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Abstract 
In a distributed real-time system, temporary uneven task 

arrivals among the nodes may cause some tasks to miss their 
deadlines even if the overall system has the capacity to meet the 
deadlines of all tasks. In this paper, an effective load sharing 
(LS) scheme is proposed as a solution to this problem. 

Upon arrival of a task at a node, the node determines whether 
or not it can complete the task in time under the minimum- 
laxity-first-served policy. If the task cannot be guaranteed or 
if guarantees of some other tasks are to be violated due to the 
insertion of this task into the existing schedule, the node looks 
up the list of loss-minimizing decisions, and determines the 
best node among a set of nodes in its physical proximity, called 
its buddy set ,  to which the task(s) may be transferred. This 
list of decisions is periodically updated using Bayesian decision 
analysis and prior/posterior state distributions. These proba- 
bility distributions are derived from the information collected 
via time-stamped state-region change broadcasts within each 
buddy set. 

The performance of the proposed scheme is evaluated via 
simulation along with five other schemes. The  proposed scheme 
is shown to outperform all but perfect LS scheme in (i) meeting 
task deadlines and (ii) tolerating the delays in state-information 
collection and task transfer. 

1 Introduction 
In a distributed real-time system, task arrivals may tem- 

porarily be uneven among the nodes and/or the processing 
power may vary from node to node, thus making some nodes 
temporarily overloaded while leaving others underloaded/idle. 
This calls for an effective method that enables underloaded 
nodes to share the loads of overloaded ones. 

Load sharing (LS) in a distributed real-time system is differ- 
ent from that in a general-purpose system in that the latter tries 
to  minimize average task response time, whereas the former is 
intended to minimize the probability of failure to complete & 
real-time task in time - this was termed the probability of dy- 
namic failure, Pdyn, in [I]. Upon arrival of a real-time task, 
each node determines whether or not it can complete this task 
in time. If it can, the node will execute the task locally; oth- 
erwise, some other ‘capable node’ will be chosen to execute the 
task [2]. By ‘capable node,’ we mean a node with unused re- 
sources enough to complete transferred-in task(s) in time. As 
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was discussed in [2], LS in a distributed system is dictated by 
two basic policies: the transfer policy for determining when to 
transfer a task, and the location policy for determining where to 
transfer the task. In the context of real-time applications, the 
transfer policy determines whether or not a task can be guar- 
anteed locally, and the location policy determines which other 
node is most likely to guarantee the task to be transferred. 

According to the properties of these two policies, LS schemes 
can be classified into three categories: deterministic, probabilis- 
tic and dynamic/adaptive. Both deterministic and probabilistic 
approaches do not use the state information, and thus, cannot 
react to dynamic situations. By contrast, an adaptive approach 
uses state information for their location policy. The state of a 
node may be the number (or queue length, QL), or the cumula- 
tive task execution time (CET), of tasks queued for execution 
on the node, the number and type of available resources, or a 
function or combination thereof. The  node makes LS decisions 
based on the information collected via either periodic/aperiodic 
state broadcasting [3] or state probing or bidding [4, 5 ,  61. 

Because an adaptive approach can adapt itself to 
dynamically-changing conditions, it is naturally expected to 
outperform non-adaptive approaches in meeting task deadlines. 
However, the required state probing/broadcasting could incur 
significant communication overheads, thus delaying the execu- 
tion of tasks to be transferred. Moreover, the collected state 
information may be out-of-date due to the delay in collecting 
it. That is, a node’s observed states of other nodes may be dif- 
ferent from their true states at the time of making LS decisions. 
This difference often degrades the performance of adaptive LS 
as was analyzed in [5, 61. 

To reduce the performance degradation caused by the de- 
lays in state collection and/or task transfer, we propose a new 
LS scheme using Bayesian decision theory as well as the con- 
cept of buddy sets, preferred lists, and state-change broadcasts 
in [3]. The basic ideas used here will be detailed in Section 
2. Moreover, CET, instead of the commonly used QL,  is used 
as the state of each node, since the former is more adequate 
for real-time applications. Using several performance metrics, 
we comparatively evaluate the proposed scheme along with five 
other schemes: no LS; LS with state probing, focused address- 
ing and random selection; and perfect LS. As the simulation re- 
sults indicate, the use of Bayesian analysis significantly reduces 
the performance degradation caused by the delays in collect- 
ing state information and transferring tasks - which, despite 
its importance, is seldom addressed in literature except for the 
authors of [5, 61 who analyzed the undesirable effect of commu- 
nication delays without proposing any means to alleviate the 
problem. 



The rest of this paper is organized as follows. The basic 
ideas of the proposed scheme are described in Section 2. The 
Bayesian decision model used is presented in Section 3. How 
both the components of the Bayesian decision model and the 
concepts presented in [3] can be accommodated into our LS 
scheme is also described there. Section 4 describes how each 
node constructs prior/posterior probability distributions, and 
updates loss-minimizing decisions. In Section 5 ,  we evaluate 
via simulation the performance of the proposed LS scheme along 
with five other schemes. The paper concludes with Section 6. 

2 The Proposed Scheme 
In order to reduce the overheads associated with state collec- 

tion and task transfer, the LS scheme in [3] requires each node to 
collect and maintain the state information of only those nodes 
in its physical proximity, called a buddy set.  When a node can- 
not guarantee a locally-arriving task, only those nodes in its 
buddy set are considered for transferring this task. In [3] four 
state regions determined by three thresholds of QL are used to 
characterize the workload of each node: underloaded, medium- 
loaded, fully-loaded, and overloaded. A node will broadcast the 
change of state region to the nodes in its buddy set only when 
it switches from underloaded to fully-loaded and vice versa. 
Based on the topological property of the system, each node or- 
ders the nodes of its buddy set into a preferred list such that a 
node is the k-th preferred node of one and only one other node, 
where k is some integer [3]. When a node is unable to guarantee 
a task, it will transfer the task to the first ‘capable node’ found 
in its preferred list. That is, the preferred lists are used as an 
effective means of selecting a receiver among several possible 
candidate nodes while minimizing the probability of more than 
one overloaded node simultaneously sending tasks to the same 
underloaded node. 

Communication delays may still occur and thus degrade sys- 
tem performance unless the size of buddy set is kept very small, 
in which case the LS capability of the whole system may not be 
fully utilized. Thus, Bayesian decision theory is used to counter 
the communication delay problem. 

Fig. 1 shows the actions of the scheduler on each node. Those 
tasks already queued at  a node are sorted by their laxities and 
executed on a minimum-laxity-first-served basis. (Note that 
the laxity of a task is defined as the latest time a task must 
start execution in order to meet its deadline.) Upon arrival of 
a real-time task with laxity l at a node, the scheduler checks 
if the CET (unlike in [3] where QL was used instead) on that 
node contributed by those tasks with laxity 5 -! is less than, or 
equal to, l .  If it is not, the new task must be transferred out, 
and the node’s task queue remains unchanged; if it is, the new 
task is inserted into the task queue, and if this insertion leads to 
violation of existing guarantees, those tasks whose guarantees 
are violated need to be transferred to other capable nodes. 
K state regions obtained from K - 1 thresholds, THI ,  

TH2, ..., T H K - ~ ,  are used to describe the workload of each 
node.Each node will broadcast a time-stamped message, in- 
forming all the other nodes in its buddy set of a state-region 
change whenever its load crosses TH2k for some k, where 
1 5 k 5 r41-1. The reason for not broadcasting the change of 
state region whenever a node’s load crosses any threshold is to 
reduce the network traffic resulting from region-change broad- 
casts. And the reason for not combining two adjacent state 
regions into one and then broadcasting the change of state re- 
gion whenever a node’s load crosses any threshold is to include 

finer information in each broadcast and thus construct more 
accurate distributions. 

At each node: 
When a task T, with execution time E, and laxity D, 

arrives at the node: 
determine the position, j , ,  in Qtsuch that 

if current-time + E:=;’ Ek 2 D, then 

receivernode := tablelookup (g,D,)$; 
transfer task Ti to receivernode; 

ojp-l 5 D ,  5 DIP; 

begin 

end 

begin 
else 

queue task T, in position j , ;  
for k = j, + l,length(Q) 
begin 
if currentfime + E::,’ El 2 Dk then 

receivernode := tablelookup (g ,Dk);  
dequeue and transfer Tk to receivernode; 

begin 

end 
end 

/*  THl , .  . . , THlc-1 are thresholds */ 
broadcast the state-region change to all nodes 

if current-CET crosses THzk 1. .en 

in its buddy set; 
end 

When a broadcast message arrives from node i, 1 5 a 5 n: 
update observation of node 2’s state, 2,; 
record the (observation, true state) pair needed 
for constructing probability distributions; 

At every clock tick: 
current-CET := current-CET - 1; 
if current-CET crosses THZk then 
broadcast state-region change to all nodes 
in its buddy set; 

At every T, clock ticks: 
update the probability distributions and the 
table of loss-minimizing decisions; 

tThe task queue Q is ordered by task laxities. 
$If a node anticipates, based on the current observation g, that no 
other node can guarantee the task, this task is declared to be lost 
and discarded. 
Figure 1: Operations of the task scheduler on each node. 

By collecting time-stamped state samples and by keeping 
track of the corresponding observations at  the times these sam- 
ples were taken, each node can construct the prior/posterior dis- 
tributions. These distributions characterize the inconsistency 
between the node’s observed and true states of other nodes, 
and are used to periodically (once every Tp clock ticks) update 
the loss-minimizing decisions with Bayesian theory. As will be- 
come clear, the undesirable effects of the delay in broadcasting 
stateregion changes/transferring tasks are eliminated by us- 
ing these prior/posterior distributions. Whenever a node can- 
not guarantee a task, the node’s scheduler looks up the list of 
loss-minimizing decisions, and choose - based on the current 
state information - the best candidate node for transferring 
this task such that the expected loss is minimized w.r.t. the 
posterior distribution. 
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3 Bayesian Decision Model 
In this section, we shall describe how the proposed LS scheme 

can be cast into a Bayesian decision model. 

3.1 Preliminaries 
The elements of a Bayesian decision problem are a parameter 

space (a  space of state of nature) 51, a decision space D, and 
a real-valued loss function L which is defined on the product 
space n x D [7]. For any point (w ,d )  E R x D, the quantity 
L(w,  d )  represents the loss when the value of the outcome W of 
the space R is w and d is the decision chosen. 

If P is any given probability distribution of the parameter W, 
then for any decision d E D, the expected loss or risk, C(P,d) ,  
is given by 

w, d )  = J ,  U W ,  d)dP(w).  (3.1) 

We now want to choose a decision d which minimizes the risk 
( ( P ,  d ) .  The Bayes risk ( ‘ ( P )  is defined to be the greatest lower 
bound for C(P,d) Vd E D. Any decision d’ whose risk is equal 
to the Bayes risk is called a Bayes decision w.r.t. P .  

In many decision problems like the one we are going to dis- 
cuss, before choosing a decision from D, we observe the value of 
a random variable X that is related to the parameter W .  The 
essential component of problems of this kind is, in addition to 
the above elements, a family of sampling functions {f(. I w ) ,  
w E Q} of observation X. Let S denote the sample space of all 
possible values of X. With the family of sampling functions and 
the (prior) probability distribution, P, of W, we can calculate 
the conditional distribution of W given X, PWIX, as: 

Now, we must choose a decision function d which specifies, for 
every possible value z E S ,  a decision d E D with the expected 
loss given the observation z as: 

C(PWJX=z, = L(w,  d ( ~ ) W W l X = & J ) .  (3.3) J ,  
Note that Eq. (3.3) is almost the same as Eq. (3.1) except that 
P has been replaced by PWIX-~. Thus, any minimizing deci- 
sion d * ( z )  is simply a Bayes decision against the conditional 
distribution of W when X = z. 

3.2 Components of the Bayesian Decision Model 
This subsection describes how to apply Bayesian decision the- 

ory to adaptive LS, and how to accommodate both the com- 
ponents of the statistical model and the concept of [3] into our 
scheme. 

Parameter Space: the parameter space is defined as R = 
RI x 0 2  x ... x Rn, where n is the number of nodes in a buddy 
set, and Ri is the parameter space for node i. The parameter 
space, Ri,  may be defined by QL, CET, resource available time 
(RAT) on node i, or a combination thereof, depending on task 
characteristics and performance requirements. Since execution 
time varies from task to task, we will define the state of a node 
to  be its CET. 

Probability Distribution on Parameter Space: the 
probability distribution on parameter space is the joint prob- 
ability distribution of Ri’s, e.g., Pw(g) = Pw(w~ , w 2 ,  ..., U,,), 
where wi is the CET of node i. The marginal probability dis- 
tribution on Ri,  Pwi, can be obtained from Pw by integration. 
We construct these probability distributions by collecting state 
samples through region-change broadcasts (to be discussed in 
Section 4). 

~ 
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Set of Available Decisions: the set of available decisions 
is D = { d ~ , d z ,  ..., dn}, where di denotes the decision to  move 
one task from the current node to  node i. 
Set of Loss Functions: the set of loss functions is defined 
as { L T d ,  Td E (O,Tmaz]}, where L describes the ‘loss’ resulting 
from each combination of state and decision, given that the lax- 
ity - which equals deadline - execution-time - current-time 
- of a locally unguaranteed task is Td. T,,, is the largest task 
laxity in the system. Since Pdyn is the main concern, the loss 
fuaction may be defined as: 

where 6(z) is the unit step function. In such a case, minimizing 
the expected loss is equivalent to minimizing the probability of 
dynamic failure. 

Sample Space of Observation: the sample space of ob- 
servation, S, is the set of all possible observations. Specifically, 
S = S1 x S2 x ... x S,, where S, is obtained by dividing the 
parameter space W, for each node i into the K regions deter- 
mined by THI, THZ ,..., THK-~. Node i is said to be in the 

k-th region if THk 5 U, < Tffk+l, where k 2 0, and T H O  = 0. 

Note that the knowledge of a node’s state region is not suf- 
ficient to determine accurately its capability of guaranteeing 
arbitrary tasks. For example, a node with its state in a high- 
numbered state region may still be able to guarantee an arriving 
task with a large laxity, whereas a task with a small laxity may 
not be guaranteed even by a first-region node if the CET on 
that node is greater than the task’s laxity. Thus, unlike in 
[2, 31, these thresholds only serve as reference points, rather 
than indicating a node’s capability of meeting task deadlines. 

Each node will broadcast a time-stamped message, inform- 
ing all the other nodes in its buddy set of a state-region change 
whenever its state crosses THPk, 1 5 k 5 1:I-l. Upon receipt 
of a region-change broadcast, every node in the buddy set will 
update its observation of the broadcasting node, accordingly. 
The delay in broadcasting a region-change may cause inconsis- 
tency between the observed and true states of a node. We will 
characterize this inconsistency by constructing prior/posterior 
distributions (to be discussed in Section 4). 

Family of Sampling Functions: the family of sampling 
functions, {fxlw(. I g),g E R}, describes the conditional prob- 
ability distribution of the observation X given the state W = g. 
These probability distributions are derived from the samples 
gathered through time-stamped broadcasts. With the prior 
probability distribution Pw and these sampling functions fxlw, 
one can derive the posterior probability distribution Pwlx by 
using the Bayes rules [7] that is needed to compute the expected 
loss with observations. 

A 

4 Region-Change Broadcasting and 
Bayesian Analysis 

The delay in region-change broadcasts may cause the col- 
lected information to be out-of-date. For example, consider the 
following scenario: after broadcasting a state-region change, 
say from 3 to 1, node i switches back to region 3 due to the 
arrival of new tasks and/or transferred-in tasks’. Upon receipt 
of the broadcast from node i, node J’ may decide to send a task 
to node i, since it is unaware that node i has switched back 

‘These tasks may have been sent by other nodes before the broad- 
cast, but arrived at node i due to task-transfer delay. 



to regon 3 shortly after broadcasting the 3-1 rcgion-change. 

If node j, instead of hastily believing in what it observed, can 
compute the probability that node i is indeed capable of guar- 
anteeing task(s) and decide whether or not to send the task to 
node i ,  then Pdyn could be significantly reduced. To this end, 
we shall characterize the inconsistency between the observed 
and true states with prior/posterior distributions. 

The first step is to  construct both the probability distribu- 
tion on the parameter space and the conditional probability 
distribution of an observation. These two distributions, in gen- 
eral, vary over both nodes and time in a dynamic environment. 
Thus, to monitor the dynamics of the system, each node must 
collect state samples on-line and construct these distributions 
from the samples gathered via region-change broadcasts. The 
methods for collecting state samples, constructing probability 
distributions, and deriving loss-minimizing decisions are dis- 
cussed in the following subsections. 

4.1 Collection of State Samples 

Whenever a node’s state crosses T H z k  (1 5 k 5 - l), 
the node will broadcast, to  all the other nodes in its buddy 
set, a time-stamped message which contains node number i ,  
the state wp before the change of state region, the state wp 
after the change, and the time t o  when w: was sampled. When 
the message broadcast by node i arrives a t  node j, node i ’s  
state wp can be recovered by node j using the node number 
field and the state field, from which PW can then be calculated. 
Node j can also trace back to find out its observation z1 at 
time t o .  This observation 2; is node j’s observation of node i’s 
state at the time when node i was actually in state wp. Xi’s 
along with w:’s are used to construct fx lw.  Any inconsistency 
between w! and xi a t  time t o  is characterized by this probability 
distribution. The  only effect of the delays in task transfers and 
region-change broadcasts is that messages may not arrive at a 
node immediately after their broadcast, and thus, may become 
obsolete upon their arrival at other nodes. The correctness of 
all samples gathered is, however, not affected by these delays. 
Besides, w4 sent by node i a t  time to is considered as node j’s 
new observation of node i a t  the time this message is received, 
rather than at time t$ > t o .  

A primary advantage of region-change broadcasts over pe- 
riodic state broadcasts is the elimination of the need to de- 
termine an “optimal” exchange period - a very difficult task 
since it depends on workload characteristics, and has to weigh 
the tradeoff between the resulting increase in network traffic 
and the negative effect of using out-of-date information. 

4.2 Derivation of Probability Distributions 

Each node updates, once every Tp units of time, the proba- 
bility distributions using all the samples gathered so far, and 
re-calculates the loss-minimizing decisions. Tp should be cho- 
sen to  reflect the fluctuation of system load and the number 
of samples required for the specified level of confidence in the 
results obtained. 

The general rule for updating the probability distribution of 
W is Pu = UPT + (1 - a)f‘o, where Pu is the updated proba- 
bility distribution, PT is calculated from the samples gathered 
over the last Tp units of time, and Po is the old probability 
distribution. The ratio a (0 < a 5 1) represents the tradeoff 
between obtaining better averages and reflecting load changes. 
One may increase (decrease) U if system load varies rapidly 
(slowly). The same rule may be applied to update the sam- 

pc-g functions, fX,*. 

Non-informative probability distributions (e.g., uniform dis- 
tributions) or some default probability distributions (obtained 
from previous experiences) may be used as the initial distribu- 
tion of W and the sampling functions. According to our simu- 
lation results, the performance of the proposed scheme is found 
to be rather insensitive to the choice of an initial probability 
distribution. Each node may initially rely on the preferred list 
for LS decisions. This is because the prior/posterior distribu- 
tions will be iteratively updated as time goes on, and usually 
represents the true system characteristics after two or three u p  
dates. 

4.3 Calculation of Loss-Minimizing Decisions 
With the prior distribution of W and the sampling function, 

fx iw,  one can calculate the posterior distribution Pwlx using 
the Bayes rule (Eq. (3.2)). For each possible observation E S 
and for each possible laxity Td E (O,T,,,], a node then com- 
putes the expected loss associated with the decision d,  given 
the observation and the laxity Td as: 

CTd (PWIX=x_1d,) = LTd (E, d,)dPWlX (d (4.1) J ,  
for z = 1, ..., n. The decision d, = dTd(z) that yields the min- 
imum expected loss is chosen as the optimal decision given 
the observation E.  A tie will be broken by choosing, from 
the preferred list, the first d, with the minimum expected 
loss.2 Because of the way L r d ( ( w , d , )  was defined and the as- 
sumption that W,  is stochastically independent of the state of 
node j for j # i [2], the computation of the expected risk, 
CTd(pwlx=2, dl ) ,  depends only on the marginal probability dis- 
tribution, PW,p, (w, ) .  That is, if LTd((w, d,) = 6(w ,  - Td), then 

CTd(PwlX=z,dr) = 6(Wt - T d )  PwJx=~(E)dE  

6(w,  - Td) PW,lx,=z,(Wt)d(“i 
= 1% 
= Pw, )~ ,  (w, > Td I x, = I,). (4.2) 

In other words, the expected loss of adopting decision d ,  given 
the observation g and the task laxity Td is the probability 
that node i’s CET is greater than Td. The second equality 
in Eq. (4.2) follows from the property of total probabilities, 
and the third equality results from the assumption that W, 
is stochastically independent of the observation X, of node j, 

minimizing decisions, {dTd (3) : g E s, Td E (0, T,,,]}, is a list 
of decisions to choose for each possible observation and each 
possible task laxity. Once these calculations are completed, a 
task scheduler only needs to look up a table when determining 
a LS decision for a given observation g. 

j #;, ~ . ~ . , P w , J ( x ~ , x ~  ,.., x , ) ( w , )  = P W , I X , ( ~ ~ ) .  These t  ofloss- 

5 Numerical Examples 
To demonstrate the effectiveness of the proposed LS scheme, 

we carried out simulations for task sets with both exponential 
and hyperexponential interarrival times of external tasks. The 
proposed scheme and three other LS schemes are comparatively 

2The nice property (of the preferred lists) in distributing unguar- 
anteed tasks among capable nodes is thus maintainedin the proposed 
scheme. 
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evaluated. The schemes under consideration differ in the way 
a node treats locally unguaranteed tasks as follows: 

transferred. The queueing delay due to task transfers, region- 
change broadcasts, requests and responses for bids, and state 

The state probing scheme: a node with an unguaranteed 
task randomly probes up to  some predetermined number 
of nodes and transfers the task to the first capable node 
found during the probing. 
The random selection scheme: each locally unguaranteed 
task is sent to a randomly selected node. 
The focused addressing scheme: A node sends its unguar- 
anteed task to a node (called the focused node) which is 
randomly selected among those nodes ‘seen’ to  be capa- 
ble of guaranteeing the task. node itself.) Meanwhile, 
the node also sends request-for-bid (RFB) messages to all 
the other nodes in the system, indicating that bids should 
be returned to the designated focused node. If the fo- 
cused node cannot guarantee the task, it chooses, based 
on the bids received, a capable node for transferring the 
task; otherwise, the task is queued on the focused node, 
and the received bids are used to locate the receiver nodes 
for those tasks, if any, whose guarantees become invalid 
as a result of accepting the transferred task. The bids 
received at the focused node are also used to update the 
observation of other nodes’ states. When a task arrives 
a t  a node after its bid has been accepted, the node will 
check again whether or not the task can be guaranteed. 
This is a simplified version of the scheme proposed in [4]. 
I t  also differs slightly from that of [4] in the way a node 
chooses the focused node. The authors of [4] used the per- 
centage of free time during the next window (which is a 
design parameter) and many other estimated parameters 
to determine the focused node or the node to which the 
task must be transferred again. However, we use the ob- 
served CET of other nodes to determine the node(s) for 
transferring tasks. 
The proposed scheme: a node sends each unguaranteed 
task to another node in its buddy set based on a tech- 
nique that combines preferred lists, state-region change 
broadcasts, and Bayesian analysis. 

These schemes are compared with one another as well as with 
two other baseline schemes. The first baseline scheme assumes 
no load sharing, while the second is an idealistic proposed 
scheme where each node has complete information on the work- 
load of other nodes without any overheads in collecting it. 

A 16-node regular system3 is used as an example for the 
simulations. For convenience, all time-related parameters are 
expressed in units of average task execution time. The  size of 
buddy set is chosen to be 10, since the performance improve- 
ment by increasing i t  beyond 10 was shown in [3] to be insignif- 
icant. The maximum number of nodes to be probed randomly 
for each locally unguaranteed task is restricted to 5 based on 
the finding in [2]. The computational overhead for each bid- 
ding, state probing, region-change broadcast, and probability 
distribution update is assumed to  be 1, 1, 1, and 2 % of E(R) ,  
respectively. 

Each communication medium/link is equipped with buffers, 

probes dynamically changes with system load and traffic, and 
is modeled as a linear function of the number of tasksjmessages 
queued in the particular medium/link. 

Let qi (1 5 i 5 m) and iJ (0 5 j 5 T,,,) represent the prob- 
ability that an external task requires I units of time to execute 
and that a task has laxity of j units of time, respectively. For 
notational convenience, {el ,e2,  ..., ek}{,l ,,.., 1 is used to 
denote the task set in which a task requires execution time ei  
with probability qe,,  V I .  If qei = q Ve;, then ( q e , ,  qea, ..., q e k }  is 
condensed to q. Similarly, { e , ,  e,, ..., } is used to 
describe the distribution of task laxity. The simulation was car- 
ried out for a task set with the external task arrival rate on each 
node varying from 0.2 to 0.9, the ratio of (1 5 j 5 k - 1) 

varying from 2 to 10, and the ratio of of % (1 5 j 5 n - 1) 
varying from 2 to 6. Due to space limitation, we present only 
representative results. However, the results are found to be 
quite robust in the sense that the conclusion drawn from the 
performance curves for a task set with the given task execution 
and laxity distributions is valid over a wide range of combina- 
tions of task execution time and laxity distributions. 

,qi2 ,_.., 

For each combination the simulation ran until it reached a 
confidence level 95% in the results for a maximum error (e.g., 
one half of the confidence interval) of (1) 2% of the specified 
probability if Pdyn is the measure of interest, and (2) 5% of the 
ratio or frequency value if task transfer-out ratio or frequency of 
broadcasts/state probes is the measure.We first determine the 
tunable parameters used in the proposed scheme. Second, we 
evaluate and compare different schemes with respect to several 
important performance metrics obtained from the simulations. 
We also analyze (1) the impact of varying communication over- 
heads on the performance of these schemes; and (2)  the impact 
of statistical fluctuation in task arrivals on the performance of 
the proposed scheme. 

5.1 Determination of Tunable Parameters 

The accuracy of prior/posterior distributions depends on the 
values of such tunable parameters as the probability update in- 
terval Tp, the probability update ratio a ,  and the number (K) 
and values of state-region thresholds. It is, however, difficult 
to objectively determine an optimal combination of these pa- 
rameters which will give accurate prior/posterior distributions 
while incurring the least overhead. Thus, we shall determine 
the tunable parameters for each task set with the following two 
steps: 

S1. We first fix all but one parameter of interest at a time, 
and obtain the performance curve as a function of this 
parameter from which its optimal value can be determined. 
Next, we vary another parameter of interest while keeping 
the first parameter fixed a t  its optimal value and the rest 
of the parameters fixed at their originally chosen values. 
This process will be repeated until all the parameters have 
been varied. 

and transferred tasks or broadcast messages are queued and/or 
transmitted in order of their arrival. That is, no priority mecha- 

ified otherwise, the delay associated with each task transfer is 

S2. Since a different order of examining parameters in S1 may 

rameter set from which we choose the one with the small- 

ing/communication overheads as the ‘optimal’ parameter 

nism regulates the transmission Over the medium. Unless spec- lead to different there be more than One Pa- 

assumed to be 10 % of the execution tirne of the task being est Pdw and at the Same time, process- 

3A system is said to be regular if all node degrees are identical. set. 

674 



The sets of parameters obtained through the above two steps 
may not be globally optimal, but our simulation results have 
shown them to yield good results as compared to  other schemes. 
Moreover, our simulation results indicate that the proposed 
scheme is robust to the variation of the tunable parameters, as 
compared to  the other schemes reported in [3, 61. The change 
in Pdyn is shown to be less than for any given change in 
either the threshold interval, or the number of state regions, 
or the values of thresholds. This robustness is an important 
advantage coming from the use of prior/posterior distributions 
and Bayesian analysis. The proposed LS scheme can thus pro- 
vide good performance even with not well-tuned parameters as 
long as the general rules discussed above are followed. 

5.2 Performance Evaluation 

5.2.1 Probability of Dynamic Failure 

A dynamic failure occurs if the sum of its queueing-for- 
execution time and the delay in transferring the task exceeds its 
given laxity. Let Pdyn(d denote the probability of missing dead- 
lines for a task with laxity d .  Then, Pdyn = E:::" PdynlJ i j .  

Figs. 2 and 3 are the plots of Pdyn vs. external task arrival rate 
(A) and Pdynld vs. task laxity, respectively. Table 1 shows some 
numerical results of Pdynld under different schemes. As was ex- 
pected, P d y n  increases as the system load gets heavy and/or 
the task laxity gets tight. 

The random selection scheme outperforms the state probing 
scheme when the system load gets heavy or the task laxity gets 
tight, e.g., L = {1,2,3} as compared to L = {1} in Table l(b). 
This is because (1) under heavy loads, most nodes are likely to 
become unable of guaranteeing tasks, which will in turn make 
state probing unsuccessful most of the time, and (2) probing 
other nodes before sending an unguaranteed task requires two 
communication messages (one for request and the other for re- 
sponse), whereas the random selection does not require such 
messages. This negative effect becomes more pronounced as 
timing constraints get tighter. 

The focused addressing scheme outperformed the state prob- 
ing and random selection schemes, but was inferior to the pro- 
posed scheme, especially when the task laxity is tight. This is 
because: 

Not many RFB messages are issued under light loads, thus 
making a node unable to keep its observation of other 
nodes up-to-date and increasing the chance of transfer- 
ring a task to an incapable focused node. This becomes 
intolerable for tasks with tight laxities. 
Requests and replies for bids become excessive under heavy 
loads, thus increasing communication delays. The state 
information collected via periodic state exchange or the 
bids sent from other nodes may become out-of-date. 

In all cases simulated, the proposed LS scheme is shown to to 
outperform all but perfect information scheme in meeting task 
deadlines, demonstrating its effectiveness achieved by using the 
judicious collection and use of state information. It does not 
perform as well as the perfect information scheme due to the 
additional processing overhead introduced by the probability 
update process and the communication delays incurred in task 
transfers and region-change broadcasts. 

5.2.2 Maximum System Utilization 

The system utilization is defined as the ratio of the external 
(exponential) task arrival rate (A) to the sysbem service rate 

( l / E ( R ) ) .  The service rate is normalized to 1 in our analysis, 
and thus, the system utilization simply becomes A. Since P d y n  
increases with system load (Fig. a), there exists an upper bound 
for A, termed as maximum system utilization A,,,, below which 
Pdyn 5 c can be guaranteed for some prespecified c > 0. Fig. 4 
shows plots of the maximum system utilization versus c for a 
16-node regular system. One important result is that we do 
not have to sacrifice system utilization to  lower Pdyn, which is 
in contrast to  the common notion of trading system utilization 
for real-time performance. 

5.2.3 Frequency of Information Exchange 

In the proposed LS scheme, each node has to broadcast the 
change of state regions to  all the other nodes in its buddy set. 
Thus, the frequency of region-change broadcasts, fb, deter- 
mines the traffic overhead in collecting state information. In 
both the state probing and focused addressing schemes, on the 
other hand, the traffic overhead is determined by the frequency 
of state probing, fp, and the frequency of RFB, fr,  respectively. 
Table 2 summarizes the simulation results on fb, f,, and fr in 
terms of number of messages per E ( R ) .  

Under light to medium loads (e.g., X = 0.2-0.6 in Table 
2(a)), the proposed scheme introduces more traffic overhead (in 
the worst case, about 0.5 broadcast per E(R) )  than the other 
two schemes, but only about 2%-13% of the arriving tasks 
are transferred to other nodes. Under light to medium loads, 
the additional traffic introduced by broadcasts does not im- 
pede the transmission of tasks and/or other messages. Besides, 
the effect of the increased communication delay (as a result 
of broadcasts) on the inconsistency between a node's observed 
and true states of other nodes is taken care of by Bayesian anal- 
ysis.When the system load is heavy, the state probing scheme 
and the focused addressing scheme perform worse than the pro- 
posed scheme (Table 2(b)). This phenomenon becomes more 
pronounced when the variance of task execution time is large 
or when the task laxity is tight. 

5.2.4 Sensitivity to Communication Delays 

There are two types of communication delay to consider: one 
is medium-queueing delays (queueing-related costs), and the 
other is the transmission delay (transmission costs) associated 
with task transfers. To study the effect of communication de- 
lays, Pdyn was computed with (1) the transmission cost associ- 
ated with task transfers of 5, 10, 15, and 20 % of the task ex- 
ecution time, and (2) the queueing-related costs being halved, 
doubled, and tripled. 

As shown in Fig. 5, the state probing scheme, the random 
selection scheme, and the focused addressing scheme are all 
more sensitive to the variation of the transmission cost than the 
proposed scheme. The  performance degradation by the state 
probing scheme occurs because, as the task transmission delay 
increases, other tasks may arrive a t  a probed node during the 
period between the time it  was probed and the time an unguar- 
anteed task (of the probing node) arrives a t  that node. Thus, 
there is not much correlation between the state when a node was 
probed and the state when an unguaranteed task arrived a t  the 
node. (Similarly, one can reason about the performance degra- 
dation of the focused addressing scheme.) The performance of 
the random selection scheme degrades as the transmission delay 
increases, due to the combined effect of higher task transfer-out 
ratios and large transmission costs. Varying queueing-related 
costs has a similar effect as varying transmission costs on the 
performance of LS. 
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In contrast, our proposed scheme is less sensitive to the com- 
munication delays (both queueing delays and transmission de- 
lays) because of the use of prior/posterior distributions to char- 
acterize the correlation between the observation made by a node 
and the corresponding true state. 

5.2.5 Effect of Statistical Fluctuation on LS 
One issue in using a Bayesian decision model is to what ex- 

tent the proposed scheme remains effective when the system 
state randomly fluctuates. This effect is evaluated by simu- 
lating different task sets with hyperexponential external task 
interarrival times. This represents a system potentially with 
bursty task arrivals, and the degree of state fluctuation over 
short periods is modeled well by varying the coefficient of vari- 
ation (CV) of the hyperexponential external task interarrival 
times. Fig. 6 shows the simulation results under heavy system 
load (A = 0.8) where the LS performance is sensitive to the vari- 
ation of CV. From Fig. 6, we draw the following conclusions: 
(1) the two curves labeled as the proposed scheme and the pro- 
posed scheme without the use of Bayesian analysis give another 
evidence that LS does benefit from the use of Bayesian decision 
theory; the undesirable effect of using outdated state informa- 
tion is alleviated; (2) the performance of the proposed scheme 
degrades as CV increases. However, the proposed scheme re- 
mains effective up to CV=5.48 (or CV’ = 30) beyond which it 
reduces essentially to the scheme without the use of Bayesian 
decision analysis. 

6 Conclusion 
Using prior/posterior distributions and Bayesian analysis, we 

proposed a new LS scheme which can estimate, even with out- 
dated state information, the workload of other nodes, and se- 
lect the best candidate receiver of each unguaranteed task. The 
PdVn as a result of using outdated information is thus reduced 
significantly. Moreover, the ability of making Bayesian deci- 
sions based on imperfect state information makes this scheme 
insensitive to communication delays. The proposed scheme is 
also shown to be robust to the variation of tunable parame- 
ters used in adaptive LS and effective within a wide range of 
statistical fluctuation in external task interarrival times. 
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Figure 2: Pdyn vs. task arrival rate for a 16-node sys- 
tem with a task set: ET = {0.4,0.8,1.2, l.6}0.25, L = 
{1,2,311/3 

A -.-A 

0- - -0  
+......* 
e--. 

--.-e 

Lxity d 

Figure 3:  Pdynld vs. task laxity d for a 16-node system 
with a task set: X = 0.8, ET = {0.4,0.8,1.2,1.6}0.25, L = 
{1,2,3,4,5}0.2)  

Figure 4: A,,,,, vs. Pdyn for a 16-node system. 
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tes 
ET = {0.4,0.8, 

Lax. No State Random Focused Proposed Perfect 
d sharing probing selection addressing scheme scheme 
1 0.6107 0.1515 0.1214 8.649 x lo-' 2.123 x lo-' 5.093 x 

1.2,1.6}0.25, 
L = {1,2,3)1/3 
ET = {0.4,0.8, 

1.2,l.G 0.25, 
L =  1) 

2 0.4317 4.779 x 2.162 x 9.746 x lo-' 3.523 x lo-' 6.492 x 
3 0.3058 3.514 x 1.231 x 1.026 x lo-' 7.828 x 5.721 x lo-' 

1 0.6075 0.1293 8.016 x 7.153 x 2.583 x 6.012 x 

Perfect 
scheme 

5.892 x lo-' 
1.583 x lo-'' 

0 

9.476 x lo-' 

?tes 
ET = {0.4,0.8, 

1.2.1.6)0.2~. 

(b) X = 0.4 

Lax. No State Random Focused Proposed 
d sharing probing selection addressing scheme 
1 0.1612 3.594 x lo-' 7.293 x lo-' 8.264 x 1.391 x 
2 0.0421 5.402 x lo-' 1.262 x lod5 9.536 x lo-' 2.930 x lo-' 

Table 1: Pd,,nId vs. task laxity d for different task sets under different schemes (N = 16). 

. I - - - .  
L = {1,2,3}1l3 
ET = {0.4,0.8, 

1.2,1.6)0.25, 

8 

3 0.0117 1.782 x lo-' 4.296 x lo-' 4.846 x lo-* 7.497 x lo-' 

1 0.1660 8.163 x lo-' 6.250 x 3.818 x lo-' 7.018 x 

......* 
-8 

Task arrival 
Rate (A )  

::: 
0.6 
0.8 

Figure 5: Pdyn  vs. task transfer costs for a 16-node system 
with a task set: A = 0.8, ET = {0.4,0.8,1.2,1.6}0.25, L = 
{1,2,3)1/3. 

State probing Foc. addressing Prop. scheme 
Freq. of probes Freq. of requests Freq. of b-casts 

:::;:: ::;E: ::z; 
0.1144 0.6821 0.4810 
0.4836 1.2346 0.4943 

Task arrival 
Rate (A )  

::: 
0.6 
0.8 

State probing Foc. addressing Prop. scheme 
Freq. of probes Freq. of requests Freq. of b-casts 

:::;:: ::;E: ::z; 
0.1144 0.6821 0.4810 
0.4836 1.2346 0.4943 

(a) Frequency of state-collection vs. different A for a task set with 
ET = {0.4,0.8,1.2,1.6}0.25 and L = {1,2,3}1/3 

= 0.8 

0.4836 1.2346 0.4943 

0.9061 1.5023 0.6872 

III 

b E m 
A -.-A 
o.-..-e 
+.-..-+ 
*-• 

(b) Frequency of state information collection versus different task 
sets when A = 0.8 

Table 2: Comparison of the traffic overhead associated 
with collecting s ta te  information between the state probing 

wlo Bpysr uul. 
~ r ~ ~ ~ e d  =huncand the proposed schemes. 
Pcrfcn Ls 

Figure 6: P d y n  vs. coefficient of variation of task interar- 
rival times for a 16-node system with a task set: X = 0.8, 
ET = {0.4,0.8,1.2,1.6}0.25, L = {1,2,3}1/3. 
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