Copyright ® IFAC Real Time Programming
Georgia, USA, 1991

PANEL DISCUSSION

FAULT-TOLERANCE IN REAL-TIME
SYSTEMS

K. G. Shin (Chairman), Real-Time Computing Laboratory, Department of Electrical Engineering
and Computer Science, The University of Michigan, Ann Arbor, MI 48109-2122, USA

G. Koob, Office of Naval Research, Code 1133, 800 N. Quincy Street, Arlington,

VA 22217-5000, USA

F. Jahanian, /BM T.J. Watson Research Center, P.0. Box 704, Yorktown Heights, NY 10598, USA

Abstract. With ever-increasing reliance on digital computers in embedded systems such as in space.
avionics, manufacturing, and life-support monitoring/control applications. the need for dependable
systems that deliver services in a timely manner has become crucial. Embedded systems often interact
with the external environment and operate under strict timeliness and reliability requirements. Fault
tolerance and real-time requirements on a system often influence one another in subtle ways. lor
example, the requirements on a highly-available system, such as an air traffic control system. may
derive the timing constraints imposed on certain critical tasks. In cases where a set of interacting tasks
operate under strict timing constraints, missing a deadline may result in a catastrophic system failure.
which was termed a dynamic failure in (Shin, Krishna, and Lee, 1985). This paper argues that fault
tolerance and real-time requirements are not orthogonal and it addresses some of the challenges that
confront the designers of fault-tolerant real-time systems. These challenges include formal specification
of reliability and timing requirements, appropriate language and operating system support for providing
fault-tolerance in a time-critical system, new scheduling theorics which consider multiple resources and
fault-tolerance, tradeoff between time and space redundancy, and predictable redundancy management
in the presence of faults.

I\'eé'words, Fault-tolerance; real-time systems; reliability; time and space redundancy; run-time moni-

toring; specification.

ARE FAULT-TOLERANCE AND REAL-

TIME ORTHOGONAL ?

Fault-tolerance is defined informally as the ability of a sys-
tem to deliver the expected service even in the presence of
faults. A common misconception about real-time comput-
ing is that fault-tolerance is orthogonal to real-time require-
ments. It is often assumed that the availability and reliability
requirements of a system can be addressed independent of
its timing constraints. This assumption, however, does not
consider the distinguishing characteristic of real-time com-
puting: the correctness of a system is dependent not only
on the correctness of its resull, but also on meeting stringent
timing requirements. In other words, a real-time system may
fail to function correctly either because of errors in its hard-
ware and /or software or because of not responding in time to
meet the timing requirements that are usually imposed by its
“environment.” Hence, a real-time system can be viewed as
one that must deliver the expected service in a timely man-
ner even in the presence of faults. A missed deadline can be
potentially as disastrous as a system crash or an incorrect
behavior of a critical task, e.g., a digital control system may
lose stability.

This is a summary of the panel on real-time, fault-tolerant computing
at the 9-th IEEE Workshop on Real-Time Operating Systems and Soft-
ware, May 15-17, 1991, Atlanta, GA. The order of authors names ap-
peared in this paper represents the order of presentation at the RTOSS.

119

In fact, if the logical correctness of a system may be de-
pendent on the timing correctness of certain components,
separating the functional specification from the timing spec-
ification is a very difficult task. Moreover, timeliness and
fault-tolerance could sometimes pull each other into oppo-
site directions. For example, frequent extra checks and exotic
error recovery routines will enhance fault-tolerance but may
increase the chance of missing the deadlines of application
tasks.

When a system specification requires certain service in a
timely manner, then the inability of the system to meet the
specified timing constraint can be viewed as a failure. How-
ever, a simple approach of applying existing fault-tolerant
system design methods by treating a missed deadline as a
timing fault does not address fully the needs of real-time
applications. The fundamental difference is that real-time
systems must be predictable, even in the presence of faults.
Hence, fault-tolerance and real-time requirements must be
considered jointly and simultaneously when designing such
systems. The challenge is to include the timing and the
fault-tolerance requirements in the specification of the sys-
tem at every level of abstraction and to adopt a design
methodology that considers system predictability even dur-
ing fault detection, isolation, system reconfiguration and re-
covery phases. Formal specification of the reliability require-
ments and their impact on meeting timing constraints is an
area which requires further exploration. Determining the

timing constraints on a system from 1ts availability require-
ments is a very difficult problem.

SPACE AND TIME TRADEOFF

The design methodologies for fault-tolerant systems have
often been characterized by the tradeofl between time and
space redundancy. In non-real-time systems, time is treated
as a cheap resource and most methods concentrate on space
optimization. In a real-time environment, the tendency
would be to trade space for time since meeting the stringent
timing constraints is essential in ensuring correct system be-
havior. Although time-space tradeoff forms the basis for
most fault-tolerant system design methodologies, it is un-
clear whether it is an appropriate paradigm for characteriz-
ing fault-tolerance in a real-time environment. In particular,
redundancy must be considered in the context of achieving
both predictability and dependability in a system. For exam-
ple. tolerating transient faults by retrying a computation is
an acceptable technique il the timing constraints can be met.
The same assertion holds for techniques based on the notion
of recovery blocks where a different version of the soltware
module is used in the retry. However, alternative approaches
must be considered when time is a scarce resource. In par-
ticular, the quality of the computation can become a third
dimension in the design space. That is, in a new twist on the
principle of gracelul degradation, a fault in a real-time sys-
tem could result in a (temporary) reduction in the quality of
the services provided in order to allow the system to continue
to meet critical-task deadlines. Although general methods
that delete or reduce the number of less critical tasks would
certainly fall into this category, “quality” must ultimately be
defined in terms of the detailed semantics of the application.
Real time control systems, for example, are characterized
by continuous variables whose values can be approximated
or estimated if time does not permit precise computation.
The imprecise computation approach (Liu, Lin, Shih, and
others. 1991) is one technique that sacrifices accuracy for
time in iteratively-improving calculations, As discussed in
the next section, trading space for time also has potential
limits since spatial redundancy introduces additional over-
head (in time) for managing the redundaney (see (IKrishna,
Shin, and Butler, 1984) for an example).

PREDICTABLE REDUNDANCY MANAGE-
MENT

Although advances in distributed and parallel systems pro-
vide the opportunities for achieving real-time performance
while satislving fault-tolerance requirements, using the in-
herent redundancy provided by these systems is not free. For
example, the overhead associated with synchronization and
the nondeterminism due to communication delay contribute
to the complexity of building systems with predictable tim-
ing behavior, Predictable redundancy management remains
an open research problem. For example, a set of identical
servers on multiple processors provide fault-tolerance in a
system with crash or performance failures. Iowever, pre-
dictable redundancy requires addressing issues such as syn-
chronization of servers, agreement on the order of request
messages, and the cost of failure detection and recovery (Kr-
ishna, Shin, and Butler, 1984). In this case, redundancy in
space incurs additional cost in time. The overhead associ-
ated with managing redundancy must be quantified precisely
so that certain guarantees about the real-time behavior of
the system can be made,

Managing redundancy in a predictable fashion is related

closely to the demands on real-time scheduling theory. Satis-
fying the timing requirements of a real-time system demands
the scheduling of system resources such that the timing be-
havior of the system is “understandable, predictable, and
maintainable.” Most existing scheduling algorithms consider
one resource at a time and ignore fault-tolerance. The re-
quirement for meeting timing constraints in the presence of
faults imposes additional demands on the scheduling algo-
rithms. New resource allocation techniques are necessary
to address the predictability and reliability requirements of
complex real-time systems. A simple case of this was treated
in (Krishna and Shin, 1986).

RUN-TIME MONITORING

In designing real-time systems, we often make assumptions
about the behavior of the system and its environment, These
assumptions take many forms: upper bounds on interprocess
communication delay and task execution time, deadlines on
the execution of tasks, or minimum separations between oc-
currences of two events. They are often made to deal with
the unpredictability of the external environment or to sim-
plify a problem that is otherwise intractable or very hard to
solve. Such assumptions may be expressed as part of the
formal specification of the system or as scheduling require-
ments on the real-time tasks. Despite the contribution of
formal verification methods and recent advances in real-time
scheduling, the need to perform run-time monitoring of these
systems is not diminished for several reasons: the execution
environment of most systems is imperfect and the interaction
with the external world introduces additional unpredictaLil-
ity; design assumptions can be violated at run-time due to
unexpected conditions such as transient overload; applica-
tion of formal techniques or scheduling algorithms in turn
requires assumptions about the underlying system; and it
may be infeasible (or impossible) to verify formally some
properties at design time, thus further necessitating run-
time checks (Jahanian and Goyal, 1990, Chodrow, Jahanian,
and Donner, 1991).

Run-time monitoring of a system requires timestamping and
recording of the relevant event occurrences, analyzing the
past history as other events are recorded and providing feed-
back to the rest of the system. The non-intrusiveness re-
quirement of real-time monitoring often leads to use of spe-
cial monitoring hardware (Haban and Shin, 1990, Tsai, Fang,
and Chen, 1990). Many important issues must be addressed
before run-time monitoring is fully utilized in real-time sys-
tems. Some of these issues are:

o Language support: What is an appropriate set of lan-
guage constructs for the specification of run-time con-
straints? Should the specification language be tied
closely to the underlying implementation langnage?

Run-time system support: What level of support should
be provided by the operating system? What internal op-
erating system events, such as task preemption, should
be made visible to the monitoring facility?

o Scheduling support: How intrusive is run-time system
monitoring on the critical tasks within a system? Is
it possible to make the intrusiveness of run-time mon-
itoring predictable? See (Tokuda, Koreta, and Mercer,
1989) for more on this.

In addition to detecting violation of design assumptions,
run-time monitoring can be used to detect application spe-
cific exception conditions. One can envision a system in

which specification-based fault-detection is done by a mon-
itoring facility (Jahanian and Goyal, 1990). Furthermore,
beside detecting exception conditions, a run-time monitor-
ing facility can provide feedback to the rest of the system.
The information collected by the monitoring facility can be
used to provide feedback to the system operator, the ap-
plication tasks, or the scheduler (Haban and Shin, 1990).
For example, exceeding the maximum computation time es-
timated for a task can be reported by the monitoring facility.
The feedback to the scheduler can be used to build a robust
system that is capable of adapting to the changes in the en-
vironment and the system load. Investigating the utilities of
monitoring application tasks and operating system events as
a way of providing feedback to the rest of the system is an
area of ongoing research. A related topic is scheduling run-
time monitoring tasks with the real-time application tasks
in a system.

REFERENCES

Chodrow, S., F. Jahanian, and M. Donner (1991). Run-time
monitoring of real-time systems. Proc. of [2th
Real-Time Systems Symposium,

Haban, D., and K. G. Shin (1990). Application of real-time
monitoring for scheduling tasks with random ex-
ecution times. [EEE Trans. on Software Engi-
neering, Vol. 16, No. 12, pp. 1374-1389.

Jahanian, F., and A. Goyal (1990). A formalism for monitor-
ing real-time constraints at run-time. Proc. of
Fault-Tolerant Computing Symposium (FTCS-
20).

Krishna, C. M., and K. G. Shin (1986). On scheduling tasks
with a quick recovery from failure. [EEE Trans.
on Comput. Vol. C-35, No. 5, pp. 448-455.

Krishna, C. M., K. G. Shin, and R. W. Butler (1984).
Synchronization and fault-masking in redundant
real-time systems. Digest of Papers, FTCS-14.
pp. 152-157.

Liu, J., K.-J. Lin, W.-K. Shih ; A. Yu, A.-Y. Chung, and
W. Zhao (1991). Algorithms for scheduling im-
precise computations. Computer. Vol. 24, No.
5, pp. 58-69.

Shin, K. G., C. M. Krishna, and Y.-H. Lee (1985). A uni-
fied method for evaluating real-time computer
controllers and its application. [EEE Trans. on
Automatic Control. Vol. AC-30, No. 4, pp.
357-366.

Tokuda, H., M. Koreta, and C. Mercer (1989). A real-time
monitor for a distributed real-time os. ACM
SIGPlan Notices. Vol. 24, No. 1, pp. 68-77.

Tsai, J. P., K.-Y. Fang, and H.-Y. Chen (1990). A noninva-
sive architecture to monitor real-time distributed
systems. Computer. Vol. 23, No. 3, pp. 11-23.

121

