
BJBDB: A Bibliographic Database for Collaboration

David J. Musliner James W. Dolter Kang G. Shin

Computer Science and Engineering Division
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

(313) 936-2495 {djm, jdolter, kgshin} @eecs.umich.edu

Ms-mmc-r
While researchers strive to develop new systems to enhance

the cooperative document editing process, many authors

already collaborate, using existing text processing systems to

produce papers and reports. Using these tools, one of the most

time-consuming and error-prone collaboration tasks is main-

taining a consistent shared bibliography. We have designed

and implemented the BIBDB system to simplify collaborative

authoring by providing a shared, cooperatively maintained

bibliographic database. BtBDB uses existing networking tech-

nology and merges seamlessly into the IAT~IBT# text

processing system [5]. The contributions of BIBDB include

a set of user interface policies and software implementation

techniques that support cooperative database maintenance.

KEYWORDS

Bibliographic databases, collaborative writing, distributed &

replicated databases, partial locking, relaxed consistency, in-

cremental indexing.

INTRODUCTION

Despite their overwhelming popularity in the scientific com-

munity, computerized text formatting systems have remained

quite primitive, and do not yet take advantage of the potential

for sharing and cooperation which is embodied in local-area

networks (LANs) and the nationwide Internet. For instance,

every formatting system has some technique for construct-

ing a bibliography of references automatically, but each user

must type the bibliographic reference material into his/her

own database file. In addition to a tremendous amount of

replicated effort, this isolation of personal databases leads

to pervasive inconsistency in reference formats (especially

in abbreviations of journal and proceedings titles) and in-
compatible citation keys. As a result, collaborating authors

find it nearly impossible to smoothly merge their individual

databases and reference styles. A few user groups have co-

Permission to copy without fee all or part of this material ia

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

Q 1992 ACM 0-89791 -543 -7/92 /0010 /0386 . ..$1 ,50

operated to form larger, shared databases of references, but

the performance of programs which access these databases

does not scale well, because the databases are simply large

text lists of bibliographic entries.

To address the deficiencies of current bibliographic systems

within the context of existing text processing and networking

technology, we have designed and implemented the B16DB

bibliographic database system. The BIBDB system is designed

to maintain a single vast bibliographic database, shared by all

users and accessible to any UNIX machine on the Internet.

The database is not stored or accessed linearly, so search and

access performance does not depend linearly on the size of the

database. Local copies of the database are maintained at each

installation (perhaps one installation per university or LAN),

so that most accesses to the database are done over LANs

rather than the nationwide network. Additions to the database

are incremental and global, and data is never removed from

the system: once an entry is added at one installation, it is

available (and will not be added again) at all installations.

Our work on BtBDB has been carefully focused on developing

practical mechanisms to allow cooperative database mainten-

ance and to enhance collaborative authoring capabilities. We

have developed a set of user interface policies that encour-

age harmonious cooperative efforts. We have also developed

several unique software mechanisms useful for implementing

this shared distributed database. These implementation de-

tails include a uniquely powerful clientherver organization,

a relaxed database consistency criterion, a partial database

locking method, and a dynamic overload scheme leading to

graceful degradation.

The remainder of this paper is organized into six sections, The
next section presents an overview of the BtBDB system goals

and organization. The following three sections describe the

server and access programs which make up the system. The

last two sections compare BJBDB to competing bibliographic

systems, and describe the current status and future extensions

of the system.

THE BIBBB SYSTEM
Design goals

We designed the BIBDB system to address the variety of

problems perceived in existing bibliographic systems. The

CSCW 92 Proceedings November 1992

386

primary goal was to create a system which takes advantage

of cooperative efforts at database maintenance and eases col-

laborative authoring, within the context of currently po]pular

text processing packages. Based on personal experience and

discussions with other users, we designed BIBDB with the

following specific aims:

●

b

Q

●

●

●

●

Data sharing. BIBDB maintains a very large database

of bibliographic information entered, maintained,, and

shared by all users and accessible over LANs and the

Internet. Sharing the database avoids redundant data

entry.

A one-to-one mapping of keys to references. BIBDB

goes to great lengths to prevent duplicate entries, and

will never issue the same citation key for two different

references. Thus there is never any confusion about

what information a citation points to, and collaborating

authors can exchange simple citation keys, rather than

extensive bibliographic data.

Citation permanence. Once a citation key has been is-

sued for a new entry, it will always point to that entry.

Documents produced using the BIBDB system will never

be invalidated by changes to the database.

Consistent referencing. BIBDB encourages users tc~em-

ploy standard string aliases, so that references to silmilar

works are formatted similarly.

Powerful searching. BIBDB includes an associat-

ive cross-indexing mechanism, so users can perform

keyword searches for articles. These searching facil-

ities make the database a major resource both for finding

specific references and for blind literature searches.

Speed and scalability. BLBDB stores references in a

hashed database format which makes retrieval extremely

fast. The database is never processed entirely or searched

linearly.

Incremental growth. As users add new entries, 131BDB

does not re-process the entire database in any way.

The BIBDB system is intended to merge seamlessly into the
14T~mT# formatting system [5]. In the 14T@ system,

text formatting commands are included in a document to

control its eventual printed form. The companion BIBT#

system provides bibliographic reference indexing and format-

ting. BmT# bibliographic entries are typed in a fixed format,

with each entry assigned a unique key by which it is cited.

Figure 1 shows an example B5T@ entry for a (mythical)

journal article, as well as the use of strings (or aliases) to ab-

breviate commonly used journal names and other text items.

The “@article” portion specifies that the entry’s type is article,

which the bibtex program knows how to format. The entry

type can also be” @inproceedings”,” @book”, etc. After the

type specification, the entry’s unique key is specified (here,

“musliner:92”), Then a series of “field= vahe” pairs specifies

the bibliographic data.

@string{CCJ = “The Cool Computing Journal”}

@article{musliner: 92,

author = “D. J, Musliner and J. W, Dolter”,

title = “A Cool Bibliographic System”,

journal = CCJ,

year = 1992 }

Figure 1: An example Bn3T# entry.

System overview

Figure 2 shows the organization of the entire BIBDB system,

which is composed of database files, server programs, and

client programs. A copy of the entire database exists at each

installation, where installations are allocated to LANs with

fairly large groups of users (e.g., universities, research com-

panies). Each installation runs the bibdb-server program,

which provides database maintenance and access services to

users. Users connect to the bibdb-server by running cli-

ent programs on their own computer. The client programs

usually connect to the closest installation’s server, but may

connect to a server at any installation. The database copies at

each installation are kept consistent by their connection to the

central keymaster. The keymaster coordinates all updates

to the database, systemwide, and ensures that different users

do not simultaneously add the same entry.

All of the BIBDB programs are written inperl [9], a commonly

available and freely-licensed interpreted language which con-

tains nearly all of the features of awk, seal, c-shell and C. Like

Lisp, perl has an ‘eval’ function which runs the interpreter on

a perl expression. A perl program can write its own code by

assigning valid perl code to a string variable and then eval-ing

the variable.

r

Installation I

Installs

Figure 2: Overview of the BIBDB system.

387

The server programs

The bibdb-serverprovides all database services to the user.

This program embodies the various administrative policies of

the BIBDB system, which are described in the next section.

Each installation’s server program opens a “well-known”

socket to which the client programs connect. The server

forks copies of itself for each connecting client, so that mul-

tiple clients may access the database simultaneously.

The bibdb-server connects to the keymaster via a well-

known socket, and tells the keymast er about all changes to

the database. The keymast er forks copies of itself for each

connecting bibdb-server, and tells each bibdb-server

about changes that others have made to the database. These

programs and their interactions will be described in more

detail in the following sections.

The client programs

The client programs bibdb and bibext ract are actually

very small perl scripts that simply connect to the appropriate

server and act as a “programmable conduit” for information.

Aside from a single routine to connect to the appropriate

server program, the entire body of the client programs is

shown in Figure 3. The client programs connect to a server

and then read lines from the connected socket, either printing

them out or eval-ing them. Thus the server program can send

executable code to the client program, causing the client to,

for instance, open a file and send its contents back to the

server. All file operations, prompting, and data manipulation

are actually controlled by the server program, and the client

programs just provide a channel over which information can

flow to and from the user’s computer. This organization has

several beneficial aspects:

●

●

b

Security. Since the data operations are all completely

controlled from the server program, there is virtually no

way a user can interfere with or alter the database in an

unacceptable manner. The bibdb- server gives users

a limited ability to modify or delete information from

the database, and malicious users cannot expand upon

that ability because the information exchange protocol

is dynamically downloaded from the server. The server

even has to tell the client program when to prompt the

user for input.

Speed. Since the client programs are very small perl
programs, they start very quickly, The high cost of

parsing the complex database management routines is

paid only when the server program is started, not each

time a user wishes to access the database.

Optional distribution. The server program can down-

load subroutine definitions to the client programs and
then send invocations of those subroutines, thus offload-

ing computations from the server computer to the user’s

computer. This feature is most useful for I/O routines

which can be offloaded without compromising security,

Protocol locality. Because the entire interaction protocol

is contained within the server program, it is much easier

to recognize errors in the protocol when writing these

programs. While debugging, we do not need to con-

stantly switch between the client and server programs

to understand how information is being exchanged,

and what the response to various inputs will be. The

keymasterlbibdb-server interface, which does not

share this feature, has been much more difficult to de-

velop and debug.

Easy code updates. Making changes to the BtBDB imple-

mentation is extremely easy, because there are relatively

few copies of the server program (one per installation).

There may be many thousands of copies of the trivial cli-

ent programs, but these need never be changed, because

the actual interface is contained solely in the server. In

fact, since the client programs were first developed in

this form, we have made hundreds of changes to the

server program, but not one to the client programs.

fact that the client programs are such minimalist shells is

not visible to the user. The user simply starts one of the client

programs, which then appears to prompt and interact with

the user in a normal fashion. Thus we describe the behavior

of the client programs as though they actually define those

interaction patterns, when in fact the server program does.

BIBDB
The bibdb program is the database maintenance program,

allowing the user to add and modify entries and strings, and

communicating with the keymaster to keep the local database

copy up-to-date with the other installations. The program also

provides a powerful user interface to the database’s search-

ing mechanisms, including an associative cross-index which

allows keyword search without linear scanning.

Policy-directed functions
The bibdb program implements many of the policies with

which the BIBDB system addresses the shortcomings of other

bibliographic databases. For instance, each user of a referen-

cing program tends to develop his/her own style of citations.

This means that combining or exchanging databases or even

single citations can be difficult, because citation keys may

conflict, or duplicate entries may not be detected, To avoid

these problems, bibdb automatically generates the citation

keys for all entries when they are added to the database, All

authors then use the same key to cite the same entry in the

shared BLBDB database. Keys are formed from the last name

of the first author, a colon, the last 2 digits of the year, and

a suffixed ‘a’, ‘b’, ‘c’, etc, to distinguish otherwise identical

entries (e.g., musliner:92a). No two entries may have the

same key, When entries are added, if entries with the same

key-root (all but suffix character) exist, the system queries the

user to make sure a duplicate entry is not being introduced,

as illustrated in Figure 4. Barring typographic errors in the

first author’s last name or the year, this technique detects all

possible duplicate entries. A title comparison heuristic then

388

while (<SERVER>) # While (get a line of input from the server)

{
chop ; # Strip newline from input,

if (s/”\OOl//) # :[f input starts with CTRL-A,

{ eval; } # it is executable perl code, so execute it.

else # Else,

< print “$-\n”; } # just print the input to the user.

1

Figure 3: Main body of client programs (in perl).

makescontinue/abortrecommendations to the user. Unfor-

tunately, differing interpretations and typographic errors are

much more common inthe titlesof papers, and thus human

intervention is still required to make the final decision to

abortan addition. Fortunately, bibliographic systems are not

so critical thatweneedto worry too muchabouterrors. The

inevitabletypographic errors [l] areeasily fixed, sincebibdb

allows users to modify any entry in the database.

Since BIBDB depends on users to add its entries in the first

place, we must explicitly trust the user when necessary. Des-

pite the best heuristic efforts, some duplicate entries will un-

doubtedly reintroduced. Inthatcase, two different citation

keys will point to (potentially) different data for the same real

reference. This violates oneofour fundamental goals, since

there is no longer a one-to-one mapping of unique keys to

unique references. However, we cannot allow a user to fix

this problem by simple deleting a citation key and its cor-

responding reference, because that key would no longer be

valid. Some other user who cited that key in a document

would then have an invalid document, violating the citation

permanence design goal. Once a document is successfully

generated, changes to the bibliographic database should not

alter the citation structure such that the document’s citations

are no longer valid. Therefore, we allow a user to fix duplicate

entries by “redirecting” one of the keys to the other key for

the same reference. The redirected key is still a valid citation

key, but now it points to the data associated with the other

key. Changes made to the data will be visible to citations

using either key.

BraT& provides the string alias mechanism both to save typ-

ing effort and to lend consistency to references. For example,

good bibliographic style dictates a consistent format for the

titles of conferences and workshops. A bibliography which

cites “The Proceedings of the Third International Conference

on Widgets” and also “Proc. 3rd Int’1 Conf. Widgets” is in-

consistent and undesirable. Thus bibdb provides a powerful

automatic string substitution mechanism which encourages

users to employ string aliases, leading to more compact ref-

erences and consistent formatting. The program examines

the fields of each entry, heuristically checking to see if they

resemble strings which are defined. If so, the program offers

those substitutions to the user, as illustrated near the bottom

of Figure 4.

Finally, since one of the major goals of BIBDB is to conveni-

ently share the bibliographic data, multiple users may run

bibdb in parallel, concurrently accessing and modifying an

installation’s database. This is a particularly tricky feature,

since UNIX does not strongly support multiple-writer files.

In fact, all changes to the database files must be serialized,

but bibdb restricts the serialized sections of code (monitors)

to very short operations, thus allowing most bibdbs to carry

on interactions with their users while one bibdb has the data-

base briefly locked. Locks on the database are only acquirecl

once a final decision has been made to modify the database,

When any bibdb user is modifying the database, all bibdb

accesses to the same installation are preceded by cache flushes

and reloads, so that the data which the bibdb user sees is as

up-to-date as possible.

The bibliographic database
The BIBDB database is optimized for access by the unique

key which must be associated with each BmT~ entry. The

bibliographic data is stored in “gdbm” format, which is a

freely-licensed database format based on the “ndbm” system

supplied with most UNIX installations. Perl can access these

database files as though they were associative arrays (that is,

arrays indexed by arbitrary strings). So, bibliographic entries

are stored in a huge associative array, indexed by their unique

citation key.

key --> [database] --> entry

The cross-index
To allow the user to find an entry whose key is unknown,

all words in each entry are used as indices into an associative

cross-index, which maps arbitrtuy words to the keys of entries

which contain those words.

word --> [cross-index] --> list of keys

The bibdb program gives the user a powerful set of search-

ing primitives which locate references based on boolean

combinations of keywords, as listed in the cross-index.

For example, the command “find author musliner end

title database” specifies a search for entries in which the

author field contains “musliner” and the title field contains

“database”. These searches are always case-insensitive. The

cross-index database maps each fieldhalue pair in the search

389

unix% cat new. bib Print out thejle of new data.

@article{ ignored-key,

author = “D. J. Musliner and J. W. Dolter”,

title = “A Cool Bibliographic System”,

journal = “J. of Cool Computing”,

year = 1992 }

Startthedatabase maintenanceprog ram.

Addthenewdata$le.

Bibdbdetects asimilar entry.

unixx bibdb

Connected to bibdb-server at [huron.eecs.umich.edu]

bibdb> addnew.bib

WARNING: a key collision has occurred.

The key for the existing entry :

@inproceedings{musliner :92,
author = “D. J. Musliner and J. W. Dolter”,

title = “Another Neat Bibliographic System”,

booktitle = “Proc. Conf. on Important Things”,

year = 1992 }

Conflicts with the proposed key for the new entry :

@article{musliner :92,

author = “D. J. Musliner and J. W, Dolter”,

title = “A Cool Bibliographic System”,

journal = “J. of Cool Computing”,

year = 1992 }

Enter one of the following options: Bibdb lists options.

(cautiously continue: try the next lexical key

(a)bort the addition

(r)eplace existing entry with new entry

Title comparison suggests the entries are NUT the same And provides advice based

and you should choose the (c)autious option onheuristics,

key-collision-action> cautious User agrees entries are diflerent,

Continuing addition attempt: generating new key so bibdb tries new key

Adding new entry with key [musliner:92a] and$ndsnoconjiict.

The following strings are similar to the Bibdb detects a common string.

original journal [“J. of Cool Computing”] :

1: CCJ = “The Cool Computing Journal”

Please choose a number, or <Return> for the original value

string choice> 1 Userchoosesthe suggested alias.

bibdb>

Figure4: Showing howthebibdb interface triestopreventduplicate entriesand encourages common string usage when anew
datafile isadded. Notethenewenty’s citation keyin thedata file isignored, and bibdb createsthe keyitself.

command to alist ofcitation keys, The ’’and’’ indicates that be used insesrches: as long as anon-overloaded keyword

the result of the whole search command should be the inter- is specified, the search routines return a list of keysz which

section of the two intermediate lists. Replacing ’’and’’ with is then scanned by a post-processing step forthe overloaded

“or” yields the union of the intermediate lists. sesrchterms.

Finding the intersection or union of lists involves a linear

scan ofthe lists, and thus can have relatively high cost. To

Iimitthemaximum time which asearch can take, andalso to

restrict thesize of thecross-index entries, words which map

totoomanyl en~keys are declsred ’’overloaded,” andare

notsllowed ascross-index indices. However, they may still

1N = ,~too~mYII is a Constit on the orderof 500-1000.

THEKEYMASTER
The keymaster is responsible for ensuring that each of

the installation databases is “consistent.” Essentially, the

keymaster must make sure that every valid citation key is

assigned to exactly one entry (hencethe name). No installa-

tion must be able to assign a key that has already been used,

‘oflength< N.

390

and all installations must agree on which entry a particular

key points to. However, since our bibliographic database does

not have the temporal consistency requirements of a banking

database, the installations need not be identical at all ltimes.

In fact, the only time it is important for an installation to be

completely up-to-date is when a user is trying to modify the

database: bibdb must have access to all the existing entries,

so it can issue an unused key and make sure the user is not

creating a duplicate entry. Therefore, we have implemen-

ted a type of “relaxed consistency” in which installations can

become outdated if they have not been changed recently.

Relaxed consistency

The keymast er assigns a unique, monotonically in-

creasing update-id to each database change sent from a

bibdb-server. When a bibdb-server initiates a modi-

fication to the database by contacting the keymaster, it first

requests all the updates since its last contact (as identified by

its most recent update-id). The ke ymast er sends all the more

recent updates back to the bibdb-server, thus ensuring that

the installation’s database is up-to-date before the change.

This approach has the advantage that installations only need to

be connected to the keymast er when the user tries to change

the database. Periods of Internet downtime do not completely

incapacitate the BIBDB system: installations which cannot

connect to the keymaster essentially become read-only, so

users can still extract entries which they have used before.

Documents which were successfully produced in the pnst are

not suddenly crippled by network problems.

Despite the relaxed consistency technique, the keymast er

is the bottleneck of the BIBDB system. All changes to the

database must eventually be serialized at the keymast er (be-

cause UNIX does not support multiple-writer files). The

keymaster does not actually have a gdbm copy of the data-

base: it only maintains a file containing all of the modific-

ations to the database (the updates-jile). The updates-file is

the single-writer bottleneck, since database changes must be

recorded serially in the file. Although a keymast er is forked

for each bibdb-server which is trying to change the data-

base, these keymasters cannot all write to the updates-file at

the same time, We have minimized the cost of this restriction

through a technique we call “key-root locking.”

Key-root locking

If a user is going to add a new entry, the addition mqy take

as much as a minute or two, because the user may have to

resolve key conflicts and string-substitutions. We do not wish

to have the updates-file locked for that entire time. So, we al-

low the bibdb-server to request an exclusive key-root lock,

disallowing all other changes which involve database entries

with the same key-root (author name and year). Thc key-
root lock is held for the duration of the bibdbluser interaction

dealing with the new entry. But the updates-file is locked

only briefly, once the user has confirmed the addition. The

bibdb-server sends the confirmation to the keyamst er,

which locks the updates-file, writes out the update informa-

tion, and immediately releases the lock on the updates-file.

Thus, the time during which the forked keymast ers must be

serialized (essentially, the monitor section of the keymast er)

is extremely short. Multiple users can simultaneously interact

with bibdb to arrange changes to the database, as long as the

key-root locks do not conflict.

In fact, the forked keymasters are also serialized when they

issue a new update-id, since that number must be unique and

monotonically increasing. The key-root locks and update-id

locks are implemented through flock, the UNIX file locking

facility.

BIBEXTRACT
The bibextract program interfaces the BIBDB database sys-

tem into the normal 14T~IBT~ system. Bibextract finds

the citations in a 14T~ document and retrieves the corres-

ponding entries (and all necessary string definitions) from the

BIBDB database, building a reference file tailored to the exact

needs of the document.

Normally, the “\cite{}” commands in a 14T~ document will

specify the exact BIBDB citation key, so that bibext ract can

use a simple lookup in the BIBDB database. The time required

for this extraction process does not grow linearly with the size

of the database, because the database is indexed associatively.

Bibextract also allows users to pass the “\cite{}” command

an “imprecise citation,” consisting of a set of semicolon-

separated words which appear in the desired bibliographic

entry (i.e., an imprecise citation for this paper might have

the form “\cite{musliner;bibdb; 1992}”), Bibextract will

attempt to resolve imprecise citations to unique entries using

the BtBDB associative cross-index.

COMPETING DATABASES
This section compares BIBDB to a variety of competing bib-

liographic database systems, both commercial and public do-

main. We demonstrate that BJBDB provides a unique set of

features, combining the best aspects of many other systems

while largely avoiding their disadvantages.

Refer
The refer system mentioned in the introduction is an older

reference-maintenance system which was developed to work

with troff. Since refer has been around so long, many people

have very large refer databases, and there are various modi-

fications available to make the system usable with other text

processing systems. Refer is the most popular competitor to

BtBT~,

Aside from minor formatting differences, the primary differ-

ence between the BIBT~ and refer systems is that refer allows

imprecise citations. Refer’s indxbib program examines a

refer text database and creates a cross-index similar to the

BIBDB cross-index. The ref er program uses this cross-index

to attempt to resolve imprecise citations to unique articles. IIf

the citation is not sufficiently precise, so that it matches more

than one database entry, refer prints an error message. The

citation must then be enhanced to specify a unique reference.

391

During the design of BIBDB, we carefully considered the

strengths and weaknesses of refer-style imprecise citations.

The main advantage of the technique is that a user need not

remember some (possibly cryptic) unique key to cite a pa-

per. There are several significant disadvantages. Primarily,

imprecise citations do not permit the “citation permanence”

guarantees we desire, Consider the case when a user has cited

a reference and generated a paper, but the next day the paper

is no longer properly generated because another user has ad-

ded an entry which also matches the imprecise citation, and

thus the citation is no longer sufficient. We consider this an

unacceptable failure, especially since we intend BJBDB to fa-

cilitate collaboration and incremental expansion. Confusion

and annoyance could only result if a co-author found that an-

other co-author’s imprecise citation suddenly did not indicate

a unique entry.

However, since we already have a fully developed cross-index

to allow nonlinear searches of the database, there is no reason

we can not also allow imprecise citations in the refer man-

ner. Thus, bibext ract does attempt to resolve imprecise

citations, as described earlier. In fact, BIBDB implements im-

precise citations with lower cost and greater flexibility than

refer. If a refer user does not run indxbib on the entire

database, refer must use a linear scan to resolve citations.

Each change to a refer database requires that the entire data-

base be re-indexed by an indxbib linear scan. BIBDB, on

the other hand, performs its cross-indexing incrementally, as

each entry is added, so once an entry has been cross-indexed it

need never be done again. The bibext ract operation never

involves processing the entire database,

The indxbib program itself has a number of limitations

which the BJBDB cross-index does not share. Indxbib trun-

cates all words to six characters and discards words shorter

than 3 characters, numbers less than 1900 or greater than

2000, and the 100 most common English words. The BIBDB

overloaded-word mechanism is a far more flexible, dynamic

implementation of the same attempt to reduce the size of the

cross-index. And, since overloaded words can still be used

in imprecise citations as long as at least one non-overloaded

word is used, BIBDB provides more powerful and less costly

imprecise citations than refer.

Mail-servers

A number of bibliographic database projects have recently

made their databases available through mail-servers [2, 4].
In these systems, users email specially formatted queries to

a public address, where an automated mail server processes

the requests, usually overnight. The main disadvantage of

these systems is that they are not on-line. Users must wait for

unpredictable electronic mail to transmit their data, and they

cannot find out if their queries were even properly formatted

until at least the next day. Our queries to the LIDO mail-server

[4], for instance, took over 2 days to return.

Mail-servers have the advantage that, since their processing

can be batched to run when other demands on the host system

are low, they can provide computationally expensive services.

In particular, all of the mail-servers we have encountered use

a simple linear scan of a text database. Since they are already

doing linear scanning, the mail-servers can afford to allow

regular expressions in the queries. Thus, mail servers can

easily be implemented as front-ends to UNIX filters of the

“grep” family. While regular expressions provide a more

powerful mechanism for blind searching when the desired

reference is not known, we consider the delays associated

with mail-servers to be unacceptably long. Essentially, these

services can be useful for literature searches, but are not in-

tegrated with text formatting systems and provide no way for

users to add or modify entries.

However, mail-servers do not require Internet access: any

user who can send and receive email can access the mail-

servers. This vastly increases the number of people who can

use these services. Fortunately, nothing in the nature of BIBDB

prevents us from implementing a simple mail-server interface

to accommodate those users. While the interactions required

to verify changes to the database could become complex and

slow, the retrieval functions could certainly be on par with

any existing mail-server.

Other BIBTEX systems
Bibliographic database managers are a recurrent theme on the

electronic newsgroups related to text formatting. A number

of users have made their systems available to the Internet

community [3, 7]. Most of these systems essentially provide

front-end interfaces to textual BBT& databases, usually in-

cluding regular-expression matching. While these systems

are useful for maintaining small, personal databases, they

have no provisions for sharing data or avoiding linear scan-

ning. BIBDB is a far more powerful and wider-scope database

management system.

Commercial systems

Most modern research libraries have electronic card catalogs

which maintain records of bound publications. There are

also a few services which list not just bound publications, but

the separate articles within those publications. For example,

the University of Michigan library provides network access to

the Wilson Indexes to Journal Articles, a commercial database

listing references from the Applied Science and Technology

Index, Art Index, Social Sciences Index, and others. This

resource provides exactly the sort of on-line keyword search-

ing which BIBDB provides, over a much larger database than
BIBDB currently controls. While the system is not interfaced

to any bibliographic system, it probably could be. However,

this may never occur, because the commercial systems all

copyright their data. Using their data to directly create a

document might violate that copyright,

The main advantage of these systems is that they can achieve

complete coverage of the contents of periodical, because the

licensing fees are used to hire people whose sole responsibility

is to input data. By relying on users for input, BIBDB grows

slowly and provides only spotty coverage of publications. On

392

the other hand, it also necessarily includes exactly the articles

which users find useful, and thus it may be considered a

pre-filtered source for literature searches, less complete than

commercial systems, but more convenient when it comes time

to write a paper or report.

Aside from copyright limitations, nothing prevents us from

integrating the data from larger databases into the BIBDE)data-

base. We hope that in the future, major periodical publishers

like the IEEE and ACM will send bibliographic information

on their new publications directly into the BIBDB database,

eliminating most user additions and improving coverage.

CURRENT STATUS & FUTURE WORK

The prototype BIBDB system operates as described in this

paper. The initial release is confined to the University of

Michigan, so only a single bibdb-server is kept running.

The system is currently managing a database of over 15,000

bibliographic entries and over 250 string abbreviations. The

associative retrieval of entries from known keys is essentially

instantaneous. Searches that require computing the union

and/or intersection of lists of entries take no more than a few

seconds. This version and a previous, single-user version

have been in use for over two years, helping members of the

Real-Time Computing Laboratory (RTCL) at the University

of Michigan produce dozens of papers. Several users outside

of RTCL have also recognized the advantages of the system,

and now use BIBDB full-time. The database has proven! quite

useful for blind searches, yielding dozens of useful references

in our experience.

We intend to improve several aspects of the implementation,

as outlined below.

Locking

Because BIBDB shares several kinds of writable data among

multiple users, it makes extensive use of locking. We cur-

rently use the UNIX~ock mechanism to implement loelcing.

This method requires file system accesses which make lock-

ing fairly slow, thus increasing the severity of the keyrnast er

bottleneck, Since all the keymaster copies run on the same

machine, we could use shared-memory semaphores to imple-

ment locking, speeding the ke ymast er’s response timle and

increasing the number of bibdb-servers which could be

served without significant performance degradation. !Simil-

arly, all the bibdb-servers at an installation run on the same

machine, and could do their own locking via semaphores.

Data compression

Not surprisingly, the BIBDB database occupies large amounts

of disk space. While the programs are quite small, the data-

base is huge: the current bibliographic database occupies over

4.6 megabytes of disk space, and the cross-index consumes

31.7 megabytes. Obviously, using data compression tech-

niques to reduce this excessive space requirement would be

a desirable feature. We have examined several mechanisms
for compressing the bibliographic data.

In order to maintain the incremental nature of BIBDB, we can-

not compress the entire database at once: each entry must be

stored in the gdbm file in its compressed form, independent

of the other entries. Thus, so-called “universal” coding alg-

orithms [10] which optimize themselves to their input are

inappropriate, because the bibliographic entries do not sup-

ply enough data to establish valid statistical features. Tesis

with the UNIX universal coding compress utility confirm

that strings of 300 bytes3 can be compressed as little as 11%,

Coding algorithms which do not require lengthy input streams

are more appropriate. Huffman coding provides high com-

pression rates (on the order of 45–65%) when given a fixed set

of input probabilities [6, 8]. We have written a utility which

computes these probabilities from a BIBDB database. The ex-

isting database contains a very large sample of the expected

BIBDB data, and thus provides input probabilities which will

be representative of most new entries. All that remains is to

integrate Huffman encoding and decoding routines with the

gdbm library.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

C. P. Bourne, “Frequency and Impact of Spelling Errors

in Bibliographic Databases,” h@rmation Processing

Management, vol. 13, no, 1, pp. 1-12, 1977.

K. Ginther-Webster. A New Resource for AAAI Memb-

ers: Project Merwy: An Electronic Library. in letter

from AAAI, 1990,

P. King. Bibtex Database Management Program.~.

USENET news article 4070 on comp.text.tex, Decenw

ber 1990.

A. Kobsa, The LIDO Mailserver for AI Literature.

USENET news article 7513 on comp.ai, November

1990.

L. Lamport, MT~ : A Document Preparation System,

Addison Wesley, 1986.

D. Severance, “A Practitioner’s Guide to Database Conw

pressionj’ Information Systems, vol. 8, no. 1,, 1983.

A. Shah. Bibliography Management Tools, Take 2.

USENET news article 4089 on comp.text.tex, Decem-

ber 1990.

J. D. Unman, Principles of Database Systems, Second

Edition, Computer Science Press, 1982.

L. Wall and R. L. Schwartz, Programmingperl, O’Reilly

& Associates, Inc., 1991.

J. Ziv and A. Lempel, “A Universal Algorithm for Se-

quential Data Compression,” IEEE Trans. Information

Theory, vol. IT-23, no. 3, pp. 337-343, May 1977.

3Thecurrentdatabaseaverages280bytesPeren~.

393

