
Copyright © IFAC Real Time Programming 
Georgia. USA. 1991 

PANEL DISCUSSION 

F AUL T -TOLERANCE IN REAL-TIME 
SYSTEMS 

K. G. Shin (Chairman), Real-Time Computing Laboratory, Department of Electrical Engineering 
and Computer Science, The University of Michigan, Ann Arbor, Mt48109-2122, USA 

G. Koob, Office of Naval Research, Code 1133, 800 N. Quincy Street, ArlinglOn, 
VA 22217-5000, USA 

F. Jahanian, IBM T.J. Watson Research Center, P.O. Box 704. Yorktown Heights. NY 10598, USA 

Abstract. With ever- increasing reliance on digital computers in embedded systems such as in space. 
avionics, manufacturing, and life- support monitoring/cont.rol applications. the need for dependahle 
systems that del iver services in a timely manner has become crucial. Emlwdded systems often in tcract 
with the external environment and operate under strict t imeliness and reliability requirem ents. Fault · 
tolerance and real - time requirements on a system often inAuence one anot.her in subtle ways. For 
example, the requirements on a high ly- available system , such as an air traffic control system. may 
deril'c thc timing constraints imposed on certain crit ical tasks. In cases wlwre a se t of intera ct.in g t.a sks 
operate under strict timing const.raints, missing a deadline may result in a catastrophic system failure. 
whi ch was termed a dynamic faihtre in (Shin , I<rishna, and Lee, 1985). This paper argues that fault ­
tolerance and real - time requ irements are not orthogonal and it address<'s some of the challf'nges thiLl 
confront thc des igners of fau lt- tolerant reaJ - timc systems. These challenges inciudf' formal spccificat.iclll 
of reliability and timing requirements , appropriate language and opcrating systf'm support for prol'iding 
fault - tolerance in a time- critica.1 system , new scheduling theories which consider Illultiple resoul'Cf'S and 
fault - tolerance, tra.deoff between time a.nd space rcdundancy, a nd predict.ahle redundancy managPlllcllt 
in the presence of faults. 

Keywords. Fau lt-tolerance; real-t ime systems; rcliability; time and space redundancy ; run -t ime moni ­
toring; specificat ion . 

ARE FAULT- TOLERANCE AND REAL­
TIME ORTHOGONAL ? 

Fault- tolerance is defined informally as t he ability of a sys­
tem to deliver the expected service evcn in the presence of 
faults . A common misconception a.bout real - time comput­
ing is that fault - tolerancc is orthogonal to real - time require­
ments. It is often assumed that the avai lability and reliability 
requirements of a syst.em can be addressed independent of 
its timing constraints . This assumption, howevcr , does not 
consider the distinguishing characteristic of real - time com­
puting: the COr7'ectness of a system is dependent not only 
on the correctness of its res1llt , bu.t also on meeting stringent 
timing ,·eq1lirements. In other words , a real - time system may 
fail to function correctly either because of errors in its hard­
ware and / or software or because of not responding in t ime to 
meet the timing requirements that are usua.JJy imposed by its 
"env ironment." Hence, a real- time system can be viewed as 
one that must deliver the expect ed service in a timely man­
ner even in the presence of fault s. A mi ssed deadline can be 
potentially as disastrous as a system crash or an incorrect 
behavior of a critical task , e.g., a digital cont.rol system may 
lose stability. 

This is a summary of the panel on real - time, fault- tolerant computing 
at the 9-th IEEE Workshop on Real - Time Operating Systems and Soft­
ware, May 15-17, 1991. Atlanta. GA . The order of aUlhors names ap­
peared in this paper represents the order of presentation at the RTOSS . 

119 

In fact, if the logical correctness of a system may be de­
pendent on the timing correctness of certain componcnts, 
separating the functional specification from the t.iming spec­
ification is a very difficult task . Moreol'er , t.imeliness and 
fault - tolerance could sometimes pull each ot.her int.o oppo­
site directions. For example , frequent extra checks and exot ic 
error recovery routines will enhance fault- tolerancc but may 
increase t he chance of missing the deadlincs of applicat.ion 
tasks. 

When a system specification requires certain service in a 
timely manner, then the inability of the system to meet the 
specified timing const rain t can be viewed as a failure. How­
ever, a simple approach of applying existing fault - tolerant 
system design methods by treating a missed deadline as a 
timing fault does not address fully the needs of real - time 
appli cat ions. The fundamental difference is that real- time 
systems must be predictable, even in the presence of faults. 
Hence, fault - tolerance and real- time requirements must be 
cons idered jointly and simultaneously when designing such 
systems. The challenge is to include the timing and t he 
fau lt- tolerance requirements in the specification of the sys­
tem at every level of abstraction a nd t.o adopt a design 
methodology that considers system predictability even dur­
ing fault detection, isolation , system reconfiguration and re­
covery phases. Formal specification of the reliability require­
ments and their impact on meeting timing constraints is an 
area which requi res further exploration. Determining the 



timing constraints on a system from Its availability require­
ments is a very difficult problem. 

SPACE AND TIME TRADEOFF 

The design methodologies for fault -tolerant systems have 
often been characterized by the tradeoff between time and 
space redundancy. In non-real - time systems, time is treated 
as a cheap resource and most methods concentrate on space 
optimization. In a real-time environment, the tendency 
would be to trade space for time since meeting the stringent 
timing constraints is essential in ensuring correct system be­
havior. Although time- space tradeoff forms the basis for 
most fault - tolerant system design methodologies, it is un­
clear wh ether it is an appropriate paradigm for characteriz­
ing fault-tolerance in a real - time environment . In particular, 
redundancy must be considered in the context of achieving 
both predictability and dependahility in a system. For exam­
pl e, tolerat ing transient. faults by retrying a computation is 
an accept able technique if the timing constraints can be met. 
The same assertion holds for techniques based on the notion 
of re("o'·ery blocks whrre a different \"(~ rsion of the soft.ware 
1lI0dule is used in the ret.ry. I-I o\\"('\"rl". alternative approaches 
must be considrred when t. im e is a scarce resou rce. In par­
ticlllar, the quality of tlw computation can become a third 
dimension in the design space. That is, in a new twist on the 
principle of graceful degradation, a fault in a real -tim e sys­
te lll could result in a (temporary) reduction in the quality of 
the services provided in order t.o allow the syst.em t.o continue 
t.o meet crit ical - task deadlines . Although general methods 
that delete or reduce the number of less critical tasks would 
certa inl y fall into this cat egory, "quality" must. ultimately be 
de~ned in terms of t.he detai l"d semantics of the application. 
Hea l- t.ime cont.rol systems, for example, are cha ra cterized 
by cont inuous variables whose values can be approximated 
or rst.imated if time does not. permit. precise comput.at.ion. 
The imprecise comput.ation approach (Liu, Lin , Shih, and 
others. 1991) is one technique that sacrifices accuracy for 
time in iteratively- improving calculat ions . As discussed in 
the next section, trading space for t im e also has potential 
limits si nce spat ia.1 redundancy introduces additional over­
head (in t.ime) for managing the r ... dundancy (see (J~rishna , 

Sh in. and ]1utler, 108·1) for an example) . 

PH ED ICTAI3LE HEDUNDANCY I\IANAGE­
MENT 

,\it hough advances in distributed and paralkl syst ... ms pro­
,·id ... the opportunitics for achic,·ing rral - time performance 
whil ... satisfying fault - tolerance requir('ments , using the in­
herent redundancy provided by these systems is not free. For 
example, the O\·crhead associated with synchronization and 
the nondeterminism due to communication delav contribute 
to the complexity of building systems with predictable tim­
ing behavior. Predictable redundancy management remains 
an open research problem. For example, a set of identical 
servers on multiple processors provide fault-tolerance in a 
system with crash or performa nce failures . However, pre­
dictable redundancy req uires addressing issues SlIch as syn­
chronizat.ion of servers, agreement on the order of request 
messages, and the cost of fa.ilure detection and recovery (Kr­
ishna , Shin, and Butler, 1984). In this case, redundan cy in 
space incurs additional cost in time. The overhead associ­
ated wit h managing redundancy must be quitntified precisely 
so that certain guitrantees about the real - time behavior of 

the system can be made. 

~Ianaging redundancy in a predict.able fashion IS relat.ed 

120 

closely to the demands on real-time scheduling theory. Satis­
fying the timing requirements of a real-time system demands 
the scheduling of system resources such that the timing be­
havior of the system is "understandable, predictable, and 
maintainable." Most existing scheduling algorithms consider 
one resource at a time and ignore fault-tolerance . The re­
quirement for meeting timing constraints in the presence of 
faults imposes additional demands on the scheduling algo­
rithms. New resource allocation techniques are necessary 
to address the predictability and reliability requirements of 
complex real-time systems. A simple case of this was treated 
in (Krishna and Shin, 1986) . 

RUN-TIf-.IE MONITOHING 

In designing real - time systems, we often make assumptions 
about the behavior of the system and its environment. These 
assumptions take many forms : upper bounds on interprocess 
communication delay and task execution time, deadlines on 
the execution of tasks, or minimum separat ions between oc­
currences of two events. They are often made to deal with 
the unpredictability of the external environm('nt or to sim­
plify a problem that is otherwise intractable or very hard to 
solve. Such assumptions may be expressed as part of the 
formal specification of the system or as schedu ling require­
m('nts on the real- time tasks. Despite the contribution of 
formal verification methods and recent advances in real- time 
scheduling, the need to perform run- time monitoring of these 
systems is not diminished for several reason s: the execution 
environment of most systems is imperfect. and the inte raction 
with the externa.! world introduces additional unpredictabil­
ity; design assumptions can be violated at run - time due to 
unexpected condit.ions such as transient overload; applica­
tion of formal techniques or schedu ling algorit hm s in turn 
requires assumptions about. the underlying syst.em; and it 
may be infeasible (or impossible) to verify forma.lly some 
properties at design time, thus further necessit.at.ing run­
time checks (Jahanian and Goyal , 1990, Chodrow, Jahani an, 
and Donner, 1091). 

Run-time monitoring of a system requires timestamping and 
recording of the relevant event occurrences, analyzing the 
past history as other events are recorded and providing feed­
back to the rest of the system. The non-intrusiveness re­
quirement of real - time monitoring often leads to use of spe­
cia l monitoring hardware (Haban and Shin 1990 Tsai Fang 
and Chen, 1990). Many important issues ~ust I~e addressed 
before run-time monitoring is full y utilized in rea l- time sys­
tems . Some of these issues are: 

• Language support: What is an appropriate set of lan­
guage constructs for the specification of run-time con­
straints? Should the spec ification language be t ied 
closely to the underlying implementation language? 

• Run- time system support: What level of support should 
be provided by the operating system? What internal op­
erating system events , such as task preemption , should 
be made visible to the monitoring facility? 

• Scheduling support: How intrusive is run-time system 
monitoring on the critical tasks within a system? Is 
it possible to make the intrusiveness of run- time mon­
itoring predictable? See (Tokuda, I~01·cta, and Mercer, 
1989) for more on this. 

In addition to detecting violation of design assumptions , 
run- time monitoring can be used to detect a.pplication spe­
cific exception condit.ions. One can envision a system in 



which specification-based fault-detection is done by a mon­
itoring facility (Jahanian and Goyal, 1990). Furthermore, 
beside detecting exception conditions, a run- time monitor­
ing facility can provide feedback to the rest of the system. 
The information collected by the monitoring facility can be 
used to provide feedback to the system operator, the ap­
plication tasks, or the scheduler (Haban and Shin , 1990). 
For example, exceeding the maximum computation time es­
timated for a task can be reported by the monitoring facility. 
The feedback to the scheduler can be used to build a robust 
system that is capable of adapting to the changes in the en­
vironment and the system load. Investigating the utilities of 
monitoring application tasks and operating system events as 
a way of providing feedback to the rest of the system is an 
area of ongoing research. A related topic is scheduling run­
time monitoring tasks with the real-time application tasks 
in a system. 

REFERENCES 

Chodrow, S., F. Jahanian, and M. Donner (1991). Run-time 
monitoring of real- time systems. Proc. of 12th 
Real- Time Systems Symposium. 

Haban , D., and K. G. Shin (1990). Application of real - time 
monitoring for scheduling tasks with random ex­
ecution times. IEEE Trans. on Software Engi­
neering, Vo!. 16, No. 12, pp. 1374- 1389. 

Jahanian, F., and A. Goyal (1990). A forma.lism for monitor­
ing real-time constraints at run-time. Proc. of 
Fault- Tolerant Computing Symposium (FTCS-
20). 

Krishna, C. ivL, and K. G. Shin (1986). On scheduling tasks 
with a quick recovery from failure. IEEE Trans. 
on Comput. Vo!. C- 35 , No. 5, pp. 418- 4.5.5. 

Krishna, C. M. , K. G. Shin, and R. W. Butler (1984). 
Synchronization and fault - masking in redundant 
real- time systems. Digest of Papers, FTCS-14. 
pp. 152- 157. 

Liu, J. , K.-J. Lin, W.-K. Shih, A. Vu, A.-Y. Chung, and 
W. Zhao (1991). Algorithms for scheduling im­
precise computations. Computer. Vo!. 24 , No. 
5, pp. 58- 69. 

Shin, K. G., C. M. Krishna, and Y.-H. Lee (198.5). A uni­
fied method for evaluating rea.l - time computer 
controllers and its application. IEEE Trans. on 
Automatic Control. Vo!. AC- 30 , No. 4, pp. 
357-366. 

Tokuda, H., M. Koreta, and C. Mercer (1989). A real-time 
monitor for a distributed real-time o.s. A CM 
SIGPlan Notices. Vo!. 24, No. 1, pp. 68- 77. 

Tsai, J. P., K.-Y. Fang, and H.-Y. Chen (1990). A noninva­
sive architecture to monitor rea.l-time distributed 
systems. Computer. Vo!. 23, No. 3, pp. 11 -23. 

121 


