
Reasoning about Bounded Reactivity to AchieveReal-Time Guarantees �David J. Musliner Edmund H. Durfee Kang G. ShinDepartment of Electrical Engineering and Computer ScienceThe University of MichiganAnn Arbor, Michigan 48109-2122E-mail: djm@eecs.umich.eduIntroductionRealistic intelligent control systems must recognizethat, in addition to the processor limitations that makethem subject to \bounded rationality" [Simon, 1982],sensor and actuator limitations also lead to \bounded re-activity." As part of our larger goal of developing intel-ligent real-time control systems [Musliner et al., 1992],we are investigating techniques that allow a system totake its own bounded reactivity into account by select-ively perceiving and reacting to conditions in the envir-onment. These techniques include encapsulating sens-ing and action primitives within reactive structures thatfacilitate reasoning about resource constraints, and anenvironment modeling technique that allows the systemto automatically derive the selected perceptions and re-actions it must activate at any particular time.Most research on \real-time AI" focuses either on re-stricted AI techniques that have predictable perform-ance characteristics [Boddy and Dean, 1989] or on re-active systems that retain little of the power of tradi-tional AI [Brooks, 1986]. Our research takes a di�er-ent approach: to achieve a combination of unrestrictedAI techniques with the ability to make hard perform-ance guarantees, we propose CIRCA, a Cooperative In-telligent Real-time Control Architecture. Figure 1 il-lustrates the architecture, in which an AI subsystem(AIS) reasons about task-level problems that requireits powerful but uncertain reasoning methods, while aseparate real-time subsystem (RTS) uses its predictableperformance characteristics to deal with control-levelproblems that require guaranteed response times. Wehave developed a scheduling module and a structuredinterface that allow the unconstrained AI subsystem toasynchronously direct the real-time subsystem withoutviolating any response-time guarantees.�The work reported in this paper was supported in partby the National Science Foundation under Grants DMC-8721492 and IRI-9158473, and by a NSF Graduate Fel-lowship. The opinions, �ndings, and recommendations ex-pressed in this publication are those of the authors, and donot necessarily re
ect the views of the NSF.

This paper focuses on the techniques we are devel-oping for meeting performance goals with limited re-active resources, including sensors and actuators. Se-lective perception plays a key role in these techniques,restricting the conditions which the system senses, pro-cesses, and reacts to. We will discuss these techniquesin the context of our example domain, in which a proto-type implementation of CIRCA pilots a Hero 2000 robotthrough hallways using an aimed sonar sensor. We �rstpresent an overview of the architecture, including a de-scription of our representation for reactive behaviors.We then discuss the environment model which the AISuses to reason about the system's performance and tomake tradeo�s among various performance dimensions,including sensory attention.Architecture OverviewCIRCAmeets the demands of real-time control within abounded-reactivity system by guaranteeing that it willproduce a precise, high con�dence response in a timelyfashion to a limited set of inputs. In other words, thearchitecture can sacri�ce completeness of attention inorder to achieve precision, con�dence, and timelinessin its responses to environmental changes that it doesobserve.The Real-Time Subsystem (RTS)The RTS executes a cyclic schedule of simple test-actionpairs (TAPs1) which have known worst-case executiontimes. Since the RTS performs no other functions, itcan guarantee that the scheduled tests and actions areperformed within predictable time bounds. The TAPstructure provides a standard primitive with which theScheduler and AIS can reason about the timing and re-source characteristics of the RTS' behavior, in order toguarantee meeting deadlines and resource restrictions.Each TAP class has a �xed set of tests (or precondi-tions), a set of actions to take if all the tests return1Not to be confused with Firby's RAPs [Firby, 1987],which are larger in scale and do not have predictable execu-tion times.
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dataFigure 1: The Cooperative Intelligent Real-Time Control Architecture.true, data about the sensing and actuating resourcesthe TAP requires, and worst-case timing data on howlong it takes to test the preconditions and execute theactions.Speci�c TAP instances also have parameters that theAIS can set depending on the context in which the TAPis used. These parameters include frequency require-ments or deadlines, which constrain the times at whicha TAP must be invoked. TAP tests and actions mayinclude acquiring sensor readings, performing limiteddata processing, and controlling the system actuators.Choosing TAPs and their frequencies implements se-lective perception and reaction by determining whatenvironmental features the RTS is attending to, andwhat reactive behaviors it is supporting.For example, Figure 2 shows an instance of the simplestop-if-object-aheadTAP class used in the hallway-following task. The TEST speci�es that the TAPshould only be executed if the robot is moving and thedistance ahead of the robot, as sensed by sonar, is lessthan *safety-distance*. Thus the TAP explicitly fo-cuses the sonar sensor on a selected condition, ratherthan trying to maintain a complete world model. Ifthe tests return true, the robot is halted and the RTSsends a noti�cation message to the AIS. Testing andexecuting this TAP takes a maximum of .13 seconds(TEST-TIME + ACTION-TIME), and the AIS has de-termined that it must be run at least every 1.5 seconds(MAX-PERIOD) to guarantee avoiding collisions withobjects in front of the robot. Note that the frequencywith which this TAP must be executed is dependent onthe speed of the robot's motion: the AIS reasons aboutthis and other variables to produce the parameters suchas MAX-PERIOD. This is another example of selectiveperception, in which the system chooses to sense a con-dition at periodic intervals, rather than continuously.

The AI Subsystem (AIS) and SchedulerCIRCA reasons about its bounded reactivity within theAIS and the Scheduler, which cooperate to decide whichresponses the RTS can and should guarantee. TheAIS reasons about its goals and a model of the envir-onment, and suggests sets of TAPs to the Scheduler,which attempts to build a TAP schedule. The Sched-uler reasons about the maximum periods of the TAPs,their worst-case execution time and resource needs, andthe resources available from the RTS. The Schedulerreturns either a successful schedule that meets all theconstraints, or some informative feedback if it fails toproduce such a schedule. In that case, the AIS willmodify the suggested set of TAPs, possibly by alteringtiming parameters, by choosing alternate TAPs to pro-duce a desired behavior, or by actually dropping someTAPs altogether. In this way, the AIS and Schedulerreason about the real-time subsystem's bounded react-ivity, and choose how to degrade performance to meetthose limitations.We have developed a graph model that representsthe AIS' reasoning about the environment and the RTSbehaviors. The graph model is the basis for CIRCA'sselective perception: the AIS chooses TAPs to monitorconditions that the graph model indicates are critical tothe system's goals [Musliner et al., 1991]. Furthermore,the model shows how a subset of all reactions can isolatethe guaranteed control level from the unguaranteed tasklevel, so that the unpredictable AIS does not cause theRTS to violate hard deadlines.The Graph Model of RTS/EnvironmentInteractionThe directed graph model represents the worst-case be-havior of the environment, and the actions which theRTS can take to avoid failure. The graph model has�ve elements (S; F; TE; TA; TT ):



TAP stop-if-object-aheadTEST: (and *moving* (< (get-sonar-reading-ahead) *safety-distance*))ACTION: (progn (halt) (notify-AIS 'halted))RESOURCES: (sonar base-motors)MAX-PERIOD: 1.5TEST-TIME: .1ACTION-TIME: .03Figure 2: A stop-if-object-ahead TAP.1. A �nite set of \states" S = fS1; S2; :::; Smg, whereeach state Si represents a description of relevant fea-tures of the world.2. A distinguished failure state F , which subsumes allstates that violate domain constraints or control-levelgoals (e.g., system survival). The system strives toavoid the failure state.3. A �nite set of \event transitions"TE = fTE1; TE2; :::; TEng, that represent world oc-currences as instantaneous state changes.4. A �nite set of \action transitions"TA = fTA1; TA2; :::; TApg, that represent actions per-formed by the RTS.5. A �nite set of \time trans-itions" TT = fTT1; TT2; :::; TTqg, that represent theprogression of time. We represent only the signi�c-ant time transitions which lead to state changes.Each transition Ti 2 T = TE [ TA [ TT is a mappingbetween states; Ti : S ! S. The functions D : T ! Sand R : T ! S determine the domain and range of atransition; Ti : D(Ti)! R(Ti).An \event-closed" set of states SEC � S is de�ned asa connected set of states for which every event trans-ition from every state in the set leads to a state thatis also in the set. That is, 8TEi 2 TE j D(TEi) =2SEC _ R(TEi) 2 SEC . In other words, non-temporalevents (as opposed to the mere progression of time)cannot move the system out of the event-closed set ofstates. An event-closed set of states that does not con-tain the failure state is called a \safe" set of states(F =2 Ssafe). Note that a safe set of states can stilllead to failure through time transitions (i.e., it is pos-sible that 9TTi 2 TT j D(TTi) 2 Ssafe ^ R(TTi) = F ).These time transitions to failure correspond exactly toviolating the hard real-time domain constraints: if thesystem enters a new state because of an event, but failsto react to the new state before a hard deadline, it willhave entered the failure state via a time transition: thatis, by \waiting too long" to react, the system fails.Figure 3 shows a portion of the graph model for thehallway-following task. Each labeled box in the graphmodel represents a state Si. Solid single arrows repres-ent event transitions TEi, dashed single arrows repres-ent action transitions TAi, and double arrows representtime transitions TTi. For simplicity, the example showsonly transitions which have a single possible outcome.

In general, environmental uncertainty may allow trans-itions to lead to more than one possible new state. Suchstraightforward extensions to the modeling techniqueare addressed in [Musliner et al., 1992].In the �gure, states fA,B,C,D,Eg form a safe set ofstates Ssafe: no event transitions lead out of the set.However, time transitions can still lead to failure. Inthe example, we can see this in the transition from stateB to state C caused when an obstacle appears in thepath; if the system waits too long to recognize the situ-ation and take action, it will follow the time transitionto F by colliding with the obstacle. But, if the systemquickly detects the obstacle and halts, it can avoid acollision and transition to state E instead. Thus, if thesystem can guarantee that it will always preempt timetransitions that lead from states in the safe set to thefailure state, then the system can remain in a safe setof states for an inde�nite period of time without viol-ating its control-level goals or the domain constraints.The big \if" requires that the system provide the ap-propriate action transitions to stay within the safe set.CIRCA was designed to achieve just that, using theAIS and Scheduler to reason about which transitionsto guarantee, and the RTS to implement those guar-anteed transitions with TAPs. Selective perception isbased on the graph model's representation of the causalbehavior of the world [Simmons, 1990], showing whichworld conditions are critical [Musliner et al., 1991] andhow frequently they must be con�rmed.Accounting for Bounded ReactivityThe AIS can account for the limitations on sensor andactuator resources available to the RTS by modifyingits graph model. For example, if the AIS attempts toguarantee responses to preempt both of the time trans-itions to failure shown in Figure 3, the Scheduler mayindicate that the RTS does not have su�cient sensorresources to guarantee both responses (i.e., it cannotsense for both orientation and obstruction frequentlyenough). The AIS can then modify its model to de-crease the sensor requirements, possibly by eliminatinglow probability transitions associated with the oversub-scribed sensor. In this example, the AIS might stopconsidering the transition from B to C, eliminating thedemand for sensors to check for state C. This solutiontrades o� completeness against guaranteed timeliness,so that the system can no longer guarantee its safety
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Figure 3: An example portion of the graph model of RTS/environment interactions.from all known forms of failure. Perceptual selectivityis increased to meet the constraints of bounded react-ivity.As an alternative approach to modifying the model toaccount for resource limitations, the AIS might changea parameter which a�ects the deadlines associated withtime transitions to failure. For example, if the robot'sspeed is decreased, the time before the transition fromstate C to F will be increased. Thus the RTS wouldnot have to check for obstacles ahead as frequently, andthe demands on the sensors would decrease.This process of reasoning about resource constraintsis CIRCA's mechanism for making tradeo�s in thecompleteness of its guaranteed responses. The systemstrives to guarantee to preempt all known transitionsto failure; when it cannot, it modi�es the modeled setof states and transitions, and thus alters the selectedperceptions and reactions it guarantees.ConclusionWe have implemented and tested preliminary versionsof each CIRCA subsystem. We are in the process of re-�ning the interface software, and will soon have a fullyoperational prototype system. We are also investigat-ing techniques for automatically generating the graphmodel from a more compact representation, allowingthe system designer to easily specify environment fea-tures.In summary, CIRCA is an innovative architecture inwhich cooperating subsystems provide both the per-formance guarantees needed for real-time control and
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