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he growing importance of real- 
time computing in numerous ap- 
plications, such as aerospace and 

defense systems and industrial automation 
and control, poses problems for computer 
architectures, operating systems, fault tol- 
erance, and evaluation tools. The interplay 
of three major components characterizes 
real-time systems. First, time is the most 
precious resource to manage. Tasks must 
be assigned and scheduled to be completed 
before their deadlines. Messages must be 
sent and received in a timely manner be- 
tween the interacting real-time tasks. Sec- 
ond, reliability is crucial, since failure of a 
real-time system could cause an economic 
disaster or the loss of human lives. Third, 
the environment in which a computer oper- 
ates is an active component of any real- 
time system. For example, in a “drive by 
wire” transportation system, in which im- 
portant functions such as emission control 
and braking are automated with comput- 
ers, it would be meaningless to consider 
the on-board computers without consider- 
ing the automobile itself. 

Because their multiplicity of processors 
and internode routes gives them the poten- 
tial for high performance and high reli- 
ability, distributed systems with point-to- 
point interconnection networks are natural 
candidate architectures for time-critical 
applications. This article focuses on the 
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design, implementation, and evaluation of 
a distributed real-time architecture called 
HARTS (hexagonal architecture for real- 
time systems), with emphasis on its sup- 
port of time-constrained, fault-tolerant 
communications and I/O requirements. 
Currently under development at the Uni- 
versity of Michigan’s Real-Time Com- 
puting Laboratory (RTCL), HARTS con- 
sists of shared-memory multiprocessor 
nodes, interconnected via a wrapped hex- 

agonal mesh. This architecture is intended 
to meet three main requirements of real- 
time computing: high performance, high 
reliability, and extensive 1/0.* 

High-level architecture 

The primary goal of HARTS is the study 
of low-level architectural issues, such as 
message buffering, instruction set design, 
scheduling, and routing, in a setting that 
gives designers internal access to many 
system parameters. T o  meet this goal, my 
colleagues at RTCL and I used a hybrid 
system of commercially available proces- 
sors and custom-designed interfaces. Sev- 
eral processor cards are grouped to form a 
cluster of application processors (APs). 
Each cluster serves as a multiprocessor 
node and is interconnected by custom in- 
terfaces to form a distributed system. The 
presence of both multiprocessor and dis- 
tributed aspects permits investigating the 
behavior of real-time tasks under either 
architectures. In parallel with the hardware 

*Although predictability of task execution behavior is 
essential for any real-time system design to guarantee 
on-time completion of tasks, it is not an architectural 
issue but an operating system issue. Real-time systems 
architects must provide hardware facilitie5 on which 
one can readily build an operating system that guarantees 
deadlines. 
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Figure 1. Hexagonal mesh of size 3. 

development, our work on a real-time op- 
erating system called HARTOS’ influences 
the specification, architecture, and imple- 
mentation of the custom-designed HARTS 
components. 

Node architecture. Each node in the 
testbed consists of up to three APs, a sys- 
tem controller, a shared memory segment, 
an Ethernet processor, and the network 
processor (NP), a custom-designed inter- 
face to the interconnection network. 

The APs are commercially available 
VME bus multiprocessing engines based 
on Motorola’s MC68020. Each processor 
card has four major sections: a CPU core, 
a VME bus interface, a memory system, 
and a VMX bus interface. The CPU core 
consists of a %bit 16-MHz MC68020 
CPU, an MC68881 floating-point proces- 
sor, and an MC68851 paged memory 
management unit. The memory subsystem 
provides four megabytes of high-perfor- 
mance dual-ported dynamic RAM, with an 
additional 256 bytes of special mailbox 
hardware. This mailbox feature facilitates 
efficient interprocessor communication by 
allowing a remote processor to write a 
semaphore that automatically interrupts the 
local processor. 

The Ethernet processor card supports 
several functions for the nodes, although it 
is not a permanent HARTS component. 
First, i t  provides a secondary means of 
distributing code and data. This is espe- 
cially important during the early stages of 
development of the network interfaces. 
Second, the high-level protocols that man- 
age reliable packet handling and provide 
internode communication can be experi- 
mentally tested on the Ethernet processor. 
Third, the Ethernet processor is used to 
collect experimental data by monitoring 
the APs and network interfaces with min- 
imal interference. 

Interconnection network. A distribut- 
ed system’s interconnection network often 
connects thousands of homogeneously 
replicated processor-memory pairs, which 
are called processing nodes (PNs). All 
synchronization and communication be- 
tween PNs for program execution are via 
message passing. The homogeneity of PNs 
and the interconnection network is very 
important because it allows cost and per- 
formance benefits from the inexpensive 
replication of multiprocessor components? 
It is preferable that each PN in the multi- 
processor have fixed connectivity so that 

standard VLSI chips and communication 
software can be used. Also, the intercon- 
nection network should contain a reason- 
ably high degree of connectivity so that 
alternative routes can be made available to 
detour faulty nodes and links. More im- 
portant, the interconnection network must 
facilitate efficient routing and broadcast- 
ing to achieve high performance in task 
execution. For structural flexibility, a sys- 
tem must also possess fine scalability, 
measured in terms of the number of PNs 
necessary to increase the network’s di- 
mension by one. 

T o  meet these requirements, we consid- 
ered several topologies, including hyper- 
cubes, square meshes, 3D tori, hexagonal 
meshes, and octal meshes. Of these, the 
hexagonal (H) mesh best meets the re- 
quirements of fixed connectivity and pla- 
nar architecture for easy VLSI and com- 
munications implementation, f ine 
scalability, reasonably high fault toler- 
ance, and ease of construction. (Detailed 
comparisons of the H-mesh to other to- 
pologies are given by Stevens2 and by Chen, 
Shin, and Kandlur.’ The robustness of an 
H-mesh to link and node failures is shown 
by Olson and Shin.4) Hence, we chose a C- 
wrapped (“C” stands for continuous) H- 
mesh topology to interconnect HARTS 
nodes. 

H-mesh size (the term “dimension” was 
used in an earlier article’) is defined as the 
number of nodes on its peripheral edge. 
One can visualize what is happening in the 
C-wrapping by first partitioning the nodes 
of a nonwrapped H-mesh of size e, denoted 
by He, into rows in three different directions. 
The mesh can be viewed as composed of 
2e-1 horizontal rows (called the do direc- 
tion), 2e-1 rows in the 60-degree clockwise 
direction (called the d, direction), or 2e-1 
rows in the 120-degree clockwise direction 
(called the d2 direction). In each of these 
partitions we label from the top the rows R, 
through RZp-?. The C-wrapping is then 
performed by connecting the last node in R, 
to the first node in R,i+c,+112p~l for each i in 
each of the three partitions, where [a Ib  
denotes a mod b. Figure 1 illustrates an 
example of a C-wrapped H 3  in which the 
links on the periphery (represented by 
dashed-line arrows) are connected to the 
nodes as indicated by their labels. 

The C-wrapped H-mesh is isomorphic 
to the interconnection topology presented 
by Stevens.2 However, the formalism just 
described allows uniform treatment of 
message routing between all pairs of nodes 
and does not require any special treatment 
of the wrap lines, as was necessary in 
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Stevens’ topology when the axial offset 
was between c and 2(e-I). 

A C-type wrapping has several salient 
properties, as shown by Chen, Shin, and 
Kandlur.’ First, this wrapping results in a 
hoiiiogeneous network. Consequently, any 
node can view itself as the center of the 
mesh (labeled as node Oin Figure I ). Second, 
the diameter of an H ,  is c-I. Third, there is 
a simple, transparent addressing scheme 
that uses only one coordinate ~ instead ot 
three as in Stevens’ topology - to unique- 
ly identify any node in  an H-mesh. An 
example of this addressing for an H4 i \  
shown in Figure 2a. where all edges are 
omitted for clarity. On the basis of this 
addressing scheme, one can determine the 
shortest paths between any two nodes with 
a O( 1) algorithm; that is, the complexity is 
constant and independent of system s i x .  
Note that at each node on a shortest path 
there are at most two different neighbors of 
the node to which the shortest path runs. 
Fourth, with this addressing scheme one 
can devise a simple routing algorithm that 
can be efficiently implernenied in hardware, 
as shown by Dolter, Ramaiiathan, and Shin.’ 

I o send a message. the source calculates 
the shortest paths to the destination and 
encodes this routing inforination into three 
integers denoted by )no, )ti1, and ) t i 2 ,  which 
represent the number of hops froiii the 
source to the destination alorig thetl,,, cl , ,  and 
d2 directions, respectively. Before sending 
the packet to an appropriate neighbor, in- 
termediate nodes update these valucs to 
indicate the remaining hops in each direction 
to the destination. Hence, mil = nil  = ?ti2 = 0 
indicates that the packet has reached its 
dest i nat io 11. 

Suppose node I 1  sends a niessage to 
node 5 in the H4 of Figure 2. The original 
H ,  is given in Figure 2a and H4( I 1 ) - node 
I 1  is placed at the center of the H4- is in 
Figure 2b. From the Chen-Shin-Kandlur 
routing algorithm, we get m,, = 0, nil = -2, 
and =- I .  Note that the route from node 
1 1  to node 5 i n  Figure 2b is isomorphic to 
that from node 0 to node 3 I i n  Figure 2a. 
This is not a coincidence but rather a coli- 
sequence of t h e  homogeneity of H,. 

Applications i n  various doiiiains require 
an efficient method for a node to broadcast 
a message to all the other nodes i n  an H- 
mesh. Due to interconnection costs, it is 
very conimon to use point-to-point comniu- 
nications for broadcasting. Without loss of 
generality, one can assume the center node 
is the broadcast source. The set of nodes that 
has the same distance from the source node 
is called a ring. The main idea of this algo- 
rithm is to broadcast a message. ring by 

_ _  

ring, toward the periphery of an H-mesh. 
The algorithm consists oftwo phases. In the 
first phase, which takes three steps, the 
message is transmitted to the origin’s six 
nearest neighbors. Note that there are six 
corner nodes in each ring. In the second 
phase. which takcs + I  steps. the six corner 

nodes of each ring send the message to  two 
neighboring nodes, while all other nodes 
propagate the message to the next node in 
the same direction as the previous trans- 
mission. Figure 3 i \  an example of H4 
broadcasting. The numcric labels denote 
the communication step numbers 

30 31 32 33 

24 25 26 27 28 29 35 36 0 0 0 0 6 6 6  
25 26 27 28 29 

0 0 0 0 0 0  
0 0 0 0 0  

(a) (b) 

Figure 2. Example of routing in an H,: (a) original H,; (h) H, with node 11 
placed at the center, H, (11). 

0 0 0 0  
Figure 3. Broadcasting in an H,. 

May 1991 2 1  



Low-level architecture 

We have developed special hardware 
support for time-constrained, fault-toler- 
ant communications in HARTS, based on 
the addressing, routing, and broadcasting 
methods just described. Below, we dis- 
cuss the need for extra hardware for com- 
munication processing, the main functional 
requirements of the NP, and a system- 
level architecture that realizes these 
functions. 

Why communication hardware? Each 
node in a distributed system must be re- 
sponsible for packet processing, routing, 
and error and flow control. Real-time ap- 
plications impose additional functions re- 
lated to meeting deadlines, time manage- 
ment, and housekeeping. 

Packet processing can consume a sub- 
stantial number of processor cycles and, in 
the absence of communication hardware, 
can deprive the host (node) of much need- 
ed computation power. In particular, the 
host is saddled with breaking a message 
into packets for transmission, constructing 
packet headers and trailers, framing pack- 
ets, and calculating checksums. On recep- 
tion of packets, the receiving host has to 
depacketize the message, strip headers and 
trailers, and compute the checksum for 
error checking. Each time apacket is trans- 
mitted or received, the host must be inter- 
rupted and context-switched to routines 
that perform these chores. This introduces 
substantial overhead because contempo- 
rary off-the-shelf processors are optimized 
to compute with register and cache data, 
which are lost in a context switch. For 
time-constrained, fault-tolerant communi- 
cations, the host AP also has to handle 
several other functions that introduce sig- 
nificant computational overhead. These 
include message scheduling, route selec- 
tion for reliable and timely delivery of 
messages, and clock synchronization. 

All these functions divert significant 
computing power from time-critical appli- 
cations. It is therefore necessary to offload 
such processing from the AP to special 
communication-processing hardware - 
that is. the NP. 

Requirements of the network proces- 
sor. Before designing and building the NP, 
we identified required functions, which 
must include efficient support for message 
processing, low-latency message trans- 
mission, and support for time-constrained, 
fault-tolerant communications. The oper- 

ating system must establish deadline guar- 
antees based on these functions. 

Communication protocol processing. The 
NP’s main function is to offload communi- 
cation processing from the APs. When an 
AP needs to transmit a message, it provides 
the NP with information about the intended 
message recipient and the location of the 
message data. The NP’s function is then to 
execute the operations necessary to pass 
the message data through the various lay- 
ers of protocol down to the physical layer 
where it can be transmitted. In terms of the 
OS1 (Open Systems Interconnection) ref- 
erence model, the NP is responsible for 
functions from the transport layer down to 
the physical layer. 

At the transport level, the NP establishes 
connections dependent only on the source 
and destination nodes, without concern for 
the route to be used. It also handles end-to- 
end error detection and message retrans- 
mission. 

At the network level, the NP selects 
primary and alternate routes for establishing 
virtual circuits, forms data blocks and 
segments, and reassembles packets at the 
destination node. There are various 
switching methods, such as virtual cut- 
through switching, wormhole routing, store- 
and-forward packet switching, and circuit 
switching. Depending on traffic conditions 
in the network and the message type, the 
NP chooses an appropriate switching 
method for the message. The NP also de- 
tects and corrects errors at this level. 

At the data link level, the NP provides 
access to the network for the messages. It 
performs framing and synchronization and 
packet sequencing. In addition to error 
checking at the network level, the NP 
performs checksum error detection and 
correction at this level. 

Low-latency message transmission. Low 
communication latency is a key goal for 
NP design, and it influences task migration, 
task distribution, and load sharing. Laten- 
cy impacts the system from application 
tasks down to hardware components. Be- 
cause a significant portion of latency occurs 
in communication processing, achieving 
low-latency communications is intimately 
related to the implementation of commu- 
nication protocols. 

Support for time-constrained communi- 
cations. The timely delivery of messages 
requires a global time base across the differ- 
ent nodes in HARTS. The NP is equipped 
with special hardware for clock synchroni- 

zation and message time-stamping, provid- 
ing the basis for the implementation of 
various real-time communication algorithms. 

The NP also must support multiple inter- 
rupt levels to manage messages with dif- 
ferent priority levels. The hardware must 
provide sufficient interrupt levels to give 
urgent messages priority over less urgent 
ones. Urgent messages must also have 
priority in the use of scarce resources such 
as message buffers and bandwidths. The 
NP must implement buffer management 
policies that maximize buffer space utili- 
zation while guaranteeing buffer availability 
to the highest priority messages. Similarly, 
if noncritical messages hold other resources 
needed by more critical messages, the NP 
must provide for resource preemption by 
the critical messages. 

Another important NP function is mon- 
itoring the network’s state in terms of traffic 
load and link failures. The traffic load 
affects the NP’s ability to send real-time 
messages to other processors, while link 
failures affect system reliability. It is also 
possible for the NP to track its host’s (or 
hosts’) processing load and use the infor- 
mation for load balancing, load sharing, 
and task migration. 

N P  architecture. The NP architecture 
must support the functions just discussed. 
Although the HARTS NP architecture is 
similar to other communication architec- 
tures,6 it has new features to facilitate real- 
time fault-tolerant communication. At the 
same time, it attempts to cost-effectively 
minimize message latency by intelligent 
management of messages and buffer mem- 
ory. 

The NP has five major components: the 
interface manager unit (IMU), the packet 
controller (PC), the routing controller (RC), 
the buffer memory, and the application 
processor interface (API), interconnected 
as shown in Figure4. (The bus management 
unit and page management unit are auxil- 
iary components.) 

The API moves data between the NP and 
the host-node APs, while the RC moves 
data between the NP and the network. Within 
the NP, the IMU is the main processor that 
controls the movement and processing of 
message data. The buffer memory acts as a 
staging area for data to be transmitted to, or 
received from, the network, and for mes- 
sage data that must be temporarily stored at 
the node due to unavailability of outgoing 
links to the next node on the route to its 
destination. The RC implements the physi- 
cal layer protocols for accessing the net- 
work and routing data to the node’s neigh- 
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Figure 4. Block diagram of the network processor. 

hors. It also supports virtual cut-through 
and wormhole routing by moving a mes- 
sage from an incoming to an outgoing link 
without buffering the message at the NP. 
Finally, the PC performs such functions as 
checksumming, packet framing, and de- 
framing . 

Interfcice manager unit. T h e  IMU 
packetizes and depacketizes messages, 
schedules messages with different levels 
of priority, decides on switching methods 
based on message priority levels and net- 
work state, monitors the network state, 
performs error correction and message 
acknowledgment, and implements various 
real-time communication algorithms. Ease 
of software and hardware development and 
support, and availability, make a general- 
purpose RISC processor areasonable choice 
for the IMU. 

The IMU must provide multiple levels 
of interrupts and a short context switching 
time. To minimize message latency, the 
IMU must respond quickly to host requests 
for message transmission or  reception 
services. The register window schemes in 
a typical RISC processor allow fast context 
switches, thus meeting this requirement. 

The IMU has memory that can be used to 
store code and data. It also has access to the 
buffer memory, the staging area for mes- 
sages being moved between the host and 
the network. To avoid excessive copying, 
the buffer memory usually serves as the 

IMU’s data memory. Hence, the buffer 
memory is part of the IMU’s addreas space. 

Buj’er memory. The buffer memory 
consists of RAM for the buffers and a 
buffer management unit. It stores messag- 
es waiting to be transmitted to or from the 
current node, and it acts as a temporary 
storage area for messages being routed 
through the current node. The amount of 
memory needed, usually only a few 
megabytes, is determined by the usage 
patterns of the application tasks. 

The word size is 32 bits. With current 
DRAM access speeds of 70 nanoseconds, 
this gives a memory bandwidth as high as 
457 megabits per second. This bandwidth 
is sufficient for access by the RC, the API, 
and the IMU, and for refresh cycles. 
Therefore, expensive static RAM or mul- 
tiport memories are unnecessary. 

The buffer manager arbitrates between 
the IMU, the API, and the PC for access to 
the buffer. I t  also handles buffer memory 
refresh by periodically accessing rows in 
the DRAM. The access priorities given to 
these different sources can be static, dy- 
namic, or random, depending on the buffer 
management policy adopted. 

Another function of the buffer manager 
is to provide addresses of free buffers for 
storing incoming packet data and to de- 
termine the location of packets ready for 
forwarding to an outgoing link. In other 
words, the buffer manager keeps the list of 

free buffer pages and tracks the location of 
various messages stored in the buffer. In 
instances where a message or packet spans 
more than a single page, the buffer manager 
keeps track of linked pages. The buffer 
management policy for the free list and the 
buffer allocation policy can be implement- 
ed with a separate microcontroller or the 
IMU. 

Packet controller. The PC functions as a 
DMA (direct memory access) interface 
between the RC and the buffer memory, 
providing the IMU with inbound and out- 
bound channels on which to transmit 
messages from or receive messages into 
the buffer. It accesses the buffer memory 
through the arbitration block of the buffer 
manager and transmits and receives mes- 
sages without the IMU’s intervention. 

In transmitting and receiving packets, 
the PC performs the function of transpar- 
ently framing and deframing packets. It 
does this by adding start-of-packet and 
end-of-packet bytes to the data bytes and 
computing the checksum as a packet is 
being sent. On reception of packets at the 
destination NP, the PC removes the packet 
header and trailer and computes the 
checksum to detect transmission errors. 
The detection of errors is signaled to the 
IMU via an interrupt, to trigger an appro- 
priate recovery procedure. 

Another function of the PC is to time- 
stamp messages as they are received and 
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Figure 5. Block diagram of the routing controller. 

transmitted. As will be discussed later, 
hardware time-stamping support is crucial 
to clock synchronization. The time stamp 
is appended to the message before the 
checksum bytes. 

Routing controller. The RC is the inter- 
face between the NP and the network. It 
implements the physical layer and part of 
the data link layer. As Figure 5 shows, the 
RC consists of six receiver-transmitter pairs 
connected to the buffer manager and IMU 
through a time-sliced bus. The transmitters 
convert outgoing data into serial form for 
transmission on the outgoing serial line. 
Correspondingly, the receivers convert in- 
coming serial data into parallel form and 
forward the data to a transmitter for onward 
transmission, in the case of virtual cut- 
through or wormhole routing, or to the 
buffer manager, if the data is to be stored in 
the current node. A single half-duplex se- 
rial line connects each receiver to a trans- 
mitter in a neighboring node. 

A distinct feature of the RC is that the 
receivers can be microprogrammed to im- 
plement various routing algorithms used in 
HARTS. Various switching methods can 
also be programmed simultaneously into 
the RC and used selectively, on the basis of 

the type of messages being sent through the 
node and the network traffic at any particular 
time. This allows giving the highest 
switching and routing priority to critical 
messages, while optimizing the overall la- 
tency of other types of messages. 

A P  integlice. The interface between the 
NP and the host APs is a VME bus. Data 
copying between a host AP and the NP is 
done by the API, which is a DMA interface 
to the VME bus. There are two ways of 
designing this interface for data transfer: 
mapping the NP’s data memory into the 
host address space or copying data from 
the host’s data memory to the NP’s data 
memory. Mapping the NP into the address 
space of the host is may appear efficient, 
since i t  avoids the overhead of a system 
call. However, this mapping requires ded- 
icated memory management hardware and 
kernel support for mapped address spaces, 
and it also incurs the overhead of data 
access over the VME bus. Depending on 
the typical size of the messages, burst- 
mode DMA transfer from the host memory 
to the N P  memory may be more efficient. 

In the burst-mode DMA transfer, the 
host initiates data transfer to the NP by 
writing to an API control register a pointer 

to the data in the host, as in  a typical DMA 
sequence. The API then contends for the 
host VME bus and the NP buffer memory. 
When both resources are acquired, i t  cop- 
ies the message data in burst mode directly 
from the host to the NP buffers. Upon 
completion of the transfer, the IMU is 
notified, and communication processing 
can begin. A similar sequence of operations 
is performed in reverse order for message 
receipt. 

System evaluation 

W e  have evaluated HARTS. using 
modeling and simulation with a c ~ u a l  pa- 
rameters derived from our implementation. 
Specifically, we examined how different 
switching methods can be combined to 
yield low latency. First, we evaluated the 
performance of virtual cut-through 
switching by developing analytic models 
and a low-level, event-driven simulator. 
Then, we compared virtual cut-through 
switching and wormhole routing. 

Modeling and simulation of virtual 
cut-through. Since real-time applications 
normally require short response times, 
s imp le store- and- forward s w itching 
schemes are not suitable for HARTS. Hence, 
i t  supports fast switching methods such as 
virtual cut-through7 and wormhole rout- 

In virtual cut-through, packets arriv- 
ing at an intermediate node are forwarded 
to the next node in the route without buff- 
ering if a circuit can be established to the 
next node. 

Kermani and Kleinrock did a mean-value 
analysis of virtual cut-through performance 
for a general interconnection n e t ~ o r k . ~  
However, a mean-value analysis is inade- 
quate for real-time applications because 
worst-case communication delays often play 
an important role in real-time system de- 
sign. A mean-value analysis cannot, for 
example, answer these questions: What is 
the probability of a successful delivery given 
a delay? What is the delay bound such that 
the probability of a successful delivery is 
greater than a specified threshold’! 

Kermani and Kleinrock wanted to avoid 
any dependence on the interconnection 
topology in their analysis. As a result, they 
assumed that the probability of packet 
buffering at an intermediate node is a given 
parameter. Since a reasonable estimate of 
virtual cut-through performance cannot be 
obtained without an accurate estimate of 
buffering probability, their approach be- 
comes useful only if one can accurately 
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Figure 7. Latencies of wormhole routing and virtual cut- 
through switching for an H,. 

determine buffering probability for a given 
interconnection topology. This determina- 
tion i s  not a simple matter, because each 
node in a distributed system handles not 
only all packets generated at the node. but 
also all packets passing through the node 
(transit packets). Consequently, to evalu- 
ate the probability ofbuffering, we have to 

ount for the fraction of packets gener- 
ated at other nodes that pass through each 
given node. 

In contrast to Kermani and Kleinrock, 
we first derive the probability that a packet 
i s  destined for a particular node by char- 
acterizing the H-mesh topology. We use 
this probability of branching as a parame- 
ter in a queueing network to determine the 
throughput rate at each node in the mesh. 
Once the throughput rates are found, we 
can derive the probability that a packet can 
establish a cut-through at an intermediate 
node. From these parameters, we finally 
derive the probability distribution function 
of delivery times for a packet traversing a 
specified number of hops. 

Figure 6 plots the inverse of the proba- 
bility distribution function for a message 
traveling five hops. The three curves show 
the variation in the inverseofthe probability 
distribution function for different message- 
generation rates or network traffic. These 
curves are useful in determining design 
parameters such as delay bounds. For ex- 
ample, one can select a delay bound such 
that the probability of message delivery 

within that bound i s  greater than a speci- 
fied threshold. This would provide a prob- 
abilistic measure on the guarantees provided 
for real-time system operation. 

I n  contrast to the analytic model, a sim- 
ulator makes very few simplifying as- 
sumptions in  modeling the behaviol- of 
virtual cut-through in HARTS. The simu- 
lator accurately models the delivery ofeach 
message by emulating the timing of the 
routing hardware along the packet route at 
the microcode level. It also captures the 
internal bus access overheads that the 
packets experience if they are unable to cut 
through an intermediate node. The simu- 
lator's detailed timing and tracking of 
messages allows inveatigation of various 
message scheduling strategies, access 
protocols, and memory management strat- 
egies. The simulator can also usc any dis- 
crete distribution ofpacket lengthsfor which 
the user specifies the number. length, and 
probability ofthcdifferenttypes of message. 
The simulator has been used to check the 
validity of analytic models by evaluating 
the HARTS c o m in u ni c at ion subs y s te m 
under various realistic settings. 

Evaluation of hybrid routing schemes. 
The basic idea ofwormhole routing i s  that if 
a channel is not available, a message waits 
for i t .  Because the message i s  not removed 
from the network, i t  retains all resources 
from its source to the node at which i t  i s  
waiting. Wormhole routing can be thought 

of as incrementally establishing a route be- 
cause i t  does not surrender the resources i t  
has acquired along the path from source to 
destination. One benefit i s  that the message 
need not reacquire resources once i t  has 
acquired them. Deadlock-free algorithms 
based on wormhole routing have been pro- 
posed by Dally and SeitL.X 

Virtual cut-through differs from worm- 
hole routing in that it stores the message at 
the node where i t  i s  blocked and releases 
the resources acquired on the path from the 
source to the blocking node once the 
message has been stored. 

The advantage ofboth wormhole routing 
and circuit switching i s  that they guarantee 
delivery once a source-to-destination con- 
nection has been established. Virtual cut- 
through, however, can lower latency when 
the hogging of links due to wormhole routing 
and circuit switching worsens the conges- 
tion in the network. 

To show the difference i n  performance 
ofwormhole routing and virtual cut-through 
switching, we plotted their message laten- 
cies in Figure 7. For low traffic loads. 
wormhole routing takes less timeon average 
to deliver messages; the opposite i s  true for 
high loads. The traffic load break-even 
point decreases as mesh size increases. 
bccause the average message distance in- 
creases with mesh size. Which routing 
method i s  more advantageous depends on 
the traffic load and average message dis- 
tance. The routing controller described 
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earlier has the flexibility to dynamically 
select the better of the two methods. 

Fault-tolerant routing 

One attractive feature of point-to-point 
networks is their ability to withstand link 
and node failures. Exploiting this feature 
requires developing algorithms and pro- 
viding mechanisms that preserve network 
communication in the presence of compo- 
nent failures. In this context, one must 
address correct routing of messages when 
one or more mesh components fail. This is 
of particular importance when the mesh is 
large and component failures thus are more 
likely, and when the system is expected to 
operate for long periods without mainte- 
nance. The ideal fault-tolerant routing al- 
gorithm would route messages by the 
shortest fault-free path, would require no 
extra hardware, would not cause unneces- 
sary delays at intermediate nodes, and would 
quickly determine whether a destination 
was unreachable. The algorithm presented 
by Olson and Shin'comes close to meeting 
these criteria and requires each node to 
know only the condition (faulty or non- 
faulty) of its own links. 

Each node of an H-mesh can be seen as 
the convergence point of three axes, and 
the shortest path between two nodes can be 
expressed as offsets along no more than 
two of the three axes. Since each of the six 
links represents movement along one of 
these three axes, either in the positive or 
negative direction, fault-free routing can 
be accomplished by forwarding messages 
along links that will bring them toward 
zero. Our idea is to not interfere with this 
process until the message finds its path 
blocked. A message is routed by the fault- 
free algorithm until it reaches a node where 
all the links through which the message 
would ordinarily be forwarded (called the 
optimal links) are faulty. At that point the 
fault-tolerant algorithm intervenes. 

At the point of message detouring, rout- 
ing control is split between the fault-free 
algorithm and the fault-tolerant algorithm. 
A single bit in the message header deter- 
mines which algorithm is currently making 
routing decisions. If this bit is clear, the 
message is in free mode, and the fault-free 
algorithm does the routing. Otherwise, the 
message is in detour mode, and the fault- 
tolerant algorithm does the routing. The 
fault-tolerant algorithm remains in control 
until it believes it has bypassed the faults 
that blocked the message path. 

The  fault-tolerant algorithm can be 

viewed as a simple wall-following algo- 
rithm. The message travels around the edge 
of acluster of faults until it reaches the other 
side. Implementation is simple. When the 
optimal links are found to be faulty. the 
message is placed in detour mode, and the 
NP looks for nonfaulty links, starting with 
the link immediately counterclockwise of 
the optimal links and proceeding counter- 
clockwise. The message is sent out on the 
first nonfaulty link found. If a message 
arrives at a node already in detour mode, i t  
is sent out on the first nonfaulty link coun- 
terclockwise of the link by which it arrived. 
While in detour mode, the offsets to the 
destination are continually recalculated, and 
the message leaves detour mode when the 
distance to the destination is less than i t  was 
when the message entered detour mode. 

As an example, consider the situation in 
Figure 8. A message has arrived at node 18, 
with node I as its eventual destination. At 
18 the only optimal link is the one to node 0, 
which has failed; the message is placed in 
detour mode and sent to node 7. At 7 the 
fault-tolerant algorithm first tries to send 
the message to node 0, then to node 8, but 
finally must send it to node 15. At 15 the 
message is immediately forwarded to node 
8. At 8 the message returns to free mode as 
node 8 is closer to node 1 than node 18 is. 
The message then completes routing nor- 
mally. 

An unreachable destination is revealed 
by the presence of a cycle. If the fault- 
tolerant algorithm cannot get the message to 
the destination, the message will cycle. 
Unfortunately, for certain classes of fault 
configurations, called incisions, the mes- 
sage will cycle even though the destination 
is reachable. Simulation results show that 
this type of fault is rare, occurring only with 
large numbers of faults. It can be dealt with 
at a cost of increased complexity in the 
routing algorithm. Strategies for detecting 
and routing in the presence of incisions are 
outlined by Olson and Shin.l They show 
that the H-mesh is extremely robust: If 50 
percent of the links in an H 3  are faulty, a 
randomly chosen destination is reachable 
with probability greater than 0.95. 

Clock synchronization 

Widely recognized as one ofthe important 
requirements of a distributed real-time 
system, a global time base simplifies the 
solutions to design problems such as 
checkpointing, interprocess communica- 
tion, and resource allocation.' 

Central to the establishment of a global 

time base is the synchronization of the local 
clocks on different nodes in the system. 
Both hardware and software solutions to 
this problem have been proposed. The soft- 
ware solutions are flexible and economical 
but require the exchange of additional 
messages solely for synchronization." The 
overhead imposed by these additional mes- 
sages could be substantial, especially if a 
tight synchronization between processes is 
desired. Hardware solutions, on the other 
hand, require additional hardware at each 
node of the distributed system. They can 
achieve very tight synchronization between 
processes, with very little time overhead, 
but they require a separate network of clocks 
that is usually different from the network 
between the nodes. 

For HARTS, we use a software solution 
that requires minimal hardware support at 
each node." It is based on the interactive 
convergence algorithm given by Lamport 
and Melliar-Smith."' (Note, however, that 
any other software clock synchronization 
algorithm can be used for our scheme.) The 
algorithm assumes that the clocks drift 
apart only by a bounded amount during 
each resynchronization interval. R, during 
which each process reads the value of ev- 
ery process's clock. If the value o f a  clock 
read differs from its own clock by an amount 
greater than a threshold, the process re- 
places that value with its own clock value. 
The process then computes the average of 
all such values and sets its own clock to this 
average. Lamport and Melliar-Smith show 
that this algorithm can achieve synchroni- 
zation and requires 3m+1 processors to 
tolerate m faults. 

Three major problems arise when this 
algorithm is used in a distributed system 
with a point-to-point interconnection net- 
work. First, it is difficult for a process to 
read the clock of a process to which it is not 
directly connected. Second, the message 
received by a process may be corrupted by 
a faulty intermediate process. Third, a 
queueing delay for the clock messages may 
cause a substantial difference between the 
real times at which a clock value is sent and 
received. Therefore, subtracting the clock 
value in the received message from the 
current clock value will not reflect the 
actual skew between the clocks of the 
sending and receiving processes. This 
problem is aggravated when the clock mes- 
sage must pass through multiple interme- 
diate nodes. 

Ramanathan, Kandlur, and Shin" solve 
the first problem by letting each process 
broadcast its clock to all processes at a 
specified time, with respect to its own local 
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Figure 8. Example of fault-tolerant routing. 

Figure 9. I/O controller placement. 

clock, in the resynchroni7ation interval. 
The second problem is eliminated by a 
broadcast algorithm that delivers multiple 
copies of the message to all processes 
through node-disjoint paths. For the third 
problem, i t  is not the size of the delay, but 
the fact that it is not known, that affects the 
clock skew. The message delivery time for 
clock messages is obtained by requiring 
each intermediate process to append to the 
message the delay incurred at that process. 

The accurate computation of this delay 
needs some hardware support. Thcrc is 
some uncertainty in determining time of 
receipt because of a variable delay be- 
tween the processor’s receiving notifica- 
tion of arrival and actually “seeing” the 
mcssage. Also, to compute the time delay 
within the node, the processor must have 
control on the exact time at which a mes- 
sage is transmitted on a link. These poten- 
tial errors i n  estimating the time delay limit 
the accuracy with which we can compute 
the clock skew. This in turn affects the 
clock skew achievable with the synchroni- 
zation. 

To  alleviate this problem, we use a hard- 
ware time-stamping mechanism at the link 
level for clock messages (see earlier sec- 
tion on the packet controller). When a link 
receiver detects a clock message, it ap- 
pends areceive time stamp to the message. 
Similarly, when a clock message is trans- 
mitted, the link transmitter appends a 
transmit time stamp. At an intermediate 
node, the receive and transmit time stamps 
use the same local clock, so their differ- 
ence gives a very accurate estimate of mes- 
sage time in that node. By computing the 
difference at intermediate nodes, we can 
keep the total number of time stamps down 

to five and prevent message length from 
growing as network size increases. 

For any synchronization algorithm, R is 
a function of the maximum clock skew 
desired. R decreases with the desired max- 
imum skew and becomes negative for small 
values. From a practical viewpoint, over- 
heads for the synchronization algorithm 
increase as R decreases, so i t  is desirable to 
have R as large as possible. This function 
effectively detcrmines the type of skew 
that can be achieved for the system with a 
particular synchronization algorithm. The 
derivation of this function for the synchro- 
nization algorithm described here is given 
by Ramanathan, Kandlur, and Shin.” 
This algorithrri can achieve moderately 
tight synchronimtion. For example, in an 
H,, a maximum clock skew of 100 micro- 
seconds can be achieved using R=6.23 
seconds. 

I/O architecture 

Most work on distributed computing 
systems has centered on interconnection 
networks, programming and communica- 
tions paradigms, and algorithms. Howev- 
er, little has been done specifically about 
the 1/0 subsystem in a real-time environ- 
ment, despite its obvious importance. 
Clearly, a real-time computer can process 
data no faster than it can acquire the data 
from sensors and operators. Note that I/O 
devices in areal-time environment are sen- 
sors, actuators, and displays, whereas they 
are magnetic disks and tapes for general- 
purpose systems. Due to the distinct timing 
and reliability requirements of real-time 
applications, solutions suited to general- 

purpose systems are not usually applicable 
to the real-time environment. 

To  avoid the accessibility problems of 
nondistributed I/O, U0 devices need to be 
distributed and managed by relativcly sim- 
ple, and reliable, controllers. Morcover, to 
improve both acccssibility (and thus reli- 
ability) and performance, there must be 
multiple access paths (called multiaccessi- 
bility or multiownership) to these I/O de- 
vices. 

I/O interconnection architecture. U0 
devices are clustered, and a controller 
manages access to the devices of each 
cluster. The I/O controller (IOC) can be 
simple since HARTS uses simple data links 
to the computation nodes. The IOC need 
only handle sending and receiving simple 
messages via a set of full-duplex links, not 
providing virtual cut-through capabilities 
and other features of a full-blown NP. To 
keep the IOCs and the 1/0 links down to a 
reasonable number, the number of IOCs is 
restricted to no greater than the total num- 
ber (p) of computation nodes in the mesh. 
This has certain benefits for one of the 
management protocols explained later. 

Having established the potential number 
of U0 nodes, we need to decide how many 
nodes each IOC will be connected to. If the 
maximum number (p) of IOCs are assumed 
to exist in an H 3 ,  for example, then Figure 
9 shows a logical connection scheme.’? 
Each IOC can be thought of as being in the 
center of one of the upward-pointing trian- 
gles in  this figure; the IOC is connected to 
each of the nodes that make up the triangle, 
called its left, right, and upper partners. 
This gives three possible avenues of access 
to each IOC. Note that if the maximum 
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Figure 10. Unreachable static owner. 

number of IOCs are used, the number of 
I/O links required is equal to the number of 
standard communication links, or 9e2-9e+3 
for an He.  One could similarly place IOCs 
at the (logical) center of the downward- 
pointing triangles as well, allowing for up 
to 2p IOCs, but this would double the 
maximum possible number of I/O links 
required and disturb certain homogeneous 
effects of limiting the number of IOCs to 
the number of nodes. 

Management protocols. The desire for 
simple I/O controllers presents a problem 
in HARTS, because the natural tendency 
would be to assign sensors and actuators, 
both relatively complex and expensive de- 
vices, to individual nodes or NPs and use 
the given interprocess communication (IPC) 
channels in HARTS to handle the I/O traf- 
fic. We can still use the given IPC channels, 
but instead of permanently tying down a 
given I/O device to one node, we allow 
several nodes to communicate with each 
I/O device. There are two fundamentally 
different protocols for managing this com- 
munication. 

The first management protocol, the stat- 
ic protocol, assigns one node to each IOC 
as its owner, but with the important provi- 
sion that the owner can be changed if the 
original owner becomes faulty. In this pro- 
tocol, one of the IOC links is defined as the 

active link, and the rest remain inactive as 
spares. The second, dynamic protocol, al- 
lows the IOC owner to be defined dynam- 
ically, providing greater accessibility and 
requiring fewer hops on average to reach 
the IOC owner. In this protocol, the IOC 
decides which link will be active at any 
given time. 

Figure 10 is an example in which a 
process in node I3 wants service from IOC 
18, but since node 18 is the owner under the 
static protocol and is not reachable from 
13, it cannot obtain service. If node 0 were 
the owner instead of 18 - which is possi- 
ble under the dynamic protocol - i t  could 
be serviced. 

In addition to making IOCs accessible 
where static ownership would make them 
inaccessible, the dynamic protocol takes 
into account the fact that one partner may 
be closer to a node requesting service than 
the other partner. Since this protocol chooses 
the closest of the partners that respond, the 
I/O traffic may have fewer hops to travel. 
However, its disadvantages are that i t  is 
more difficult to implement and involves 
arbitration overhead after servicing each 
I/O request. It may also be undesirable 
because there is no single node through 
which all I/O requests will travel and which 
could perform some I/O management tasks. 
Shin and Dykema give a comparative 
analysis of these two pro to col^.'^ 

11 the high-level architectural is- 
sues of HARTS have been re- 
solved, and the lower-level com- 

ponents are being designed or implement- 
ed. The routing controller, a key compo- 
nent for fast switching, has been fabricat- 
ed, and its testing is almost complete. The 
packet controller, the second generation of 
the routing controller, and other NP com- 
ponents are currently being designed and 
simulated. In parallel with the architectur- 
al work, we are also designing and imple- 
menting a software communication sub- 
system for HARTS. The primary objectives 
of this subsystem are to deliver messages 
within certain deadline constraints, sup- 
port mechanisms for group communica- 
tion and reliable broadcasting, offer ser- 
vices such as maintenance of a global time 
base, and monitor system behavior. W 
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