
Reliable Broadcast

DILIP D. KANDLUR and KANG G.

The University of Michigan

Algorithms for HARTS

SHIN

The problem of broadcasting in point-to-point interconnection networks with virtual cut-through

switching is considered. A simple extension of virtual cut-through is proposed, which provides

good support for broadcasting in mesh-connected multicomputers. An implementation of this

extension (termed a broadcast primitive) for a hexagonal mesh multicomputer called HARTS,

that uses virtual cut-through switching, is also presented. Based on this primitive, a set of

broadcast algorithms is developed for the hexagonal mesh topology These algorithms deliver

multiple copies of a message from a source node to every other node in the hexagonal mesh

through disjoint paths. They can be used for broadcasting in the presence of faulty nodes/links,

even when the identity of the faulty components is not known. The performance of these

algorithms has been analyzed and compared with the performance of other possible broadcast

algorithms

Categories and Subject Descriptors: B 4.3 [Input/Output and Data Communication]: Inter-

connections— topology: C 2.1 [Computer-Communication Networks]: Network Architecture
and Design— network topology, czrcuzt-swztchzng networks; C3 [Computer Systems Organiza-

tion]: Special-Purpose and Application-Based Systems–HART’S

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: Broadcasting, fault-tolerant networks, vmtual cut-through

1. INTRODUCTION

The availability of inexpensive and powerful microprocessors has fueled the

design and development of multiprocessors and multicomputers with a large

number of processors. Several topologies have been proposed for interconnect-

ing these processors, including trees, hypercubes, and meshes. The hexagonal

The work reported here is supported in part by the Office of Naval Research under contracts

NOO014-85-K-0122 and NOO014-85-K-0531, by NASA under grant NAG-l-296, and an IBM

Graduate Fellowship. Any opinions, findings, and conclusions or recommendations expressed in

this report are those of the authors and do not necessarily reflect the views of the funding

agencies.

Authors’ addresses: K. G. Shin, Real-Time Computing Laboratory, Division of Computer Science

and Engineering, Department of Electrical Engineering and Computer Science, The University

of Michigan, Ann Arbor, MI 48109-2122 email. kgshin@dip eecs. umich edu. D D Kandlur,

IBM T J. Watson Research Center, Hawthorne, NY 10532 email: kandlur@ watson lbm com

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Assoclatlon for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1991 ACM 0734-2071/91/1100-0374 $01.50

ACM TransactIons on Computer Systems, Vol. 9, No 4, November 1991, Pages 374-398

Reliable Broadcast Algorithms for HARTS . 375

mesh topology [3, 7, 18] is one such topology, which offers some interesting

properties. Meshes and other topologies that have a fixed, small-node degree

have the advantage that it is easy to implement routing schemes such as

virtual cut-through [13]. The Torus routing chip [5, 6] and the HARTS

routing controller [8] are examples of such implementations. A small-node

degree makes implementation easier because it is possible to employ tech-

niques like time-division multiplexing in the switch. In the virtual cut-

through-switching method, messages arriving at an intermediate node are

forwarded to the next node in the route without buffering if a circuit can be

established to the next node. Since messages do not necessarily get buffered

at intermediate nodes, the delays encountered are smaller than those for

packet switching.

This paper addresses the problem of broadcasting in mesh-connected multi-

computer systems which use virtual cut-through switching. Although this

operation is very simple for broadcast networks like the Ethernet and the

Token Ring, where a message transmitted can be “seen” by every other node

in the network, it is more involved for a point-to-point interconnection

network. For this type of network, a simple nonredundant broadcast algo-

rithm, which delivers a single copy of a message to every node, essentially

constructs a spanning tree for the network graph rooted at the source node. It

is desirable to minimize the height, and hence the number of store-and-

forward communication steps, for the spanning tree. We present a simple

primitive to support broadcasting efficiently in this type of network. This

primitive is based on the virtual cut-through switching scheme and signifi-

cantly reduces the number of required store-and-forward communication

steps. We also present an implementation technique for this primitive for the

HARTS routing controller.

Based on this primitive, we then develop broadcasting algorithms for

meshes which are resilient to node/link faults. Motivation for this work is

provided by its applicability in implementing algorithms for problems like

clock synchronization and distributed agreement in the presence of faults [14,

15]. In these problems, it is necessary to ensure that a nonfaulty node can

correctly deliver its private value to all other nonfaulty nodes in the system.

This problem is difficult because (intermediate) faulty nodes can discard,

corrupt, and possibly alter the information passing through them. Although

on-line distributed diagnosis schemes are available for identifying faults,

these schemes do not give 100 percent fault coverage unless the testing for

the diagnosis goes on for a very long time. Therefore, it is highly desirable

that these broadcast algorithms should work even when the identity of all

the faulty processors is not known. This is accomplished by delivering

multiple copies of the message through disjoint paths to every node in the

system. The receiving nodes can then identify the original message from the

multiple copies using a scheme which is appropriate for the fault model used,

like majority voting.

Although the broadcast primitive can be used to develop similar algo-

rithms for rectangular meshes, this paper presents algorithms for the wrapped

hexagonal mesh topology, since these are more complex than those for a

ACM TransactIons on Computer Systems, Vol. 9, No 4, November 1991.

376 . D, D. Kandlur and K. G, Shin

rectangular mesh. The hexagonal mesh network, which is pivotal in the

discussion that follows, is a regular, homogeneous graph in which each node

has six neighbors. It can be defined succinctly as follows.

A C-wrapped hexagonal mesh of size n is comprised of N = 3 n(n – 1) +

1 nodes, labeled from O to N – 1, such that each node s has six

neighbors [s + l]N, [s + 3n – l]N, [s + 3n – 2]~, [s + 3n(n – l)]N,
[s+3n2 - 6n +2]N, and [s + 3n2 – 6n + 3]~, where [a]~ denotes

amod b.

The graph can be visualized as a simple hexagonal mesh with wrap links

added to the nodes on the periphery. A simple hexagonal mesh looks like a

set of concentric hexagons with a central node, where each hexagon has one

more node on each edge than the one immediately inside of it. The size of the

hexagonal mesh is the number of nodes on any side of the hexagon. Figure la

shows a simple hexagonal mesh of size 3, while Figure lb illustrates the

wrapping scheme for the nodes. The diameter of a C-wrapped hexagonal

mesh of size n, which is the maximum distance between any two nodes in the

mesh, is n – 1. An analysis of some of the topological properties of this

network, and its comparison with other topologies, can be found presented by

Chen et al. [3]. The hexagonal mesh offers better connectivity, and thus

better fault-tolerance, than a rectangular mesh. Compared to the hypercube

topology, it has better scalability and the advantage of fixed-node degree.

Also, for small systems (less than 100 nodes), it has better connectivity than

a hypercube. A multicomputer with a C-wrapped hexagonal mesh topology,

called HARTS, is currently being built at the Real-Time Computing Labora-

tory, The University of Michigan. Mayfly [7] is another system which uses

the hexagonal mesh topology. The current version of HARTS has nineteen

nodes, to be configured as a hexagonal mesh of size 3. The processors will be

connected to the network through a custom-designed hardware component

called the Network Processor, which is under development. The Network

Processor uses the HARTS routing controller [8], which implements the

virtual cut-through-switching scheme, as the front-end interface to the inter-

connection network.

To the best of our knowledge, this is the first reported work dealing with

reliable broadcasting in point-to-point interconnection networks with virtual

cut-through switching. In other related work, Chou and Gopal have recently

presented some algorithms for linear broadcast routing [4]. The linear broad-

cast technique is similar in principle to the broadcasting primitive presented
here. These authors, however, concentrate on the problem of finding optimal

simple broadcast algorithms for general network topologies, and they have

shown that the general form of this problem is NP-complete. A multiple-copy

reliable broadcast algorithm for the hypercube topology is presented by

Ramanathan and Shin [17]. Algorithms for total exchange and optimal

broadcasting, again in hypercube multicomputers, can be found presented

by Fraigniaud [10] and Johnson and Ho [12]. We presented [3] a point-to-

point broadcast algorithm for the hexagonal mesh, which required n + 2

communication steps in a mesh of size n. That algorithm, which is based on

ACM TransactIons on Computer Systems, Vol 9, No 4, November 1991

Reliable Broadcast Algorithms for HARTS . 377

(a)

2 3 3 4 4 5
. .

. .

13

5 10:.,

.3

,$$”

14

....

2“

,. :.. ,

14 15 15 ib 16 17

17

6

6

(b)

Fig. 1. A hexagonal mesh of size 3 (E-3).

traditional store-and-forward switching, does not consider possible hardware
support for virtual cut-through switching, and it does not handle multiple-copy

broadcasts. Protocols for reliable broadcasting, mainly for broadcast net -

works, can also be found in the literature [1, 21. These protocols try to provide

ACM Transactions on Computer Systems, Vol. 9, No. 4, November 1991.

378 ● D D. Kandlur and K. G. Shin

a consistent delivery ordering among broadcast messages, but they do not

consider the tolerance of malicious failures.

This paper is organized as follows. Section 2 describes the proposed broad-

cast primitive and its implementation for HARTS. In Section 3 we develop an

algorithm for simple broadcasting based on this primitive. Broadcast algo-

rithms, which deliver multiple copies of the message through node-disjoint

paths to each node in the hexagonal mesh, are presented in Section 4. An

analysis of these algorithms and their comparison with other broadcast

algorithms is presented in Section 5. The paper concludes with Section 6.

2. THE BROADCAST PRIMITIVE

When we consider multicomputer systems with virtual cut-through switch-

ing, packet routing is typically handled by a front-end controller at each

node. The normal operation of the controller is to compare the packet

destination with the node address, and if they match, the packet is delivered

to the processor. Otherwise, it is forwarded to the next node in the route. In

many such systems dynamic routing is employed, in which case the controller

also has to choose the next node on the route. For example, in HARTS, the

possible routes of a message to the destination are described by three routing

tags (which take positive and negative values) corresponding to the distances

to be traversed in the six directions in the hexagonal mesh. The routing

controller examines the tags in turn to check whether there are any nonzero

values, and if so, whether the corresponding outgoing link is available. As

the message is being routed toward the destination, its routing tags are also

updated to reflect the new distance to the destination.

One of the principal advantages of this scheme is that the node processor

does not have to examine and process all the packets going through the node.

However, this advantage would be lost when broadcast messages are to be

delivered using a simple store-and-forward broadcasting scheme. In addition

to the larger delays caused by buffering, these messages could result in a

substantial load on the processors. To facilitate efficient broadcasting, it is

therefore necessary to support the operation at the link level. We propose to

use the RELAY primitive, shown below in the form of a procedure, to

accomplish this. This procedure shows the actions to be taken by the link

controller when a packet arrives. It is assumed that the packet header

contains the information required for handling broadcast messages like type,

distance, step, and tag. The type field distinguishes a BROADCAST packet

from an ordinary packet, while the distance gives the number of nodes to be

traversed in a particular direction. The step and tag fields are used by the
broadcast algorithms described later in this paper.

In the RELAY procedure, deliver corresponds to the delivery of the packet

by the link controller to the processor. The procedure also shows that the link

controller is responsible for updating the distance field in the packet header

before delivering or relaying the packet. The packet is relayed to the next

node in the same direction in which it arrived, i.e., on the link opposite to the

ACM Transactions on Computer Systems, Vol 9, No 4, November 1991

Reliable Broadcast Algorithms for HARTS . 379

input one, using send-on– link,

procedure RELAY
begin

receive _fiom _ link (packet, from _direction)
if (packet type = BROADCAST)

packet distance := packet distance – 1
deliver(packet)
if (packet distance # O)

send_ on_ link (direction = from _direction, packet)
end

else
normal packet handling

end
end

There are several reasons for choosing this primitive. First, it blends in

easily with the existing dynamic routing algorithms. Second, the deliuer and

the send_ on_ link steps can be accomplished concurrently using a “tee”

operation. Third, the operation is simple enough to be implemented at little

additional cost in the link controller. Furthermore, we will show that this

primitive can be used very effectively to develop broadcast algorithms for

mesh-connected multicomputers.

The implementation of the “tee” operation can be described in more detail

in the context of the HARTS routing controller [81. The controller contains

six receivers and six transmitters, corresponding to the incoming and outgo-

ing links, connected to a single bus. This bus, called the time-sliced bus, also

has interfaces to the packet buffer management unit in the node to accept

and deliver packets. The bus is time-slotted and each receiver is thus

guaranteed an access slot, which it uses to place the data that it receives on

the bus. Most of the intelligence in the routing controller resides in the

receivers. When a packet is received, the receiver examines the routing tags

in the packet header to check whether the packet has reached its destination.

If not, it checks the directions in which a packet can be forwarded and tries to

reserve a transmitter in one of these directions. Note that when shortest-path

routing [31 is used, the routing tags are such that at most two of the three

routing tags are nonzero. In this case, the packet can be forwarded in at most

two of the six directions. If the reservation succeeds, the transmitter accepts

any data that is placed on the time-sliced bus by the receiver and transmits

it. If the reservation attempts do not succeed, the receiver asserts a control

line to request the buffer management unit to store the packet for later

transmission.

To implement the RELAY primitive, the receiver operation can be modi-

fied to recognize packets of type BROADCAST. For this packet type, in

addition to attempting a reservation for the transmitter in the same direc-

tion, it also asserts the control line to store the packet. Therefore, when the

receiver places packet data on the bus, it can be forwarded to the next node

(send-on- link) and dropped to the node (deliver) simultaneously. If the

ACM Transactions on Computer Systems, Vol 9, No. 4, November 1991.

380 . D. D. Kandlur and K. G. Shin

o

7 0

0

Fig 2. Simple broadcast for an E-4 mesh (SBCAST).

reservation does not succeed, the packet is dropped to the buffer management

unit as usual. In practice, only one packet is delivered to the buffer manage-

ment unit even if the packet cannot cut through to the next node. The packet

header is marked appropriately to inform the network processor about the

status of the forward transmission. The HARTS routing controller is micro-

programmable and these modifications have been implemented by changing

the microprograms, without any change to the controller hardware.

3. SIMPLE BROADCASTING

The algorithm for simple broadcasting is shown below in the procedures

BCAST.INIT and SBCAST.RELAY. An example of its operation is given in

Figure 2 for a hexagonal mesh of size 4 (denoted by E-4). In this algorithm,

and in the algorithms described later in this section, the size of the hexagonal

mesh is n, and the directions referred to are labeled in a counterclockwise

sense, as illustrated in Figure 3a. With reference to the definition of the

C-wrapped hexagonal mesh, direction O corresponds to the link from a node .s

to the node [s + 11~.z_ ~. + ~, The term principal axis is used frequently in the

explanation of the algorithms. This refers to an imaginary line connecting

the center of the hexagon to one of the six corners. Since the C-wrapped

hexagonal mesh is a homogeneous structure, any node can be considered to
be at the center of the mesh, and the algorithms can be described by placing

the broadcasting node at the center. It is also useful to define directions

relative to the direction in which the packet arrived into a node, as in Fig-

ure 3b. Hence, left corresponds to the absolute direction (in + l)mod 6, right

corresponds to direction (in – l)mod 6, and so on.
The procedure BCAST.INIT is executed by the node which initiates the

broadcast, and is common to all broadcasting algorithms. This node plays no

further part in the broadcast process. In BCAST.INIT, the distance is set to

ACM TransactIons on Computer Systems, Vol 9, No 4, November 1991

Reliable Broadcast Algorithms for HARTS . 381

2

34 *o

. 5
4

(a)

UP
left

in
w

z fonvard

A
dam right

(b)

Fig. 3. Direction labeling.

n – 1 because this is the diameter of a hexagonal mesh of size n. The

send.packet function, which is also used in other algorithms, is a nonblock -

ing send and only initiates the transmission of the packet. Actual packet

transmission can proceed in parallel on the six outgoing links after the

initiation. The other procedure, SBCAST–RELAY, is not specific to a partic-

ular node and describes the overall operation for the system. It is activated

whenever a broadcast packet is received at a node. The actions taken by a

node are driven by the information that it receives in the broadcast packet. It

is noted that the step number, step, and the algorithm type are a part of the

state information that is contained in the broadcast packet. Moreover, the

information about the direction from which a particular packet was received

(denoted as from_ direction), is available to the receiving node. This is

indicated by the receive operation in SBCAST_RELAY. Based on this infor-

mation, the processor at an intermediate node can determine the next step in

the broadcast as per the SBCAST_RELAY algorithm. The algorithm termi-
nates after step 2 because packets with a step value of 2 do not branch any

further. Note that send_packet and receive are processor-level operations,

ACM Transactions on Computer Systems, Vol. 9, No 4, November 1991.

382 . D, D. Kandlur and K. G. Shin

distinct from the link-level operations shown in the RELAY primitive.

procedure BCAST.INIT
begin

packet.type := BROADCAST
packet.step := 1
send.packet(packet, direction = O,distance = n – 1)
send.packet(packet, direction = 1, distance = n – 1)
serzd_pack.et(packet, direction = 2, distance = n – 1)
send_packet(packet, direction = 3, distance = n – 1)
serdpczchet(packet, direction = 4, distance = n – 1)
send_packet(packet, direction = 5, distance = n – 1)

end

procedure SBCAST.RELAY
begin

receiue(packet, from_ direction)
if (packet. step = 1)

packet. step := 2
if (packet. distance # O)

direction := (from _direction + l)mod 6
send.packet(packet, direction, packet distance)

end
end

end

The correctness of this algorithm can be explained based on Figure 2,

which shows the paths taken by a broadcast packet. The broadcast packet is

delivered to all nodes on the six principal axes by the BCAST.INIT opera-

tion. The “distance” field in the broadcast packet header is decremented, as

shown in the RELAY primitive, at each intermediate node and at the

receiving node. Hence, a node on the principal axis which is m-hops away

from the source node sees a value of (n – 1 – m) in the packet. distance field.

In SBCAST_RELAY, this value is used in the forwarding, so the forwarded

packet travels a total distance of m + (n – 1 – m) = n – 1 from the source

node. Since the nodes on the periphery of the hexagonal mesh are n – 1 hops

from the center, the forwarded packet will reach the peripheral node.

4. MULTIPLE COPY BROADCASTS

While simple broadcasting is sufficient for many applications, it is suscep-

tible to message loss, possibly due to data corruption and/or link and node

failures. There are several applications which require more resilient broad-

cast mechanisms, like the clock synchronization algorithm described by

Ramanathan et al. [161. For this type of application, we have developed a
family of efficient and elegant algorithms, called k-relzable broadcasts, to

deliver k copies of a message to each node using node-disjoint paths. The

algorithms can also be used to guard against message loss in applications
which require reliable message delivery, in place of the conventional

acknowledgment-retry mechanism.
In the clock synchronization algorithm, for example, to tolerate m arbi-

trary (Byzantine) faults, it is necessary for a node to transmit 2 m + 1 copies

of its local clock to every other node in the system through disjoint paths.

ACM TransactIons on Computer Systems, Vol 9, No 4, November 1991

Reliable Broadcast Algorithms for HARTS . 383

From the values received, a node can determine the value that was sent by

the originator using the technique described by Yang and Masson [191.

Therefore, using a 5-reliable broadcast, it is possible to achieve clock synchro-

nization in a hexagonal mesh in the presence of up to two Byzantine faults.

In this application, and in other applications of reliable broadcasting, there

are two aspects to a reliable broadcast: the deliuery mechanism and the

reception mechanism. 1 The delivery mechanism consists of algorithms that

deliver multiple copies of a message to all other nodes, through disjoint

paths. It is noted that in the presence of faults, some of these copies may be

corrupted or lost. The reception mechanism involves algorithms which inter-

pret and assimilate information from the different copies received at a node.

These are strongly dependent on the fault model used. Different reception

mechanisms are discussed by Ramanathan and Shin [17]. These mechanisms

are not dependent on the hypercube topology, so they can also be used for the

hexagonal mesh.

This section presents the message delivery algorithms, starting from the

two-copy algorithm and progressing toward the six-copy version. The delivery

algorithms have a common broadcast initiation procedure, BCAST.INIT,

which was described in Section 3.

4.1 2-Reliable Broadcast (2-BCAST)

The algorithm 2-BCAST shown below delivers two copies of the message to

each node. Its operation is illustrated in Figure 4 for an E-4 mesh, and for

clarity, only the actions of nodes on two of the principal axes are shown. Also,

the links that wrap around are shaded and labeled. This algorithm is similar

to SBCAST.RELAY, except that the message is forwarded in two directions.

Using the explanation presented earlier for the simple broadcast algorithm,

it is observed that nodes which are not on the principal axes get two copies of

the message, as shown in the figure. Also, nodes on the extremities of the

principal axes (packet. distance = O) use the wrap links to send the message

to nodes on another axis. For example, in the figure, the wrap links (a) and

(b) are used to deliver messages to two other principal axes. This ensures

that nodes on the principal axes also get two copies of the message, and

through disjoint paths.

procedure 2-BCAST

begin

receiue(packet, from _direction)

if (packet. step = 1)

packet step := 2

if (packet distance # O)

send_packet(packet, direction = (from _direction + I)mod 6, packet. distance)

send_packet(packet, direction = (from _direction – l)mod 6, packet distance)

lThe terminology used here is taken from [111.

ACM Transactions on Computer Systems, Vol. 9, No 4, November 1991

384 . D. D. Kandlur and K. G. Shin

(a) \

(b)

(a)

0000 L
0000

Fig. 4. 2-BCAST for an E-4 mesh.

else

send.packet(packet, direction = (from_ direction – l)mod 6, distance = n – 1)

end

end

end

4.2 3-Reliable Broadcast (3-BCAST)

The 3-reliable broadcast algorithm can be explained through a transforma-

tion of the 2-BCAST algorithm. In going from 2-BCAST to 3-BCAST, it is

necessary to deliver one more copy of the packet to each node. This is

accomplished by arranging for the delivery of the third copy using the wrap

links from nodes that are diametrically opposite with respect to the broad-

casting node, There are two modifications required to the 2-BCAsT algo-

rithm, intermediate nodes on the principal axes now transmit the packet lefi

for n – 1 hops to reach nodes in the opposite sextant. Also, the extreme nodes

on the axes transmit the packet n – 1 hops to the left. The results of these

modifications can be seen in Figure 5, where the labels indicate nodes

connected by a wrap link.

procedure 3-BCAST
O. begin
1. receiue(packet, from_ direction)
2. if (packet. step = 1)
3. packet. step := 2
4. if (packet distance # O)
5. serzd.packet(packet, direction = (from_ direction + l)mod 6,

distance = n – 1)
6. serzd_pczcket(packet, direction = (from _direction – l)mod 6,

packet distance)
7. else
8. send_packet(packet, direction = (from _direction + l)mod 6,

distance = n – 1)

ACM TransactIons on Computer Systems, Vol. 9, No. 4, November 1991

Reliable Broadcast Algorithms for HARTS . 385

(a) (9) (f) (e)

\w.,

\ —--(d)

o (c)

00 J / /(b)

(d)

bb

\

‘(a)

o

0

(g) (f) (e)

Fig. 5. 3-BCAST for an E-4 mesh.

9. send.packet(packet, direction = (from _direction – l)mod 6,
distance = n – 1)

10. end
11. end
12. end

4.3 6-Reliable Broadcast (6-BCAST)

We choose to describe 6-BCAST before 4-BCAST and 5-BCAST because the

latter two can be treated as restricted forms of 6-BCAST. This algorithm,

which is presented in procedure 6-BCAST, creates the broadcast tree shown

in Figure 6. This figure shows the packets generated by 6-BCAST from a

single principal axis. As compared to 3-BCAST, this algorithm is more

complicated because it is necessary to use an additional forwarding step at

some of the nodes. We employ a tag field in the broadcast packet header to

ensure that only the relevant nodes will execute the additional step. This tag

field takes different values, and it is interpreted by the receiving node to

forward the packet in the appropriate direction (lines 26-38 of 6-BCAST).

Nodes on the extremities of the principal axes use tags ‘A’ and ‘B’ to forward

the packet to two sextants. This is shown in the first part of Figure 6, where

the labels mark nodes that are connected by wrap links. The immediate

neighbors of the broadcast source node, with packet. distance of n – 2, use

tags ‘C’ and ‘D’ to reach nodes on the adjacent principal axes. In the second

part of Figure 6, the graph is redrawn by repositioning the nodes reached by

wrap links. The initiating node is now at the bottom left corner of the
hexagon. The figure demonstrates that the broadcast tree generated is quite

regular, which is not immediately apparent from procedure 6-BCAST.

ACM Transactions on Computer Systems, Vol 9, No 4, November 1991

386 . D. D, Kandlur and K G. Shin

tag ,A*

Fig. 6, Packets generated in a 6-BCAST (from one direction).

It can be seen that the packets reach all the nodes in the hexagonal mesh

(except the initiator node). Similarly, the nodes also receive packets originat-

ing from each of the other five principal axes. Hence, each node receives six

copies of the packet. However, it is not obvious from the figure that these six

copies would be received through node disjoint paths. we will show later

that this is indeed the case. Given that the node degree of all nodes of the

hexagonal mesh is six, this is the maximum number of disjoint paths

possible. This algorithm shows that the hexagonal mesh is 6 connected in

terms of node connectivity.

procedure 6-BCAST
O. begin
1. recei~e(packet, from_ direction)
2. if (packet. step = 1)
3. packet step := 2
4. if (packet distance = O)
5. packet tag := ‘A’
6.

/“ tag= NONE for 4-BCAST and 5-BCAST */
send _packet(packet, direction = (from_ direction + l)mod 6,

distance = n – 1)
7. packet. tag := ‘B’ /“ this send is excluded for 4-BCAST “/
8. send_packet(packet, direction = (from_ direction – l)mod 6,

distance = n – 1)
9.

10.
11.
12.
13.

14.
15.

16.
17.

packet tag := NONE /“ this send is excluded for 4-BCAST and
5-BCAST * I

serzd_packet(packet, direction = f~om_direction, distance = n – 1)

else if (packet .distance = n – 2)

packet. tag := ‘C’

send_packet(packet, direction = (from_ direction + l)mod 6,

distance = n – 1)

packet. tag := ‘D’

serm_packet(packet, direction = (from_ direction – l)mod 6,

distance = n – 1)

packet tag := NONE

send_pczcket(packet, direction = (from_ direction + 2)mod 6,

distance = 1)

ACM 11-ansactmns on Computer Systems, Vol 9, No 4, November 1991

Reliable Broadcast Algorithms for HARTS o 387

18. send.packet (packet, direction = (from. direction – 2)mod 6,
distance = 1)

19. else
20. packet. tag := NONE
21. send.packet(packet, direction = (from–direction + l)mod 6,

distance = n – 1)
22. send.packet(packet, direction = (from _direction – l)mod 6,

distance = n – 1)
23. end
24. else if (packet. step = 2) AND (packet distance # O)
25. packet step = 3
26. case (packet.tag) of
27. ‘A’:
28. send.pczcket(packet, direction = (from .direction – l)mod 6,

packet distance)
29. ‘B’:
30. send _pcwket(packet, direction = (from .direction + l)mod 6,

packet distance)
31. ~c~:

32. send_packet(packet, direction = (from _direction + l)mod 6, 1)
33. ‘D’:
34. send_packet(packet, direction = (from _direction – l)mod 6, 1)
35. NONE:
36. end
37. end
38. end

4.4 5-BCAST and 4-BCAST

Both 5-BCAST and 4-BCAST can be realized as restricted forms of 6-BCAST.

In 5-BCAST, we eliminate the additional forwarding step for packets that

were tagged ‘A’ in 6-BCAST. we can accomplish this by setting packet. tag to

NONE on line 5 in procedure 6-BCAST, and by excluding the send operation

on line 10. The resulting broadcast tree in one direction is shown in Figure 7.

To get 4-BCAST from 5-BCAST, we further eliminate the send operation on

line 7 of 6-BCAST. The broadcast tree for 4-BCAST is shown in Figure 8.

4.5 Correctness of the Algorithms

The correctness of the simple broadcast algorithm can be shown using the

figure of the complete broadcast tree (Figure 2). This technique can also be

used for 2-BCAST to show that each node receives two copies, and the paths

used are node disjoint. For the more complicated algorithms like 6-BCAST,

we can show that all nodes receive the required number of copies using the
broadcast tree. To show that the paths are node disjoint, we consider the case

of 6-BCAST in some detail and examine the paths generated from the source

node to a particular destination node. There are two main cases to be

considered: (1) the destination node is on one of the principal axes, (2) the

destination node is between two principal axes. Figure 9 shows the paths in

these two cases.

Case 1. Path O is created by the BCAST_INIT operation. Paths 1 and 5

are created using tag ‘D’ and tag ‘C’ packets (lines 13 and 15), with

ACM Transactions on Computer Systems, Vol 9, No. 4, November 1991

388 . D. D. Kandlur and K. G. Shin

(9

=

(f) (e) (d)

o (c)

,c),lj’7’/ o J ()’”

(b)-
o

1°0”
* \oo

(9) 0(/(f) (e) (d) ~

\

Fig. 7. Packets generated in a 5-BCAST (from one direction)

%

(g (f) (e) (d)

o (c)

oo--- (b)

00

(c). o 0
Yoj ‘a)

(b)e
o

1°00
& \oo

(9) (Y/(f) (e) (d) O

\
000

\

\\

00 0

0 0 00

\/ \

/’\. j y,
\

Fig 8 Packets generated in a 4-BCAST (from one direction).

L
000

000 (b)

o
21

0

:; A

3
~— (a)

o

/

4
(c)

o 000

(a)

M
(d] 00 (c)

o 0 —(b)

o
21

‘%+-’

o
3

0

4500

\

(d)

000

00” , (a)

o

woo. /

Fig. 9. Duqoint paths m a 6-BCAST.

ACM TransactIons on Computer Systems, Vol 9, No. 4, November 1991.

Reliable Broadcast Algorithms for HARTS . 389

subsequent forwarding. Path 2 is created using a tag ‘A’ forwarding on lines

6 and 28, whereas path 3 is created on line 21. Path 4 is created by the send

operation on line 6.

Case 2. Paths O and 1 are created from the axes which bound the sextant

containing the destination node. They are created essentially by the opera-

tions on lines 21 and 22. Versions of these operations for nodes adjacent to

the sender (distance = n – 2) and at the end of the principal axes (distance =

O) can be found on lines 13,15 and 6,8 respectively. Paths 3 and 4 are

similar, and they are created from the axes opposite to the axes which bound

the sextant containing the destination node. The send operation on line 10

creates path 2. Path 5 is created using tagged forwarding on line 6.

We can see that the 6 paths generated in each case are node disjoint.

4-BCAST and 5-BCAST are restricted forms of 6-BCAST, so it follows that

the paths generated by these algorithms are also node disjoint. In 5-BCAST,

one sextant of the hexagon is left uncovered in each direction. From the

structure of the broadcast tree, we can see that a different sextant is left

uncovered in each direction. Hence, the number of copies received by each

node is five. Similarly, in 4-BCAST, the number of copies received is four for

the 4-BCAST, and the paths are disjoint.

We have also used an enumeration technique to independently verify these

algorithms. We developed a program which implements the broadcast algo-

rithms and generates broadcast trees for a fixed source node. From the

broadcast tree of the k-BCAST, this program traces the paths from the source

node to each node in the system. It then verifies that each node is visited by k

paths and that the paths are node disjoint. We used this program to verify

that the algorithms performed correctly, for mesh sizes2 from 3 to 15.

5. ALGORITHM ANALYSIS

The latency of a broadcast can be defined as the elapsed time between the

initiation of the broadcast and the delivery time of the last packet in the

broadcast. This latency can vary depending upon the system load and the

number of cut-through routes. To analyze broadcast algorithms, one metric is

the latency for the algorithm in the best case, that is, when the network is

otherwise idle. This latency can be computed based on a model that is

commonly used for point-to-point communications. The time required to

transmit a packet of length M can be modeled as S + rM, where S is the

packet set-up time and r is the transmission rate on the link. When a packet
cuts through a node, the delay experienced is essentially the time taken to

receive and examine the packet header, a small constant o!. Hence, if a

packet cuts through i nodes, the time elapsed between the start of transmis-

sion and the end of reception is S + r-M + id.

Consider the simple broadcast algorithm presented in Section 3. Assuming

that the network is otherwise idle, and the node can concurrently transmit

2A hexagonal mesh of size 2 is a complete graph of seven nodes, which can be treated as a special

case.

ACM Transactions on Computer Systems, Vol 9, No. 4, November 1991.

390 . D. D. Kandlur and K. G. Shm

messages on multiple links (as in the HARTS routing controller), the packet

can be delivered to all nodes on the principal axes in a single transmission.

The second step, which completes the operation, can also be accomplished by

a single packet transmission. Hence, in the best case, the broadcast operation

can be completed using two packet transmissions. The longest path in this

broadcast is n – 1 hops, which is the diameter of hexagonal mesh of size n,

and the packet is buffered and relayed only once on this path. Hence, the

number of nodes that are cut through is n – 3 and the best-case maximum

message latency for the broadcast is 2 S + 2 rM + (n – 3) d.

The latency for the other broadcast algorithms can be determined in a

similar fashion, using the number of message transmissions and the maxi-

mum path length. Note that the send. packet operations in all the algorithms

can be performed in parallel since they do not have any common links. The

paths traced by these algorithms do not result in any contention for the links

because each link has to carry at most one packet. Moreover, as mentioned

earlier, it is assumed that a node can transmit packets on more than one

outgoing link simultaneously, as is the case for the HARTS routing controller

[81. The latencies of these algorithms are shown in Table I. 2-BCAST and
3-BCAST have a minimum number of two message transmissions, whereas

the other three algorithms require three transmissions because of the addi-

tional forwarding step.

A comparison based only on the best-case latency is not satisfactory be-

cause the latency is very sensitive to the number of times that a message gets

buffered. In the C-wrapped hexagonal mesh, the RELAY primitive can also

be used to send a packet to all nodes using send.packet with distance set to

3 n(n – 1),since this traces out a Hamiltonian cycle along any one of the six

directions emanating from the broadcasting node. The latency for packet

delivery for this algorithm (called Algorithm A) would be S + rM + (3 n(n –

1) – 1)d in the best case. This shows that in the best case, for certain values

of S, r, and d, Algorithm A can perform better than SBCAST.

However, the probability of a packet getting buffered increases with the

length of the path, which results in a larger latency. For example, consider a

packet that is to be delivered to a node which is m hops away. If the packet

cuts through all the intermediate m – 1 nodes, the latency is S + rM +

(m – 1)d. However, if the packet gets buffered at i of the m – 1 nodes on the

path, the latency experienced would be (i + 1)(S + rM) + (m – 1 – i)d,

where the average queueing delay experienced before a packet is serviced is

included in the setup time S. The average number of times that a packet gets

buffered can be determined using the queueing network model, like the one
used by Ilyas and Mouftah [111 and Kermani and Kleinrock [131. Assuming

that the network is uniformly loaded and the utilization of each link is p, the

probability that a message gets buffered waiting for a link is p. For brevity,

we call this the probability of buffering for a link. Since the probability of

buffering for a link is independent of the probability of buffering for any

other link, the number of times that a message gets buffered follows a

binomial distribution. Hence, if a message has to traverse m links, the

average number of times that it will get buffered is mp.

ACM TransactIons on Computer Systems, Vol 9, No 4, November 1991

Reliable Broadcast Algorithms for HARTS . 391

Table 1. Latency for Different Broadcast Algorithms

Type

SBCAST

2-BCAST

3-BCAST

4-BCAST

5-BCAST

6-BCAST

Best-Case

2(s + ?’M) + (n – 3)d

2(s + Til’f) + 2(n – 2)d

2(s + TM) + 2(?Z – 2)U’

3(s + TM) + (n – 3)d

3(s + Tl!f) + (2TI – 5)d

3(S + TM) + (2n – 5)d

Table 11. Comparison of Simple Broadcast Algorithms

P SBCAST (no cut-through) Algorithm A

I 0.00 2(s + TM) (S+ TM) + 17d

0.05 2(s + TM) 1.85(S + TM) + 16.15d

n=3 0.10 2(s + TM) 2.70(S + TM) + 15.30d

0.15 2(s + TM) 3.55(S + TA4) + 14.45d

0.20 2(s + ?’M) 4.40(S + TM) + 13.60d

Based on this model, the average-case broadcast message latency for Algo-

rithm A is (1 + 1)(S + rlkf) + (3n2 – 3rz – 1 – 1)0!, where 1 = (3rz(n – 1) –

1) p. It is difficult to compute a similar expression for SBCAST because it has

many parallel transmissions and because the latency is determined by the

delivery time of the last (slowest) message. However, it is possible to compute

the latency for SBCAST assuming that the broadcast message gets buffered

at each intermediate node. A comparison of these two algorithms for different

values of p in a hexagonal mesh of size 3 is given in Table II. It is noted that

the setup time S is an increasing function of the utilization p because it also

includes the queueing delay. From this table, it is clear that SBCAST

outperforms Algorithm A as the utilization p increases. Also, we can show

that as n increases, SBCAST performs better even for very small values of p.

Simulation Results

In order to study the performance of our broadcast algorithms, we have

simulated these algorithms using a discrete-event simulator. This simulator

was originally developed by Dolter et al. [9] to study the behavior of virtual

cut-through in HARTS, and it models the routing hardware, its interface to

the buffer management unit, and the network processor of each node. It has

been modified and extended to implement the RELAY primitive in the

routing hardware and the broadcast algorithms in the network processor.

The simulator accurately models the delivery of each message by emulat -
ing the routing hardware along the route of a packet at the microcode level.

It also captures the internal bus access overheads experienced by packets as

ACM Transactions on Computer Systems,Vol 9, No. 4, November 1991.

392 . D. D. Kandlur and K G. Shm

they pass through an intermediate node. For example, when a transit packet

arrives at an intermediate node, the following sequence of events is initiated.

First, the receiver for the link on which the packet arrived waits for the

packet header to become available. It then examines the packet header to

determine the packet type. For a BROADCAST packet, the receiver tries to

schedule two events: one to reserve the transmitter in the same direction to

forward the packet, the other to the buffer management unit to receive the

packet. Lastly, the receiver schedules events to signal the completion of the

packet at this node. The simulator collects detailed statistics for different

types of messages. In addition to supporting exponentially distributed packet

lengths, the simulator can also use a discrete distribution of packet lengths

in which the user specifies different types of messages, their lengths, and the

probability of generation of each type of message.

One of the objectives of the simulation experiments was to get an estimate

of the performance of the broadcast algorithms under different network load

conditions. The traffic generated for the network was uniform across all the

nodes and consisted of two types of packets: regular and broadcast. At each

source node, packets were generated using a Poisson arrival process and they

were assigned type regular or broadcast with probability 0.999 and 0.001,

respectively. For the base nonbroadcast traffic, destination nodes were cho-

sen such that the probability of communicating with a node was inversely

proportional to the distance from the source. Both types of packets were

assigned lengths of 64, 128, and 512 bytes, with probability 0.3, 0.5, and 0.2,

respectively. The link load used for plotting is the ratio of the packet

generation rate to the peak 1/0 rate of the routing hardware. Currently, the

peak 1/0 rate that can be supported by the routing hardware is 4 MBytes per

second.

Figure 10 shows the latency of message delivery for the SBCAST algo-

rithm. The units for latency in this and other figures is hardware “clock

cycles”; in the current routing controller hardware this is 1.5 microseconds.

The three curves shown in the figure are for meshes of size 5, 7, and 9. It can

be seen that the latency increases with mesh size and with link load. For a

particular link load the increase is close to linear when we move from one

mesh size to another. The latency increases super-exponentially for link loads

beyond 0.5, indicating that the network is close to saturation at that point.

The reason for this “early” saturation is that link access overheads are not

included in the computed peak 1/0 rate. For example, the routing hardware

imposes a forced idle time corresponding to 8 bytes between the transmission

of successive packets on any link. These access overheads decrease the
effective throughput of the routing hardware, so saturation (for regular

messages) sets in for link loads greater than 0.7. Since the broadcast message

has to traverse multiple links, and the latency is determined by the last

packet to be delivered, the latency increases rapidly with increasing link

load.

Figure 11 shows the performance of the multiple copy broadcast algorithms

compared to the SBCAST algorithm for a hexagonal mesh of size 7. The

graph shows the percent increase in latency of the multiple copy broadcasts

ACM Transactions on Computer Systems, Vol 9, No 4, November 1991

Reliable Broadcast Algorithms for HARTS . 393

11111+ II lt’1~1
111111 11 II I jl
111111 II II I fl

moo —- J._J__J--J__J--J_ _J_-J-_J_-J-~J_ _
__J__-l--J- --i-_J--_l_-J _-.J--4______ -1-..

8000— --l - - -1- - -!- - 4 - -4--4-- 4--4--14–-44-4- -
moo —- -l--A---l--A.-A-- -4-- A--4-JA--4A-A- -

-I--J--J--J--J--J --J__;_,~J--amo —-,, + -: -,/
-7--7-_;__;- -sam — ;--;__;__74_;_ .d7---f:.-

UaO—’- ~ - - -: - - _: - - -[- __: -- J, - [z#+’.,./<-jIi’+ ----- --- -

Ill
-T--7__7_._; -- ;--;_,_My_:,=Z”- ‘,3000 — ~>./7-_;__

1111+ II

--:--:--~>”g>:;:”:f::$:<::<:- .-;--;--Zmo
~.-”l- I I

II ,m:--..o”-”” l.+ I I :$.::.&o *::
1

&fO+.~&”-”* I \ ~ ,0--@*dmI
lCQO —

_JZ;#__A<_J__J __J__J_-J__J__ _I__J__
ma —- O+._&:_l_ __l__4__J_ -J–-4––4--J--J- -

—-.-J?:@.4--4- -4--.4-- 4--4--4-- 4--4--4--
m —- X--2--I–--4---J-4 –--l__A--4-_A__ 4__
m — _J–-J--J__J__J__ J––J--J--J--J- -J--

500. I I 1 I I I I I I I
Om 00s 010 0 Is 020 025 030 035 040 04$ O.sa 0.55

I&km

Fig. 10. Performance ofsimple broadcast.

110

100
. .

!!
90

1

M*
I I I 1 1 I r 1 [+
11111 Ill

--;-__;___’ ~--

Ill
111

~-–-’r--;___’ ‘ b --—T---I-->-T

1111,” I

Ill 1.. 1--- ~---T---T---r –-l___r_--fi_ .A___
~--_J

./, , ,
I II

./ ,,fl

--;__-[__-+__-:__ ; ‘
,

I t I I A’
,---

,,, , ..,_--i

I

0
7
e

,~
000 00s 010 015 020 02s 030 0s 040 045 050

L& IAd

Fig. 11. Performance ofmultiple copy broadcasts (mesh size = 7).

ACM Transactions on Computer Systems, Vol 9,N0 4, November 1991

394 . D. D Kandlur and K G. Shin

.-

b’=’--+-H-+-Q-:---H-H--j= --;--:--:--;--:--:--:--:--j--:--:---*
&- –;;;;;;;;;; ;-i--i --i–-i––-i-–i--i–-i––i––3-–*––-

11, ,,, ,,, ,,
Ill, 11 l,,,
1!1, ;l, ,! ,

KCCa —- J–– J-- JJ–_J_J–– J-– J–_J–_J–_ J_- J___
—-A-–J--A–-A–- A-- A--> -- J–-J ––4-– A---

Km — -4--4 ––4-– 4-- 4–-4––4-– 4--4 -- 4--4..-.

7000 — -4—-4-—4-—4 __d__A-— 4-_ d__ J__<__<_ _

mm - A–– J-– J-- A–– J-– J-– J-- J-- J_ -J--A__
111, ,, ,,,

–1-–1--1--1–– ~-–~--~–-,––~ -–;..-;––

: :gmg:

X9 —:~-– _J: L--2--J-– A––_––_f–4f–4 ___
K9 — –-l- 4–_4__A_–4_–d __4__4–_4––4_ –4 ___

‘m —- --4 —-4 —-A —-4-—<-—4 -—4-—4__d __ 4__

em —– J-– J-- JJ– J–-J–– J ––J–– J-– J_- J– -l_ _.

m. I
Om Om 0,0 0,5 m au ~~ ~~ ~~ ~,, 03 us

Imklnd

c .sscAsTvl. slOfOd Fmd~(*sm=s)

Fig 12, Performance comparison of simple broadcast algorithms

compared to the SBCAST latency for different link loads. It is observed that

the percentage increases with increasing link load, showing that the latency

of multiple copy broadcasts increases more rapidly than SBCAST. Part of the

reason is that there are more messages to be delivered, and the latency is

determined by the slowest message. The cost of 4, 5, and 6 copy broadcasts is

quite close, because these three algorithms all use the wrap links to deliver

messages and have a long path length.

The other objective of the simulation is to study quantitatively the benefits

of using the virtual cut-through broadcast primitive. This is achieved by

comparing the performance of our SBCAST algorithm against an algorithm

which uses only store-and-forward packet switching. This algorithm, termed

SFBCAST, uses the same brc)adcast tree as SBCAST (see Figure 2). Two

performance metrics are used for the comparison: one is latency, and the

other is mean delivery time whlich is defined to be the average of the delivery

time of a broadcast message over all the nodes in the network. This second

metric is necessary because latency, which is defined to be the delivery time

for the last packet in the broi~dcast, does not consider the shorter delivery
times of other packets and may be skewed by large queueing delays on some

path. It is noted that the simulator does not count processing overhead in the

nodes, but ignoring this overhead this tends to favor SFBCAST since packets

which cut through do not incur the processing overhead in any case. This

means that in practice the SB!CAST algorithm would perform better, when

compared to SFBCAST, than what is shown in the simulations.

The latency of SFBCAST is substantially higher than that of SBCAST for

low link loads, but it increases more gradually with the link load. This can be

clearly seen in Figure 12, which plots latency of the two algorithms for a

ACM TransactIons on Computer Systems, Vol 9, No 4, November 1991

Reliable Broadcast Algorithms for HARTS . 395

I 1 1 I

90 — ---- ;–____;_____;__ ---;-+–-_;_–___

‘A1 I 1 10
-.-A LiMI.01
.-..-0 L&d. 021 ! I ‘ 0---0 Lb~”’‘{

m — ----+ ---– -+ –-– –-+-----+---–- +–
1 I 1 I
1 I 1 I

m — --—_ J, ___ __ ;___ __ ;___ __ ;____ _;_

I 1 t 1 1

u) — ---- ;_____J_____;_ ----1–––––J–
1 I I I ./” 1
1 I 1 1 ./ ,

s — ---- ;----- ‘~-----;_____ ‘z”:___;_____

1 1
>,

I ./” I
I I I

m — ---- J----–__J______/__ J_____;______
1 ,/”

I 1
1 I ,/ # ! /“”-’!

30 - ----+-—--- +---.+-+--- --..*.-”:”-—-+— ———--
1 I I I I

al
‘--- -:- --;;. f;;:.++”:::;i---::?- ‘-- ‘-

A“- II 1

10 —---- ~__&”:04:=-ef4 -----.4------!- -----

I d~ ~-m 1 I I
Qr::a - 1 ! 1 t

o w I I I I
3m 4m sm 6m 7m :m

- ..

----I

sari. of ~ SFBCAST rn SBM.

Fig. 13. Comparison of SBCAST and SFBCAST with varying mesh size

mesh of size 5. Figure 13 and 14 show the effects of varying the mesh size on

the relative performance of SBCAST and SFBCAST. Figure 13 plots the

percent increase in latency of SFBCAST over SBCAST for different link loads

and mesh sizes. This figure shows that the difference in latency reduces as

the link load increases, which is expected because the number of packets

which cut through reduces with increasing link load. For a fixed link load,

the difference in latency increases with increases in mesh size. The results of

comparing the average delivery time (Figure 14) are similar, except that the

percent difference is substantially higher in this case. These results reflect

the advantages of virtual cut-through switching over store-and-forward packet

switching.

6. CONCLUDING REMARKS

In this paper, we developed a broadcast primitive which is applicable to

interconnection networks with virtual cut-through switching. The primitive

is well suited for broadcasting in mesh-connected multicomputers, where a

simple broadcast can be achieved using this primitive with only two message

transmissions in the best case. We also presented a family of broadcast

algorithms based on this primitive, which deliver k (k = 1, ..., 6) copies of a

message through node-disjoint paths to each node in the hexagonal mesh.
The salient features of these algorithms are simplicity and the efficient use of

virtual cut-through. The algorithms are particularly relevant to real-time

systems, where the time overhead of identifying all the faulty processors

ACM Transactions on Computer Systems, Vol. 9, No. 4, November 1991.

396 . D D. Kandlur and K. G Shin

Fig.

Ian I I I 1 I
I I

t
110 ---- ; ----- ;-____! ~_–––– :----;!-----]

I 1 1

i

lm ---- ;_---- ;_ –___ 1
I 1

> --- __ ; __,> _;____ ___

I I ./” I

90 ---- ;___--;---–– ‘~----- $-- ___;_____ ~
1 1 ! ,,-1 ,,.4’

so — ---— <---- –; –____ ‘~- ––./”– ‘ ,. 1-- -
I I
I

m —---- ~ _____ ;----- ;+:”:-:;:?::::---
I I

~ I .“’
60 — --—— ;---– –;____& ,->’-’--;_–__,:___.

1

50 — --—_ ;-----:,/’:-..7”’4’:---,-.;:::--:---
I /# / ; ,~’ I ____] ___

a — --——
l---- ;a;..----a- ----1-

1
‘“ f2*=-_-:;_____; ;

m — ---- ;--.L” L”
.{ ..,.’ ,@

~----- ~--–
I I

,,/,.~ , ,
1

m
-;:-;i-

‘ 7~- 1-–--–;-____;–_ ___ ;___
.,

1 ,A -.-A L~.01

0’ , 0.-..-0 Lpd. ol
10— l-––--;–––––+ _––_7~. .Gjy4dd3

t 1 1 I I I

--

--

--

--

--

--

-m 3m 4m sm 6m 7m am
-b

h of A- Odrury T- SPBcMT w SBcAsr.

14. Average delivery time comparison with varying mesh size.

Fig 15. Broadcast tree for a wrapped rectangular mesh (in one direction),

on-line cannot be tolerated. Although the algorithms have been described

separately, the relay procedures for the six algorithms can be combined into a

single function which makes decisions based on the type of broadcast in

progress. We note that similar algorithms can also be developed for wrapped

rectangular meshes. The broadcast tree for a 4-reliable broadcast algorithm

ACM Transactions on Computer Systems, Vol. 9, No. 4, November 1991

Reliable Broadcast Algorithms for HARTS . 397

in a wrapped rectangular mesh is shown in Figure 15. It can be seen that this

tree is similar in structure to the 6-BCAST tree in Figure 6.

In HARTS, the RELAY primitive has been incorporated into the VLSI

routing controller chip. The broadcast algorithms will be implemented on the

network processor (NP) card, which is currently being developed. The NP has

hardware support for time-stamping messages, and one immediate applica-

tion of reliable broadcasting will be the establishment of a global time-base

for HARTS, based on the clock synchronization scheme described by

Ramanathan et al. [16].

ACKNOWLEDGMENT

The authors would like to thank P. Ramanathan, James Dolter, and Sunggu

Lee for their comments and suggestions on this work. Thanks also to the

anonymous referees whose comments led to significant improvements in the

presentation of this paper.

REFERENCES

1. BIRMAN, K. P. , AND JOSEPH, T. A. Reliable communication in the presence of failures,

ACM Trans. Comput. Syst, 5, 1 (Feb. 1987), 47-76.

2. CHANG, J.-M., AND MAXEMCHUK, N. F. Reliable broadcast protocols. ACM Trans. Comput.

Syst, 2, 3 (Aug. 1984), 251-273,

3. CHEN, M.-S., SHIN, K. G., AND KANDLUR, D. D. Addressing, routing, and broadcasting in

hexagonal mesh multiprocessors. IEEE Trans. Comput. C-39, 1 (Jan. 1990), 10-18.

4. CHOU, C.-T., AND GOPAL, L S. Linear broadcast routing. J. Algorithms 10, 4 (Dec. 1989).
491-517.

5. DALLY, W. J., AND SEITZ, C. L. The torus routing chip. J. Distrib. Syst 1, 3 (1986),

187-196,

6. DALLY, W. J., AND SONG, P. Design of a self-timed VLSI multicomputer communication

controller. In Proceedings IEEE International Conference Computer Design: VLSI in Com-

pufers (Boston, Oct. 1987), pp. 230-234.

7. DAVIS, A., HODGSON, R., SCHEDIWY, B., AND STEVENS, K. Mayfly system hardware. Tech.

Rep. HPL-SAL-89-23, Hewlett-Packard Corp., Apr. 1989.

8. DOLTER, J. W., RAMANATHAN, P., AND SHIN, K. G. A micropro~ammable VLSI routing

controller for HARTS. In Proceedings IEEE International Conference on Computer Design:

VLSI m Computers (Boston, Oct. 1989), IEEE, New York, pp. 160-163.

9. DOLTER, J. W,, RAMANATHAN, P., AND SHIN, K. G. Performance analysis of message passing

in HARTS: A hexagonal mesh multicomputer. IEEE Trans. Comput, C-40, 6 (June 1991),

669-680.

10. FRAIGNIAUD, P. Asymptotically optimal broadcast and total-exchange algorithms in faulty

hypercube multicomputers. Tech. Rep. 89-05, Ecole Normale Superieure de Lyon, 46, Allee

de Lyon, May 1989.

11. ILYAS, M., AND MOUFTAH, H. T. Towards performance improvement of cut-through switch-

ing in computer networks. Perform. Eual. 6, 2 (July 1986), 125-133.

12. JOHNSSON, S. L., AND Ho, C.-T. Optimum broadcasting and personalized communication in

hypercubes. IEEE Trans. Comput. C-38, 9 (Sept. 1989), 1249-1268.

13. KERMANI, P., AND KLEINROCK, L. Virtual cut-through: A new computer communication

switching technique. Comput. Networks 3 (1979), 267-286.

14. LAMPORT, L., AND MELLIAR-SMITH, P. M. Synchronizing clocks in the presence of faults. J.

ACM. 32, 1 (Jan. 1985), 52-78.

15. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generals problems. ACM Trans.

Program. Lang. Syst. 4, 3 (July 1982), 382-401.

ACM Transactions on Computer Systems, Vol. 9, No, 4, November 1991.

398 . D. D. Kandlur and K. G Shm

16 RAMANATHAN, P , KANDLUR, D D , AND SHIN, K G. Hardware-assisted software clock

synchronization for homogeneous distributed systems, IEEE Trans. Comput. C-39, 4 (Apr

1990), 514-524.

17 RAMANATHAN, P., AND SHIN, K. G Reliable broadcast inhypercube multicomputers, IEEE

Trcms Comput C-37, 12(Dec 1988),1654-1657

18. STEVENS, K, S. Thecommumcationf rameworkf ora distributede nsemble architecture AI

Tech. Rep 47, Schlumberger Research Laboratory, Feb 1986

19. YANG, C. L., AND MASSON, G. M. A distributed algorithm for fault diagnosis in systems

with soft failure. IEEE Trans Comput C-37, 11 (Nov. 1988), 1476-1480

Received August 1990; revised June 1991; accepted August 1991

ACM Transactions on Computer Systems, Vol 9, No 4, November 1991

