342

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 3, JUNE 1991

Shortest Path Planning in Discretized
Workspaces Using Dominance
Relation

Sungtaeg Jun and Kang G. Shin, Senior Member, IEEE

Abstract—Various forms of shortest path planning (SPP)
have been studied by numerous researchers. Although SPP is
generally regarded as a solved problem in 2D space, few of the
existing 2D solutions can be applied to 3D. Since many real-world
applications are based on 3D or higher space, this deficiency
severely limits the applicability of 2D solutions. In this paper,
we present a new method of partitioning the workspace using
rectilinear visibility in 3D or higher space. Unlike the case of 2D
space where the shape of a partition is a rectangle, the shape of
a partition in 3D or higher space is arbitrary. However, we can
prove the existence of dominance relations between the parti-
tioned regions. This relation is then utilized to efficiently solve
the SPP problem in 3D or higher space.

Key Words—Find path problem, L, and L, metrics, path
planning, rectilinear visibility, shortest-path planning, visibility
graph.

1. INTRODUCTION

NE of the main problems in achieving automatic task

scheduling is automatic path planning (APP) in the
presence of obstacles in the workspace. The applications of
APP are quite diverse, the most notable being automatic path
generation for mechanical manipulators [10], [12] and/or
autonomous vehicles [17]. Another important application is
automatic channel routing in VLSI design [13] and computer
networks [4]. In particular, the APP of mechanical manipula-
tors, known as robot motion planning, is a challenging task
due to the large number of degrees of freedom (DOF’s)
involved. Another factor to be considered for robot path
planning is the various costs associated with a path, such as
the length and safety of the path. In this paper, we develop a
new method for dealing with these costs in 3D or higher
workspaces.

APP usually deals with an object to be moved and a
workspace cluttered with obstacles. The goal of an automatic
path planner is to find a path for the object from an origin to
a destination without colliding with any of the obstacles while
optimizing a certain criterion function. Some of the most
widely used criteria are traveling distance [3], [11], clearance
from the obstacles [14], and a combination of distance and

Manuscript received September 1, 1989; revised August 9, 1990. This
work was supported by the U.S. Airforce Office of Scientific Research under
Contract F33615-85-C-5105 and by the National Science Foundation under
Grant DMC-8721492. A portion of this paper was presented at the 1990
IEEE International Conference on Robotics and Automation.

The authors are with the Department of Electrical Engineering and
Computer Science, The University of Michigan, Ann Arbor, MI 48109-2122.

IEEE Log Number 9144346.

clearance [16]. In particular, the APP that minimizes the
traveling distance is called the shortest path planning (SPP)
problem while the other APP’s are usually called the find
path (FP) problem.

The main difficulty in solving the SPP problem are the
various shapes of moving objects. The specific solution for a
specific shape usually does not apply to other shapes. To
remedy this problem, the configuration space approach (CSA)
was proposed in [11], [2]. In the CSA, the origin and the
destination are represented as configuration vectors, not as
Cartesian positions. Thus, a moving object is represented as
a point along with the forbidden configurations due to con-
straints, i.e., extended obstacles. As a result of the develop-
ment of CSA, many issues associated with the FP can be
resolved with the solution techniques developed for SPP.

The most popular 2D solution to the SPP hinges on the
visibility graph (VG). The VG method is based on the
premise that when two points in a plane are not visible from
each other, the shortest path always contains one or more
vertices of the obstacle in the plane. Following this premise,
the workspace is transformed into a graph in which the
distances between all pairs of mutually visible vertices are
precalculated. The optimal solution can then be obtained
using Dijkstra’s graph search algorithm [6]. Though the VG
is very useful in 2D, it is very difficult to use for 3D or
higher dimensional problems. Others [1], [15], [8] ap-
proached this problem by representing the free space in
different ways. These algorithms either have exponential
complexity or are heuristic.

In this paper, we introduce the L, visibility between two
points in a digitized workspace, based on which the workspace
will be partitioned. Previous attempts using L, metric either
are limited to 2D problems [17] or restrict obstacles to be a
certain type [9]. By partitioning the workspace, we only have
to search each partitioned region (of cells) instead of dealing
with each individual cell. Furthermore, we can derive domi-
nance relations between the partitions of the workspace and
utilize these relations to reduce the number of search steps
required.

The paper is organized as follows. Section II states the
SPP formally. In Section III, we define the concept of L,
visibility and demonstrate how it partitions the workspace. In
Section III-A, the properties of a partitioned workspace are
examined. Section III-B presents a graph representation of
the workspace based on which an SPP solution algorithm is
derived. Section IV presents an example and the simulation

1042-296X/91/0600-0342801.00 © 1991 IEEE

JUN AND SHIN: SHORTEST PATH PLANNING IN DISCRETIZED WORKSPACES

results. The paper ends with concluding remarks in Section
V.

1I. PROBLEM STATEMENT

When considering the problem of moving an object in a
workspace cluttered with obstacles, we want to find a path,
or determine a set of points, for the object to traverse from a
starting point (origin) to an end point (destination) without
colliding with any obstacle in the workspace. There are two
sources of difficulty associated with this problem: 1) an
infinite number of paths exist for each given origin—-destina-
tion pair, and 2) it is, in general, difficult to represent
obstacles of arbitrary shape in the workspace. One way of
circumventing these sources of difficulty is to divide the
workspace into a finite number of cells.! Such a division not
only reduces the infinite number of possible paths to a finite
number of paths, but also allows each obstacle to be repre-
sented by the set of cells it occupies. ’

Let the workspace be divided into / X m X n identical
cells. According to the CSA [11], the object to be moved can
be shrunk to a point by enlarging all of the obstacles in the
workspace. In what follows, cells are represented as
o, p,q,... if their locations need not be specified. How-
ever, if their locations need to be specified, they are repre-
sented as 0;;x, Pimn> Dabes - - - - When a sequence of cells
need to be specified, these cells are called v, v,,v;,....
Informally, the goal of the path planner is to find a path
formed by a sequence of neighboring free (unoccupied) cells
from the origin to the destination while minimizing a certain
path cost.

The most commonly used cost is path length. In a Eu-
clidean space E“, the L, distance between two points x =
(X, Xy, ..., xg)and y = (¥y, Va2, ..., ¥y) is defined as

dp(x’)’)=(|x|_Y1|p+ | X, =y | P+ -
+x,- vl ?)",

d.(x,y)=max (| x, -y,

where l <= p < ®

Though there exist an infinite number of L » metrics, only
three of them have significance for path planning: L, L,,
and L. The advantage of using the L, metric over the L,
or the L, metrics is its ability to describe the object’s
traversal distance. On the other hand, using the L, and L
metrics can improve the safety of the generated path. It
should be noted that the travel distance is less meaningful in
joint space while safety (i.e., the margin of tracking error) is
more important in the joint space, as compared to Cartesian
space.

We will limit our discussion to the L, metric, since, as
shown in [9], any problem in the L, -metric space can be
transformed into an equivalent problem in the L -metric
space with a simple transformation of the coordinate system.
In this paper, the cost of a path P, denoted by C(P), is
defined as the length of P measured in the L, metric.

'A cell is a square in 2D and a cube in 3D.

Xy = Yalseoos | Xa = yal)-

343

Furthermore, since all the cells are identical, the L, distance
between the centers of any two physically adjacent cells are
identical and will be treated as wunit distance. For the
purpose of this paper, two cells are said to be neighbors if
they are physically adjacent.

The path planning problem can now be stated formally as
follows: For any two given points x and y and a set & of
cells that are occupied by obstacles, we want to find a
sequence, P = vyv, ...v,, of neighboring cells such that

xev,, yev,, di(v, v) =1,v,¢0 forl<sisn-1

while minimizing n.

II1. PARTITIONING THE WORKSPACE

In this section, we will define the L, visibility between two
cells and introduce an equivalence relation that partitions the
workspace.

Definition I1: In an L, metric space, a cell v is said to be
visible from a cell w, denoted by vR w, if there exists a
sequence P = vgu; ...V, , , Of free cells spch that

Vo = Vs Vg o, w) = Ws di(v;_y,v;) =1
and
d,(vis va,w) = di(v,w) —i, 1 <i=d(v,w)

where d,(u, v) is the L, distance between u and v. Other-
wise, v is said to be not visible from w.

Definition 2: For any two adjacent cells, a set N =
{nf,n;,n}, n,,n} n;} is called the set of neighbor
operators if

ny(up) =vma=2l=i+1l,m=j,n=k

n;(vijk)=Ulmn=>l=i_1sm:j,n:k

n;(uijk) =y l=i,m=j,n=k-1

and a set O C N is called the orthogonal set of neighbor
operators if they always generate the neighbors in orthogonal
directions of a cell, e.g., {ny,n,,ns}.

Definition 3: For any two free? cells v and w in the
workspace, v is said to be visible from w if there exists an

orthogonal set O of neighbor operators such that
P =vyvy.. . vg0,w
where
Vo =V, Vg o = W, ;= n(v;_,) forsome neO

and O is called the generating operator set of P. The dual
of O, as denoted by O*, is the generating operator set of the
reverse sequence of P, i.e., vy, w)Va,w, w1 - - Yor

In other words, we can say that two cells are visible from
each other when there exists a path without running back and
forth between the two cells. Using the above definition of
visibility, the dominance relation between two sets of cells
are defined as follows.

%A cell is said to be free if it does not intersect any obstacle.

344

Rs R

(b

Partitioning of the workspace into regions and the dominance
graph.

Fig. 1.

Definition 4: For any two cells u and v in a workspace
W,u is said to dominate v, as denoted by u >_ v, iff
wRv—> wRu, vwe W. Similarly, for any two sets A and
B of cells in W, A is said to dominate B, as denoted by
A > B, iff for any ve B, 3ue€ A such that u >_ v.

Based on the dominance relation between cells, the equal-
ity relation is defined as follows.

Definition 5: For any two cells u# and v, u is said to be
equal to v, denoted by u ~_ v, iff ¥ >_ v and v >_ u.

Notice that the relation ~, is an equivalence relation,>
and its central importance is that it induces a partition of the
workspace. That is, the relation ~_ divides the workspace
into several sets of cells such that u € R(v) = S(u) = S(v),
where R(v) is a partition containing v and S(v), the set of all
the cells that are not visible from u. Such a set will hence-
forth be referred to as a region. Any two cells that belong to
the same region are visible from the same set of cells.
Similarly, when a cell is dominating another cell, the domi-
nating cell is visible from all the cells that are visible from
the dominated cell. Fig. 1 shows an 2D example of a
partitioned workspace. In Fig. 1(a), any cell in R, is visible
from any other cell in the entire workspace except for those
cells in Ry. Similarly, no cell in R, is visible from any other
cellin Rg U Ry U R,,. The dominance relation between the
regions are shown as a graph in Fig. 1(b).

There are several ways of obtaining regions. In the case of
the 2D space, the border of the regions is formed by project-
ing the edges of the obstacles along the x and the y direc-
tions, as shown in Fig. 1. The following procedure P1 is
used to determine the total number of cells visible from a
given cell. Since the total numbers of cells visible from two
equivalent cells are same, P1 can be used to partition the
workspace under the assumption that no two neighboring
regions have the same number of visible cells. (This assump-
tion can be relaxed trivially as we shall see below.) Infor-
mally, the procedure works as follows. All the cells visible
from a given cell v of the workspace are obtained and
expressed with an indicator vector I, i.e., I(x) = 1(0) if a
cell x is visible from v (not visible from v). Initially, all the
indicator is set to 0. Starting with a cell v of distance 0 from

31t is reflexive, symmetric, and transitive.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 3, JUNE 1991

v (i.e., itself), one can determine all the visible cells of
distance 1 from v. Using a recursion, one can then calculate
all the cells visible from v of distances 2,3, ..., K from v,
where K is the maximum possible distance between any two
cells in the workspace. In most cases, K is three times the
resolution of each axis. After determining all the cells visible
from a given cell v, the total number N(v) of cells visible
from v is obtained from the vector I.

Procedure P1

For every cell v in the workspace W
if v is a free cell

begin
initialize I(w) < O for all we W
Iv) <1
fori=1t0 K
begin
Generate D;(v) which is the set of cells of distance
i from v.
for every weDy(v)
I(w) < max I(u
ueD,;_(v)NDy(w)
end
N(v) < 3. I(w)
weW
end
end {P1}

The output N of P1 is a matrix that contains the total
number of cells visible from each cell v. According to P1, if
the number of cells visible from any two cells next to each
other is different, then the two cells belong to different
regions. It is possible that two cells have the same number of
visible cells even though they belong to two separate regions.
To handle this problem, it is necessary to use the following
post-processing. First, the output of P1 is stored into a file
and sorted in accordance with the N value and location of
each cell. The sorted data will be read in and grouped
together to form regions. Upon reading in the sorted data, all
the cells with the same number of visible cells form a list.
Initially, a region is assumed to contain only the first cell of
the list. Then, all the cells physically adjacent to the region
are deleted from the list and then added to the region. It is
necessary to go through the entire list again until no more
cells are added to the region. This procedure can be quite
time consuming if only one cell is added during each itera-
tion. That is, the worst case occurs when the last cell of the
list is added to the region during each iteration. However,
this does not happen as cell locations are also sorted. Simi-
larly, the next region is extracted from the remainder of the
list, and the procedure continues until the list becomes empty.
Once all the cells with the same number of visible cells are
grouped to form regions, the next data are read in and the
same procedure applied.

P1 cannot detect the boundary between two adjacent re-
gions when the total number of visible cells for the two
regions happens to be the same (see Fig. 2). Such undetected
boundaries can be easily recovered by extending some of the

JUN AND SHIN: SHORTEST PATH PLANNING IN DISCRETIZED WORKSPACES 345

D

An example of undetected boundaries.

[

Fig. 3. An instance of an FOB search.

detected boundaries. In Fig. 2, BC can be recovered later by
extending either AB or CD.

By partitioning the workspace based on the relation ~,
the path-planning problem can be divided into the following
two subproblems.

Subproblem 1 (Inter-Region): Find a sequence, P =
RyR\R, ... R R, of regions such that R, is the region
that contains the origin and R, the region that contains the
destination.

Subproblem 2 (Intra-Region): Find a path to traverse
within each region in the sequence found from Subproblem
1.

A. Properties of Partitioned Regions

Before describing the properties of a partitioned region, it
is necessary to define the following terms.

Definition 6: If a depth-first search can always find the
shortest path between two nodes without backtracking, it is
said to be free of backtracking (FOB).

It should be noted that a search can be either FOB or
independent of the search direction. Fig. 3 shows one in-
stance of FOB search. Let us consider some of the decision
points during the search of path between p and g. Without
any a priori knowledge, the search would start from p. The
search may proceed toward a or h. If a is chosen, any
subsequent search will end up with e or g and then fail.
Even if h is chosen, the subsequent search may fail by
choosing k instead of i as the next point. To remedy this
problem, many algorithms are based on the breadth-first
search [14], [5] or a best-first search [7], [6]. Hence, the

computational complexity of these algorithms is O(n?) for
2D and O(n®) for 3D, where n is the number of decision
points.

If the search started from g, there are still two directions
to choose from: one toward j and the other toward m.
However, in the case, both the subsequent search toward m
and that toward j find the shortest path between p and g
because the absence of backtracking guarantees the success of
the depth-first search for a shortest path, thus resulting in the
computational complexity O(n). With a discretization resolu-
tion of 100 x 100 for 2D (100 x 100 x 100 for 3D), use of
the dominance relation is shown to improve the search effi-
ciency by a factor of 2 for 2D (4 for 3D) when the time taken
to decide among several available directions is not consid-
ered.

If the search between certain two nodes is known a priori
to be FOB, search efficiency can be improved greatly. In
many cases, however, it is very difficult, if not impossible, to
know this before the actual search takes place. The following
lemma provides one useful instance of an FOB search.

Lemma 1 (Random-Path): For any two cells u and v
such that u >_ v, the shortest path between # and v is FOB
if the search started from v.

Proof: Let D,(v) be a set such that D, (v) =
{u]d(u,v) =k}, and w be a cell such that we D (v) N
Dy (. »y-1(#). If no such w exists, v is not visible from u.
However, this is impossible because v is always visible from
itself, and thus, v should be visible from u by the definition
of dominance. Thus, there always exists at least one cell, say
wy, such that w, € Dy(v) N Dy, ,y_(v). Since w; is visi-
ble from v, it is also visible from u by the definition of
dominance. That is, there always exists a cell w, such that

wyeD,(v) N Dy(w,) N Ddl(u.u)—2(u)'

Similarly, for any w;_,, there always exists a w;€ D,(w,_,)
such that w;€ D,(v) N Dy,) (v) for i =2,3,...,d(u,
v). |

Corollary 1: For any u and v such that u ~, v, the
shortest path between them is FOB regardless of the search
direction used.

According to Corollary 1, the subproblem Intra-Region
can be solved trivially, i.e., the shortest path between two
cells in the same region can be constructed by a depth-first
search. Furthermore, the shortest path between any two cells
with a dominance relation can be constructed by a depth-first
search without backtracking.

We now want to show how to determine the dominance
relation between regions and how to construct a path between
regions with a dominance relation. To determine the domi-
nance relation between regions, it is first necessary to under-
stand the shape of each region.

Theorem 1 (2D case); Let v and w be two orthogonal
neighbors* of a free cell u such that v ~, w. Then u ~_ v.

Proof: Since v, w € D,(u), there are four possible cases
to consider: v =ny(u), w=nyu); v=niw, w=

‘An orthogonal neighbor of a node is the neighbor obtained as a result of
applying an orthogonal operator to the node.

346

ny(u); v=n,(u), w=n3(u); and v=n;(u), w=
ny (u). Since one can prove the theorem in a similar way for
all of these four cases, it is sufficient to consider only one of
them; we have chosen the first case. That is, we want to
show both v>_ u and u >_v when v = n}(u) and w =
n3 (u).

Consider the case of v >, u first. Let r be any cell visible
from u; then there exists at least a sequence
U Uy . .. Uy, -7, of free cells by the definition of visi-
bility. Since u, € D (u), u, should be the neighbor of u in
the positive /negative direction of the x axis or the Y axis.

e When u, = n}(u), r is visible from v because U = v.
e When u, = n;(u), r is visible from w because u = w.
e When u, = n;(u), r is visible from v because there
exists a sequence vuu,u, . . . Ug u, ry—1"

When u, = ny, (u), r is visible from w because there
exists a sequence wuu,u, . .

“Uau, -1t

Therefore, any cell visible from u is also visible from either

vor w. Thus, v >_u,ie,v,w>, u v
Now we want to show # >_ v. Let p be any cell visible

from both v and w. Then there exists at least a sequence

P, = v, ... vy, »_1 P of free cells. By the definition of

visibility, there should be four possible generating operator
sets O of P,.

e When O = {n},n}}, uvvw,... Vayo, py—1 2 Will be
the shortest path from u to p because v = nt(u).
Hence, p is also visible from u.

e When O = {n}, n;}, uvvw,... Vg0, py—1 P Will be

the shortest path from u to p because v = ni(u).

Thus, p is also visible from u.

When O = {n;, n}}, there exists at least one sequence

WW Wy ... Wy, py—1 P Of free cells between w and p

because p is visible from w. Then, p can be reached

from u via the sequence uww,w, . .. Wa,(w, py—1 P be-
cause w = ny(u).

When O = {n_,n}}, if P, consists of the cells ob-

tained using the operator ny, then v, = u (because

there is a unique 7 (v) = u). Else let v, be the first cell
such that n_ (v, _,). Since v, _, is visible from w, there
exists a sequence P, = ww,w, ... w,v, of free cells
that can be obtained using the operator n; . Since
ny(w) =w = u, and thus uw, ... wovu,, ... Va,,
m-1p is a valid sequence for visibility, i.e., p is visible
from u.

Therefore, u >_ v. []

Theorem 1 states the important fact that the shape of a
region in 2D is always rectangular.

Corollary 2 (3D case): Let v, w, and x be three orthogo-
nal neighbors of a free cell u such that v ~, w and v ~c X.
Then u ~, v. Then u ~, v.

Corollary 3: In 2D space, there exists a rectangle that
contains all the connected cells in the same region but no
cells from other regions.

Corollary 4: In 3D space, there exists a rectangloid that
contains all the cells in the same region and may also contain
other embedded rectangloids.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 3, JUNE 1991

Fig. 4. Typical shape of a region in 3D.

Corollary 3 provides valuable information on the where-
abouts of neighboring regions in 2D. It should be noted that
neighboring regions of a region are always found alongside
its edges. Furthermore, the shortest path between two cells in
neighboring regions passes through the projection of one of
the two cells to an edge between the two regions. Any other
path that does not pass through the projection will have the
same or a longer length. Note that there are four edges in a
rectangle, and thus, there are at most four projections for
each region as some of its edges may be occupied by
obstacles. (See R in Fig. 1.)

Unlike in the 2D case, Corollary 4 implies a region with
an arbitrary shape (see Fig. 4) in the 3D case. This is due to
the fact that one orthogonal neighbor of a cell may belong to
a region different from the one that the other two® orthogonal
neighbors belong to. Due to the irregular shape of the region,
it is very difficult to represent a region in 3D. One method of
representing a 3D object is to enumerate its vertices, edges,
and surfaces. However, this representation method is not
attractive because of the difficulty in determining whether or
not a cell belongs to a certain region. Moreover, enumeérating
all the members associated with a region could be costly due
to the existence of a large number of cells in the region. The
following lemma provides an important property of such an
irregular region.

Lemma 2: Let v;j and v, be any two cells such that
Vijk ~¢ Vimp. For any cell v,,. such that min(i,/) <0 <
max (i, [), min(j, m) < p < max(j, m), min(k, n) < qg=<
max (k, n), v,,,Rv,;, implies v;;, >, Vopg-

Proof: For any cell u such that u% v, pq» there exists a
path P, = uw,w, ... Wd,(u, vy~ 1V0pq EEMETated by a set of
orthogonal neighbor operators. Since (Yu uRtv, g =
URV,) = Vi > Vo, let us suppose uRv; ;. Let w; be
the cell such that w;Rv,;,, and let n be a neighbor operator
such that n(w,, ;) = w; for some cell w, ,. Since VopaRV; ks
there exists a generating set O, of operators for a shortest
path P, from v,,, to v;;. Then {n} U O, is not a set of
orthogonal neighbors because u Rv, ;. Since v, ~. V),
and v,,,Rv, ., there exists a generating set O, for a short-
est path P, from v,,, to v;,,. Then, {n} U O, should be
an orthogonal set of neighbor operators because O, is the

>There are at most three orthogonal neighbors of a cell in 3D.

JUN AND SHIN: SHORTEST PATH PLANNING IN DISCRETIZED WORKSPACES 347

dual of O,. This implies that w;Rv,,,,, which contradicts
the fact that v, ~. v, Thus, uRv;;, and v, > v,,,. W

The above lemma implies that when v, ,, is not visible
from v, and v,,,,, it is completely isolated from the rectan-
gloid formed by v;;, and v,,,,. This is because all other cells
within such a rectangloid are dominated by v, and v,,,,,
and thus, the cells which are not visible from v;;; and v,,,,
are also not visible from all other cells in the rectangloid. In
other words, any cell v that is visible from both v, jk and
U,pq 18 located outside the rectangloid. Therefore, the short-
est path between v, and v,,, should contain at least one
cell outside the rectangloid.

Corollary 5: For the smallest rectangloid containing a
given cell u and for all the cells v such that v ~_ u,
uRw=u>_w for all cells w inside this rectangloid. Such
a rectangloid is called the rectangloid of dominance (ROD)
of u.

Since the shape of the region and/or ROD is a rectangloid,
it is sufficient to represent the member cells in the region
with the two extreme points (X ., Vmin> Zmin) and
(X max> Ymax> Zmax)- Whether a cell belongs to a region or not
can then easily be checked by comparing its location with
these two points or with ROD. These two points will hence-
forth be called the range of the region R and can be denoted
by 7nin(R) and . (R). Using this range, the cover relation
is defined as follows.

Definition 7: For any two regions R, and R,, R, is said
to cover R,, denoted by R, >R,, when

rmin(Rl) = rmin(RZ)’ rmax(RZ) = rmax(Rl)’

B. Workspace Representation

A workspace can be represented as a graph showing
dominance relations among its regions.

Definition 8: The workspace is represented as a digraph,
G = (V, E), where V is the set of regions and E is the set
of edges such that 3 an edge e from R, € V to R, e V if and
only if R,>R,.

There are two sources of difficulty to obtain the dominance
graph (DG): 1) it is difficult to check the dominance relation
between all pairs of regions due to the large number of
possible combinations, and 2) it is difficult to describe a 3D
region due to its irregular shape.

To circumvent these difficulties, a modified dominance
graph (MDG) is defined as follows.

Definition 9: The MDG is a digraph, MDG = (V, E’),
where V is the set of regions and E’ is the set of edges such
that 3 an edge e from R,eV to R,eV if and only if
R,>R,, R, # R, and if and only if there is no Re€ V such
that R, >R and R>R,.

Notice that an MDG contains partial information on the
dominance relation for a given workspace. Especially, E' =
@& for 2D as shown in Corollary 3. A similar example can
also be found in Fig. 3. Though R, dominates all other
regions in the workspace, it will not be shown in the MDG.
That is, many of the dominance relations may be lost in the
MDG. Using the MDG will make the computation somewhat

R, #R,.

o)

&

Y p i
(1800
Fig. 5. Generation of 3D regions.
DG
{10,0,0), (20,20,20) }
{10,0,0),(18,15,2) /\ {(19,0,0),(20,15,2)}

0 0] o] o}

{(8,6,2),(12,10,10}} ((8,0,10),(12,6,11)} {(8,10,11},(12,10,20)}
((8,6,0),(12,10,2)} {(12,6,10),(20,10,11))

{¢0,6,10),(12,6,11)} {(8,10,10),(12,20,11) }

MDG

{(0,0,0),(20,20,20)}

{(19,0,0),(20,15,2) }

{10,0,0), (18,

o]

.2 12,10,10
18,62, (12,10,100) ((8,0,10),(12,6,11)) {(8,10,11),(12,10,20)}

{(8,6,0),(12,10,2)} ((12,6,10),(20,10,11) }
{(0,6,10),(12,6,11) }

Fig. 6. DG and MDG.

((8,10,10), (12,20,11) }

inefficient as compared to DG (due to lack of full knowledge
of dominance relations), but will not degrade the quality
(length) of the path obtained. Fig. 5 shows an example
workspace with two obstacles and its partitioned version. The
partitioned workspace is converted into a DG and an MDG as
shown in Fig. 6. Notice that most of the dominance relations
in the DG are also given by the MDG except for those of the
two regions {(0,0,0), (18,15,2)} and {(19,0,0),
(20, 15,2)}. This is due to the limited range of the two
regions.

We have shown that a shortest path can be found via a
depth-first search when a dominance relation exists between a

348

Fig. 7. Projections of a search point.

Fig. 8. Regions separated by an obstacle outside their ROD’s.

given origin and destination pair. In some cases, however, no
dominance relation may exist between the origin and the
destination. Consider the problem of finding a shortest path
between two cells u and v such that # 3. v and v 3, u. Let
R(u) be a region containing the cell #. The shortest path
between u and v should contain at least a cell from one of the
regions next to R(u). Such regions will henceforth be called
bordering regions of R(u). The closest cell that belongs to a
bordering region of R(u) can be found by projecting u to its
borders. There exist at most four projections in 2D and six
projections in 3D because the shape of a region (and an
ROD) is rectangular (see Fig. 7). Suppose the shortest path
P(u,v) between u and v passes through R(w), one of
R(u)’s bordering regions, where w is the projection of .
Then one of the following cases is true:

1) w is visible from u.
2) w is not visible from u.
3) w is occupied by an obstacle.

In Case 1, P(u,v) can be obtained by concatenating
P(u, w) and P(w, v) in the L, metric. Note that P(u, w) is
a straight-line segment between u and w; otherwise, w
cannot be visible from «. Case 2 cannot be true since no cell
in R(w) can be visible from u# and R(w) is not next to
R(u).

Fig. 8 shows an example of Case 3. Among four projec-

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 3, JUNE 1991

tions a, b, c, and d of a cell u, b and ¢ are occupied by an
obstacle. Unlike with R(b), R(u) shares a border with R(c)
and the shortest path may have to pass through that particular
border. In such a case, we may have to find a replacement
cell xeR(c) for c¢ that is closest to u but not inside the
obstacle. Finding such a cell may be difficult as, in many
cases, such a cell is not unique in 3D. It should be noted that
we need a replacement for ¢ only when the shortest path
should pass through the border of R(w) and R(c). For
example, it is not necessary to find a replacement for ¢ when
the destination is e as the shortest path can pass through d.
On the other hand, the shortest path between u and f should
pass through the common border of R(u) and R(c). This is
the case when R(u), R(c), and R(f) are separated by
obstacles that are located completely outside R(u) U R(c) U
R(f). Such obstacles do not interfere with the path between
u and f and can thus be ignored. In other words, the
construction of P(u, f) is FOB when starting from u.

The following algorithm constructs a shortest path between
u and v for the general case. Informally, after initialization,
the algorithm examines the MDG to see whether there exists
any dominance relation between the current cell (initially, the
origin) and the destination. If there is, the algorithm con-
structs the path using depth-first search. Otherwise, a set T
of projections of the current cell are obtained. For each
member of T, check whether it is occupied by an obstacle or
not. If it is occupied, check whether construction of a path
between the destination and the current cell is FOB or not. If
so, the algorithm stops after constructing the path. Other-
wise, that projection is deleted from T, the remaining mem-
bers of T are added to S, the set of cells yet to be examined,
and the best call is added to U, the set of examined cells.
Then we choose the most attractive cell (the closest cell to the
destination) in S as the current cell, and the procedure
repeats itself until path construction is completed or S be-
comes empty. What we said above can be summarized in
algorithm form as follows.

1) Let Best:= u, P(u, Best) =nil, S:= @, T:= &
and U: = J.
2) If Best >_ v then construct P(Best, v) and go to Step
8.
3) If v >, Best then construct P(Best, v) and go to Step
8.
4) T:= {Projections of Best} — S. For every we T,
If w is occupied by an obstacle then try to construct
P(Best, v)
using depth-first search.
If path construction is successful then go to Step 8.
Else T:= T — {w}.
Else P(u, w):= concat (P(u,|current cell),
P(Best, w)). -
5) S:=SUT,S:=S — {Best} and U: = UV { Best}.
6) Let Best be such that min g, s(length(P(u, Best)) +
d,(Best, v)).
7) Go to Step 2.
8) P(u, v): = concat (P(u, Best), P(Best, v)).

The computational complexity from Step 2 to Step 4 is

JUN AND SHIN: SHORTEST PATH PLANNING IN DISCRETIZED WORKSPACES

Fig. 9. Various shapes of obstacles.

O(n) where n is the resolution of the workspace, i.e., the
number of cells in each axis. As the algorithm stops when
either path is found or S is empty, the maximum number of
iterations from Step 2 to Step 5 occurs when S is empty.
That is, the maximum number of iterations is identical to the
total number of regions m, and the overall complexity
becomes O(mn). Since the total number of regions can be as
high as the total number of cells (i.e., m = O(n?)), the
overall complexity can be as high as O(n*). This overall
complexity is deceiving as the total number of regions is
much smaller than the total number of cells (i.e., m < n3).
Since ROD’s, rather than individual regions, are searched,
search efficiency is also improved.

IV. EFFECTS OF OBSTACLE SHAPES

In this section, we will discuss various shapes of obstacles
and their effect on the fragmentation of the workspace and
present simulation results. In general, a rectilinear surface of
an obstacle partitions a workspace into large regions while a
diagonal surface of the obstacle generates many small re-
gions, i.e., fragmentation. In particular, the worst-case frag-
mentation occurs when there are several obstacle surfaces
such that Ax+ By+ Cz+ D=0 for |A| =|B| =
| C| = 1. An example obstacle of this type can be seen in
Fig. 9, in which there are four different shapes of obstacles:
1) diamond shape, K, and K ; 2) pyramid shape, K; and
3) rectilinear shape, K.

Upon placing these obstacles in the middle of a workspace
discretized into a 20 X 20 X 20 grid, we have obtained the
results in Table I. The obstacle K , causes the most fragmen-
tation as there is no rectilinear edge, and slopes of the
surfaces are arranged to be very close to 1. Kz has a shape
similar to K, except that both the top and bottom points are
stretched by six times. The proposed partitioning, performed

349
TABLE 1
STATISTICS OF WORKSPACE WITH VARIOUS SHAPES OF OBSTACLES
Obstacle Ky Kp K,+K:. K, +Kp
Total Number of Regions 331 218 523 157
Size of the Largest Region 1657 780 1657 1141
Size of the Smallest Region 1 1 1 1
Maximum Level of Dominance 2 3 3 3
Number of 1-Cell Regions 9% 52 247 27
Average Number Region Searched 3.3 2.7 4.2 2.4

on a Sun 3/280,° supports the intuition that the obstacle
containing K , exhibits the worst fragmentation. Though the
number of regions generally increases with the number of
obstacles, this number actually decreased with the existence
of rectilinear obstacle K. The difference between K, and
K 5 can be explained by the fact that digitizing a workspace
has the same effect as approximating it with rectangular
walls. Though K is much larger than K ,, many of Kj’s
surfaces are close to being rectilinear surfaces as the slope of
the original surface has much larger and/or smaller than 45°
with respect to the reference axis.

Using the partitioned workspace data, paths between 1000
randomly selected origin-destination pairs have been con-
structed. All cells are assumed to have an identical probabil-
ity to become a destination or an origin. On the average, the
number of regions searched is approximately 1% of the total
number of regions. The fragmentation has little effect on the
search, since most of the small regions rarely becomes a
destination and/or an origin. During the search, most small
regions are bypassed as we search large regions first when
there are several regions with the same estimated distance to
the destination. The average search time is almost negligible
(less than 1 s), once the workspace is partitioned. This
number would increase sharply if all regions are assumed to
have the same probability of becoming an origin or destina-
tion. However, it is impractical to assume that two regions
consisting of one cell and 1000 cells, respectively, have the
same probability of becoming an origin/destination.

V. CONCLUSION

In this paper, we presented a new method of partitioning
the workspace using L, visibility. It was shown that the
optimal path with respect to L, metric between two parti-
tioned regions can be obtained easily if a dominance relation
exists between them. When no such relation exists between
the origin and destination, we have presented an O(mn)
algorithm. Though the number of regions can be fairly high
with diagonal surfaces, it was shown that only 1% of the
regions are searched before constructing a path. Using MDG
in place of DG has little effect on the search as there is not
enough room for improvement in search efficiency. It should
be noted that using MDG will not degrade the quality of path,
i.e., the length of a generated path. In fact, partitioning a
workspace may be the source of efficiency as MDG only
contains partial information on dominance relations. Though
the workspace with polyhedral obstacles are regarded as a

®The Sun workstation is running under SunOS Release 3.5. Each example

has taken approximately 3000-4000 s of user time (150-170 s of system
time) for the partitioning algorithm.

350

more general solution, many workspace configurations are
obtained in digitized form, and our algorithm provides a very
efficient solution in such an environment.

One area needing improvement is the algorithm to obtain
the region. The current algorithm is somewhat inefficient
with O(n®) complexity. However, in many applications, the
workspace remains static and one needs to calculate the
regions only once.

This paper focused on the SPP in 3D. Unlike other ap-
proaches, our method does not depend on any particular
geometry of the workspace and obstacles. Since each region
is represented with two extreme points or inequality predi-
cates, our algorithm can be extended to k=4 D space
without much difficulty.

REFERENCES

[11 R. A. Brooks, ‘““Planning collision-free motions for pick-and-place
operations,”” Int. J. Robotics Res., vol. 2, pp. 19-44, 1983.

[21 R. A. Brooks and T. Lozano-Perez, ‘‘A subdivision algorithm in
c-space for findpath with rotation,”” IEEE Trans. Syst. Man Cybern.,
vol. SMC-15, pp. 224-233, Mar. 1985.

[3] L. P. Chew, ‘‘Planning the shortest path for a disc in o(n? log n)
time,”” in ACM Proc. Symp. Computational Geometry, June 1987,
pp. 214-220.

[4] J. Davis and S. Tufekei, ““‘A decomposition algorithm for locating a
shortest path between two nodes in a network,” Networks, vol. 12,
pp. 161-172, 1982.

(5] P. DeRezende, D. Lee, and Y. Wu, ‘‘Rectilinear shortest paths with
rectangular barriers,”” in ACM Proc. Symp. Computational Geome-
try, 1985, pp. 204-213.

[6] E. W. Dijkstra, ‘‘A note on two problems in connection with graphs,”’
Numerische Math., vol. 1, pp. 269-271, 1959.

[7) S. Kambhampati and L. S. Davis, *‘Multiresolution path planning for
mobile robots,” IEEE J. Robotics Automat., vol. RA-2, pp.
135-145, Sept. 1986.

[8] O. Khatib, ‘‘Real-time obstacle avoidance for manipulators and mobile
robots,”” in Proc. IEEE Int. Conf. Robotics Automat., Mar. 1985,
pp. 500-505.

[9] D. T. Lee and C. K. Wong, ““Voronoi diagrams in L,-(L-) metrics
with 2-dimensional storage applications,”” SIAM J. Comput., vol. 9,
pp. 200-211, 1980.

[10] T. Lozano-Perez, ‘‘Automatic planning of manipulator transfer move-
ments,”” IEEE Trans. Syst. Man Cybern., vol. SMC-11, pp-
681-698, 1981.

{11] —, *‘Spatial planning: A configuration space approach,”” IEEE
Trans. Comput., vol. 32-2, pp. 108-120, Feb. 1983.

[12] J. Luh and C. Lin, ‘‘Approximate joint trajectories for control of
industrial robots along cartesian paths,”” IEEE Trans. Syst., Man
Cybern., vol. SMC-14, pp. 444-450, 1984.

[13] A. Mirzaian, ‘‘Channel routing in VLSI,” in Proc. ACM Symp.
Theory Comput., 1984, pp. 101-107.

[14] C. O’Dunlaing and C. K. Yap, ““The voronoi diagram method
motion-planning: I. The case of a disc,” J. Algorithm, vol. 6, pp.
104-111, 1985.

IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 7, NO. 3, JUNE 1991

[15] B. Schachter, ‘‘Decomposition of polygons into convex sets,”” IEEE
Trans. Comput., vol. C-27, no. 11, pp. 1078-1082, Nov. 1978.

[16] S. H. Suh and K. G. Shin, ‘‘Robot path planning with a weighed
distance-safety,”” in Proc. 26th Conf. Decision and Control, 1987,
pp. 634-641.

[17] C. Thorpe, ‘‘Path relaxation: Path planning for a mobile robot,”’ in
Proc. Nat. Conf. Artificial Intell., Aug. 1984.

Sungtaeg Jun received the B.E. degree in 1977
from Seoul National University, Seoul, Korea, and
the M.S. degree in 1983 from the University of
Detroit, Detroit, MI. He is currently working to-
ward the Ph.D. degree in the Department of Elec-
trical Engineering and Computer Science at the
University of Michigan, Ann Arbor. His current
research interests include CAD/CAM, computa-
tional geometry, and computer graphics.

Kang G. Shin ($°75-M’78-SM’83) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea, in 1970 and the
M.S. and Ph.D. degrees in electrical engineering
from Cornell University, Ithaca, NY, in 1976 and
1978, respectively.

From 1978 to 1982, he was on the faculty of the
Rensselaer Polytechnic Institute, Troy, NY. He
joined The University of Michigan, Ann Abor, in
1982, where he is currently a Professor of Electri-
cal Engineering and Computer Science and chairs
the Computer Science and Engineering Division. He has held visiting
positions at the U.S. Airforce Flight Dynamics Laboratory; AT&T Bell
Laboratories; the Computer Science Division within the Department of
Electrical Engineering and Computer Science at the University of California,
Berkeley; and the International Computer Science Institute, Berkeley. In
1985, he founded the Real-Time Computing Laboratory, where he and his
colleagues are currently building a 19-node hexagonal mesh multicomputer,
called HARTS, to validate various architectures and analytic results in the
area of distributed real-time computing. He has authored/coauthored over
180 technical papers (more than 70 in archival journals) in the areas of
fault-tolerant computing, distributed real-time computing, computer architec-
ture, and robotics and automation.

Dr. Shin received the Outstanding IEEE TRANSACTIONS ON AUTOMATIC
ConTroL Paper Award for a paper on robot trajectory planning in 1987. In
1989, he received the Research Excellence Award from The University of
Michigan. He served as the Program Chairman of the 1986 IEEE Real-Time
Systems Symposium (RTSS), the General Chairman of the 1987 RTSS and
the Guest Editor of the IEEE TRANSACTIONS ON COMPUTERS August 1987
special issue on real-time systems. He currently chairs the IEEE Technical
Committee on Real-Time Systems, is a Distinguished Visitor of the IEEE
Computer Society, and is an Area Editor of the International Journal of
Time-Critical Computing Systems.

