
HARTS:
A Distributed

Real-Time Architecture

Kang G. Shin, University of Michigan

he growing importance of real-
time computing in numerous ap-
plications, such as aerospace and

defense systems and industrial automation
and control, poses problems for computer
architectures, operating systems, fault tol-
erance, and evaluation tools. The interplay
of three major components characterizes
real-time systems. First, time is the most
precious resource to manage. Tasks must
be assigned and scheduled to be completed
before their deadlines. Messages must be
sent and received in a timely manner be-
tween the interacting real-time tasks. Sec-
ond, reliability is crucial, since failure of a
real-time system could cause an economic
disaster or the loss of human lives. Third,
the environment in which a computer oper-
ates is an active component of any real-
time system. For example, in a “drive by
wire” transportation system, in which im-
portant functions such as emission control
and braking are automated with comput-
ers, it would be meaningless to consider
the on-board computers without consider-
ing the automobile itself.

Because their multiplicity of processors
and internode routes gives them the poten-
tial for high performance and high reli-
ability, distributed systems with point-to-
point interconnection networks are natural
candidate architectures for time-critical
applications. This article focuses on the

Consisting of shared-
memory multiprocessor

nodes interconnected
by a wrapped

hexagonal mesh,
HARTS is designed to

meet the special
communications and
U0 needs of time-

critical applications.

design, implementation, and evaluation of
a distributed real-time architecture called
HARTS (hexagonal architecture for real-
time systems), with emphasis on its sup-
port of time-constrained, fault-tolerant
communications and I/O requirements.
Currently under development at the Uni-
versity of Michigan’s Real-Time Com-
puting Laboratory (RTCL), HARTS con-
sists of shared-memory multiprocessor
nodes, interconnected via a wrapped hex-

agonal mesh. This architecture is intended
to meet three main requirements of real-
time computing: high performance, high
reliability, and extensive 1/0.*

High-level architecture

The primary goal of HARTS is the study
of low-level architectural issues, such as
message buffering, instruction set design,
scheduling, and routing, in a setting that
gives designers internal access to many
system parameters. T o meet this goal, my
colleagues at RTCL and I used a hybrid
system of commercially available proces-
sors and custom-designed interfaces. Sev-
eral processor cards are grouped to form a
cluster of application processors (APs).
Each cluster serves as a multiprocessor
node and is interconnected by custom in-
terfaces to form a distributed system. The
presence of both multiprocessor and dis-
tributed aspects permits investigating the
behavior of real-time tasks under either
architectures. In parallel with the hardware

*Although predictability of task execution behavior is
essential for any real-time system design to guarantee
on-time completion of tasks, it is not an architectural
issue but an operating system issue. Real-time systems
architects must provide hardware facilitie5 on which
one can readily build an operating system that guarantees
deadlines.

May 1991 25

14 15 15 16 16 17

Figure 1. Hexagonal mesh of size 3.

development, our work on a real-time op-
erating system called HARTOS’ influences
the specification, architecture, and imple-
mentation of the custom-designed HARTS
components.

Node architecture. Each node in the
testbed consists of up to three APs, a sys-
tem controller, a shared memory segment,
an Ethernet processor, and the network
processor (NP), a custom-designed inter-
face to the interconnection network.

The APs are commercially available
VME bus multiprocessing engines based
on Motorola’s MC68020. Each processor
card has four major sections: a CPU core,
a VME bus interface, a memory system,
and a VMX bus interface. The CPU core
consists of a %bit 16-MHz MC68020
CPU, an MC68881 floating-point proces-
sor, and an MC68851 paged memory
management unit. The memory subsystem
provides four megabytes of high-perfor-
mance dual-ported dynamic RAM, with an
additional 256 bytes of special mailbox
hardware. This mailbox feature facilitates
efficient interprocessor communication by
allowing a remote processor to write a
semaphore that automatically interrupts the
local processor.

The Ethernet processor card supports
several functions for the nodes, although it
is not a permanent HARTS component.
First, i t provides a secondary means of
distributing code and data. This is espe-
cially important during the early stages of
development of the network interfaces.
Second, the high-level protocols that man-
age reliable packet handling and provide
internode communication can be experi-
mentally tested on the Ethernet processor.
Third, the Ethernet processor is used to
collect experimental data by monitoring
the APs and network interfaces with min-
imal interference.

Interconnection network. A distribut-
ed system’s interconnection network often
connects thousands of homogeneously
replicated processor-memory pairs, which
are called processing nodes (PNs). All
synchronization and communication be-
tween PNs for program execution are via
message passing. The homogeneity of PNs
and the interconnection network is very
important because it allows cost and per-
formance benefits from the inexpensive
replication of multiprocessor components?
It is preferable that each PN in the multi-
processor have fixed connectivity so that

standard VLSI chips and communication
software can be used. Also, the intercon-
nection network should contain a reason-
ably high degree of connectivity so that
alternative routes can be made available to
detour faulty nodes and links. More im-
portant, the interconnection network must
facilitate efficient routing and broadcast-
ing to achieve high performance in task
execution. For structural flexibility, a sys-
tem must also possess fine scalability,
measured in terms of the number of PNs
necessary to increase the network’s di-
mension by one.

T o meet these requirements, we consid-
ered several topologies, including hyper-
cubes, square meshes, 3D tori, hexagonal
meshes, and octal meshes. Of these, the
hexagonal (H) mesh best meets the re-
quirements of fixed connectivity and pla-
nar architecture for easy VLSI and com-
munications implementation, f ine
scalability, reasonably high fault toler-
ance, and ease of construction. (Detailed
comparisons of the H-mesh to other to-
pologies are given by Stevens2 and by Chen,
Shin, and Kandlur.’ The robustness of an
H-mesh to link and node failures is shown
by Olson and Shin.4) Hence, we chose a C-
wrapped (“C” stands for continuous) H-
mesh topology to interconnect HARTS
nodes.

H-mesh size (the term “dimension” was
used in an earlier article’) is defined as the
number of nodes on its peripheral edge.
One can visualize what is happening in the
C-wrapping by first partitioning the nodes
of a nonwrapped H-mesh of size e, denoted
by He, into rows in three different directions.
The mesh can be viewed as composed of
2e-1 horizontal rows (called the do direc-
tion), 2e-1 rows in the 60-degree clockwise
direction (called the d, direction), or 2e-1
rows in the 120-degree clockwise direction
(called the d2 direction). In each of these
partitions we label from the top the rows R,
through RZp-?. The C-wrapping is then
performed by connecting the last node in R,
to the first node in R,i+c,+112p~l for each i in
each of the three partitions, where [a Ib
denotes a mod b. Figure 1 illustrates an
example of a C-wrapped H 3 in which the
links on the periphery (represented by
dashed-line arrows) are connected to the
nodes as indicated by their labels.

The C-wrapped H-mesh is isomorphic
to the interconnection topology presented
by Stevens.2 However, the formalism just
described allows uniform treatment of
message routing between all pairs of nodes
and does not require any special treatment
of the wrap lines, as was necessary in

26 COMPUTER

Stevens’ topology when the axial offset
was between c and 2(e-I).

A C-type wrapping has several salient
properties, as shown by Chen, Shin, and
Kandlur.’ First, this wrapping results in a
hoiiiogeneous network. Consequently, any
node can view itself as the center of the
mesh (labeled as node Oin Figure I). Second,
the diameter of an H , is c-I. Third, there is
a simple, transparent addressing scheme
that uses only one coordinate ~ instead ot
three as in Stevens’ topology - to unique-
ly identify any node in an H-mesh. An
example of this addressing for an H4 i \
shown in Figure 2a. where all edges are
omitted for clarity. On the basis of this
addressing scheme, one can determine the
shortest paths between any two nodes with
a O(1) algorithm; that is, the complexity is
constant and independent of system s i x .
Note that at each node on a shortest path
there are at most two different neighbors of
the node to which the shortest path runs.
Fourth, with this addressing scheme one
can devise a simple routing algorithm that
can be efficiently implernenied in hardware,
as shown by Dolter, Ramaiiathan, and Shin.’

I o send a message. the source calculates
the shortest paths to the destination and
encodes this routing inforination into three
integers denoted by)no,)ti1, and) t i 2 , which
represent the number of hops froiii the
source to the destination alorig thetl,,, cl , , and
d2 directions, respectively. Before sending
the packet to an appropriate neighbor, in-
termediate nodes update these valucs to
indicate the remaining hops in each direction
to the destination. Hence, mil = nil = ?ti2 = 0
indicates that the packet has reached its
dest i nat io 11.

Suppose node I 1 sends a niessage to
node 5 in the H4 of Figure 2. The original
H , is given in Figure 2a and H4(I 1) - node
I 1 is placed at the center of the H4- is in
Figure 2b. From the Chen-Shin-Kandlur
routing algorithm, we get m,, = 0, nil = -2,
and =- I . Note that the route from node
1 1 to node 5 i n Figure 2b is isomorphic to
that from node 0 to node 3 I i n Figure 2a.
This is not a coincidence but rather a coli-
sequence of t h e homogeneity of H,.

Applications i n various doiiiains require
an efficient method for a node to broadcast
a message to all the other nodes i n an H-
mesh. Due to interconnection costs, it is
very conimon to use point-to-point comniu-
nications for broadcasting. Without loss of
generality, one can assume the center node
is the broadcast source. The set of nodes that
has the same distance from the source node
is called a ring. The main idea of this algo-
rithm is to broadcast a message. ring by

_ _

ring, toward the periphery of an H-mesh.
The algorithm consists oftwo phases. In the
first phase, which takes three steps, the
message is transmitted to the origin’s six
nearest neighbors. Note that there are six
corner nodes in each ring. In the second
phase. which takcs + I steps. the six corner

nodes of each ring send the message to two
neighboring nodes, while all other nodes
propagate the message to the next node in
the same direction as the previous trans-
mission. Figure 3 i \ an example of H4
broadcasting. The numcric labels denote
the communication step numbers

30 31 32 33

24 25 26 27 28 29 35 36 0 0 0 0 6 6 6
25 26 27 28 29

0 0 0 0 0 0
0 0 0 0 0

(a) (b)

Figure 2. Example of routing in an H,: (a) original H,; (h) H, with node 11
placed at the center, H, (11).

0 0 0 0
Figure 3. Broadcasting in an H,.

May 1991 2 1

Low-level architecture

We have developed special hardware
support for time-constrained, fault-toler-
ant communications in HARTS, based on
the addressing, routing, and broadcasting
methods just described. Below, we dis-
cuss the need for extra hardware for com-
munication processing, the main functional
requirements of the NP, and a system-
level architecture that realizes these
functions.

Why communication hardware? Each
node in a distributed system must be re-
sponsible for packet processing, routing,
and error and flow control. Real-time ap-
plications impose additional functions re-
lated to meeting deadlines, time manage-
ment, and housekeeping.

Packet processing can consume a sub-
stantial number of processor cycles and, in
the absence of communication hardware,
can deprive the host (node) of much need-
ed computation power. In particular, the
host is saddled with breaking a message
into packets for transmission, constructing
packet headers and trailers, framing pack-
ets, and calculating checksums. On recep-
tion of packets, the receiving host has to
depacketize the message, strip headers and
trailers, and compute the checksum for
error checking. Each time apacket is trans-
mitted or received, the host must be inter-
rupted and context-switched to routines
that perform these chores. This introduces
substantial overhead because contempo-
rary off-the-shelf processors are optimized
to compute with register and cache data,
which are lost in a context switch. For
time-constrained, fault-tolerant communi-
cations, the host AP also has to handle
several other functions that introduce sig-
nificant computational overhead. These
include message scheduling, route selec-
tion for reliable and timely delivery of
messages, and clock synchronization.

All these functions divert significant
computing power from time-critical appli-
cations. It is therefore necessary to offload
such processing from the AP to special
communication-processing hardware -
that is. the NP.

Requirements of the network proces-
sor. Before designing and building the NP,
we identified required functions, which
must include efficient support for message
processing, low-latency message trans-
mission, and support for time-constrained,
fault-tolerant communications. The oper-

ating system must establish deadline guar-
antees based on these functions.

Communication protocol processing. The
NP’s main function is to offload communi-
cation processing from the APs. When an
AP needs to transmit a message, it provides
the NP with information about the intended
message recipient and the location of the
message data. The NP’s function is then to
execute the operations necessary to pass
the message data through the various lay-
ers of protocol down to the physical layer
where it can be transmitted. In terms of the
OS1 (Open Systems Interconnection) ref-
erence model, the NP is responsible for
functions from the transport layer down to
the physical layer.

At the transport level, the NP establishes
connections dependent only on the source
and destination nodes, without concern for
the route to be used. It also handles end-to-
end error detection and message retrans-
mission.

At the network level, the NP selects
primary and alternate routes for establishing
virtual circuits, forms data blocks and
segments, and reassembles packets at the
destination node. There are various
switching methods, such as virtual cut-
through switching, wormhole routing, store-
and-forward packet switching, and circuit
switching. Depending on traffic conditions
in the network and the message type, the
NP chooses an appropriate switching
method for the message. The NP also de-
tects and corrects errors at this level.

At the data link level, the NP provides
access to the network for the messages. It
performs framing and synchronization and
packet sequencing. In addition to error
checking at the network level, the NP
performs checksum error detection and
correction at this level.

Low-latency message transmission. Low
communication latency is a key goal for
NP design, and it influences task migration,
task distribution, and load sharing. Laten-
cy impacts the system from application
tasks down to hardware components. Be-
cause a significant portion of latency occurs
in communication processing, achieving
low-latency communications is intimately
related to the implementation of commu-
nication protocols.

Support for time-constrained communi-
cations. The timely delivery of messages
requires a global time base across the differ-
ent nodes in HARTS. The NP is equipped
with special hardware for clock synchroni-

zation and message time-stamping, provid-
ing the basis for the implementation of
various real-time communication algorithms.

The NP also must support multiple inter-
rupt levels to manage messages with dif-
ferent priority levels. The hardware must
provide sufficient interrupt levels to give
urgent messages priority over less urgent
ones. Urgent messages must also have
priority in the use of scarce resources such
as message buffers and bandwidths. The
NP must implement buffer management
policies that maximize buffer space utili-
zation while guaranteeing buffer availability
to the highest priority messages. Similarly,
if noncritical messages hold other resources
needed by more critical messages, the NP
must provide for resource preemption by
the critical messages.

Another important NP function is mon-
itoring the network’s state in terms of traffic
load and link failures. The traffic load
affects the NP’s ability to send real-time
messages to other processors, while link
failures affect system reliability. It is also
possible for the NP to track its host’s (or
hosts’) processing load and use the infor-
mation for load balancing, load sharing,
and task migration.

N P architecture. The NP architecture
must support the functions just discussed.
Although the HARTS NP architecture is
similar to other communication architec-
tures,6 it has new features to facilitate real-
time fault-tolerant communication. At the
same time, it attempts to cost-effectively
minimize message latency by intelligent
management of messages and buffer mem-
ory.

The NP has five major components: the
interface manager unit (IMU), the packet
controller (PC), the routing controller (RC),
the buffer memory, and the application
processor interface (API), interconnected
as shown in Figure4. (The bus management
unit and page management unit are auxil-
iary components.)

The API moves data between the NP and
the host-node APs, while the RC moves
data between the NP and the network. Within
the NP, the IMU is the main processor that
controls the movement and processing of
message data. The buffer memory acts as a
staging area for data to be transmitted to, or
received from, the network, and for mes-
sage data that must be temporarily stored at
the node due to unavailability of outgoing
links to the next node on the route to its
destination. The RC implements the physi-
cal layer protocols for accessing the net-
work and routing data to the node’s neigh-

28 COMPUTER

Network processor

Application
processor
interface

(API)

1 I 1 I

management
unit

Page
management

unit

(PMW

Packet
controller

Buffer memory

4 Mbyte - 16 Mbyte

70-ns DRAM

I 1 I

Interface
management

unit

(IMU)

Time-
sliced 1 bus

1

L
Routing

controller

Figure 4. Block diagram of the network processor.

hors. It also supports virtual cut-through
and wormhole routing by moving a mes-
sage from an incoming to an outgoing link
without buffering the message at the NP.
Finally, the PC performs such functions as
checksumming, packet framing, and de-
framing .

Interfcice manager unit. T h e IMU
packetizes and depacketizes messages,
schedules messages with different levels
of priority, decides on switching methods
based on message priority levels and net-
work state, monitors the network state,
performs error correction and message
acknowledgment, and implements various
real-time communication algorithms. Ease
of software and hardware development and
support, and availability, make a general-
purpose RISC processor areasonable choice
for the IMU.

The IMU must provide multiple levels
of interrupts and a short context switching
time. To minimize message latency, the
IMU must respond quickly to host requests
for message transmission or reception
services. The register window schemes in
a typical RISC processor allow fast context
switches, thus meeting this requirement.

The IMU has memory that can be used to
store code and data. It also has access to the
buffer memory, the staging area for mes-
sages being moved between the host and
the network. To avoid excessive copying,
the buffer memory usually serves as the

IMU’s data memory. Hence, the buffer
memory is part of the IMU’s addreas space.

Buj’er memory. The buffer memory
consists of RAM for the buffers and a
buffer management unit. It stores messag-
es waiting to be transmitted to or from the
current node, and it acts as a temporary
storage area for messages being routed
through the current node. The amount of
memory needed, usually only a few
megabytes, is determined by the usage
patterns of the application tasks.

The word size is 32 bits. With current
DRAM access speeds of 70 nanoseconds,
this gives a memory bandwidth as high as
457 megabits per second. This bandwidth
is sufficient for access by the RC, the API,
and the IMU, and for refresh cycles.
Therefore, expensive static RAM or mul-
tiport memories are unnecessary.

The buffer manager arbitrates between
the IMU, the API, and the PC for access to
the buffer. I t also handles buffer memory
refresh by periodically accessing rows in
the DRAM. The access priorities given to
these different sources can be static, dy-
namic, or random, depending on the buffer
management policy adopted.

Another function of the buffer manager
is to provide addresses of free buffers for
storing incoming packet data and to de-
termine the location of packets ready for
forwarding to an outgoing link. In other
words, the buffer manager keeps the list of

free buffer pages and tracks the location of
various messages stored in the buffer. In
instances where a message or packet spans
more than a single page, the buffer manager
keeps track of linked pages. The buffer
management policy for the free list and the
buffer allocation policy can be implement-
ed with a separate microcontroller or the
IMU.

Packet controller. The PC functions as a
DMA (direct memory access) interface
between the RC and the buffer memory,
providing the IMU with inbound and out-
bound channels on which to transmit
messages from or receive messages into
the buffer. It accesses the buffer memory
through the arbitration block of the buffer
manager and transmits and receives mes-
sages without the IMU’s intervention.

In transmitting and receiving packets,
the PC performs the function of transpar-
ently framing and deframing packets. It
does this by adding start-of-packet and
end-of-packet bytes to the data bytes and
computing the checksum as a packet is
being sent. On reception of packets at the
destination NP, the PC removes the packet
header and trailer and computes the
checksum to detect transmission errors.
The detection of errors is signaled to the
IMU via an interrupt, to trigger an appro-
priate recovery procedure.

Another function of the PC is to time-
stamp messages as they are received and

May 1991 29

,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L -

Transmitter 1

Receiver 3 Receiver 0

Time-sliced bus 4

Transmitter 3 Transmitter 0

Receiver 4 U Receiver 5

Packet controller

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I -

Figure 5. Block diagram of the routing controller.

transmitted. As will be discussed later,
hardware time-stamping support is crucial
to clock synchronization. The time stamp
is appended to the message before the
checksum bytes.

Routing controller. The RC is the inter-
face between the NP and the network. It
implements the physical layer and part of
the data link layer. As Figure 5 shows, the
RC consists of six receiver-transmitter pairs
connected to the buffer manager and IMU
through a time-sliced bus. The transmitters
convert outgoing data into serial form for
transmission on the outgoing serial line.
Correspondingly, the receivers convert in-
coming serial data into parallel form and
forward the data to a transmitter for onward
transmission, in the case of virtual cut-
through or wormhole routing, or to the
buffer manager, if the data is to be stored in
the current node. A single half-duplex se-
rial line connects each receiver to a trans-
mitter in a neighboring node.

A distinct feature of the RC is that the
receivers can be microprogrammed to im-
plement various routing algorithms used in
HARTS. Various switching methods can
also be programmed simultaneously into
the RC and used selectively, on the basis of

the type of messages being sent through the
node and the network traffic at any particular
time. This allows giving the highest
switching and routing priority to critical
messages, while optimizing the overall la-
tency of other types of messages.

A P integlice. The interface between the
NP and the host APs is a VME bus. Data
copying between a host AP and the NP is
done by the API, which is a DMA interface
to the VME bus. There are two ways of
designing this interface for data transfer:
mapping the NP’s data memory into the
host address space or copying data from
the host’s data memory to the NP’s data
memory. Mapping the NP into the address
space of the host is may appear efficient,
since i t avoids the overhead of a system
call. However, this mapping requires ded-
icated memory management hardware and
kernel support for mapped address spaces,
and it also incurs the overhead of data
access over the VME bus. Depending on
the typical size of the messages, burst-
mode DMA transfer from the host memory
to the N P memory may be more efficient.

In the burst-mode DMA transfer, the
host initiates data transfer to the NP by
writing to an API control register a pointer

to the data in the host, as in a typical DMA
sequence. The API then contends for the
host VME bus and the NP buffer memory.
When both resources are acquired, i t cop-
ies the message data in burst mode directly
from the host to the NP buffers. Upon
completion of the transfer, the IMU is
notified, and communication processing
can begin. A similar sequence of operations
is performed in reverse order for message
receipt.

System evaluation

W e have evaluated HARTS. using
modeling and simulation with a c ~ u a l pa-
rameters derived from our implementation.
Specifically, we examined how different
switching methods can be combined to
yield low latency. First, we evaluated the
performance of virtual cut-through
switching by developing analytic models
and a low-level, event-driven simulator.
Then, we compared virtual cut-through
switching and wormhole routing.

Modeling and simulation of virtual
cut-through. Since real-time applications
normally require short response times,
s imp le store- and- forward s w itching
schemes are not suitable for HARTS. Hence,
i t supports fast switching methods such as
virtual cut-through7 and wormhole rout-

In virtual cut-through, packets arriv-
ing at an intermediate node are forwarded
to the next node in the route without buff-
ering if a circuit can be established to the
next node.

Kermani and Kleinrock did a mean-value
analysis of virtual cut-through performance
for a general interconnection n e t ~ o r k . ~
However, a mean-value analysis is inade-
quate for real-time applications because
worst-case communication delays often play
an important role in real-time system de-
sign. A mean-value analysis cannot, for
example, answer these questions: What is
the probability of a successful delivery given
a delay? What is the delay bound such that
the probability of a successful delivery is
greater than a specified threshold’!

Kermani and Kleinrock wanted to avoid
any dependence on the interconnection
topology in their analysis. As a result, they
assumed that the probability of packet
buffering at an intermediate node is a given
parameter. Since a reasonable estimate of
virtual cut-through performance cannot be
obtained without an accurate estimate of
buffering probability, their approach be-
comes useful only if one can accurately

30 COMPUTER

4.8

4.2

3.6

- 3.0 2 -
m

+ 2.4

1 .a

1.2

0.0

Probability of delivery

.<--
e _ _ _ _ _ - - - - - - - -r-----
I I I I I I I I I I

12-
10 -
8-

6 -

4-
2-

Virtual cut-through

0 I I I I I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Traffic load

Figure 6. Delivery time versus probability of successful
delivery.

Figure 7. Latencies of wormhole routing and virtual cut-
through switching for an H,.

determine buffering probability for a given
interconnection topology. This determina-
tion i s not a simple matter, because each
node in a distributed system handles not
only all packets generated at the node. but
also all packets passing through the node
(transit packets). Consequently, to evalu-
ate the probability ofbuffering, we have to

ount for the fraction of packets gener-
ated at other nodes that pass through each
given node.

In contrast to Kermani and Kleinrock,
we first derive the probability that a packet
i s destined for a particular node by char-
acterizing the H-mesh topology. We use
this probability of branching as a parame-
ter in a queueing network to determine the
throughput rate at each node in the mesh.
Once the throughput rates are found, we
can derive the probability that a packet can
establish a cut-through at an intermediate
node. From these parameters, we finally
derive the probability distribution function
of delivery times for a packet traversing a
specified number of hops.

Figure 6 plots the inverse of the proba-
bility distribution function for a message
traveling five hops. The three curves show
the variation in the inverseofthe probability
distribution function for different message-
generation rates or network traffic. These
curves are useful in determining design
parameters such as delay bounds. For ex-
ample, one can select a delay bound such
that the probability of message delivery

within that bound i s greater than a speci-
fied threshold. This would provide a prob-
abilistic measure on the guarantees provided
for real-time system operation.

I n contrast to the analytic model, a sim-
ulator makes very few simplifying as-
sumptions in modeling the behaviol- of
virtual cut-through in HARTS. The simu-
lator accurately models the delivery ofeach
message by emulating the timing of the
routing hardware along the packet route at
the microcode level. It also captures the
internal bus access overheads that the
packets experience if they are unable to cut
through an intermediate node. The simu-
lator's detailed timing and tracking of
messages allows inveatigation of various
message scheduling strategies, access
protocols, and memory management strat-
egies. The simulator can also usc any dis-
crete distribution ofpacket lengthsfor which
the user specifies the number. length, and
probability ofthcdifferenttypes of message.
The simulator has been used to check the
validity of analytic models by evaluating
the HARTS c o m in u ni c at ion subs y s te m
under various realistic settings.

Evaluation of hybrid routing schemes.
The basic idea ofwormhole routing i s that if
a channel is not available, a message waits
for i t . Because the message i s not removed
from the network, i t retains all resources
from its source to the node at which i t i s
waiting. Wormhole routing can be thought

of as incrementally establishing a route be-
cause i t does not surrender the resources i t
has acquired along the path from source to
destination. One benefit i s that the message
need not reacquire resources once i t has
acquired them. Deadlock-free algorithms
based on wormhole routing have been pro-
posed by Dally and SeitL.X

Virtual cut-through differs from worm-
hole routing in that it stores the message at
the node where i t i s blocked and releases
the resources acquired on the path from the
source to the blocking node once the
message has been stored.

The advantage ofboth wormhole routing
and circuit switching i s that they guarantee
delivery once a source-to-destination con-
nection has been established. Virtual cut-
through, however, can lower latency when
the hogging of links due to wormhole routing
and circuit switching worsens the conges-
tion in the network.

To show the difference i n performance
ofwormhole routing and virtual cut-through
switching, we plotted their message laten-
cies in Figure 7. For low traffic loads.
wormhole routing takes less timeon average
to deliver messages; the opposite i s true for
high loads. The traffic load break-even
point decreases as mesh size increases.
bccause the average message distance in-
creases with mesh size. Which routing
method i s more advantageous depends on
the traffic load and average message dis-
tance. The routing controller described

May 1991 31

earlier has the flexibility to dynamically
select the better of the two methods.

Fault-tolerant routing

One attractive feature of point-to-point
networks is their ability to withstand link
and node failures. Exploiting this feature
requires developing algorithms and pro-
viding mechanisms that preserve network
communication in the presence of compo-
nent failures. In this context, one must
address correct routing of messages when
one or more mesh components fail. This is
of particular importance when the mesh is
large and component failures thus are more
likely, and when the system is expected to
operate for long periods without mainte-
nance. The ideal fault-tolerant routing al-
gorithm would route messages by the
shortest fault-free path, would require no
extra hardware, would not cause unneces-
sary delays at intermediate nodes, and would
quickly determine whether a destination
was unreachable. The algorithm presented
by Olson and Shin'comes close to meeting
these criteria and requires each node to
know only the condition (faulty or non-
faulty) of its own links.

Each node of an H-mesh can be seen as
the convergence point of three axes, and
the shortest path between two nodes can be
expressed as offsets along no more than
two of the three axes. Since each of the six
links represents movement along one of
these three axes, either in the positive or
negative direction, fault-free routing can
be accomplished by forwarding messages
along links that will bring them toward
zero. Our idea is to not interfere with this
process until the message finds its path
blocked. A message is routed by the fault-
free algorithm until it reaches a node where
all the links through which the message
would ordinarily be forwarded (called the
optimal links) are faulty. At that point the
fault-tolerant algorithm intervenes.

At the point of message detouring, rout-
ing control is split between the fault-free
algorithm and the fault-tolerant algorithm.
A single bit in the message header deter-
mines which algorithm is currently making
routing decisions. If this bit is clear, the
message is in free mode, and the fault-free
algorithm does the routing. Otherwise, the
message is in detour mode, and the fault-
tolerant algorithm does the routing. The
fault-tolerant algorithm remains in control
until it believes it has bypassed the faults
that blocked the message path.

The fault-tolerant algorithm can be

viewed as a simple wall-following algo-
rithm. The message travels around the edge
of acluster of faults until it reaches the other
side. Implementation is simple. When the
optimal links are found to be faulty. the
message is placed in detour mode, and the
NP looks for nonfaulty links, starting with
the link immediately counterclockwise of
the optimal links and proceeding counter-
clockwise. The message is sent out on the
first nonfaulty link found. If a message
arrives at a node already in detour mode, i t
is sent out on the first nonfaulty link coun-
terclockwise of the link by which it arrived.
While in detour mode, the offsets to the
destination are continually recalculated, and
the message leaves detour mode when the
distance to the destination is less than i t was
when the message entered detour mode.

As an example, consider the situation in
Figure 8. A message has arrived at node 18,
with node I as its eventual destination. At
18 the only optimal link is the one to node 0,
which has failed; the message is placed in
detour mode and sent to node 7. At 7 the
fault-tolerant algorithm first tries to send
the message to node 0, then to node 8, but
finally must send it to node 15. At 15 the
message is immediately forwarded to node
8. At 8 the message returns to free mode as
node 8 is closer to node 1 than node 18 is.
The message then completes routing nor-
mally.

An unreachable destination is revealed
by the presence of a cycle. If the fault-
tolerant algorithm cannot get the message to
the destination, the message will cycle.
Unfortunately, for certain classes of fault
configurations, called incisions, the mes-
sage will cycle even though the destination
is reachable. Simulation results show that
this type of fault is rare, occurring only with
large numbers of faults. It can be dealt with
at a cost of increased complexity in the
routing algorithm. Strategies for detecting
and routing in the presence of incisions are
outlined by Olson and Shin.l They show
that the H-mesh is extremely robust: If 50
percent of the links in an H 3 are faulty, a
randomly chosen destination is reachable
with probability greater than 0.95.

Clock synchronization

Widely recognized as one ofthe important
requirements of a distributed real-time
system, a global time base simplifies the
solutions to design problems such as
checkpointing, interprocess communica-
tion, and resource allocation.'

Central to the establishment of a global

time base is the synchronization of the local
clocks on different nodes in the system.
Both hardware and software solutions to
this problem have been proposed. The soft-
ware solutions are flexible and economical
but require the exchange of additional
messages solely for synchronization." The
overhead imposed by these additional mes-
sages could be substantial, especially if a
tight synchronization between processes is
desired. Hardware solutions, on the other
hand, require additional hardware at each
node of the distributed system. They can
achieve very tight synchronization between
processes, with very little time overhead,
but they require a separate network of clocks
that is usually different from the network
between the nodes.

For HARTS, we use a software solution
that requires minimal hardware support at
each node." It is based on the interactive
convergence algorithm given by Lamport
and Melliar-Smith."' (Note, however, that
any other software clock synchronization
algorithm can be used for our scheme.) The
algorithm assumes that the clocks drift
apart only by a bounded amount during
each resynchronization interval. R, during
which each process reads the value of ev-
ery process's clock. If the value o f a clock
read differs from its own clock by an amount
greater than a threshold, the process re-
places that value with its own clock value.
The process then computes the average of
all such values and sets its own clock to this
average. Lamport and Melliar-Smith show
that this algorithm can achieve synchroni-
zation and requires 3m+1 processors to
tolerate m faults.

Three major problems arise when this
algorithm is used in a distributed system
with a point-to-point interconnection net-
work. First, it is difficult for a process to
read the clock of a process to which it is not
directly connected. Second, the message
received by a process may be corrupted by
a faulty intermediate process. Third, a
queueing delay for the clock messages may
cause a substantial difference between the
real times at which a clock value is sent and
received. Therefore, subtracting the clock
value in the received message from the
current clock value will not reflect the
actual skew between the clocks of the
sending and receiving processes. This
problem is aggravated when the clock mes-
sage must pass through multiple interme-
diate nodes.

Ramanathan, Kandlur, and Shin" solve
the first problem by letting each process
broadcast its clock to all processes at a
specified time, with respect to its own local

32 COMPUTER

Figure 8. Example of fault-tolerant routing.

Figure 9. I/O controller placement.

clock, in the resynchroni7ation interval.
The second problem is eliminated by a
broadcast algorithm that delivers multiple
copies of the message to all processes
through node-disjoint paths. For the third
problem, i t is not the size of the delay, but
the fact that it is not known, that affects the
clock skew. The message delivery time for
clock messages is obtained by requiring
each intermediate process to append to the
message the delay incurred at that process.

The accurate computation of this delay
needs some hardware support. Thcrc is
some uncertainty in determining time of
receipt because of a variable delay be-
tween the processor’s receiving notifica-
tion of arrival and actually “seeing” the
mcssage. Also, to compute the time delay
within the node, the processor must have
control on the exact time at which a mes-
sage is transmitted on a link. These poten-
tial errors i n estimating the time delay limit
the accuracy with which we can compute
the clock skew. This in turn affects the
clock skew achievable with the synchroni-
zation.

To alleviate this problem, we use a hard-
ware time-stamping mechanism at the link
level for clock messages (see earlier sec-
tion on the packet controller). When a link
receiver detects a clock message, it ap-
pends areceive time stamp to the message.
Similarly, when a clock message is trans-
mitted, the link transmitter appends a
transmit time stamp. At an intermediate
node, the receive and transmit time stamps
use the same local clock, so their differ-
ence gives a very accurate estimate of mes-
sage time in that node. By computing the
difference at intermediate nodes, we can
keep the total number of time stamps down

to five and prevent message length from
growing as network size increases.

For any synchronization algorithm, R is
a function of the maximum clock skew
desired. R decreases with the desired max-
imum skew and becomes negative for small
values. From a practical viewpoint, over-
heads for the synchronization algorithm
increase as R decreases, so i t is desirable to
have R as large as possible. This function
effectively detcrmines the type of skew
that can be achieved for the system with a
particular synchronization algorithm. The
derivation of this function for the synchro-
nization algorithm described here is given
by Ramanathan, Kandlur, and Shin.”
This algorithrri can achieve moderately
tight synchronimtion. For example, in an
H,, a maximum clock skew of 100 micro-
seconds can be achieved using R=6.23
seconds.

I/O architecture

Most work on distributed computing
systems has centered on interconnection
networks, programming and communica-
tions paradigms, and algorithms. Howev-
er, little has been done specifically about
the 1/0 subsystem in a real-time environ-
ment, despite its obvious importance.
Clearly, a real-time computer can process
data no faster than it can acquire the data
from sensors and operators. Note that I/O
devices in areal-time environment are sen-
sors, actuators, and displays, whereas they
are magnetic disks and tapes for general-
purpose systems. Due to the distinct timing
and reliability requirements of real-time
applications, solutions suited to general-

purpose systems are not usually applicable
to the real-time environment.

To avoid the accessibility problems of
nondistributed I/O, U0 devices need to be
distributed and managed by relativcly sim-
ple, and reliable, controllers. Morcover, to
improve both acccssibility (and thus reli-
ability) and performance, there must be
multiple access paths (called multiaccessi-
bility or multiownership) to these I/O de-
vices.

I/O interconnection architecture. U0
devices are clustered, and a controller
manages access to the devices of each
cluster. The I/O controller (IOC) can be
simple since HARTS uses simple data links
to the computation nodes. The IOC need
only handle sending and receiving simple
messages via a set of full-duplex links, not
providing virtual cut-through capabilities
and other features of a full-blown NP. To
keep the IOCs and the 1/0 links down to a
reasonable number, the number of IOCs is
restricted to no greater than the total num-
ber (p) of computation nodes in the mesh.
This has certain benefits for one of the
management protocols explained later.

Having established the potential number
of U0 nodes, we need to decide how many
nodes each IOC will be connected to. If the
maximum number (p) of IOCs are assumed
to exist in an H 3 , for example, then Figure
9 shows a logical connection scheme.’?
Each IOC can be thought of as being in the
center of one of the upward-pointing trian-
gles in this figure; the IOC is connected to
each of the nodes that make up the triangle,
called its left, right, and upper partners.
This gives three possible avenues of access
to each IOC. Note that if the maximum

May 1991 33

Figure 10. Unreachable static owner.

number of IOCs are used, the number of
I/O links required is equal to the number of
standard communication links, or 9e2-9e+3
for an He. One could similarly place IOCs
at the (logical) center of the downward-
pointing triangles as well, allowing for up
to 2p IOCs, but this would double the
maximum possible number of I/O links
required and disturb certain homogeneous
effects of limiting the number of IOCs to
the number of nodes.

Management protocols. The desire for
simple I/O controllers presents a problem
in HARTS, because the natural tendency
would be to assign sensors and actuators,
both relatively complex and expensive de-
vices, to individual nodes or NPs and use
the given interprocess communication (IPC)
channels in HARTS to handle the I/O traf-
fic. We can still use the given IPC channels,
but instead of permanently tying down a
given I/O device to one node, we allow
several nodes to communicate with each
I/O device. There are two fundamentally
different protocols for managing this com-
munication.

The first management protocol, the stat-
ic protocol, assigns one node to each IOC
as its owner, but with the important provi-
sion that the owner can be changed if the
original owner becomes faulty. In this pro-
tocol, one of the IOC links is defined as the

active link, and the rest remain inactive as
spares. The second, dynamic protocol, al-
lows the IOC owner to be defined dynam-
ically, providing greater accessibility and
requiring fewer hops on average to reach
the IOC owner. In this protocol, the IOC
decides which link will be active at any
given time.

Figure 10 is an example in which a
process in node I3 wants service from IOC
18, but since node 18 is the owner under the
static protocol and is not reachable from
13, it cannot obtain service. If node 0 were
the owner instead of 18 - which is possi-
ble under the dynamic protocol - i t could
be serviced.

In addition to making IOCs accessible
where static ownership would make them
inaccessible, the dynamic protocol takes
into account the fact that one partner may
be closer to a node requesting service than
the other partner. Since this protocol chooses
the closest of the partners that respond, the
I/O traffic may have fewer hops to travel.
However, its disadvantages are that i t is
more difficult to implement and involves
arbitration overhead after servicing each
I/O request. It may also be undesirable
because there is no single node through
which all I/O requests will travel and which
could perform some I/O management tasks.
Shin and Dykema give a comparative
analysis of these two pro to col^.'^

11 the high-level architectural is-
sues of HARTS have been re-
solved, and the lower-level com-

ponents are being designed or implement-
ed. The routing controller, a key compo-
nent for fast switching, has been fabricat-
ed, and its testing is almost complete. The
packet controller, the second generation of
the routing controller, and other NP com-
ponents are currently being designed and
simulated. In parallel with the architectur-
al work, we are also designing and imple-
menting a software communication sub-
system for HARTS. The primary objectives
of this subsystem are to deliver messages
within certain deadline constraints, sup-
port mechanisms for group communica-
tion and reliable broadcasting, offer ser-
vices such as maintenance of a global time
base, and monitor system behavior. W

Acknowledgments
The work reported in this article was supported

in part by the Office of Naval Research under
contract N00014-85-K-00122. Theauthor would
like to thank all current and former members of
the RTCL for their contributions to the HARTS
project. Specifically, Ming-Syan Chen developed
wrapping, labeling, and routing techniques, James
Dolter and Parameswaran Ramanathan designed
and implemented the routing controller chip,
Stuart Daniel and Teng-Kean Siew are currently
working on the design and implementation of
the network processor, Dilip Kandlur and Daniel
Kiskis developed HARTOS, Alan Olson devel-
oped afault-tolerant routing algorithm, and Greg
Dykema played a key role in developing the I/O
architecture. The author is also indebted to
Andre van Tilborg, Gary Koob, and James Smith
at the Office of Naval Research for their encour-
agement.

References

1. D.D. Kandlur, D.L. Kiskis, and K.G. Shin,
“HARTOS: A Distributed Real-Time Op-
erating System,” ACM SZGOPS Oprraring
Sysrems re vie^', Vol. 23, No. 3, July 1989,
pp. 72-89.

2. K.S. Stevens, “The Communication Frame-
work for a Distributed Ensemble Architec-
ture,” AI Tech. Report 47, Schlumberger
Research Laboratory, Palo Alto, Calif., Feb.
1986.

3. M.3 . Chen, K.G. Shin, and D.D. Kandlur,
“Addressing, Routing and Broadcasting in
Hexagonal Mesh Multiprocessors,” fEEE
Trans. Computers, Vol. C-39, No. 1, Jan.
1990, pp. 10-18.

34 COMPUTER

4. A. Olson and K.G. Shin, “Message Routing in HARTS with Faulty
Components,” FTCS-I 9, Digest of Papers, Computer Society Press,
Order No. 1959, June 1989, pp. 331-338.

5 . J.W. Dolter, P. Ramanathan, and K.G. Shin, “A Microprogrammable
VLSI Routing Controller for HARTS,’’ Proc. Int’I Conf. Computer
Design: VLSIin Computers, Computer Society Press, Order No. 1971,
Oct. 1989, pp. 160-163.

6. E.A. Arnould et al., “The Design of Nectar: A Network Backplane for
Heterogeneous Multicomputers,” Proc. Third Int ’ l Conf. Archirecrirral
Support for Programming Languages and Operating Systems, ACM,
New York, 1989, pp. 205-216.

7. P. Kermani and L. Kleinrock, “Virtual Cut-Through: A New Computer
Communication Switching Technique,” Computer Networks, Vol. 3,
1979, pp. 267-286.

8. W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,” IEEE Truris. Computers,
Vol. C-36, No. 5 , May 1987, pp. 547-553.

9. L. Lamport, “Using Time Instead of Timeout for Fault-Tolerant
Distributed Systems,” ACM Trans. Programming Languages and
Systems, Vol. 6, No. 2, Apr. 1984, pp. 254-280.

10. L. Lamport and P.M. Melliar-Smith, “Synchronizing Clocks in the
Presence of Faults,” J . ACM, Vol. 32, No. I , Jan. 1985, pp. 52-78.

11. P. Ramanathan, D.D. Kandlur, and K.G. Shin, “Hardware-Assisted
Software Clock Synchronization for Homogeneous Distributed Sys-
tems,” IEEE Trans. Computers, Vol. C-39, No. 4, Apr. 1990, pp. 5 14-
524.

12. K.G. ShinandG.L. Dykema,“DistributedI/OArchitectureforHARTS,”
Proc. 17th Int’l Symp. ComputerArchitecture, Computer Society Press,
Order No. 2047, June 1990, pp. 332-342.

Kang G. Shin is a professor and associate chair of electrical engineering
and computer science at the University of Michigan, Ann Arbor. From
1978 to 1982 he was on the faculty of Rensselaer Polytechnic Institute. He
has authored or coauthored more than 180 technical papers on fault-
tolerant computing, distributed real-time computing, computer architec-
ture, and robotics and automation. In 1987 he received the Outstanding
Paper Award from the IEEE Transactions on Automatic Control for a paper
on robot trajectory planning. In 1989 he received the Research Excellence
Award from the University of Michigan.

Shin received the BS degree in electronics engineering from Seoul
National University, South Korea, in 1970, and the MS and PhD degrees
in electrical engineering from Cornell University in 1976 and 1978,
respectively. He is a distinguished visitor of the IEEE Computer Society.

Readers may write Shin at the University of Michigan, Real-Time
Computing Laboratory, Dept. of Electrical Engineering and Computer
Science, Ann Arbor, MI 48 109-21 22.

Institute of m Systems Science

National University
of Singapore

Spearhead an R&D
Project in Information

Technology
The Institute of Systems Science is a dynamic

world class institute for information and systems
technology thriving on research culture and
entrepreneurship; and delivering new ideas and
products through research, development and
education in strategic partnership with
organisations.

At the ISS, R&D projects are on the grow. We
want leaders to spearhead projects in advanced
software prototypes and products. Our work
employment challenges the frontiers of
information technology for higher human
productivity. If you have the talent, we have the
latest computing facilities in the region and a
competitive remuneration package to match.

Build a career with us as R&D PROJECT
LEADERS in the areas of Hypermedia, Video &
3D Graphics, Visualization, Image Processing,
Neural Networks and Fuzzy Logic, Natural
Language Processing, Information Retrieval,
Communications and, Distributed and Parallel
Systems. The Institute has embarked on a number
of joint projects with industry in Singapore and
overseas. These include Computer Aided
Translation with IBM; Pattern Recognition with
the Port of Singapore Authority; Connectionist
Expert System Shell with Singapore Airlines; and
Text Abstraction with the Ministry of Defence.

To qualify you should have a PhD in
Computer Science, Electrical Engineering,
Cognitive Science, Linguistics and related
disciplines; and several years’ experience in R&D
laboratory work, a portion of which have been
spent as a project leader.

If you are keen about R&D breakthroughs in
Information Technology, send your complete
resume to Director of Personnel, National
University of Singapore,lOKentRidge Crescent,
SingaporeOSllOR FaxISS RecruitmentManager
(R&D) at (651-775-0938 OR BITNET
ISSAPPLY@NuSvM

May 1991

