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In a thermal power plant with once-through boilers, it is important to control the temperature at the 
middle point where water becomes steam. However, there are many problems in the design of  such a 
control system, due to a long system response delay, dead-zone and saturation of  the actuator 
mechanisms, uncertainties in the system model and~or parameters, and process noise. To overcome 
these problems, an adaptive controller has been designed using neural networks, and tested 
extensively via simulations. 

One of  the key problems in designing such a controller is to develop an efficient training algorithm. 
Neural networks are usually trained using the output errors of the network, instead of  using the output 
errors of the controlled plant. However, when a neural network is used to control a plant directly, the 
output errors of the network are unknown, since the desired control actions are unknown. This paper 
proposes a simple training algorithm for a class of  nonlinear systems, which enables the neural 
network to be trained with the output errors of the controlled plant. The only a priori knowledge of  the 
controlled plant is the direction of  its output response. Due to its simple structure and algorithm, and 
good performance, the proposed controller has high potential for handling difficult problems in 
process-control systems. 

Keywords: Neural  networks, process control systems, system response delay, dead zone. 

I .  INTRODUCTION 

Supercritical once-through boilers are widely used in 
large-scale thermal power plants. In such a boiler, since 
water  fed into the boiler (feedwater) is over  the critical 
point for water  (pressure: 22.129MPa,  and tempera-  
ture: 374.15°C), when water  is sufficiently heated, it 
becomes s team continuously without going through the 
evaporat ion process. In order  to avoid any premature  
damage of the steam turbine and improve efficiency, it 
is crucial to precisely control the main s team tempera-  
ture, reheat  s team temperature ,  and main s team pres- 
sure. However ,  since the dynamics of once-through 
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boilers are much more complicated than those of drum 
boilers, it is more  difficult to design control systems for 
once-through boilers. Figure 1 shows a conceptual 
diagram of the s team-water  loop in a thermal power 
plant with once-through boilers. The main steam tem- 
perature depends on feedwater  flow rate, s team flow 
rate and fuel flow rate, and is regulated by spray water  
flow rate. The reheat  s team temperature  is controlled 
by gas recirculation flow rate. Water  is heated through 
economizer and water walls. The point at which water  
becomes steam is called the middle point, which 
changes with different operating conditions. The steam 
is continuously heated through primary and secondary 
superheaters and then sent to a steam turbine. If  the 
temperature  at the middle point is controlled well, it 
will be easier to precisely control the temperature  at the 
outlet of the boiler. That  is, the control of the middle- 
point temperature  works as a rough adjustment of  main 
steam temperature.  This rough adjustment is important  
to ensure the operational safety of the boiler and the 
control quality of the main steam temperature ,  since 
the main steam temperature  regulated by spray water 
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Fig. 1. Conceptual diagram of the steam-water loop of thermal power plants. 

has a relatively small regulation range. However, the 
middle-point temperature is difficult to control using 
conventional PID-type controllers, mainly for the fol- 
lowing reasons: 

1. The middle-point temperature is regulated by 
feedwater flow rate. Unlike the quick response of 
main steam temperature to spray water, the res- 
ponse of middle-point temperature to feedwater 
flow has a very long time delay. 

2. The middle-point temperature is affected sever- 
ely by the random disturbances resulting from the 
variation of feedwater temperature and pressure, 
heating value of coal, oxygen content of gas, 
position of fire center, position of the middle 
point, etc. 

3. System dynamics may change due to fouling on 
the surface of water walls and the gas flow 
system. 

4. The actuator mechanism may suffer the problem 
of dead-zone and saturation. 

The main issues to consider for the design of a 
middle-point temperature control system are the nega- 
tive effects of long system response delay, dead zone 
and saturation of actuator mechanisms, and process 
and measurement noises. If these effects are not con- 

sidered, the dynamic property of a controlled plant may 
not be very complex, even though its detailed structure 
and/or parameters are usually unknown. However, 
when such a plant is put in operation, it will be difficult 
for the control system to achieve high performance due 
mainly to the negative effects mentioned above. 
Contemporary industrial process control systems domi- 
nantly rely on PID-type controllers, though the hard- 
ware to implement control algorithms has been 
improved significantly in recent years. In addition to 
the difficulty in achieving high control quality, the fine 
tuning of the controller's parameters is a tedious task, 
requiring experts with knowledge both in control 
theory and process dynamics. The reliability of such a 
system is also very important for operational security 
and efficiency. All of these call for the development of 
new controllers. The goal of this paper is to develop 
such a new controller using neural networks (NNs). 
Particularly, the focus is on dealing with the nonlinear- 
ity of dead zone and saturation, and the negative effects 
of long response delays and process noises. 

The potential of NNs for control application lies in 
the following properties: (1) they could be used to 
approximate any continuous mapping, (2) they achieve 
this approximation through learning, (3) parallel pro- 
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cessing and fault tolerance can be easily accomplished 
with NNs. One of the most popular NN architectures is 
a multilayer perceptron with the back propagation (BP) 
algorithm. It is proved that a four-layer (with two 
hidden layers) perceptron can be used to approximate 
any continuous function with the desired accuracy.l BP 
has been used successfully for pattern classification, 
though its original development placed more stress on 
control applications. 2 A controller is usually connected 
serially to the controlled plant under consideration. For 
a multilayer perceptron, the weights of the network 
need to be updated using the network's output error. 
For an NN-controller, the NN's output is the control 
command to the system. However, when the NN is 
serially connected to a controlled plant, the network's 
output error is unknown, since the desired control 
action is unknown. This implies that BP cannot be 
applied to control problems directly. Thus, one of the 
key problems in designing an NN-controller is to deve- 
lop an efficient training algorithm. 

Several related schemes have been proposed to 
design a controller using neural networks. One of them 
is training an NN to learn the system's inverse, and then 
the desired system output is achieved using the control 
input produced by the system's inverse. Certainly, this 
requires the system to be invertible. References 3, 4 
and 5 are such examples. In Ref. 3 the controlled plant 
was treated as an additional, unmodifiable layer, and 
the output error of the network was computed from the 
output error of the system. In Ref. 4, the system's 
output error was propagated back through the plant 
using its partial derivatives at an operating point. In 
Ref. 5, a set of actual system outputs are selected as 
training data and fed into the NN during its training 
period. By comparing the output of the NN with the 
desired system output, the network's output error is 
computed, which is then used to train the NN. After 
the NN becomes well-trained, the input of the NN is 
switched to the desired system output. Then, the NN 
acts as the inverse of the plant, and its output will drive 
the system to reach the desired value. However, in 
practice, even if the system is invertible, the inverse 
control scheme may not be acceptable. For example, if 
the system is a non-minimum phase system, then the 
resulting design is not internally stable. The invertibi- 
lity of nonlinear systems was discussed in Ref. 6, and a 
sufficient-input criterion for designing an NN to learn a 
system's inverse was established. Other examples of 
NN-controllers are Refs 7 and 8, which used reference 
models to train the NN. Kraft and Miller designed 
controllers using a similar structure to a CMAC (cere- 
bellar model articulation controller). 9"~° Narendra and 
Parthasarathy 1~ proposed a scheme of indirect adaptive 
control using a multilayer perceptron with the BP 
algorithm. The NN was trained first to attain the same 
dynamic behavior as the controlled plant. Then a con- 
troller was designed by using the NN's output to cancel 
the nonlinear part of the controlled plant, and by 

including the same terms of a reference model. Five 
dominant system architectures with NNs for control 
applications were summarized in Refs 2 and 12, and the 
importance and applications of NNs to control and 
system identification were also addressed there. 

However, most of the work mentioned above is in 
the form of indirect adaptive control or has the prob- 
lems of complex training methods and system struc- 
tures. Thus, this paper proposes a simple algorithm 
based on the BP for a class of nonlinear systems 
typified by process-control applications. The proposed 
NN-controller is trained by using the system's output 
errors directly, with little a p r i o r i  knowledge of the 
controlled plant. 

In Section 2, the control problem using NNs is stated 
formally, and the basic structure of the proposed 
NN-controller is analyzed. The training algorithm is 
developed in Section 3. Section 4 presents a procedure 
for designing the NN-controller, and addresses the 
problems related to its implementation. Section 5 sum- 
marizes the simulation results. The NN-controller is 
used to control the middle-point temperature. The 
controlled system is characterized by the properties of 
long response delay, nonlinearity of dead zone and 
saturation, and process noise. The performance of the 
NN-controller is also compared with a PI controller. 
Finally, the paper concludes with Section 6. 

2. P R O B L E M  S T A T E M E N T  AND THE 
N N - C O N T R O L L E R  

A controlled plant can be viewed as a mapping from 
control input to system output: 

~ = f(x, U, t) ,  y =  g(x,  u, t) ,  

where x E R  m, y e R  n, and u e R  N2 are the state, system 
output and input, respectively. The controller of this 
plant, if it exists, can be represented as a mapping from 
the system feedback and/or feedforward to control 
commands: 

u = c (y,  Yd, t), (1) 

where Yd is the desired system output. It is assumed that 
only the system output is measured. 

The objective is to design an NN-controller which 
will replace a conventional controller. In other words, 
the NN-controller is cascaded with the controlled plant 
as shown in Fig. 2, and trained to learn the mapping in 
Eqn (1). The control input Ud(t ) is required to produce 
the desired output yd(t). The s y s t e m - o u t p u t  e r ro r  and 
the c o n t r o l - i n p u t  e r ro r  are then defined, respectively, 
by 

ey(t) = ya(t)  - y(t), (2) 

e.(t) = ua(t) - u(t). (3) 
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The control-input error eu(t) is also called the network- 
output error, since u(t) is the output of the 
NN-controller. An NN is usually trained by minimizing 
the network-output error %(0. However, if the NN 
controller is cascaded in series with the controlled 
plant, eu(t) is not known, since the desired control input 
Ud(t) is unknown. So, the immediate problem in design- 
ing such an NN-controller is how to train the NN. 

One of the well-developed NNs is a multilayer per- 
ceptron with BP. 13'14 The basic structure of a three- 
layer perceptron is shown in Fig. 3. The BP algorithm is 
based on the gradient algorithm to minimize the 
network-output error, and is derived from the special 
structure of the networks. Using the structure in Fig. 3, 
computation of the NN's output and updating of the 
NN's weights are summarized in the following five 
steps: 

(1) Compute the output of the HIDDEN layer, )(1/ 

1 
Sl/(t) - -  1 + exp ( -  O~/- 01/)' (4) 

N 

where 01j= E Wi/Xi(t), 
i=1 

] = 1 , 2  . . . . .  N~, and X~(t), i=1,2  . . . . .  N, are the 
inputs of the NN. 

(2) Compute the output of the OUTPUT layer: XEk 

1 
XEk(t) = 1 + exp ( -  O2k - 02k)' (5) 

Nl 

where 02k = E Wl/kXx/(t), 
/=1 

k = l , 2  . . . . .  N2. 

(3) Update the weights from the HIDDEN to the 
OUTPUT layer, Wx/k 

Wx/k(t + At) = Wxjk(t ) + rll6xkX,i(t), (6) 

where 6xk = (X~k(t) -- Xzk( t) )X2k(t)(1 -- Xzk(t) ), (7) 

and X~(O is the desired value of Xzk(t). 

(4) Update the weights from the INPUT to the 
HIDDEN layer, Wq 

Wo(t + At) = W#(t) + rlOFYi(t), (8) 

where d/= [ f~=l dxkWx/k]X1,(t)(1- X1/(t)). (9) 

(5) Update the thresholds, 02k, Olj 

02k(t + At) = 02k(t) + I]10~1k , Ol/(t + At) = Oxj(t) + r/o6j, 

(lo) 

where r/, ~1, 7]0, and r/x0>0 are gain factors. 
In any control system design, it is desired to specify 

the system performance in terms of system-output 
errors, ey(t)=yd(t)--y(t), rather than the unknown 
network-output error eu(t). To design such a controller 
using NNs, the basic principle of multilayer perceptron 
with BP is adopted because of its ability of universal 
approximation and its convergent property based on 

Yd (k) 

z'- 

~1 NN- ] ) qController [ 

Z-2 ,,D 

u(k)j Controlled ] y(k) 
q Plant I 

Fig. 2. A control system with an NN-controller. 
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Fig. 3. The basic structure of a multilayer perceptron. 

network output error is known, though the detailed 
structure and parameters of the mapping G(-) may not 
be known. The NN is to be trained by minimizing the 
cost function eqn (12). 

Using the gradient algorithm, the weights from the 
HIDDEN to the OUTPUT layer are modified by: 

Wl/l(t + At) = Wl/z(t) + AWl/l, (13) 

oe,(t) 
where AW~: oc OWx:(t)" (14) 

Note that u(t )= X21(t) in the NN-controller:* 

OEy(t) • Oy( t )  OX2, ( t  ) O02 (t) 
• (15) 

the gradient algorithm, is The major obstacle to design- 
ing such an NN-controller is to train the NN using 
system-output errors ey(t), rather than the network- 
output errors eu(t). The next section presents a solution 
to this problem. 

B e c a u s e - -  
OXE,(t) 
OO2,(t) - X21(t) (1 - X21(t)) , 

and - -  
0021(0 
OWlj l ( t ) -  Xli(t) '  eqn (15) becomes: 

3. TRAINING AN NN-CONTROLLER WITH OEy(t) 
SYSTEM-OUTPUT ERRORS OWljl(t) 

To derive the BP algorithm, the cost function of the 
network is defined as: 

Eu(t) = ~ ~ (e.,(t)) z 
k=l 

where euk(t)= Uka(t)- uk(t) is the network-output error 
at the k th node of the OUTPUT layer. The middle- 
point temperature control system is treated as a single- 
input, single-output (SISO) system. That is, the input is 
the feedwater flow rate and the output is the middle- 
point temperature, and other effects mentioned before 
are treated as disturbances. Therefore, the cost func- 
tion of the neural network becomes 

Eu(t) = ½(e,(t)) 2 = ½(ua(t) - u(t)) 2. 

As mentioned earlier, Eu(t) is not available since ud(t ) is 
unknown. Let the system-output error be defined by 

ey(t) = ya(t) - y(t). (11) 

Then, the cost function in terms of the system-output 
error is defined as: 

Ey(t) = ½(ey(t)) z = ½(G(ud) -- G(u)) 2, (12) 

Oy(t) 
(yd(t) - y(t) ) ~ Xzl(t)(1 - X21(t) )X1/(t). 

(16) 

Substituting eqn (16) into eqn (14) gives: 

A W~jl( t) = ~i~luX~/( t), (17) 

. Oy(t) 
where ~1 = (yd(t) - y(t)) ~ X21(t)(1 - Xzl(t)),  (18) 

and ~/Y~>0 is a gain factor. The only unknown in eqn 
(18) is [Oy(t)/Ou(t)l. 

Recall that the network-output error at the 
OUTPUT layer is defined by: 

eu(t) = ua(t) - u(t). (19) 

Referring to eqn (18), the system-output error contri- 
buted by the control input is defined by 

Oy(t) (20) 
es( t) = (y a( t) - y( t) ) Ou( t) " 

In the gradient algorithm, the solution converges to a 
minimum of the cost function if and only if the search is 
made along the negative direction of the gradient of the 

where the system is represented by y( t )=G(u( t ) ) .  
Equation (12) is computable from the measurement of 
the system output. In other words, a function of the 

* In fact, X2t(t) is the scaled value of u(t). At this stage, it is assumed 
that u(t) is within the range of (0, I). The scaling problem will be 
discussed later. 
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cost function. BP is based on the gradient algorithm 
and listed in eqns (6)-(10). Because Ud(t)--u(t)= 
x d l ( t ) -  X21(t), eqn (7) becomes: 

611 = e.( t)X2,( t)(1 - X21(t)). 

Substituting eqn (20) into eqn (18) gives: 

~11 = es( t)X21( t)(1 -- X21(t)). 

becomes 

sign( ua( t - d) - u( t - d) ) = sign(y d( t) -- y( t) ) D(G), (26) 

(21) assuming that d is somehow known. Therefore, the 
corresponding algorithm for updating the weights from 
the HIDDEN to OUTPUT layer is 

Wlj l ( t+  At) = Wlil(t) + r]Y~llXlj(t), (27) 
(22) 

where 64, = (yd(t) - y(t))D(G)X21(t)(1 - X21(t)). 

Because both eqns (21) and (22) are derived by apply- 
ing the gradient algorithm, the necessary and sufficient 
condition for the convergence of the training algorithm 
given in eqns (13) and (17) is 

sign( e,( t) ) = sign( eu( t -  d) ), (23) 

where d is the system response delay. 
Oy(t) [ 

The accurate value of Ou(t) is not important, 

because the step size can be adjusted by setting 
_ y Oy(t) Oy(t) 

rl ,=rllo-o--~l.  Certainly, t h i s r e q u i r e S l o u ( t ) < ° ° , V t .  

However, for a general nonlinear system, the sign of 
Oy(t) 
- -  at each instant is not available and difficult to 
Ou(O 
estimate on-line. To overcome this problem, a class of 
systems is characterized by the following two defini- 
tions. 

Definit ion 1: If the system output monotonically 
increases (decreases) as the control input of a 
controlled plant increases, then the system is called 
posit ive-responded (negative-responded). Both 
positive-responded and negative-responded systems 
are called monotone-responded.  

Definit ion 2: For an SISO system y(t) = G(u(t)), if the 
system is positive-responded (negative-responded), 
then the system direction is defined by D(G)=  1 
(D(G) = - 1). 

Definition 1 characterizes a class of systems. For 
example, a linear system is cascaded with an element of 
pure response delay, dead zone and saturation. The 
middle-point temperature control system is a system 
with monotone response to the control input--  
feedwater flow rate. 

For a positive-responded system, from eqns (19)- 
(23), 

s ign(ua( t -  d) - u ( t -  d) ) = sign(ya(t) - y(t) ). (24) 

Similarly, for a negative-responded system, 

sign(ud(t-- d) - u( t -  d) ) = - sign(ya( t) - y(t) ). (25) 

From eqns (24) and (25), it can be concluded that for an 
SISO monotone-responded system in order to train 
the NN-controller in Fig. 3 using system-output error, 
the condition for convergence given in eqn (23) 

4. D E S I G N  OF T H E  N N - C O N T R O L L E R  

Figures 2 and 3 show the basic structures of the 
system and the NN-controiler, respectively. The choice 
of the NN's inputs should reflect the desired and actual 
status of the controlled system. Therefore, the inputs of 
the NN-controller are usually the system's desired and 
actual outputs, and tracking errors: 

yd(t), yd(t-- At) . . . . .  yd(t-- mlAt) ,  

y(t), y( t - -  At) . . . . .  y a ( t -  m2At), 

ey(t), e ( t -  At), . . .  , ey ( t -  m3At), 

where ml,  mz and m3>0 are integer constants, and 
ey(t) = ya( t ) - y ( t ) .  The  number of the HIDDEN nodes 
depends on the controlled plant under consideration, 
and is selected experimentally. 

Based on eqn (27), the formulae for updating the 
weights from the INPUT to the HIDDEN layer and the 
thresholds are derived using the same procedure given 
in Section 3. The computation of the NN-controller is 
then summarized as follows: 

A.  Compute  the output  o f  the H I D D E N  layer, X1j(t) 

1 
Xlj(t) = 1 + exp( -  Olj - 01j)' 

N 

where Olj= E WiiSi(t)' j = 1, 2 , . . . ,  N1, 
i = l  

and Xi(t), i = 1 , 2  . . . . .  N, are the inputs of the 
NN-controller. 

B. Compute  the output  o f  O U T P U T  layer, X2~(t) 

1 
X2,(t) = 

1 + exp(-O21-  021)' 

NI 

where O21 = E W l j l X l j ( t ) .  

k = l  

C. Update the weights f r o m  H I D D E N  to O U T P U T  
layer, Wljl(t) 

Wlj,(t+ At) = W,j,(t) + rfll6{lX,j(t), 

where 6{1 = (yd(t) -- y(t) )D(G)X21(t)(1 - X2t(t)). 
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Fig. 4. The structure of the NN-based control system. 
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Fig. 5. System response with NN-controller, when dead_zone = 5.0, and R = 0.0. 

D. Update the weights f r o m  I N P U T  to H I D D E N  layer, 
w, x t) 

Wij(t + At) = Wij(t) + rlY6;Xi(t), 

where 6 5 = 6~IWls~X~s(t)(1 - Xls(t)). 

E. Update the thresholds: 02~ and O~i 

021(t + At) = 02,(t) + rlYo6Yll, Oli(t+ At) = Ols(t) + flY06 y, 

where ~ > 0 ,  r/Y>0, r/~0 and r/~>0 are gain factors. 
Another problem in designing an NN-controller is 

the choice of scaling factors. The sigmoid function in 
NN computation forces the NN outputs to be within the 
range of (0, 1), although the control inputs are limited 
by the range of actuator (Umi,, Umax). Therefore, the 
NN outputs should coincide with, or be a little nar- 
rower than, the range of the actuator's limits. The 
output of the NN-controller is then computed by u(t) = 
X21(t)(Umax -- Umin) W Umi n. 

Generally, an NN works in the mode of train-first- 
then-operate. In other words, an NN is put into oper- 
ation only after it is "well-trained". By "well-trained", 
is meant that the weights of the NN need not be 

modified any more. However, for a time-varying 
system, it is meaningless to say that an NN is "well- 
trained", since the system always changes with time. 
Thus, not updating the weights for a time-varying 
system may result in the system going out of control. It 
is therefore always necessary to update the weights of 
the NN-controller, though the updating may not be 
done during every sampling interval. 

5. SIMULATION RESULTS 

The proposed NN-controller is applied to the middle- 
point temperature system which can be characterized 
by a linear system cascaded with a nonlinear element as 
the result of dead zone and actuator limits, and a pure 
time delay caused by system response delay. The simu- 
lated system is a simplified model of the middle-point 
temperature system of a once-through boiler. The prin- 
cipal specifications of the boiler are as follows: 

Full-load main steam flow: 
Full-load main steam pressure: 
Main steam temperature: 
Fuel: 

1000 t/h. 
170 kg/cm a. 
555 °C. 
heavy oil or 
crude oil. 
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Fig. 6. System response with NN-controller, when dead_zone = 7.0, and R = 0.0. 

S imula t ions  were  conduc t ed  while  emphas iz ing  the abi-  
lity to o v e r c o m e  the negat ive  effects of  dead  zone ,  
sa tu ra t ion ,  long response  de lay ,  and process  noise.  The  
sys tem is r e p r e s e n t e d  by an A R M A X  mode l :  

where  

A(z - l )y (k )  = B ( z - ' ) u ( k -  d) + C ( z - l ) ~ ( k ) ,  (28) 

A ( z - l )  = 1 - 0.45181z-1 _ 0.47546z -2 

B ( z -  J) = - 0.04560z-1 _ 0.00404z-2,  

C ( z - l )  = 1 - 0.35740z -1 - 0.03392z -2, 

d = 18 sampl ing  intervals .  

H e r e  the  sampl ing  in terval  is 8 s, y(k)  and  u(k) are  the  
var ia t ion  of  midd le -po in t  t e m p e r a t u r e  and var ia t ion  of  

f eedwa te r  flow rate  at  a d iscre te  t ime k,  respec t ive ly ,  
and  ~(k) is an unco r r e l a t ed  r a n d o m  sequence  with ze ro  
mean  and var iance  R r ep resen t ing  the process  noise.  
The  N N -c on t ro l l e r  has no a priori knowledge  a b o u t  this 
m o d e l  except  its response  d i rec t ion .  

A non l inea r  e l e me n t  of  dead  zone  and sa tu ra t ion  is 
cascaded  with the  sys tem eqn (28) to m o d e l  an ac tua-  
tor ,  which is desc r ibed  by 

ua(t) = 

G r o i n  

O, 

~(t), 

e m a x  

if lu(t) l i> dead_ zone and  Umi, > u(t) 

if I u(t) l < dead_zone 

if lu(t) l ~> dead-zone 
and Umi.~ < lu(/)l ~< Umax 
if [u(/)l/> dead_zone and u(t) > Umax. 

(29) 

10 

o 5 

o 

0 

-5 

i i 

200 400 1000 1200 1400 
h i i i 

"100 600 800 1600 1800 2000 

time (x 8 sex.) 

Fig. 7. System control input with NN-controller, when dead_zone = 7.0, and R = 0.0. 
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Fig. 8. System response with NN-controller, when dead_zone = 5.0, and R = 0.5. 

The dead zone and saturation are treated as unknown 
properties of the controlled plant. The NN-controller is 
required to overcome their negative effects by the NN's 
learning ability. Actually, since the system response 
direction will not be changed by adding dead zone and 
saturation, the NN-controller should work well. 
Moreover ,  there is no special consideration for process 
noise in the design of the NN-controller,  as in other 
deterministic controller designs, though controllers 
have to be tested for the capability of noise rejection. 

To reflect the status of the controlled system, the 
inputs of the NN-controller are chosen as the desired 
system outputs and the output errors: 

ya(k), ya(k - 1), yd(k - 2), 

y ,~ (k ) - y (k ) ,  y , ~ ( k - 1 ) - y ( k - 1 ) ,  y a ( k - 2 ) - y ( k - 2 ) .  

That is, there are six inputs at the INPUT layer of the 

NN-controller (N = 6). Note that the middle-point tem- 
perature system is in fact a high-order system, though it 
can be approximately modeled by a low-order linear 
system with a long pure time delay. Certainly, the 
NN-controller is not used to model this high-order 
controlled plant but to control it. So, it may not be 
necessary to use the same time delay of the controlled 
plant (18 sampling intervals in eqn (28)) as its inputs. 
The NN-controller was also tested with more delayed 
inputs. The results are not superior to those presented 
below. The number of the H I D D E N  nodes is selected 
to be three (N1= 3). The overall system structure is 
sketched in Fig. 4. 

The main simulation results are summarized as fol- 
lows. 

1. When dead_zone = 5 . 0 ,  Uma x = 1 0 . 0 ,  Umi n = 

- 10.0, and no process noise (R = 0.0), the results 
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Fig. 9. System control input with NN-controller, when dead_zone = 5.0, and R = 0.5. 
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Fig. 10. System response with a PI-controller, when dead_zone = 5.0, and R = 0.0. 

are plotted in Fig. 5. The initial weights of  the N N  
are selected randomly,  and the NN's  weights 
converge  within 150 sampling intervals. 

2. When dead_zone = 7.0, Umax = 10.0, Umi, = 
- 1 0 . 0 ,  and R = 0 . 0 ,  Figs 6 and 7 present the 
system response and the corresponding control 
input, respectively. Obviously,  a large dead zone  
affects the system performance seriously, but the 
NN-control ler  still works well. 

3. When dead_zone = 5 . 0 ,  Umax = 10.0, U m i  n = 

- 1 0 . 0 ,  and R = 0 . 5  to test the ability of  noise 
rejection, the desired and actual system output 
responses are plotted in Fig. 8. The correspond- 
ing control input and the process noise are shown 
in Fig. 9, where n ( k ) = ~ ( k ) - 0 . 3 5 7 4 0 ~ ( k - 1 ) -  
0 . 0 3 3 9 2 ~ ( k  - 2) .  

To compare the performance of  the proposed 
NN-control ler  with that of  a PID-type controller, a PI 

L) 
O 

8. 
¢ )  

E £ 

O 

I 

. m  
t -  

O 

. I  

8 

4 

2 

-2 

8 
0 

i i 

500 1000 

desired output 

actual output 

i i 

1500 2000 2500 3000 

Time (X 8 sec.) 

Fig. 11. System response with a PI-controller, when dead_zone = 5.0, and R = 0.5. 
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Fig. 12. System response with NN-controller for six hidden nodes.  

1800 2000 

controller has been designed for the middle-point tem- 
perature system. The PI controller is 

k 

u(k) = -Kp(Yd(k ) - y (k ) )  - K, E (yd(i) --y(i)), 
i=0 

with Kp--2.2 and K~=0.3. When dead_zone=5.0, 
Uma x = 1 0 . 0 ,  Umi n = -- 10.0 and no process noise 
(R--0.0),  the system response controlled by the PI 
controller is plotted in Fig. 10. According to this figure, 
one should decrease Kp in order to reduce the oscilla- 
tion. However, due to the effects of the dead zone, one 
cannot make any notable improvement in the system 
performance. On the other hand, due to the effects of 
the long time delay, increasing Kp will lead to an 
unstable response. When dead_zone = 5.0, Um a x : 10.0, 
Umm = - 10.0 and R = 0.5, the result of the PI controller 
is plotted in Fig. 11. Comparing Fig. 10 with Fig. 5, and 
Fig. 11 with Fig. 8, it was concluded that the perfor- 
mance of the NN-controller is much better than that of 
the PI controller. Actually, a PI controller cannot 
perform well for a system with a long time delay, dead 
zone, saturation, and process noise. 

The above simulation results indicate how well the 
proposed NN-controller performs. In the 
NN-controller, the system-output error is computed 
from the actual measurements. As a priori knowledge, 
the system direction is easily obtained from the physical 
property of the controlled plant. To test the need for 
eqn (27), - D ( G )  is used in the training algorithm, 
which instantly results in the NN's divergence. 

The remaining problem is how to choose the number 
of the HIDDEN nodes. There is no systematic way to 
choose the number of the nodes at the HIDDEN 
layer(s) to approximate a given mapping. Therefore, 
selection of hidden nodes may depend on experiments. 
Figure 12 shows the result using NI = 6, dead_zone = 
5 . 0 ,  Umax ~---10.0, Umi n = -  1 0 . 0  and R = 0.0. Comparing 
Fig. 12 with Fig. 5, one can see that adding more 

HIDDEN nodes does not improve the system perfor- 
mance. But adding more nodes will improve the 
system's reliability. 

6. CONCLUSION 

Focusing on process control systems, a new direct 
adaptive controller using neural networks has been 
designed and tested for the middle-point temperature 
control in a thermal power plant. For such a control 
system, the negative effects of a long system response 
delay, nonlinear elements with dead zone and satu- 
ration, and process noises, are the main obstacles in 
designing a high performance controller and fine tuning 
its parameters. The proposed NN-controller can 
replace a conventional controller, and is shown to 
overcome all of the problems mentioned above. 

A training algorithm is derived based on BP, ena- 
bling the NN to be trained with system-output errors, 
rather than the network-output errors. In the BP algor- 
ithm, it is required to modify the weights by using the 
network-output error which is not known when a multi- 
layer perceptron is applied directly to the controlled 
plant. Therefore, the proposed algorithm enhances the 
NN's ability to handle control applications. The only a 
priori knowledge about the controlled plant is the 
direction of its response, which is usually easy to 
determine. The proposed NN-controller has been 
applied to the middle-point temperature control in a 
thermal power plant, and extensive simulations con- 
ducted, showing very promising results. Good perfor- 
mance, a simple structure and algorithm, and the 
potential for fault tolerance make the proposed 
NN-controller attractive for process-control 
applications. 
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