Reasoning about Bounded Reactivity to Achieve

Real-Time Guarantees

David J. Musliner

Edmund H. Durfee

*

Kang G. Shin

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

E-mail: djm@eecs.umich.edu

Introduction

Realistic intelligent control systems must recognize
that, in addition to the processor limitations that make
them subject to “bounded rationality” [Simon, 1982],
sensor and actuator limitations also lead to “bounded re-
activity.” As part of our larger goal of developing intel-
ligent real-time control systems [Musliner et al., 1992],
we are investigating techniques that allow a system to
take its own bounded reactivity into account by select-
wely perceiving and reacting to conditions in the envir-
onment. These techniques include encapsulating sens-
ing and action primitives within reactive structures that
facilitate reasoning about resource constraints, and an
environment modeling technique that allows the system
to automatically derive the selected perceptions and re-
actions 1t must activate at any particular time.

Most research on “real-time AI” focuses either on re-
stricted Al techniques that have predictable perform-
ance characteristics [Boddy and Dean, 1989] or on re-
active systems that retain little of the power of tradi-
tional AI [Brooks, 1986]. Our research takes a differ-
ent approach: to achieve a combination of unrestricted
Al techniques with the ability to make hard perform-
ance guarantees, we propose CIRCA | a Cooperative In-
telligent Real-time Control Architecture. Figure 1 il-
lustrates the architecture, in which an Al subsystem
(AIS) reasons about task-level problems that require
its powerful but uncertain reasoning methods, while a
separate real-time subsystem (RTS) uses its predictable
performance characteristics to deal with control-level
problems that require guaranteed response times. We
have developed a scheduling module and a structured
interface that allow the unconstrained Al subsystem to
asynchronously direct the real-time subsystem without
violating any response-time guarantees.

*The work reported in this paper was supported in part
by the National Science Foundation under Grants DMC-
8721492 and IRI-9158473, and by a NSF Graduate Fel-
lowship. The opinions, findings, and recommendations ex-
pressed in this publication are those of the authors, and do
not necessarily reflect the views of the NSF.

This paper focuses on the techniques we are devel-
oping for meeting performance goals with limited re-
active resources, including sensors and actuators. Se-
lective perception plays a key role in these techniques,
restricting the conditions which the system senses, pro-
cesses, and reacts to. We will discuss these techniques
in the context of our example domain, in which a proto-
type implementation of CIRCA pilots a Hero 2000 robot
through hallways using an aimed sonar sensor. We first
present an overview of the architecture, including a de-
scription of our representation for reactive behaviors.
We then discuss the environment model which the AIS
uses to reason about the system’s performance and to
make tradeoffs among various performance dimensions,
including sensory attention.

Architecture Overview

CIRCA meets the demands of real-time control within a
bounded-reactivity system by guaranteeing that it will
produce a precise, high confidence response in a timely
fashion to a limited set of inputs. In other words, the
architecture can sacrifice completeness of attention in
order to achieve precision, confidence, and timeliness
in its responses to environmental changes that it does
observe.

The Real-Time Subsystem (RTS)

The RTS executes a cyclic schedule of simple test-action
pairs (TAPs!) which have known worst-case execution
times. Since the RTS performs no other functions, it
can guarantee that the scheduled tests and actions are
performed within predictable time bounds. The TAP
structure provides a standard primitive with which the
Scheduler and AIS can reason about the timing and re-
source characteristics of the RTS’ behavior, in order to
guarantee meeting deadlines and resource restrictions.
Fach TAP class has a fixed set of tests (or precondi-
tions), a set of actions to take if all the tests return

!Not to be confused with Firby’s RAPs [Firby, 1987],
which are larger in scale and do not have predictable execu-
tion times.

Real-Time Subsystem

TAP Schedule

(Limited World Model)

schedules

Al Subsystem

Inference Engine

C WorldModd)

Figure 1: The Cooperative Intelligent Real-Time Control Architecture.

true, data about the sensing and actuating resources
the TAP requires, and worst-case timing data on how
long it takes to test the preconditions and execute the
actions.

Specific TAP instances also have parameters that the
AIS can set depending on the context in which the TAP
is used. These parameters include frequency require-
ments or deadlines, which constrain the times at which
a TAP must be invoked. TAP tests and actions may
include acquiring sensor readings, performing limited
data processing, and controlling the system actuators.
Choosing TAPs and their frequencies implements se-
lective perception and reaction by determining what
environmental features the RTS is attending to, and
what reactive behaviors it 1s supporting.

For example, Figure 2 shows an instance of the simple
stop-if-object-ahead TAP class used in the hallway-
following task. The TEST specifies that the TAP
should only be executed if the robot is moving and the
distance ahead of the robot, as sensed by sonar, is less
than *safety-distance*. Thus the TAP explicitly fo-
cuses the sonar sensor on a selected condition, rather
than trying to maintain a complete world model. If
the tests return true, the robot is halted and the RTS
sends a notification message to the AIS. Testing and
executing this TAP takes a maximum of .13 seconds
(TEST-TIME + ACTION-TIME), and the AIS has de-
termined that it must be run at least every 1.5 seconds
(MAX-PERIOD) to guarantee avoiding collisions with
objects in front of the robot. Note that the frequency
with which this TAP must be executed is dependent on
the speed of the robot’s motion: the AIS reasons about
this and other variables to produce the parameters such
as MAX-PERIOD. This is another example of selective
perception, in which the system chooses to sense a con-
dition at periodic intervals, rather than continuously.

The AI Subsystem (AIS) and Scheduler

CIRCA reasons about its bounded reactivity within the
AITS and the Scheduler, which cooperate to decide which
responses the RTS can and should guarantee. The
AIS reasons about its goals and a model of the envir-
onment, and suggests sets of TAPs to the Scheduler,
which attempts to build a TAP schedule. The Sched-
uler reasons about the maximum periods of the TAPs,
their worst-case execution time and resource needs, and
the resources available from the RTS. The Scheduler
returns either a successful schedule that meets all the
constraints, or some informative feedback if it fails to
produce such a schedule. In that case, the AIS will
modify the suggested set of TAPs, possibly by altering
timing parameters, by choosing alternate TAPs to pro-
duce a desired behavior, or by actually dropping some
TAPs altogether. In this way, the AIS and Scheduler
reason about the real-time subsystem’s bounded react-
ivity, and choose how to degrade performance to meet
those limitations.

We have developed a graph model that represents
the AIS’ reasoning about the environment and the RTS
behaviors. The graph model is the basis for CIRCA’s
selective perception: the AIS chooses TAPs to monitor
conditions that the graph model indicates are critical to
the system’s goals [Musliner et al., 1991]. Furthermore,
the model shows how a subset of all reactions can isolate
the guaranteed control level from the unguaranteed task
level, so that the unpredictable AIS does not cause the
RTS to violate hard deadlines.

The Graph Model of RTS/Environment
Interaction

The directed graph model represents the worst-case be-
havior of the environment, and the actions which the
RTS can take to avoid failure. The graph model has
five elements (S, F, Tg,Ta, Tr):

TAP stop-if-object—ahead

TEST: (and *moving* (< (get-sonar-reading-ahead) *safety-distancex))
ACTION: (progn (halt) (notify-AIS ’halted))

RESOURCES: (sonar base-motors)
MAX-PERIOD: 1.5

TEST-TIME: .1

ACTION-TIME: .03

Figure 2: A stop-if-object-ahead TAP.

1. A finite set of “states” S = {S51,S5%,...,5m}, where
each state S; represents a description of relevant fea-
tures of the world.

2. A distinguished failure state F', which subsumes all
states that violate domain constraints or control-level
goals (e.g., system survival). The system strives to
avolid the failure state.

3. A finite set of “event transitions”
Tg = {Te1,TEs, ..., Ten}, that represent world oc-
currences as instantaneous state changes.

4. A finite set of “action transitions”
Ta ={Ta1,Ta2,...,Tap}, that represent actions per-
formed by the RTS.

5. A finite set of “time trans-
itions” Tr = {Tr1,Tra, ..., Tre}, that represent the
progression of time. We represent only the signific-
ant time transitions which lead to state changes.

Each transition T; € T' = Ty U T4 U Tp is a mapping
between states; 7; : S — S. The functions D : T'— §
and R : T — S determine the domain and range of a
transition; T; : D(T;) — R(T;).

An “event-closed” set of states Sgc C S 1s defined as
a connected set of states for which every event trans-
ition from every state in the set leads to a state that
is also in the set. That is, VIg; € Tg | D(Tg;) ¢
Sgc V R(Tg;) € Sgpc. In other words, non-temporal
events (as opposed to the mere progression of time)
cannot move the system out of the event-closed set of
states. An event-closed set of states that does not con-
tain the failure state is called a “safe” set of states
(F' ¢ Ssape). Note that a safe set of states can still
lead to failure through time transitions (i.e., it is pos-
sible that 377; € Tr | D(TTZ') S Ssafe A R(TTZ') = F)
These time transitions to failure correspond exactly to
violating the hard real-time domain constraints: if the
system enters a new state because of an event, but fails
to react to the new state before a hard deadline, it will
have entered the failure state via a time transition: that
is, by “waiting too long” to react, the system fails.

Figure 3 shows a portion of the graph model for the
hallway-following task. Each labeled box in the graph
model represents a state S;. Solid single arrows repres-
ent event transitions Tg;, dashed single arrows repres-
ent action transitions T4;, and double arrows represent
time transitions Tp;. For simplicity, the example shows
only transitions which have a single possible outcome.

In general, environmental uncertainty may allow trans-
itions to lead to more than one possible new state. Such
straightforward extensions to the modeling technique
are addressed in [Musliner et al., 1992].

In the figure, states {A,B,C,D,E} form a safe set of
states S;qpe: No event transitions lead out of the set.
However, time transitions can still lead to failure. In
the example, we can see this in the transition from state
B to state C' caused when an obstacle appears in the
path; if the system waits too long to recognize the situ-
ation and take action, 1t will follow the time transition
to F' by colliding with the obstacle. But, if the system
quickly detects the obstacle and halts, it can avoid a
collision and transition to state F instead. Thus, if the
system can guarantee that it will always preempt time
transitions that lead from states in the safe set to the
failure state, then the system can remain in a safe set
of states for an indefinite period of time without viol-
ating its control-level goals or the domain constraints.
The big “if” requires that the system provide the ap-
propriate action transitions to stay within the safe set.
CIRCA was designed to achieve just that, using the
AIS and Scheduler to reason about which transitions
to guarantee, and the RTS to implement those guar-
anteed transitions with TAPs. Selective perception is
based on the graph model’s representation of the causal
behavior of the world [Simmons, 1990], showing which
world conditions are critical [Musliner et al., 1991] and
how frequently they must be confirmed.

Accounting for Bounded Reactivity

The AIS can account for the limitations on sensor and
actuator resources available to the RTS by modifying
its graph model. For example, if the AIS attempts to
guarantee responses to preempt both of the time trans-
itions to failure shown in Figure 3, the Scheduler may
indicate that the RTS does not have sufficient sensor
resources to guarantee both responses (i.e., it cannot
sense for both orientation and obstruction frequently
enough). The AIS can then modify its model to de-
crease the sensor requirements, possibly by eliminating
low probability transitions associated with the oversub-
scribed sensor. In this example, the AIS might stop
considering the transition from B to C'| eliminating the
demand for sensors to check for state C'. This solution
trades off completeness against guaranteed timeliness,
so that the system can no longer guarantee its safety

A)

_ - Moving wait too long: collide
wait - Not oriented
- Path clear |
~
J N\
\ ion- i :
. action: wait too long:
event: :
whedl slips Jsensestate& collide
correct steering
B) y / ¢
. - Moving - Moving
wait - Oriented - Oriented wait
- Path clear J event: - Path not clear
obstacle appears
| action: sense state, | action: sense state,
resume motion & | halt & notify AIS
| notify AIS
Y
D E
. - Not moving - Not moving .
wait - Oriented - - - Oriented wait
- Path clear event: - Path not clear
obstacle disappears

Figure 3: An example portion of the graph model of RTS/environment interactions.

from all known forms of failure. Perceptual selectivity
is increased to meet the constraints of bounded react-
1vity.

As an alternative approach to modifying the model to
account for resource limitations, the AIS might change
a parameter which affects the deadlines associated with
time transitions to failure. For example, if the robot’s
speed is decreased, the time before the transition from
state C' to F' will be increased. Thus the RTS would
not have to check for obstacles ahead as frequently, and
the demands on the sensors would decrease.

This process of reasoning about resource constraints
is CIRCA’s mechanism for making tradeoffs in the
completeness of its guaranteed responses. The system
strives to guarantee to preempt all known transitions
to failure; when it cannot, it modifies the modeled set
of states and transitions, and thus alters the selected
perceptions and reactions it guarantees.

Conclusion

We have implemented and tested preliminary versions
of each CTRCA subsystem. We are in the process of re-
fining the interface software, and will soon have a fully
operational prototype system. We are also investigat-
ing techniques for automatically generating the graph
model from a more compact representation, allowing
the system designer to easily specify environment fea-
tures.

In summary, CIRCA is an innovative architecture in
which cooperating subsystems provide both the per-
formance guarantees needed for real-time control and

the powerful, unpredictable intelligence needed to ad-
dress complex task-level problems. Through the TAP
structure and the graph model of the environment,
CIRCA 1is able to alter its selected perceptions and
reactive behaviors to account for both the system’s
bounded reactivity and its real-time goals.

References
[Boddy and Dean, 1989] Mark Boddy and Thomas Dean.

Solving time-dependent planning problems. In Proc. Int’l
Joint Conf. on Artificial Intelligence, pages 979-984, Au-
gust 1989.

[Brooks, 1986] Rodney A. Brooks. A robust layered control
system for a mobile robot. IEFE Journal of Robotics and
Automation, RA-2(1):14-22, March 1986.

[Firby, 1987] R. James Firby. An investigation into reactive
g
planning in complex domains. In Proc. National Conf. on
Artificial Intelligence, pages 202-206, 1987.

[Musliner et al., 1991] David J. Musliner, Edmund H.
Durfee, and Kang G. Shin. Execution monitoring and
recovery planning with time. In Conf. on Artificial Intel-
ligence Applications, pages 385-388, February 1991.

[Musliner et al., 1992] David J. Musliner, Edmund H.
Durfee, and Kang G. Shin. CIRCA: a cooperative intel-
ligent real-time control architecture. to appear in IEEE
Trans. Systems, Man, and Cybernetics, 1992.

[Simmons, 1990] Reid Simmons. An architecture for co-
ordinating planning, sensing, and action. In Proc. Work-
shop on Innovative Approaches to Planning, Scheduling
and Control, pages 292-297, November 1990.

[Simon, 1982] Herbert Alexander Simon. Models of
Bounded Rationality. M. 1. T. Press, 1982.

