Algorithnls for HARTS,” ACX Fans. CUP-
puterS)lstems, Nov. 1991, pp. 374-398.

mote Procedure Calls,” AClM Trans. Computer
Syaem, Feb. 1984, pp. 39-59.

7. D. &skis and IC Shin, “ASynthetic Workload
for Real-Time Systems,” Pmr. Wo7.kshop on
Real-Tme Operatmg Systems and Software,
IEEE CS Press, Los Aamitos, Calif, 1990,
pp. 77-81.

8. E? Dodd and C. Ravishankar, “Monitoringand
Debugging Dismbuted Red-Time Pro-
grams,“ Softvare Practice andfiperience, to ap-
pear.

2. 111 Ramanathan, D. Kandlur, and K. Shin,

6. A. BirreU and B. Nelson, “Iniplementing Re-

I E E E S O F T W A R E 6 7

Kang G. Shin is professor and char of the computer sci-
ence and engmeenng dimsion of the electrical engmeer-
mg and computer saence depamnent at the Umversity of
Wchgan His interests are dlsmbuted real-nme comput-
mg and control, fault-tolerant COmpUMg, computer ar-
chtecture, dnd roboncs and automahon. He has wntten
or coauthored more than 190 papers and several book
chapters in these areas. He is also an editor for IEEE
Tramamam M? Paralleland Dzstnbuted Cmptmg and In
tenmtumal~ournal of Ttme-Cntlcal Cmptrng Systems.

S h n holds a BS In electronin enpeermg from Seoul Naaond Umversity,
Korea, and an MS and a PhD m elecmcal enpeering &om Cornell Umversity He
is an IEEE fellow, a disnngmshed msitor of the IEEE Computer Society, and char-
man of the IEEE Technical Comnuttee on Real-Time Systems

Motorola is creating wireless voice and data networking
technologies on a worldwide basis, focusing especially on
emerging data-oriented applications and services. Join us
as we break new ground, redefining the way the world
communicates.

You will assume overall responsibility for all aspects of
architecture for new distributed data communications/
networking applications and services. We require a mini-
mum of 15 years’ experience in telephony, data and/or
network services industry. You must have significant soft-
ware development experience on diverse platforms, oper-
ating environments and languages. International experi-
ence and knowledge of European and Asian Pll’s and an
advanced degree are preferred.

For immediateconsideration pleasesend your resumewith
salary requirements to: Supervisor, Professional Recruit-
ment, Dept. MSA /DL-IES/ 892, Motorola Inc., 1501 West
Shure Drive, Arlington Heights, IL 60004. Or FAX your
resume directly to our Resumix FAX line: (708) 632-7382.
Motorola welcomes and encourages diversity in our
workforce. We are an equal opportunity employer.

6 8

Dilip D. Kandlur is a research staff member at the IBM
TJ. Watson Research Center, where his interests are oper-
ating systems, real-time systems, and networks. He partici-
pated in the work described in this article while at the Uni-
versity of Michigan.

Kandlur holds a BTech from the Indian Institute of
Technology, Bombay, and an MSE and a PhD from the
University ofMichigan - both in computer science and
eneineering. He is a member of the IEEE Computer Soci- * ety.

Daniel L. &kis is a PhD candidate in computer science
and engineering at the University of Michigan. His re-
search interests include synthetic workloads, real-dme
workload characterization, and performance evaluation.

ics from Denison University and an MSE in computer
science and engineering from the University ofMichi-
gan. He is a member of the IEEE, Sigma Xi, and Phi
Beta Kappa.

Kiskis holds a BS in computer science and mathemat-

Paul S. Dodd is manager of research and development at
Myra Systems Corp., where his mterests include rea1-t”
monitonng, OperaMg systems, and networks

Dodd holds a BSE m computer engneermg an MSE
in computer saence and enpeering, both from the Um-
versity of mchgan, where he paracipated in the work de-
scribed m thls amcle

Am Indiresan is a PhD candidate in computer saence
and enpeenng at the University of Michigan and a re-
search assistant at the umvenity’s Real-Time Compuhng
Laboratory f i s research interests d u d e operanng s y -
tem and ardutemal support for performance guarantees
and fault tolerance

neering &om the Indian InShtute ofTechnology, Madras.
He is a member ofthe IEEE Computer Smety and Tau
Beta Pi

Indiresan holds a BTech m computer science and eng-

Harold Rosenberg is a PhD candidate in computer sci-
ence and engineering at the University ofMichigan and a
research assistant at the university’s Real-Time Computing
Laboratory. His research interests include software fault in-
jection, fault tolerance and real-time operating systems.

Rosenberg holds a BS in elecmcal engineering from
Tufts University and an MS in elecmd and computer en-
gineering from the University of Massachusem at Am-
herst. He is a member of the IEEE, ACM, Tau Beta Pi,
and Eta Kappa Nu.

Address questions about this article to Shin at Real-Time Computing Labora-
tory, UniversityofMichigan, 1301 Beal Ave., AnnArbor,M148109-2122; Internet
kgshin8alps.eecs.wnich.edu.

~~~ ~ ~~~~~~ 

S E P T E M B E R  1 9 9 2  

n 

http://kgshin8alps.eecs.wnich.edu

