IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 1, FEBRUARY 1991

105

Real-Time Communications in a
Computer-Controlled Workcell

Kang G. Shin, Senior Member, IEEE

Abstract— A computer-integrated manufacturing (CIM) system is
composed of several workcells, each of which contains robots, NC
machines, sensors, and a transport mechanism. Each CIM workcell is
controlled by multiple processors interconnected by an intracell bus, but
the individual cells are interconnected by an arbitrary network. This
paper considers a communication subsystem that is designed to support
real-time control and coordination of devices in each CIM cell. The
concept of a poll number is proposed to control the access to the
intracell bus. The bus access mechanism with the poll number is in-
tended to minimize the probability of real-time messages missing their
deadlines. When a CIM task generates a time-constrained message, a
poll number is computed for this message according to the message’s
deadline and the task’s priority. When the intracell bus is free, the
various tasks at a workcell that desire to use the bus write the poll
number onto the bus and read it back, one bit at a time, starting from
the most significant bit. If at any time the bit read back is different from
the bit written, then the corresponding task drops out of the contention
for the bus. Use of a poll number provides not only for decentralized
control of the intracell bus, but also a high degree of flexibility in
scheduling messages. The performance of the bus access mechanism
with a poll number is analyzed and compared with that of a token bus,
which is widely used in CIM systems such as MAP networks. The
probability of a real-time message missing its deadline in a token bus is
found to be much higher than that of the proposed mechanism.

Index Terms—Computer-integrated manufacturing (CIM), real-time
tasks and messages, deadlines, message scheduling, token bus, poll
number, polled bus.

I. INTRODUCTION

HE factory of the future, or the factory with a future, is

based on the notion of computer-integrated manufacturing
(CIM), whose ultimate goal is to integrate and control manufac-
turing processes, material inventory, sales and purchases, ad-
ministration and accounting, and engineering design information
into a single, closed-loop and interactive control system. Essen-
tial to CIM is the computer communication network over which
the information necessary for process interaction and coordina-
tion, status checking, and plant monitoring/control will be ex-
changed.

Although the technology of computer networking is quite
advanced, its specific application to CIM has not been well
addressed. A large body of analytic research exists in the general
area of network control and communications, focusing on mod-
eling and performance evaluation as well as on designing flexible
systems for accommodating future growth. However, it seldom
addresses such CIM needs as the compatibility between equip-
ment manufactured by different vendors, and real-time commu-
nications between workcell devices [1]. Using the token bus
(IEEE 802.4), the seven-layer broadband Manufacturing Au-
tomation Protocol (MAP) is proposed by GM and other compa-

Manuscript received January 9, 1989; revised January 13, 1990. This
work was supported by the National Science Foundation under Grant
DMC-8721492.

The author is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109-2122.

IEEE Log Number 9041450.

nies to provide temporal ordering consistency as well as to
eliminate incompatibility between pieces of equipment [2], [3].
However, this seven-layer MAP is usually too slow to handle
real-time communications in a workcell, thus prompting the
introduction of an additional type of node called the MINIMAP.
The MINIMAP employs only the first two layers of the MAP
and combines the remaining five layers of the MAP into a single
layer. Although the communication delay is expected to decrease
by a reduction of the number of layers, the real-time perfor-
mance of MINIMAP is still unknown. In fact, as we shall see,
the source of MAP’s long communication delay is not only the
number of layers but also the way the token bus works. The
main goal of this paper is to address the latter issue. We will do
this by proposing a new bus access mechanism using a poll
number, which is computed based on the deadlines of the
corresponding message and task. The bus equipped with this
access mechanism will henceforth be called the polled bus.

A CIM system usually consists of several workcells, each of
which contains robots, NC machines, sensors, and a transport
mechanism. The devices in a workcell need to be coordinated
and controlled to perform such collective functions as assembly
and material handling. These workcell devices are usually con-
trolled by multiple processors interconnected by an intracell bus,
but the individual cells are assumed to be interconnected by an
arbitrary network. Since, for example, the cars on an assembly
line move at a fixed speed regardless of whether robots are ready
or not, it is essential to know the worst-case communication
delay in advance. So, one camnot use a protocol for CIM
intracell communications unless it guarantees a bounded worst-
case delay. For example, Ethernet [4] cannot be used for
intracell communications because of the possibility of its un-
bounded delay. In general, all CSMA/CD protocols are not
applicable to intracell communications owing to their inability to
guarantee bounded communication delays. See [5] for an in-
depth analysis of the delay characteristics of CSMA/CD net-
works and their use to determine the suitability of CSMA /CD
with random service order and FCFS policies for different
applications that require probabilistic (instead of absolute) delay
bounds. On the other hand, the token bus protocol guarantees a
bounded communication delay, though the delay could be quite
large. (This is one of the reasons, along with its ability to
provide temporal ordering consistency, why the token bus was
chosen for MAP.)

Communication delays longer than a specified value or dead-
line could lead to a collision between two robots, or disrupt the
assembly line operations, resulting in loss of production time
and product quality. Note that the timely completion of tasks
controlling cell devices strongly depends on the communication
delay between the cooperating tasks. For example, in visual
servoing applications, the control task can complete execution
only after receiving the necessary information on concerned
objects from the vision processing task. To characterize the

1042-296X /91 /0200-0105801.00 ©1991 IEEE

106

wC

INTERCONNECTION .
NETWORK

N Polled Bus

AN

WC: a workeell of the CIM system.

P: a processor in a workcell

Fig. 1. A model of a distributed CIM system.

system’s ability of completing time-critical tasks before their
deadlines, the probability of dynamic failure was defined as
the probability of one or more tasks missing deadlines [6]. As
mentioned above, this probability is strongly dependent on the
mechanisms used to implement intertask communications. The
work described in this paper is primarily targeted at minimizing
the probability of dynamic failure by speeding up the intertask
communication within a workcell.

This paper is organized as follows. The next section describes
the CIM communication subsystem, compares it with general-
purpose networking approaches, and introduces the polled bus as
an intracell communication mechanism. Operation of the polled
bus and design of the poll number, along with the benefits of
using the poll number, are discussed in Section III. In Section
IV, the performances of the polled bus and the token bus are
analyzed and compared. The paper concludes with Section V.

II. PUTTING THINGS IN PERSPECTIVE

Due to the inherent nature of a CIM system, it is natural to
control the CIM system with a distributed computing system
consisting of a two-level hierarchy: workcell and network
levels. Each workcell is controlled by several processors con-
nected via a simple, high-speed bus, whereas these workcells are
interconnected via an arbitrary network. Each processor in a cell
executes one or more tasks, realizing some useful, probably
time-constrained, functions, such as controlling a robot or inter-
preting sensor data. It is often necessary that the tasks, within a
cell as well on different cells, exchange information to realize
the overall functions of the CIM system.

Since one or more devices in the same workcell may have to
work together to accomplish a common goal (e.g., assembly of
parts), the tasks that control these devices typically have to meet
stringent timing constraints. All the processors that execute these
tasks within a workcell are placed on a single board or chassis
along with a communication processor (CP). The CP is respon-
sible for intertask communications within a cell as well as across
cell boundaries.

The CIM system model is depicted in Fig. 1. The model is
similar to the one described in [7], where the processors within a
cell are connected by a token bus [8]. The main difference

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 1, FEBRUARY 1991

between a token bus and the polled bus lies in their access
protocols.

Both the token bus and the polled bus may be categorized as
broadcast buses, each of which is defined as a bus structure
wherein a processor need not be aware of the other users of the
bus. We do not restrict the type of interconnection between the
various processors as long as it has broadcasting capability.
Communication across cell boundaries does not usually have any
real-time constraints, e.g., exchange of inventory or sales infor-
mation. Typically, the cells are connected by a token-ring
local-area network. The tasks communicate with each other via
message passing [9]. A seven-layer protocol such as the MAP
[3] may be used for communication across cell boundaries, but,
as mentioned earlier, such a protocol is usually too slow to be
used for communications within a workcell. One of the CP’s
functions is to provide the protocol support for implementing
communications between any two tasks, which may either be in
the same cell or in different cells.

The tasks within a workcell are responsible for controlling
real-time devices such as robots and sensors. The tasks for
controlling and sensing these devices are inherently periodic; for
example, the task for closing a digital servo control loop may be
executed once every 100 ms, and the task for semsing and
analyzing parts on a conveyor belt may have to be executed once
every 0.5 s for visual servoing. Aperiodic tasks, albeit infre-
quent, also exist within a workcell, e.g., and operator’s com-
mands in response to abnormal circumstances. Periodic tasks
are ‘‘based load’”’ whereas periodic tasks are ‘‘random distur-
bances.”” The main intent of this paper is to deal with the “‘base
load” or periodic tasks; treatment of aperiodic tasks is usually
formulated as a dynamic load-sharing problem [10].

The bus access mechanism used in the token bus of [11] is the
token ring protocol, where a single token goes around the ring.
Any processor on the ring desirous of using the bus should
capture the token and release it upon completion of its service.
This mechanism distributes access in a round robin manner,
wherein higher priority task (processors) might be forced to wait
longer than necessary to procure the bus while the lower priority
tasks are accessing the bus. This problem may partially be
solved by providing multiple priorities within the token passing
bus scheme. In the token passing bus method, the class of
service mechanism can be used to provide prioritized (4 levels)
access {12]. The token bus access mechanism belongs to a class
of Controlled Demand- Adaptive Multiple Access Protocols [13].
Priority access schemes using CSMA /CD for multiple priority
message classes have also been proposed and analyzed [14].
According to [13], these schemes belong to the class of Con-
tention-Based Multiple Access Protocols.

Controlled Demand-Adaptive Multiple Access Protocols can
be broadly divided into token-passing and reservation schemes
[13]. The token bus is an example of a token-passing scheme.
The reservation scheme involves a reservation period that is
divided into slots, wherein all stations (processors) that have
messages to transmit post their reservation by transmitting a
burst of noise during their assigned slot. After the completion of
the reservation period, a station is selected based on a predeter-
mined scheme known to all stations. The reservation scheduling
protocol (RSP) proposed in [15] falls into this reservation scheme
category. The RSP scheme requires a reservation period, during
which the highest priority message is selected (irrespective of
the station from which it originated), followed by a scheduling
period, during which the station is selected based on some
scheme (e.g., round robin). However, there are two drawbacks

SHIN: REAL-TIME COMMUNICATIONS IN A COMPUTER-CONTROLLED WORKCELL

associated with the RSP protocol. First, it requires two sequen-
tial steps for reservation and scheduling, which induce a longer
delay in message delivery than using only one short combined
step. Second, the scheduling period and the selection schemes of
the RSP are sensitive to the number of stations using the bus.

To remedy the drawbacks of the RSP and a token bus (e.g.,
MAP and MINIMAP), and thus, to minimize the probability of
a CIM task missing its deadline, we propose a new bus access
mechanism, which is somewhat similar to the one used in FTMP
[16]. Unlike the RSP protocol [15], our scheme combines the
reservation and scheduling periods into a single polling round.
It ensures that at the end of the polling round, only one station
(processor) will have control of the bus.

In our scheme, each processor computes a poll number that
is determined by various factors, including the corresponding
message’s deadline and user-assigned priorities. When a task
generates a message service request, it waits for the bus to
complete servicing the present request and enters a polling round
together with the other processors wanting to use the bus. After
a fixed amount of time called the polling time, the processor
with the highest poll number is guaranteed to get control of the
bus. This proves to be superior to the token bus since it gives
higher priority to tasks with closer deadlines. This scheme is
better than the RSP, since the polling round is not dependent on
the number of processors. In our scheme, each processor need
not be aware of the other processors’ priorities, nor of the
number of such processors contending for the bus.

Because of the nature of the bus, we refer to the intracell bus
as a polled bus in contrast to the token bus of [11]. The
proposed bus access mechanism also provides a decentralized
bus access mechanism with predictable and optimum perfor-
mance parameters.

III. THE PoLLED Bus AcciEss MECHANISM

Communications within a cell must be completed in a timely
fashion so as to meet the real-time requirements of the various
tasks that are responsible for controlling and coordinating the
workcell devices. The design of the interconnection mechanism
for processors within the same cell has to satisfy these real-time
requirements. The interconnection mechanism (bus) may be
controlled by a dedicated processor that is central to the cell.
This processor could then decide on the allocation of the bus to
the various tasks so that the probability of missing deadlines is
minimized. However, the failure of the central control processor
would paralyze the communications within a cell leading to a
potentially disastrous situation. Hence, we propose a bus access
mechanism that provides for decentralized control of the bus.

As mentioned earlier, the processor in a cell are intercon-
nected by a broadcast bus, which enables the processors to read
from and write into the bus without being aware of the presence
of other processors. Typical examples are time-shared unibus,
token ring, token bus, etc. The software executing on each
processor may be partitioned into device control and interface
software. Among the important functions of the interface soft-
ware is bus access. The software implements the decentralized
bus access algorithm, which will be described in Subsection
III-A.

In [11], the various processors within a workcell are intercon-
nected by a token bus, where a token circulates around the
processors. The processor that needs to send a message using the
bus should capture the token to control the bus and release the
token for circulation as soon as it completes the message send-

107

ing. The token travels to the logically adjacent processor on the
bus, as in the case of a token ring.

Consider the four processors Py, P,, P;, and P, connected
to the token bus. Assume that the task priorities are such that
Pr, < Pr, < Pry < Pr,, where Pr; represents the priority of
the task executing on processor i. This means that P, executes
the most critical task(s). If P, sends a message and then
relinquishes the bus (token) to the next processor downstream
(i.e., P,), then it has to wait the whole round before sending the
next message, if any. The best-case scenario is that none of P,
P,, and P; have any message to send. The worst case occurs
when the other three processors have messages to send. In this
case, the task executing on P,may get delayed and may even
miss the deadline, which might prove catastrophic if it has to
execute a critical task. From the above discussion, it is easy to
see that the task with the highest priority among the tasks
competing for the bus should be given control of the bus. These
priorities may be user-specified, or in the absence of any user
specification, may be assumed to be the time left for the lapse of
the deadline. In our proposed mechanism the above scenario will
not occur since the task whose message has the earliest deadline
and/or the highest priority will always get the bus before any
other task.

A. Bus Acquisition Algorithm

A high-speed bus interconnects all the processors of a cell. It
is assumed that the processors can detect if the bus is busy. This
may be accomplished by the use of a bus busy line. The logical
structure of the bus is circular. Whenever the bus is in use (for
sending messages), a line (busy line) is set high. All the proces-
sors connected to the bus can sample this line.

When a processor needs to use the bus, it first samples the
busy line. If the bus is busy, the processor busy-waits for the
bus. As soon as the bus is free, the processor attempts to acquire
the bus by initiating the acquisition process. Any number of
processors might attempt to acquire the bus simultaneously.
Each processor computes a number (which should be unique)
called the poll number, which consists of a finite number of
bits, say, m bits. These bits are divided into several fields with
each field having a special physical significance. Determination
of the exact structure of the poll number and its design will be
discussed in Subsection III-B. This number is guaranteed to be
unique to prevent a tie, i.e., no two processors can produce the
same poll number. This poll number is so designed that the task
whose message has the earliest deadline will have the largest poll
number. The bus performs a wired-or operation on all the
signals impinging on it from the various processors. A processor
competing for the bus writes the poll number to the bus, one bit
at a time, starting with the most significant bit. After writing
each bit, it waits for a finite period and samples the bus in order
to propagate and stabilize the bit written on the bus. This waiting
period is a function of the physical length of the bus. If the value
read by the processor is different from the value it wrote into the
bus, it drops out of contention for the bus. This situation will
occur only when a processor with a larger poll number is
contending for the bus. After m such rounds, the processor with
the highest poll number has sole control of the bus.

B. Design of the Poll Number

The poll number is computed by every processor that needs to
use the bus. The design of the poll number acutely affects the
performance of the system. The algorithm does not require any

108

t :present time (bus needed).
€, : execution time (estimated).

Si : slack time (time left for deadline).

di : deadline.

Fig. 2. Defining the *‘slack time.””

deadline priority uniqueness
m bits
Fig. 3. Field structure of the poll number.

state exchange between processors, thereby obviating the need
for maintaining the global system state at each cell.
The main issues in the design of the poll number are:

1) the number of bits m used to encode the poll number and
how to ensure its uniqueness without sacrificing other
information and

2) the significance and the ordering of the various fields of
the poll number so as to minimize the number of messages
missing their deadlines.

First, we shall determine the fields of the poll number and
their relative ordering. A field is a contiguous collection of bits
that has special significance. A field, called the uniqueness
field, assigns a unique identification number to each of the
processors in a cell so that no two poll numbers will be identical
in any situation. Another field, called the deadline field, is
necessary to represent slack time (the time left until the deadline)
or some encoding of it. (See Fig. 2 for the definition of slack
time.) The user-defined priorities of the tasks are defined in the
priority field. It is easily seen that the uniqueness field design
depends on the number of processors and the priority field is
related to the tasks that reside in these processors.

The ordering of these fields depends on the system design
objectives. In our design we would like to minimize the number
of messages missing their deadlines. Hence, the most significant
field is the deadline field in which each message’s deadline is
encoded to be inversely proportional to its actual deadline. The
next significant field is the priority field. In a situation where two
competing tasks have the same deadline, the task with the
greater user/system assigned priority gets the bus. The least
significant is the uniqueness field, which comes into play only
when competing processors have identical deadline and priority
fields. In order to avoid biasing the bus access toward any one
processor on account of the uniqueness number, the processor
identification numbers that form the uniqueness field component
can be assigned in a round robin fashion. The ordering of the
three fields of the poll number is shown in Fig. 3.

The number of bits in the poll number m will now be
determined. We shall first do a simple analysis and obtain an
expression for m. Then we shall show with the help of typical
numerical values that the value obtained for m is far in excess of
what is actually required. A simple encoding is used to obtain
the poll number, in particular, the deadline field. (Other encod-

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 1, FEBRUARY 1991

poll bit time (m bits)

-+
Bus Bus
busy acquired
t

t Fs poll
Fig. 4. A typical bus access cycle in a poll bus.

ings, which might result in a better performance, are possible
but will not be considered here.)

Let Ny be the number of processors in a cell and N,q, be
the number of tasks resident at the cell. (If only a single task
resides at a single processor, then N, = N,q,.) The number
of bits needed in the uniqueness field is log, Nyroc» and the
number of bits needed for the priority field is log, N4, Unlike
the uniqueness and priority fields, determination of the maxi-
mum number of bits needed to represent the deadline field is not
so straightforward.

Consider Fig. 4, which shows a bus access cycle.

At time ¢, the processor (or task executing on that processor)
generates a message and thus requires the bus to send it. The
time interval between the generation of messages is assumed to
be exponentially distributed. The processor waits for a time ¢, Y
for the bus to become free. Then it enters the polling round,
irrespective of whether it has any competitors or not. The
polling round consists of m poll bit times, where each poll bit
time consists of a write, an interval to stabilize the bit written on
the bus, and a read by the processors involved. Let the time
taken for each polling round be 7., which is a linear function
of m. It is necessary that all the processors in the same cell be
tightly synchronized, which can be accomplished via hardware
clock synchronization similar to the one in [17]. After a proces-
sor gains control of the bus, it sets the bus busy line high.

A polling round is necessary before every message is sent. It
will be shown later that the overhead caused by polling is
insignificant. Let P,,, denote the maximum period of all the
periodic tasks' resident at a cell. The deadline field will have to
be large enough to represent P,,., since it is the largest possible
deadline, though actual message deadlines are usually much
smaller than P, .

The resolution of the deadline field has to be determined. If all
system time is counted in number of clock cycles, then the
minimum resolution necessary is ¢, cycles—the time taken for
the polling round in clock cycles. A finer resolution than this
will not serve any purpose, since it takes at least toon Cycles for
the processor to get the bus. At least one bit of the poll number
should change every toon cycle. For example, in the Fault-
Tolerant Multiprocessor (FTMP) [16], the polling round takes
9-bit cycles. In this case, the least significant bit (LSB) of the
deadline field would represent the time period of 9-bit cycles or
more

The maximum number of bits needed in the deadline field is
given by 10g,(Py / tpon)- The polling time is a linear function
of the number of poll bit times in the polling round, which is the
same as the number m of bits in the poll number. Thus
oo = €M, where c is some constant. The number of bits () in
the pole number is given by

m = 10g; Nyoc + 108 Nigges + 1085 (Prnax / tpoir)
= IOgZ(NprocNmskstx /cm)

(1)

If some of the tasks are aperiodic, this would represent the maximum
interactuation delay.

SHIN: REAL-TIME COMMUNICATIONS IN A COMPUTER-CONTROLLED WORKCELL

d2 d1 do p2 pl po u2 ul ul
DEADLINE CODING d2 1 do
(ms)

0-20 0o 0 0 1 1 1

20-40 0 0 1 11 0

40-60 0o 1 0| 1 0 1

60- 80 0 1 1 1 0 0

80 - 100 1 o o} o 1 1

100 - 200 1 o 1 0o 1 0

200 - 300 11 0 0 0 1

300 - - 1 11 0 0 0

Fig. 5. Possible design of a poll number.
¢ t lr dir t+ P
I A P

-

RC=E, - t.
1 i

df = t+P - RC
1 1

Fig. 6. Estimating the deadline of a message.

Equation (1) reduces to the form m = K2™, which can then be
solved to obtain the number of bits in the poll number.

As an example, again, consider the FTMP [16]. It has a clock
rate of 8 MHz (125 ns). The real-time workload on FTMP
consists of three task classes of periods 40 ms (25 Hz), 80 ms
(12.5 Hz), and 320 ms (3.125 Hz). The poll bit time for FTMP
is 1 us. If we use (1) to compute the number of bits in the poll
number, we have ., = 15 ps and P, = 320 ms. Approxi-
mately, we need 16 bits for the deadline field.

The number obtained by using the above expression for m is
extremely conservative in nature. The design of a poll number
with a 3-bit deadline field, 3-bit priority field, and 3-bit unique-
ness field is shown in Fig. 5. The resolution in this case is the
minimum task period, which is 40 ms.

C. Estimation of Message Deadlines

Knowledge of the deadline for a message generated by a task
is essential for determining the deadline field of a poll number.
We propose a method to determine the deadline for a message
generated by a real-time task. For the clarity of presentation, it
is assumed that all the tasks are initiated at the beginning of their
periods, and each task executes on a single processor.

The period of a task 7; is depicted in Fig. 6. Since T; has
been initiated at time ¢, the next initiation of the task will be at
t + P;, where P; is the period of T,. During the course of its
execution the task will generate messages. Upon generation of a
message, the task will be blocked at least until the message is put
on the bus. It may or may not wait for the reply, before it
resumes execution, depending on whether it executed a blocking

109

send or a nonblocking send [18]. The estimated completion time
for task 7; (not including the delay while waiting for the bus) is
given by E;which includes the time spent in blocking while
waiting for a reply. The rth message of this task is generated at
¢/, when it has completed c; units of execution time. In addition
to the local clock, each processor keeps track (using a simple
counter) of the execution time of its task, which does not include
the time spent by the task while waiting for the bus. At #/, T;
has generated its rth message and still needs the residual
computation time RC = E; — c¢] to complete execution. The
deadline for the rth message is df = (¢ + P;) — RC, as the
task has to send its message by d if it is to complete the task by
t+ P,

E; and P; are known in advance; as soon as the processor
starts executing the task at time ¢, ¢ + P; can be determined. At
any time RC can be determined by subtracting the reading of
the execution time from E;. The value of deadline computed for
the rth message (d]) is then complemented,? resolved into
coarser units, and loaded into the deadline field of the poll
number. The priority and the uniqueness fields may be loaded at
the same time.

D. Benefits of the Poll Number Approach

The bus access mechanism with the poll number makes mes-
sage scheduling flexible. A number of schemes can be imple-
mented by varying the order and significance of the various
fields making up the poll number. For example, we can imple-
ment earliest deadline scheduling by loading the task deadline
into the priority field. Priority-driven scheduling can be imple-
mented by making the priority field the most significant field.
Likewise, deadline-driven scheduling may be implemented by
making the deadline field the most significant field.

We shall discuss the modifications needed to make the poll
number based access mechanism compatible with the earliest
deadline scheduling scheme. The deadline field, as before, rep-
resents the message deadline. The priority field has been modi-
fied to hold the particular task invocation’s deadline.® Let TD;
=t;+ P; and TD; = t; + P; denote the deadlines of T; and
T, respectively.* Let the uniqueness field of the poll number for
T; be U;, and that for T/ be UJ (By definition of the uniqueness
field of the poll number, U;# U; Vi # j.) With the above
design, if a message from a task 7;, with a deadline d,,
competed for the bus with message from another task 7, with a
deadline d, then T; would get the bus if and only if

1) d;<d;or
2) d;=d;and TD; < TD; or
3) d;=d;and TD; = TD; and U; < U,.

It is easy to see that the above scheme is compatible with earliest
deadline scheduling, which will schedule the message with the
earliest deadline and, in the case of a tie, will give preference to
the task with the closer deadline.

1t is also possible to make the polled bus access mechanism
compatible with a priority-driven scheme, where the various
tasks have dynamically assigned priorities. In this scheme, the
priorities of the tasks are assigned so as to satisfy some criterion,
such as enabling a task to dispatch its message before its

% This is because the processor with the highest poll number wins the
polling round.

*If task T; had been invoked at time ¢;, then this field would hold
t+ P

* These numbers are loaded into the priority fields of their respective poll
numbers.

110 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 1, FEBRUARY 1991

Generate a message and its deadline

(R

Compute the POLL NUMBER

Increment priority field

Y

Estimate prob. of missing deadline

Is prob. less than threshold?

Enter the polling round

Fig. 7. Dynamic priority-based scheme using a poll number.

deadline. The proposed scheme is outlined in Fig. 7. When a
task needs to use the bus, it generates a poll number based upon
its priority at the moment and the deadline of its message. The
poll number is designed such that the priority field is more
significant than the deadline field. Based upon this poll number,
the task estimates the probability of the message missing its
deadline. The probability of a message missing its deadline may
be computed using (5) and (6) in Section IV. In order to
accomplish this, the task has to be aware of the service rates and
the message generation rates of the other tasks at the cell. A task
has to be updated whenever the configuration of the cell is
changed.

After generating a message, the task computes a poll number,
and estimates the probability of the message missing its dead-
line. If the probability is higher than a predetermined threshold,
the task recomputes its poll number after incrementing the
priority field. The priority field is incremented until the probabil-
ity of the message missing its deadline falls below the threshold.
As soon as the probability falls below a threshold, the task then
enters the polling round for the bus.

If all the tasks at the cell increase their priorities to minimize
their probabilities of missing deadlines, then it is highly likely
that all tasks might end up having the same probability. In this
case the scheme reduces to deadline-driven scheduling. If the
priority fields of the poll number are all equal, then the deadline
fields will determine the task that will get the bus, as we have
made the priority field the most significant field. This situation
may be avoided by allowing only selected tasks to modify their
priorities.

IV. PERFORMANCE ANALYSIS

Since the token bus is widely used for CIM communications
such as MAP, we shall compare the performance of the token
bus with that of the polled bus. As stated before, our main
objective is to minimize the number of messages missing their
deadlines and to service each communication request as quickly
as possible. The probability of real-time messages missing dead-
lines will be computed for both the token bus and the polled bus

under a commonly used assumption that message arrivals at each
node/processor follow a Poisson process, i.e., Markovian ar-
rivals. Such a computation is known to be intractable without the
assumption of Markovian arrivals.

A. The Token Bus

A token bus is a single bus to which a number of processors
are connected, and its access protocol is very similar to that of a
token ring. A token is passed around processors on the bus and
any processor that desires to use the bus has to capture the token
first. After using the bus, the processor hands the token over to
the logically adjacent processor on the bus.

Only a single token is allowed to exist on the bus at any time
when the bus is not being used by any processor. The token is
regenerated when all the bits of the packet sent out by a
processor are received by the same processor again. This is
possible as the data on the bus is seen by all the processors on
the token bus, which is an example of a broadcast bus. This acts
as an acknowledgment for the sending processor. We assume a
bit serial bus with a typical bit rate of 10 Mbit/s or higher.
There is a bus busy line that the processors can sample in order
to check whether the bus is in use. We also assume that only a
single task executes on each processor.

The following three main events will occur when sending a
message:

1) A task generates a message.

2) The processor executing the task waits to get control of the
bus.

3) The message is transmitted via the bus.

The message generation by a task executing on a processor is
independent of the bus access mechanism used. A task generates
a real-time message, waits to get control of the bus, and resumes
execution only after transmitting the message. As stated above,
the intermessage generation time is assumed to be an exponen-
tially distributed random variable with a mean intermessage
interval that is a function of the task’s invocation period. Thus,
tasks with different invocation periods will have different mean
intermessage generation times.

The time and mechanism involved in putting a message on the
bus is independent of the bus access mechanisms used. The
travel time of a message from one processor another depends on
the bit rate of the bus and the physical distance separating these
two processors. We shall not analyze this parameter since it is
not affected by the bus access mechanism and hence does not
make any difference in contrasting the performance of the token
bus with that of the polled bus. For similar reasons, the message
generation by the task will not be considered any further.

The time required to service a request is independent of the
bus access mechanism used. It is assumed to be a random
variable, which is identically distributed for all the tasks in the
workcell. The service time distribution directly affects the num-
ber of message deadlines missed in a cell. Hence, any assump-
tions about this distribution shall be deferred until all the param-
eters are analyzed. For the time being it suffices to assume that
the service time is identically distributed for all the tasks of a
cell.

The parameter of our chief interest is the bus access time or
the time taken to access the bus, since it directly determines the
number of message deadlines missed due to the unavailability of
the bus. Let W; denote the bus access time or wait time for a
task 7;. We shall derive an expression for the wait time for the
message generated by a task.

SHIN: REAL-TIME COMMUNICATIONS IN A COMPUTER-CONTROLLED WORKCELL

request generated by processor i

service completion t
T
T l
4 -
t=0 T bus access
bus access cycle time by processor i

by processor i

Fig. 8. The cycle time at a processor in the workcell.

The events occurring at a single processor are depicted in Fig.
8. (We are now analyzing the system from the viewpoint of a
single processor.) At time ¢ = 0, the processor had last success-
ful possession of the bus. The processor may have used the bus
or just passed the token along to the next processor in the case of
the token bus. The random variable 7. or the cycle time is
defined as the time interval from a processor’s first possession of
the bus to its next possession of the bus. The cycle time depends
on whether or not the other processors use the bus while the
token completely cycles once around all the processors attached
to the bus.

A message is generated by task 7; at time ¢;. Let S; be the
time required to service the message, which is the time taken to
deliver the message to the destination once the bus has been
acquired by the sending task. As stated earlier, the service times
are assumed to be identically distributed for all the tasks of a
cell. Let M be the number of tasks in the cell under considera-
tion—which is the same as that of processors in the cell—and let
\; be the rate at which messages are generated by 7.

If there are not requests generated by any of the tasks on the
token bus, the cycle time—the time taken for the token to
reappear at a processor after traversing all the other processors
in a predetermined fashion—is given by T = Ty, + Tigien:
where T, is the time taken for the token to travel on the bus
once around the logical ring of processors and T, is the time
taken for a processor to recognize the token and put it back on
the bus if it does not have any message to transmit. The
maximum value of 7 possible occurs when all the tasks at a cell
have messages to send. Thus

M
Tﬁng + T;oken = Tc = Ttoken + Tring + ZISI
iz
First, we shall determine the cycle time 7, in terms of the
service times. To compare the performance of the polled bus
with that of the token bus, the cycle time T, perceived by all the
processors is assumed to be the same, since a mean cycle time,
as opposed to an instantaneous cycle time at each processor, will
be considered for the purpose of comparison. Assuming 7, < P;
where P; is T;’s invocation period, the probability that 7, will
generate a message during 7, is given by /OT”)\,-e’x"’ dt.
The cycle time T, can then be expressed as

M Te
Tc = ZISI)‘ie_)\it dt| + Tring + T;oken
= 0

T M
/ ST S ne M
0

i=0

dr + Tring + Ttoken'

(2)

The above equation can be simplified to

M N M
> Se Ny T.= Y S5, +C

i=1 i=1

111

t+ D, T,

t : message generation time.

t+ D, : deadline for the message.
i

T, : cycle time for the token bus.

<
Fig. 9. Events occurring during a token cycle.

where C is some constant. The above expression can be solved
for 7., if the service time distributions are known. The probabil-
ity of a message generated by a task 7; missing its deadline can
now be calculated. Let d] be the deadline of 7;’s current
message generated at time ¢/. Let D, denote the relative
deadline (d] — t]) of T;’s current message. The events occur-
ring in a cycle are shown in Fig. 9. In this figure, the processor
last had access to the bus at ¢ = 0. The next access will occur at
t = T., where T, is the cycle time computed above. A message
is generated by task 7; at time f =< T, and has a relative
deadline D;.

T;’s current message will miss its deadline if and only if
t + D; < T,. Because of the assumed memoryless property of
message arrivals, the probability of a message being generated
by a task in time ¢ is given by A;e~™'. The probability of T;’s
current message missing its deadline can be expressed as

) T,
i = | “NeNP(D;<T,-1t)dt.
t=0

)

B. The Polled Bus

In this subsection, we shall analyze the performance of the
polled bus, access to which is determined based on the poll
numbers generated by the various competing tasks. In particular,
the probability of a message missing its deadline will be ana-
lyzed. As before, each processor in a cell is assumed to execute
only one task during the time interval of interest. This task is
characterized by its invocation period and its user-assigned
priority, which comprises the second field of the poll number.

In order to facilitate our analysis, we shall use the following
notation. (Any notation found in this section that has not been
defined here will be the same as the notation used in the previous
subsection.)

t! Time at which the current or rth message of task 7; was
generated.

t; Time at which the current or rth message of task 7; was
generated.

d] Deadline for the current or rth message of task 7.

dg’» Deadline for the current or rth message of task 7).

t? Time at which the bus was last acquired by task 7.

The most recently generated message of a task whose deadline
has not yet expired is termed as the current message of the task.
After the expiration of the deadline, the message loses its
meaning. The various events that are significant in the analysis
are depicted in Fig. 10. At #2, T;s current message had the
highest poll number or the closest deadline. In the absence of
any competing messages from other tasks, 7;’s current message
generated at ¢ will be serviced. If there are other competing
current messages from other tasks with closer deadlines or larger
poll numbers than 7;’s current message, then T,’s current mes-
sage will have to wait for the bus until all the other messages

112

t7 dar
j j
b r r
ta tB ti ti cl1
ty = t7 - dr - tf
A ti (j j)
tg = df - cdf - 7))
B d; i tj

Fig. 10. Event times in the case of a polled bus.

with closer deadlines have been serviced. The time spent by 7;
in waiting for the bus is termed as the bus access time or wait
time and is denoted by W,.

We shall derive an expression for the mean wait time experi-
enced by T;. The deadlines for the messages generated by the
various tasks are determined by the method outlined in Section
III-C In Fig. 10 we consider 7;’s current message, generated at

7, which is in competition w1th T;’s current message for use of
the bus. T}’s current message shall be given the bus in prefer-
ence to T § current message if and only if the deadline dj of
Ts current message is closer than the deadline d} of T s
current message. In other words, 7;’s current message will have
to wait for 7’s current message if dj < d}. Since we have
assumed the deadlme field to be the most s1gmf1cant field, in
most cases® the condition on the poll numbers is reduced to the
requirements on the deadlines.

From Fig. 10, it is clear that any competing messages from
other tasks must have been generated during the time interval
[24, tg] in order to gain priority over T}’s current message. The
probability of the above event is easily determined as the tasks
are assumed to generate messages in a memoryless fashion.
Therefore, the expression for the wait time W; for 7,’s current

message is given by
df
Sj(/ . >\ e N dt)
0

W, >
2 S, (1 - ey, (5)

Js.t. dj=df
Js.t. dfsd,’

it

The probability of T;’s current message missing its deadline
can now be determined. Let the relative deadline of 7)’s current
message be D; where D; = d] — t]. The probability of T's
current message missing its deadline is given by

md—P(D I’V,) (6)

Equation (6) may be used to arrive at the probability of a
message missing its deadline. Performances of the token bus and
the polled bus were simulated, and the probability of messages
missing deadlines using the token bus was compared with that
using the polled bus. It was assumed that all tasks had the same
message generation rate and identically distributed message ser-
vice times for the purpose of comparison. The effects of varying
the number of tasks, message service times, and task execution
times, for both the polled bus and the token bus, are then
simulated and plotted in Figs. 11-13. In these simulations the
deadline field of the poll numbers were assumed to have the

* This is not true when the deadlines are equal.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 1, FEBRUARY 1991

~~+- token bus -~

o
o
1

1
~
1

?(
—e— poll bus i;
§
H
{
H
i
H
/
H
H

o
I
!

fraction of messages missing their deadline
o (=]
L w
1 1

0 A e e
0 01 02 03 04 05 06 07 08 08 1
fraction message service time

Fig. 11. Effect of message service time on fraction of messages missing
deadlines.
O‘R
0.7

—+— token bus

0.6 —e— poll bus

fraction of messages missing their deadline
o
T

0.3
0.2
0.1
0 v v v T T T
2 4 6 8 10 12 14 16

number of tasks

Fig. 12. Effect of number of tasks on fraction of messages missing
deadlines.
0.8
@ .
£0.7] e
3 +- token bus e
£ 06 —e— polt bus
B p
£
20.5]
8
€ 0.4
g
£
5 0.2
< /
g A+
§o0.1 4
o T - T T T T T T
0 0.1 02 03 04 05 06 07 08
execution time fraction
Fig. 13. Effect of execution time of fraction messages missing deadlines.

actual deadline, not some quantized version of the deadline. It is
expected that the performance numbers will be less optimistic
for the finite resolution case. Hence, these simulations represent
the maximum possible performance achievable by using the
poll-number-based bus access scheme (with the deadline field
being the most significant).

SHIN: REAL-TIME COMMUNICATIONS IN A COMPUTER-CONTROLLED WORKCELL

The fraction of messages missing their deadlines for various
message service times—the time taken for the message to travel
to the destination on the bus after gaining the access to the
bus—is shown in Fig. 11.

The number of tasks was fixed at eight, the tasks all had the
same period (40 ms), and the same execution time of 10 ms. The
fraction of messages missing their deadlines increased as mes-
sage service times for both the token and polled buses were
increased. As expected, the polled bus had a much lower
fraction of mssages missing their deadlines for all message
service times than the token bus.

In Fig. 12, the fraction of messages missing deadlines for
different cell configurations (number of tasks at the cell) is
shown. The fraction of messages missing their deadlines in-
creased with the increase in the number of tasks for both token
and polled buses. Again, the polled bus had a much lower
fraction of messages missing their deadlines for all cell configu-
rations than the token bus.

The fraction of messages missing their deadlines for different
execution times of the tasks is shown in Fig. 13. The message
service time and the message generation rate were assumed to be
the same for all the tasks and were fixed. There were eight tasks
at the cell. As before, all tasks were periodic with a period of 40
ms. The fraction of messages missing their deadlines increased
with increase in the execution time of the tasks. For all task
execution times, the polled bus resulted in a lower fraction of
messages missing their deadlines than the token bus.

V. CONCLUSION

In any CIM system, the probability of a control task missing
its deadline should be kept as small as possible. CIM tasks often
communicate with one another in order to collectively perform
some useful functions, such as assembly and/or material han-
dling operations. It is essential that messages sent by various
tasks be delivered before their deadlines in order for the tasks to
complete their execution in time. We have proposed and ana-
lyzed a new bus access mechanism that uses a poll number to
minimize the probability of messages missing their deadlines.
This mechanism is shown to be significantly better than the
token bus protocol in meeting message deadlines. The simplic-
ity, flexibility, decentralization, and the performance improve-
ment offered by the poll number approach make it particularly
suitable for the control and coordination of real-time devices in a
workcell of CIM systems.

ACKNOWLEDGMENT

The author is grateful to Y. Muthuswamy for his contribution
to the performance evaluation of the polled bus in Section IV
and anonymous reviewers for their constructive comments.

REFERENCES

[11 A. Ray, Ed., Proc. NSF Workshop on Computer Networking
for Manufacturing Systems (Pennsylvania State Univ.), Nov.
1987.

2] A. S. Tanenbaum, Computer Networks, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1988.

[3] ‘‘Manufacturing Automation Protocol (MAP)
(draft),”” Feb. 1986.

[4] R. M. Metcalfe and D. R. Boggs, ‘Ethernet: Distributed packet
switching for local computer networks,”” Commun. Ass. Com-
put. Mach., vol. 19, no. 7, pp. 395-404, July 1976.

[5] S. L. Beuerman and E. J. Coyle, ‘“The delay characteristics of
CSMA /CD networks,”” IEEE Trans. Commun., vol. 36, no. 5,
pp. 553-563, May 1988.

specification

113

[61 K. G. Shin, C. M. Krishna, and Y.-H. Lee, ‘‘A unified method
for evaluating real-time computer controllers and its application,”’
IEEE Trans. Automat. Contr., vol. AC-30, no. 4, pp.
357-366, Apr. 1987.

[7] R. H. Douglas, ‘‘IEEE token bus LAN implementation consider-
ations,” in Proc. IEEE COMPCON, 1984, pp. 258-260.

{81 D. W. Jacobson, ‘‘High performance reliable token bus for the
map network architecture,”” in Proc. IEEE Conf. Local Com-
put. Networks, 1986, pp. 26-33.

[91 W. M. Gentleman, ‘‘Message passing between sequential pro-

cesses: The reply primitive and the administrator concept,”” Soft-

ware Practice Experience, vol. 11, pp. 435-466, 1981.

K. G. Shin and Y.-C. Chang, ‘‘Load sharing in distributed

real-time systems with state change broadcasts,”” IEEE Trans.

Comput., vol. 38, no. 8, pp. 1124-1142, Aug. 1989.

[11] J. T. Quatse, ‘‘An architecture for real-time cell control,”” Contr.

Eng., vol. 34, no. 5, pp. 56-64, May 1987.

[12] IEEE Standards for Local Area Networks: Token-Passing

Bus Access Method and Physical Layer Specifications,

ANSI/IEEE Standard 802.4-1985, 1985.

J. F. Kurose, M. Schwartz, and Y. Yemini, ‘‘Multiple-access

protocols and time-constrained communication,’ ACM Com-

put. Surveys, vol. 16, no. 1, pp. 43-70, Mar. 1984.

G. L. Choudhury and S. S. Rappaport, ‘‘Priority access schemes

using csma-cd,”’ JEEE Trans. Commun., vol. COM-33, no. 7,

pp. 620-626, July 1985.

1. Chlamtac, A. Ganz, and Z. Koren, “‘Prioritized demand

assignment protocols and their evaluation,”” IEEE Trans. Com-

mun., vol. 36, no. 2, pp. 133-143, Feb. 1988.

T. B. Smith and J. H. Lala, **Development and measurement of

fault-tolerant multiprocessor (FTMP),”” NASA Rep., vol. I, May

1985.

K. G. Shin and P. Ramanathan, ‘‘Clock synchronization of a

large multiprocessor system in the presence of malicious failure,”’

IEEE Trans. Comput., vol. C-36, no. 1, pp. 2-12, Jan. 1987.

K. G. Shin and M. E. Epstein, ‘‘Intertask communications in an

integrated multi-robot system,’’ IEEE J. Robotics Automat.,

vol. RA-3, no. 2, pp. 90-100, Apr. 1987.

(10]

[13}

[14]

[15]

(16]

[

(18]

Kang G. Shin (S’75-M’'78-SM’83) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, Korea, in
1970, and the M.S. and Ph.D. degrees in elec-
trical engineering from Cornell University,
Ithaca, NY, in 1976 and 1978, respectively.

From 1978 to 1982, he was on the faculty of
Rensselaer Polytechnic Institute, Troy, NY. In
1982, he joined the University of Michigan,
Ann Arbor, where he is currently a Professor of
Electrical Engineering and Computer Science.
In 1985, he founded the Real-Time Computing Laboratory, where he
and his colleagues are currently building a 19-node hexagonal mesh
multicomputer, called HARTS, to validate various architectures and
analytic results in the area of distributed real-time computing. He has
held vising positions at the U.S. Airforce Flight Dynamics Laboratory;
AT&T Bell Laboratories; the Computer Science Division, Department
of Electrical Engineering and Computer Science, University of Califor-
nia, Berkeley; and the International Computer Science Institute, Berke-
ley, CA. He has authored or coauthored over 180 technical papers in the
areas of fault-tolerant computing, distributed real-time computing, com-
puter architecture, and robotics and automation.

Dr. Shin was the Program Chairman of the 1986 IEEE Real-Time
Systems Symposium (RTSS), the General Chairman of the 1987 RTSS,
and the Guest Editor of the 1987 August special issue on real-time
systems of IEEE TRANSACTIONs ON Computegrs. He is currently a
Distinguished Visitor of the IEEE Computer Society and an Area Editor
of the International Journal of Time-Critical Computing Systems. In
1987, he received the IEEE TRANSACTIONS ON AUTOMATIC CONTROL
Outstanding Paper Award for a paper on robot trajectory planning. In
1989, he received the Research Excellence Award from the University
of Michigan.

