
Real-Time Communication in Point{to{Point NetworksAtri Indiresan, Kang G. Shin Dilip D. KandlurReal-time Computing Laboratory IBM Research DivisionDept. of Elec. Engr. and Comp. Sci. T. J. Watson Research CenterThe University of Michigan Yorktown Heights, NY 10598Ann Arbor, Michigan 48109{2122. kandlur@watson.ibm.comfatri,kgshing@eecs.umich.edu1 IntroductionReal-time systems are evolving from simple applications to more sophisticated ones withstringent performance and reliability requirements. Distributed systems are potentially wellsuited to meeting these requirements since they can provide features such as parallel com-putation, scalable performance growth, and graceful degradation in the presence of faults.Traditionally, such systems rely on either contention-based/time-division multiplexed accessto a communication medium or completely-connected networks. While the latter is highlyreliable, it is not scalable beyond a small number of processors. Contention-based networkshave the further problem of potential for random delays in accessing the communicationmedium. A compromise between these two approaches are multicomputer systems withpoint{to{point interconnection networks. Such systems are scalable to large numbers ofprocessors (100s or 1000s), and multiple disjoint paths between nodes make them robust tolink and node failures. Examples of this kind of network include meshes and hypercubes.Since real-time tasks have deadlines associated with them, we must provide guarantees topredict the performance of applications. Since the tasks are distributed over multiple nodesof the system, the total execution time includes both computation and communication times,and hence predictable communication latency is a necessary condition for providing any formof guarantee. In general, messages in point{to{point networks are subject to random delaysdue to contention for network bandwidth, bu�er space and message processing bandwidth.If we can resolve this problem of unpredictability in communication, given the advantagesof such systems in scalability and fault tolerance, they are potentially the most suitablesolution to the requirements of future large scale real-time systems.A theoretical model for real-time communication in a point{to{point network is de-scribed in [1] using a communication abstraction called a real-time channel as its basis.A real-time channel, or simply channel, is characterized by its source and destination, itsperformance requirements and tra�c patterns, and resources including network bandwidth,bu�er space and message processing bandwidth need to be reserved for it. This is because,in order to make any guarantees about the message delivery times, it is necessary to describethe characteristics of communication and reserve resources based on these characteristics.The work reported in this paper was supported in part by the O�ce of Naval Research under grants N00014{92{J{1080 and N00014{J{91{1115.



2 Real-time CommunicationMessage tra�c in a real-time system is of two types: real-time and non-real-time orbest-e�ort. Latency of real-time tra�c has to be predictable, because unpredictable delaysin the delivery of messages can adversely a�ect the timely execution of tasks dependenton these messages. Predictable communication is di�cult to achieve since network delayscan be non-deterministic for numerous types of networks. In addition, though we makeno guarantees about the latency of best-e�ort messages, it is desirable to avoid undulypenalizing their performance in the presence of real-time messages.The real-time channel abstraction can be used to provide predictable performance forreal-time message tra�c. To establish a channel, it is necessary to specify the source anddestination of the channel, the worst-case tra�c patterns, and the maximum allowableend{to{end delay. The channel establishment procedure has to select a route through thenetwork from source to destination, ensuring that adequate communication bandwidth,bu�er space, and processing bandwidth are available at all intermediate nodes in the path.Link utilization for a channel is computed assuming the worst-case arrival time, and themessage deadline minus its generation time as its period. A channel may be established ifthe necessary resources are available at each node of the route selected for the channel. Theroute and the worst-case delay for each link on the route are recorded in data structureswhich are used to set deadlines at each node along the channel for messages belonging toreal-time channels. While details of the channel establishment procedure may be foundin [1, 2], we briey discuss the scheduling aspect.There are several approaches to scheduling these messages, which can be categorizedas �xed priority or dynamic priority algorithms. For example, Earliest Due Date (EDD)scheduling [3] is a dynamic priority algorithm, whereas rate monotonic scheduling [4] is a�xed priority algorithm.Liu and Layland [4] have shown that EDD is optimal for preemptive scheduling ofperiodic tasks when the task deadline is equal to the beginning of its next period, and thata feasible schedule exists whenever the total utilization is less than one. However, thereis no similar result (based on utilization alone) available when the task deadlines are notrelated to their periods. The main drawback of EDD scheduling is that computation ofguarantees is di�cult, since the priority of a task depends upon the relative order of arrivalof the tasks.Scheduling decisions can be based on a �xed (static) priority scheduling algorithm wheremessages are processed and transmitted in the order of priority. For example, in rate-monotonic scheduling, the priority assigned to a channel is related to the frequency ofoccurrence of messages on that channel. For any priority assignment scheme, if messagearrivals on all the channels are assumed to be strictly periodic, we can determine whetherthe set of channels is schedulable. This is done by computing the worst-case response timefor each message using a critical time zone analysis similar to the one used in [4], andverifying that the worst-case response time is less than the delay assigned to that channel.The details of this scheme for analysis can be found in [1].2



3 ImplementationThere are three main steps in the implementation of real-time channels: (i) the com-putation of a (feasible) route and required resources, (ii) the establishment of the routewith the reservation of resources and bandwidth, and (iii) run-time support for routingand scheduling a mix of real-time and best-e�ort messages through the network. We nowshow how these can be achieved using the x-kernel [5] on the Network Processor (NP) ofHARTS [6].The x-kernel is designed for distributed system support, and provides facilities for im-plementing protocols like a uniform protocol interface, libraries to e�ciently manipulatemessages, and tools to con�gure and test di�erent protocol stacks. We implement real-timechannels as a set of protocol objects (using x-kernel terminology). The Real-Time ChannelProtocol (RTCP) [1] is the protocol in the x-kernel protocol stack that implements theinterface for the real-time channel communication scheme. The clients of this protocol areprocesses running on the Application Processors (APs).Channel establishment has been dealt with elsewhere [1]. In brief, a separate protocolmodule called a Network Manager (NM) performs this service. Since requests to this serverare serialized, data consistency for di�erent channel establishment requests is assured. Arequest to the RTCP to establish a channel is passed on to the NM. If the request issuccessful, the channel may now send messages to the individual nodes along the routeso that the necessary resources are reserved. In addition to resources such as bu�ers,at establishment time, for each channel, at the source and destination nodes, a processis created as a reserved resource to marshal messages through the protocol stack. It isexpected that the context switching overhead will be less than the cost of creating anddestroying a process for each message.When we consider message scheduling, we encounter some di�culties with the x-kernel.The x-kernel uses a �xed-priority scheduling policy and there are some problems withpriority based scheduling and the computation of guarantees when we consider multiplestage service, such as service for a message which has to traverse multiple links. Theresponse time for the message varies depending upon the arrival time of other messages at anode. Therefore, even if messages are generated with a �xed inter-arrival time at the source,the inter-arrival time for the message at the next service point is not constant. Early arrivalsare also possible due to burstiness in the message generation at the source. A message whicharrives early at a node can cause a lower priority message to miss its deadline. One solutionfor this problem is to hold back the early arrival and not consider it for transmission untilits scheduled arrival time. However, this scheme involves the setting and resetting of timersand is expensive to implement. Also, it implies that the message cannot make the bestprogress possible on lightly loaded links. If deadline scheduling is used, this problem canbe handled more elegantly by proportionately increasing the deadline for an early arrivalwithout missing the end{to{end deadline.From the above discussion, we can see that there are three classes of messages: (a) real-time messages that arrive at a node in the expected time zone (queue 1), (b) best-e�ortmessages (queue 2), and (c) real-time messages that arrive early (queue 3). Since messagesin the third category need to be held back, we can transmit best-e�ort messages ahead3



of these, and behind \on-time" real-time messages. For the best-e�ort messages, a simpleFIFO is adequate, but, for the real-time messages, we need to use EDD scheduling.The most common, and most e�cient way, to implement EDD scheduling is by usinga priority queue, ordered by message deadlines. Using a heap, we may insert a message in�(log n) time, and remove the next message to be transmitted in constant time [7]. When amessage arrives, if it is a best-e�ort message, simply insert it into the second queue. If it isan early real-time message, insert it into the third queue, and if it is an \on-time" message,insert it into the �rst queue. Whenever the transmitter is free, transmit the message atthe head of queue 1, if any, else messages from queue 2. When queue 1 is empty, check themessages in queue 3 to see if any of them have become current, and, if so, they may beinserted into queue 1.Conceptually, we do need such a scheme, but, in practice, there may be some problems.Though �(logn) time may be a fairly small number, the cost of each step compared tothe cost of message transmission may be large since messages are typically very short, andmessage transmission time may be less than the scheduling time, making the schedulingrather than the communication bandwidth the bottleneck. Keeping such an eventuality inmind, we propose a hardware priority queue that will insert a message in a priority queue ina small constant number of clock cycles [8]. This design has a large shift register containingmessage deadlines, and when a new message arrives, its deadline is compared to those of themessages in the shift register, allowing it to be inserted in the appropriate place. Removinga message after transmission simply involves a shift operation.4 Summary and ConclusionsWe have discussed the concept of a real-time channel, and explained how it could beused to provide guaranteed message latencies in multi-hop interconnection networks. Wehave explored the issues in setting up such channels and providing run-time scheduling forthem. Software scheduling for real-time messages may be too slow to handle high messagetra�c, and so we have proposed a hardware scheduling mechanism.Several protocols have been implemented on the NP of HARTS, including the hexag-onal mesh link-level protocol and a request-reply protocol for RPC. A Network Manageraccepts requests for the establishment of channels and computes the routes and the resourcerequirements for the channels.We are in the process of implementing the software run-time scheduling algorithm, andplan to characterize its performance to determine the workload conditions under whichthe scheduling overhead becomes unacceptable. The basic architecture of the hardwarescheduler has been completed, and we are considering integrating it in HARTS to overcomethe software scheduling bottleneck.We plan to evaluate di�erent scheduling algorithms, with di�erent tradeo�s in perfor-mance and real-time characteristics. For instance, if message generation frequency is low,EDD and FIFO scheduling will be almost identical, and so we need not pay the EDD over-head. Other aspects of interest are the impact of real-time messages on the performance of4



best-e�ort messages. Real-time channels are very conservative in the sense that they assumeworst-case tra�c conditions. It would be interesting to explore whether a more optimisticresource allocation may be used without compromising the real-time requirements. Thiswould involve making predictions of expected usage, and allocate fewer resources for eachchannel. Since guarantees are no longer strict, it would be necessary to monitor the system,and notify users when latency bounds are (consistently) violated.Further, the current version of the real-time channel [1] provides guarantees in theabsence of failures. In the event of failures, rerouting messages around the faulty linksand nodes may cause the messages to miss their deadline. An alternative is the conceptof group channels, where we send replicated messages. This not only increases the costof communication, but raises issues of group membership, message ordering and failuresemantics. We plan to explore this problem, and evaluate possible tradeo�s in cost andreliability of the various potential alternatives.References[1] D. D. Kandlur and K. G. Shin, \Design of a communication subsystem for HARTS,"Technical Report CSE{TR{109{91, CSE Division, Department of EECS, The Universityof Michigan, October 1991.[2] D. D. Kandlur, K. G. Shin, and D. Ferrari, \Real-time communication in multi-hopnetworks," in Proc. Int. Conf. on Distributed Computer Systems, pp. 300{307, May1991.[3] M. L. Dertouzos, \Control robotics: The procedural control of physical processes," inProceedings IFIP Congress, pp. 807{813, 1974.[4] C. L. Liu and J. W. Layland, \Scheduling algorithms for multiprogramming in a hardreal-time environment," Journal of the ACM, vol. 20, no. 1, pp. 46{61, January 1973.[5] N. C. Hutchinson and L. L. Peterson, \The x-Kernel: An architecture for implementingnetwork protocols," IEEE Trans. Software Engineering, vol. 17, no. 1, pp. 1{13, January1991.[6] K. G. Shin, \HARTS: A distributed real{time architecture," IEEE Computer, vol. 24,no. 5, pp. 25{36, May 1991.[7] D. W. Jones, \An empirical study of priority-queue and event-set implementations,"Communications of the ACM, vol. 29, no. 4, pp. 300{311, April 1986.[8] A. Indiresan and Q. Zheng, \Design and evaluation of a fast deadline scheduling switchfor multicomputers," RTCL working document, December 1991.5


