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Performance Analysis of Virtual Cut-
Through Switching in HARTS: A
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Abstract—This paper presents a formal analysis of virtual cut-
through in a C-wrapped hexagonal mesh multicomputer, called
the HARTS (Hexagonal Architecture for Real-Time Systems),
which is currently being built at the Real-Time Computing
Laboratory, The University of Michigan. In virtual cut-through,
packets arriving at an intermediate node are forwarded to the
next node in the route without buffering if a circuit can be
established to the next node.

The hexagonal mesh is first characterized using a combinatorial
analysis to determine the probability that a packet will establish
a cut-through at an intermediate node. Given this parameter
the probability distribution function for packet delivery times
in HARTS is derived. The delivery times obtained from the
analytic model are then compared against results collected from
a simulator of the routing hardware designed for use in HARTS.
The results from both the analytic model and the simulator
further reinforce the choice of the virtual cut-through routing
scheme for use in HARTS.

Index Terms—Distributed real-time systems, message buffering
and delivery, queueing models, virtual cut-through, wrapped
hexagonal mesh.

1. INTRODUCTION

HIS paper derives an analytical model to evaluate the

message passing scheme in a distributed computing sys-
tem based on a hexagonal mesh architecture [1], [S], [6].
This effort is part of a larger research project to design
and implement an experimental distributed real-time system,
called the HARTS (Hexagonal Architecture for Real-Time
Systems), at the Real-Time Computing Laboratory (RTCL),
The University of Michigan.

A set of application processors along with a network proces-
sor form a node of HARTS. These nodes are interconnected in
a C-wrapped! hexagonal mesh topology {1]. The application
processors execute real-time tasks and the network processor
handles all the intra- and internode communications. Since
real-time applications normally require short response times,
simple store-and-forward message passing schemes are not
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suitable for HARTS. Consequently, HARTS uses a message
passing scheme commonly referred to as the virtual cut-
through [3].

In virtual cut-through, packets arriving at an intermediate
node are forwarded to the next node in the route without
buffering if a circuit can be established to the next node.
This differs from conventional packet-switching schemes in
the sense that packets do not always get buffered at an
intermediate node. It also differs from conventional circuit
switching schemes since packets do not wait for the entire
circuit to the destination to be established before proceeding
along the route.

Although virtual cut-through was proposed almost a decade
ago, it has not been implemented in real systems until recently.
Since custom ASIC’s have become economically viable, sev-
eral distributed systems are being designed and implemented
that use virtual cut-through (or some variant thereof) as their
basic message passing scheme. It is easy to see that virtual
cut-through will perform better than a conventional packet-
switching scheme in terms of packet delivery times. However,
the actual improvement it offers over a packet-switching
scheme for packet deliveries has not yet been clearly evaluated.

Kermani and Kleinrock carried out a mean value analysis
of the performance of virtual cut-through for a general in-
terconnection network [3]. However, a mean value analysis
is not adequate for real-time applications because worst case
communication delays often play an important role in the
design of real-time systems. For example, the mean value
analysis cannot answer questions like what is the probability of
a successful delivery given a delay or what is the delay bound
such that the probability of a successful delivery is greater
than a specified threshold.

The authors of [3] wanted to avoid any dependence on the
interconnection topology in their analysis. As a result, they
assumed that the probability of a packet getting buffered at
an intermediate node is a given parameter. Since one cannot
get a reasonable estimate of the performance of virtual cut-
through without an accurate estimate of the probability of
buffering, the approach in [3] becomes useful only if we
can accurately determine the probability of buffering for a
given interconnection topology. However, determining the
probability of buffering at an intermediate node for a given
topology is not simple. This is because each node in a
distributed system handles not only all packets generated at
the node but also all packets passing through the node (or
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transit packets). Consequently, to evaluate the probability of
buffering, we have to account for the fraction of packets
generated at other nodes that pass through each given node.

In contrast to [3], in this paper, we first derive the probability
that a packet is destined for a particular node by characterizing
the hexagonal mesh topology. This probability of branching is
then used as a parameter in a queueing network to determine
the throughput rates at each node in the mesh. After the
throughput rates are found, the probability that a packet can
establish a cut-through at an intermediate node is derived.
From these parameters we derive the probability distribution
function of delivery times for a packet traversing a specified
number of hops. The importance of this kind of analysis in a
real-time system, as opposed to a mean value analysis, is then
illustrated through some numerical examples and compared
to simulation results that are based on relevant parameters in
HARTS.

The paper is organized as follows. Section II formally
describes a C-wrapped hexagonal mesh topology. For com-
pleteness, a brief description of HARTS is also presented
there. The terms and notation used in the paper are introduced
in Section III-A. Analytical expressions for the branching
probability and buffering probability are derived in Section III-
B and the probability distribution function of packet delivery
times is derived in Section III-C. Numerical results from both
the analytic model and simulations are presented and compared
in Section IV. The paper concludes with Section V.

II. DESCRIPTION OF HARTS

HARTS is an experimental testbed for research in dis-
tributed real-time computing. The primary goal of HARTS
is to investigate low-level architectural issues in the design
of real-time systems such as packet scheduling, routing, and
buffering. The dimension of a hexagonal (H-) mesh is defined
as the number of nodes on a peripheral edge of the H-mesh.
The current version of HARTS under construction at RTCL is
a three-dimensional H-mesh and is comprised of 19 nodes
interconnected in a C-wrapped H-mesh topology, which is
formally defined as follows.

Definition 1: A C-wrapped hexagonal mesh of dimension
e is comprised of 3e(e —1) + 1 nodes, labeled from 0
to 3e(e — 1), such that each node s has six neighbors
[s + 1]3e2—3e+1’ [s +3e - 1]3eza3e+1’ [s43e — 2]39-’73“1’
[s +3e(e = 1) _geq1s [+ 32 —6e+2],, , ,and[s +
3e? — 6€ + 33,2341, Where [a}, denotes ¢ mod b.

This topology can be visualized as follows. Consider an
unwrapped H-mesh of dimension e. Fig. 1(a) shows an un-
wrapped H-mesh of dimension 3. It is easy to see in this figure
that the nodes of a H-mesh of dimension e can be partitioned
into 2e — 1 rows in three possible ways: either along the
horizontal direction or along the 60 degrees counterclockwise
direction or along 120 degrees counterclockwise direction.
Along any one of these directions, let Ry be the top row,
R, be the second row, and so on until Ro._». Then a C-
type wrapping can be obtained by wrapping the last processor
in R; to the first processor in R[,»ﬂ_lbe_l. For example,
in Fig. 1(b), the last processor in R, along the horizontal
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direction, namely node 2, is wrapped to the first processor
in Ry, node 3.

A C-type wrapping has several nice properties as reported
in [1]. First, this wrapping results in a homogeneous network.
Consequently, any node can view itself as the center (labeled
as node 0) of the mesh. Second, the diameter of a H-mesh
of dimension e is e — 1. Third, there is a simple, transparent
addressing scheme such that the shortest paths between any
two nodes can be determined by a ©(1) algorithm given the
address of the two nodes. At each node on a shortest path there
are at most two different neighbors of the node to which the
shortest path runs. Fourth, based on this addressing scheme it
is possible to devise a simple routing and broadcast algorithms
that can be efficiently implemented in hardware [2].

The six neighbors of a node in a C-wrapped H-mesh can be
thought of as being in directions dg,d;.- - -, ds. The neighbor
of a node s in direction d; will be denoted by cwhm(s,d;).
Similarly, given two nodes mn and n in the H-mesh that have
a direct link between them, we can denote the direction of
n with respect to m by cwhm™!(m.n). Both cwhm and
cwhm ™! can be formally described from the definition of a C-
wrapped H-mesh. Another useful notation when dealing with
the C-wrapped H-mesh is the concept of the complement of a
direction d;, denoted by d;, such that d; = djita, -

III. MODELING OF MESSAGE DELIVERY

This section presents the derivation of the probability dis-
tribution of packet delivery times in a C-wrapped H-mesh that
implements virtual cut-through. A queueing network will be
used to carry out this analysis.

To make the analysis tractable, we make the following
assumptions:

Al:

A2

A4:

Poisson packet generation with rate Ag at each node.
Exponentially distributed packet lengths with mean £.
The length of a packet is regenerated at each interme-
diate node of its route independently of its length at
other intermediate nodes.

Nodes have no preferential direction for communica-
tion.

A4:

Assumptions A1-A3 are consistent with Kermani and Klein-
rock’s assumptions in [3]. Although not completely accurate,
it has been shown through empirical studies that these as-
sumptions lead to a fairly accurate characterization of message
arrivals. Assumption A4 implies that all minimal length paths
between a source and destination are equally used. A4 does
not imply uniform communication over all nodes of the mesh,
but implies uniform communication with nodes reachable in
the same number of hops. So, let ¢ denote the probability
of a node communicating with a node which is k£ hops away.
The definition of g will be used to derive some of the base
parameters for the queueing network.

Due to the homogeneity of a C-wrapped H-mesh, any node
can be considered as the origin of the mesh and labeled 0.
Without loss of generality, we can concentrate on evaluating
the distribution of the packet delivery times for the packets
generated at node 0. In order to determine the distribution of
the delivery times it will be necessary to evaluate the transit
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Fig. 1.

load handled by node 0. This transit load is a function of both
the packet generation rate at each node and the interconnection
topology. Another parameter necessary to determine the dis-
tribution of the delivery times is the probability that a transit
packet (at node 0) will be buffered (at node 0) as a result of not
being able to establish a circuit to the neighboring node. The
derivation of the analytical expressions for the transit load and
the probability of buffering is presented in Section III-B. The
distribution for the packet delivery times is then presented in
Section III-C.

A. Terms and Notation

In the following analysis let e be the dimension of

A hexagonal mesh of dimension 3.

the H-mesh and let [j]; denote j mod i. Also let N =
{0,1,---,3e(e — 1)} be the set of all nodes in the H-mesh.

Definition 2: A route from a source node, s € N, to a
destination node, d € N, is a sequence ngny - -~ Ni - Nk—1Mk
of nodes, n; € N, Vi € {0,1,---,k}, such that a) ng = s,
ni, = d, and b) there exists a direct link in the H-mesh between
n; and n; 41, Vi € {0,- -,k — 1}. The length of a route r is the
number of components in the sequence and will be denoted
by len(r).

Definition 3: A minimal route from s € Ntod € N is a
route 71 from s to d such that len(r;) < len(ry) for all routes
ro from s to d.

Definition 4: An anchored route is an ordered pair
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Fig. 2. Example shapes in an H-mesh of dimension 5.

(ng -+ nk,z) consisting of a route ng - --ny and z € N such
that

1) k> 2

2) mg---ng is a minimal route from ng to 7k, and

3) 3,1 < i <k-—1,suchthat n; = z.
x is called the anchor of (ng---ng.x).

Definition 5: A shape s of length k, 2 < k < e—1,isa
sequence ajaz - -~ @; - - Ak—1ak, a; € {do, - - -,ds}, such that

U et e Uttt U U ({ddien 1)

= {{d0}7 {dl}v {dQ}v {d3}7 {d4}» {dﬁ}»
{do.d1},{d1,d2},{d2,ds}, {ds, da}, {ds, d5 },
{ds.do}}.

The length of shape s is denoted by £(s).

A shape is a route that a packet can traverse. The above
definition of a shape is motivated by the fact that all minimal
routes between any pair of nodes are formed by links along
one or two directions only [1]. For example, route A in Fig. 2
corresponds to the shape dididod; such that Ui {a;} =
{do,d;} and route B corresponds to the shape dododp such
that U3_,{a;} = {do}. A shape can represent routes between
several different pairs of communicating nodes. For example,
routes A and C in Fig. 2 correspond to the same shape but
represent routes between two different pairs of communicating
nodes.

Definition 6: An anchored shape p is an ordered pair (s, k),
where s is a shape, and 1 < k < £(s) — 1 marks a position
within the shape. The length of an anchored shape (s,k) is
defined to be the length of the associated shape s.

There exists a one-to-one correspondence between the set
of all anchored shapes and the set of all anchored routes with
their anchor at 0. (In order to not detract from the main goal of
this paper the proof that there is a one-to-one correspondence
between these mappings has been given in Appendix A). The
mapping from an anchored shape (a;---a¢---ax,f) to an
anchored route (ng - - - ng,0) is done as follows:

cwhm(niH, ai+1) if 0 < i < -1
ni={0 ifi=1¢ (3.1)
cwhm(n;_1, a;) ifl4+1<i<k

where a; = d[m+3]6 if a; = dm, 0 < m < 5. The mapping
from an anchored route (ng---nk,0) to an anchored shape
(a1 -ag---ap. ) is

a; = cwhm_l(ni_l,ni) 1<:<k

{=argcjck1 (n; =0) (3.2

where arg; ;<) (n; = 0) refers to the value of j such that
n; = 0. For example, consider the anchored route (33 —
47 — 0 — 1 — 15,0) obtained from route A in Fig. 2.
From Definition 1, we know that cwhm™1(33,47) = di,
cwhm=1(47,0) = dy, cwhm=1(0,1) = do, and cwhm™!
(1,15) = d;. Since 0 is the third node in the route
arg;cj<q (n; =0) = 2. It then follows from (3.1) that
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Fig. 3. Network model around node :.

the anchored shape corresponding to the anchored route
(33 —47-0-1— 15,0) is (d1d1d0d1,2).

Similarly, the anchored route (ngninanzna, 0) correspond-
ing to the anchored shape (dididod;,2) can be obtained as
follows. Since the second element in the anchored shape is 2,
ny = 0. Since d; = dy4 and cwhm(0,ds) = 47, n; = 47.
Proceeding further, we get ng = 33 because cwhm(47,ds) =
33, and ng = 1 because cwhm(0,dp) = 1. Finally, ngy = 15
since cwhm(1, d;) = 15. As expected, combining these results
we get the anchored route corresponding to the anchored shape
(d1d1dod1,2) as (33 - 47— 0— 1 — 15,0).

The minimal route corresponding to the anchored shape p is
one of the possibly many minimal routes between the source
and the destination. The other minimal routes between the
source and the destination can be obtained by permuting the
components of the shape associated with p and applying a
mapping function similar to the one above.

All of the routes associated with these permutations will not
necessarily go through node 0. Only the fraction of the total
number of routes from the source to the destination that pass
through node 0 will influence the transit load at node 0.

B. Model Derivation and Parameter Calculation

The packet transmission in the H-mesh can be modeled
as a Jackson queueing network, consisting of 3e(e — 1) + 1
service centers of the M/M/1 type. For each service center
a packet completing its service may go to either of its six
immediate neighbors or exit from the system. Packets whose
final destinations are immediate neighbors will not use the
service centers of their immediate neighbors and will exit
the system at the current service center. Packets whose final

destination are not immediate neighbors travel to a neighboring
service center.

Let py,; denote the probability that a packet completing its
service at a node ¢ will be routed to neighboring node j. Using
assumption A4 and the fact that the C-wrapped H-mesh is a
homogeneous surface it is €asily seen that all the pp,; have to
be equivalent and thus will be denoted by ps: Fig. 3 shows a
portion of the queueing network centered around node :.

The rest of this section concentrates on deriving an expres-
sion for p;. Once given an expression for this, we can derive
the probability that a packet will establish a cut-through when
arriving at a node in the H-mesh.

1) Calculation of py,: The following symbols are used to
identify the different packet arrival rates:

* )g: the rate of generating packets at a node.

* Age+: the rate of generating packets at a node that are

not destined for an immediate neighbor.

* Ar: the rate of transit packets arriving at a node.

* Ar2+: the rate of transit packets arriving at a node that

are not destined for an immediate neighbor.

It is convenient to define a function ®(d;, p) that counts the
total number of d;’s in the shape associated with the anchored
shape p, that is,

&(d;,p) = Hax :
" associated with anchored shape p}|.

ar, = dj,ax is in the shape

Considering the anchored shape A from the previous exam-
ple, ‘I)(d(),(dldldodl,Z)) =1 and (I)(dl,(dldldodl,z)) = 3.
This function is used to derive the transit load associated with
an anchored shape on node 0.

S E—
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Lemma 1: The contribution of an anchored shape p to the
transit load of node 0 is

Ac - gk
L(p) = 26 %
®) =31
S @t
where k = Z?=0 ®(d;,p) and M(p) = B;-—]

JJ N CICST

Proof: 1t follows from the definition of anchored shape
and a simple combinatorial analysis that the total number of
shortest routes between a source—destination pair is M (p).

By the definition of g, the rate at which a source sends
packets to a destination is Ag - gk. By 4, all routes between the
source and the destination are equally used. Hence, L(p) =
[Ty | |

M(p)

Lemma 1 allows us to calculate the transit load for a single
route through node 0. In order to calculate the total transit
loads Ar and Az24+, we will need to determine the total
number of minimal routes passing through node 0 for all pairs
of communicating nodes. To determine this number we will
partition the set of all anchored shapes into sets that can be
counted. Since there is a one-to-one correspondence between
the anchored shapes and anchored routes with their anchor at
node 0, counting all anchored shapes is equivalent to counting
all pairs of nodes that have a minimal route passing through
node 0.

Partition the set of all anchored shapes P into the sets
P:Te;{p 2 ®(dm,p) 21} for 0 < m < 5and n = [m+ 1.
Intuitively, each P,,, contains anchored shapes with one or
more d,, and possibly some dp, components.

Lemma 2: The sets Pmn{p ®(dm,p)>21,pe P}, n =
[m+1]g, 0 < m < 5 partition P.

Proof: We will first show that sets P,,, cover the entire
set P. For an anchored shape p = (a1az - - a; - - - a, £), there
are two cases to consider.

In the first case,

k
U {a;} = {d;,}, forsome i; €{0,1,2,3,4,5}.

From this fact we can conclude that p € Pil[hﬂ]ﬁ.
In the second case,

k
U {a:} = {di i 1y, }-

i=1

for some 4; € {0,1,2,3,4,5}.

In this case, p € Pl-l[ilﬂ]c.

We will now show that the sets P,,,, are disjoint. Suppose
not. Then, 3P; ;, and P, ;,, 41 # 12, such that P, ;, N P, ;, #
@. Consider an anchored shape p € P ;, N P,,;, with the
shape ajas - - ag.

Case 1: j3 = ia.

p € sz implies d;, € Ul 1 {ai} and, p € P, im-
plies Ul 1 {a;} € {{du,dn} {di, }}. Since by construction
J1 = [i1+1]g and j2 = [i2 + 1],, and by the case under
consideration ¢, = j; we can conclude that i; # <2 and
11 # jo. But, di;, € {di,,d;,} and d;, & {d;,}, a contradiction.

Case 2: j; # io.
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p € Piljl and p € Pi212 imply {diﬂdiz} c U;’::l {aj}'
This would violate the definition of an anchored shape since
g1 = i1 + 1]g # ta. u

In order to calculate the total transit load Ar we will
need to further refine the partition P, into the sets P2, =
{p:p € Ppn,®(dn,p) = a,®(d,,p) = b}. The proof that
P2 is a refinement of P, is straightforward and thus
omitted.

We are now in a position to derive Ar.

Lemma 3: The total transit load at node 0 is given by

e—1

Ar =g Y 6k(k—1)-q
k=2

where A is the total rate of packet generation at a node, and
g is the probability of a node communicating with a node &
hops away.

Proof: Since there is a one-to-one correspondence be-
tween the anchored shapes and all minimal routes through
node 0,

Ar = Z L(p), where P is the set of all anchored shapes
pEP
5
i=0 pEP;[111)4
From the definitions of shapes and anchored shapes, the length
of the shape associated with the above anchored shape p lies

between 2 and e — 1. From the definition of P,,, we know
that ®(d,,,p) > 1. It follows from these observations that

ZZ > L)

1<a<e—1 P
2<a+b<e~1 el

(3.3)

i+1]g

Note that all of the anchored shapes p € P2 have length
a + b. Furthermore, since each shape associated with the
anchored shapes of P25 has only components in the dp,
and d,, directions, there are (°7") shapes in P2, Given
each shape one can then derive a + b — 1 anchored shapes.

Therefore,

Pt = (“1°) @ro-
- (a+£,)!.(a+b-1)
[Eto (di,p ]
ki i b—1), € Pab .
I, [®(di, p)] et ) G+1ls
(3.4)

Combining (3.3) and (3.4) with Lemma 1, we get

*r—Z >

1<a<e—1
2<atb<e—1

AG - ays - (a+b—1). (3.5)
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Since (3.5) depends only on (a + b), we can substitute k for
a + b to obtain

5 e—1
M=Y"Y D¢ q-(k-1)-k
=0 k=2
e—1 5
=X ), ) k(k—1) g
k=2 =0
e—1
=6\ Y k(k—1) g [}
k=2

Lemma 4: The transit load at node O for packets not bound
for an immediate neighbor is given by

e—1

Aras =Xg Y 6k(k — 2) - gi.
k=3

Proof: The proof of this lemma follows closely that of
Lemma 3 with the additional restriction that node 0 cannot be
in the last position for the anchored shapes being counted.
Having node 0 in the last position of an anchored shape
corresponds to having the anchored shape terminate in an
immediate neighbor. This is exactly the traffic that we are
trying to eliminate.

Since there is a one-to-one correspondence between the
anchored shapes and all minimal routes through node 0,

AT2+ =

> L((s: k),

(s,k)EP
k#len(s)—1

where P is the set of all anchored shapes

5
=Y. 2. UsH

i=0 (sk)EP;1y1)q
k#len(s)—1

In contrast to Lemma 3, the lengths of shape s associated
with the above restricted anchored shape (s, k) lies between
3 and e — 1. From the definition of P,,, we know that
®(dm, (s,k)) > 1. It follows from these observations that

5
Apae = Y > L((s,k).  (36)
=0 SRl Lmergl
k#len(s)—1

Note that all of the anchored shapes (s, k) € P2 have length
a + b. Furthermore, since each shape s associated with the
anchored shapes of P2%, has only components in the d,, and
dn directions, there are (“}®) shapes in P2%,. Given each
shape one can then derive @ + b — 2 anchored shapes. The
number of anchored shapes generated from each shape differs
by 1 from Lemma 3 since we cannot use the last position in
the shape. Therefore, following that same steps as in Lemma
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3 we arrive at

5
sy %
=0

1<a<e—1
3<a+b<e—1

A6 Gatp-(a+b—2)

e—1
=" N xca-(k-2)k
=0 k=3
e—1 §
=X D> k(k-2) q
k=2 i=0
e—1
=6c Y k(k—2) . [
k=3

Theorem 1: The branching probability, p,, between adjacent
service centers in the model is

b=\l -]
6 62 %1k
Proof: py, can be derived as the ratio of traffic bound for
immediate neighbors to all traffic leaving a service center.

_ l /\G“‘ + )\T2+
Po = 6 Ag + Ar

Using the results of Lemmas 3 and 4 along with

)‘G“ = Ag(l - 6(]1)
e—1
Zﬁk Q= 1
k=1

the theorem follows after some algebraic manipulation. Wl

It should be noted that p, only depends on g¢; and the
topology.

Lemma 5: The throughput at each service center is 6 - Ag -
Yo k- gk

Proof: Jackson’s theorem [4] states that the total through-

put T; at service center ¢ is given by the solution to the set
of traffic flow equations

3e(e—1)
Ti=/\G+ Z pb‘Tk,

k=0

:=0,---,3¢e(e — 1).

By assumption A4 and the homogeneous nature of the C-
wrapped H-mesh all T; are equal. Therefore,
T 1-6py’

i 1=0,---,3e(e — 1).
Substituting p, from Theorem 1 the lemma immediately
follows. ]

Theorem 2: The probability of a packet cutting-through an
intermediate node is

e—1
pe=1- (Aczkz'%) -7
k=1

where 7 is the mean length or service time for packets.
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Proof: A packet can establish a cut-through at an inter-
mediate node only if there are no packets being serviced or
waiting for service at that node. Using Lemma 5 and Jackson’s
theorem that the probability of having zero packets at any
node is 1 — p where p is the traffic intensity. p in terms of the
throughput and service rate 4 is given as follows:

T T-7 = -
= =_"=1{ 2. 7.
r== 5 ( G Z k Qk> ¢
k=1
and hence the theorem follows. ||

C. Distribution of Message Delivery Times

In a virtual cut-through message passing scheme, the delay
that a packet incurs at a node depends on whether the packet
is able to establish a cut-through at that node. If the packet
establishes a cut-through, the delay incurred is negligible and
assumed to be 0. Otherwise, the packet incurs both waiting
and service time delays. Furthermore, since a packet cannot
establish a cut-through unless there are no other packets
waiting for service at that node, the FCFS queueing discipline
is preserved at each node. From Jackson’s theorem we know
that the queueing network described in Section III-B has a
product form solution. Therefore, each service center behaves
as an M/M/1 queueing system.

The delivery time for a packet traveling n hops, denoted by
Dy, can be expressed as

Dn =Y+ Xn-1

where Yo(X,,_1) is a random variable that represents the total
time spent by a packet at the source node (n — 1 intermediate
nodes). Also let Y, be a random variable that represents the
total time spent by a packet buffered in an intermediate node.
Therefore,
P[Dn < t} = P[YO +Xn—1 < t]
n—1
=Y Pl¥o+ Xn
m=0
< t| buffered at m int. nodes]
- P[buffered at m int. nodes)
n-1

=>r ingt
m=0

k=0
- P[buffered at m int. nodes].

Note the P[}.;" Y. <] corresponds to an Erlang dis-

tribution with parameters p(1 — p) and m + 1, ie., ERL

((1 — p),m + 1). This allows us to derive the probability
density function of D,, as

fo. (1) = i (n - 1)(1 —pe)" Tt

m
m=0

tme—u{1-p)'

Cp(1=p)" T ,
m!
Using the result
ar T n—k
e n kT
2 dy = S ( ) —1)*k!
/ e a kZ:O k (=1)°k ak
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and integrating fp, (¢) from O to ¢ we get the delivery time
distribution as

n—1 ~ _—
Fp, ()= (n; l)(l —pe)pl ™ le@ =)™

— m!
m! e~n(1=p)' my\ kl-tmFk
' {[u(l T () 2 (’“> (1 —p)}k}'

IV. NUMERICAL EXAMPLES AND SIMULATION COMPARISON

In this section, parameters derived from the actual HARTS
routing hardware are used to evaluate the probability distri-
bution function for delivery times discussed in the previous
section. Also presented is a comparison of the analytic re-
sults against a low-level functional simulation of the routing
hardware of HARTS.

In contrast to the analytical model, the simulator makes
very few simplifying assumptions in modeling the behavior
of virtual cut-through in HARTS. The simulator accurately
models the delivery of each message by emulating the timing
of the routing hardware [2] along the route of a packet at
the microcode level. Also captured are the internal bus access
overheads that the packets experience if they are unable to
cut-through an intermediate node. For example, when a transit
packet arrives at an intermediate node, the following sequence
of timed events are set into action. First, the receiver for that
particular direction waits for the packet header to become
available to attempt a routing decision. For the case of the
H-mesh any incoming packet may have either arrived at its
final destination or could be transmitted in one of possibly
three directions. Second, the receiver schedules an access to
an internal bus to reserve the first choice for a direction to
transmit the packet. If the transmitter for this direction is free,
the packet will cut-through this node with only the slight delay
of waiting for the header and the single status query of the
transmitter. If the first attempt to reserve the transmitter was
unsuccessful, an attempt at an alternate transmitter is made,
if applicable. If both of these attempts are unsuccessful, the
packet is queued at this node for later transmission. Third,
the receiver schedules events to signal the completion of the
packet at this node. This may involve either unreserving a
transmitter if the packet successfully cuts through or informing
the module that simulates the handling of buffered messages.
This detailed timing and tracking of messages allows different
message scheduling, access protocols, and memory manage-
ment strategies to be investigated. However, for the results
presented in this section only a first-come first-serve single
queue with unlimited memory was used.

In addition to the exponentially distributed packet lengths,
the simulator can also use a discrete distribution of packet
lengths where the user specifies the number of different types
of messages, their lengths, and the probability of each type
of message. Similar to the analytic model, packet arrivals are
assumed to follow a Poisson arrival process.

For the examples presented in this section the following
parameters were used. (Note that choice of these parameters is
arbitrary and will not in general change our conclusions drawn
in this section.) The dimension of the mesh was 7 resulting in
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Fig. 4. Probability distribution of D5 in an H-mesh of dimension 7.

127 nodes in the system. The probability of a node commu-
nicating with a specific node k& hops away was assumed to be
inversely proportional to the number of hops, i.e., & = ﬁ.
The mean packet length for the analytic model was assumed
to be 185.6 bytes. The distribution of packet lengths for the
simulation were 64, 128, and 512 bytes, each with probability
0.3, 0.5, and 0.2, respectively. The results for three different
packet generation rates are obtained. These correspond to 15%,
30%, and 45% of the peak packet generation rate that can
be supported by the routing hardware. Currently, the peak
packet generation rate that can be supported by the routing
hardware is 4 megabytes per second. All the distributions
either generated or collected were for messages having their
destination five hops from their source node.

Fig. 4 shows a plot of the probability distribution function
of the delivery times of a message traveling five hops in a H-
mesh of dimension 7. The three curves in the figure show the
variation in the probability distribution function with respect
to the assumed message generation rate Ag at each node. As
would be expected, the delivery time distributions shift to the
right as the load on the network is increased.

Fig. 5 shows the inverse of the probability distribution
functions in Fig. 4. The inverse of the distribution function is
useful to determine design parameters like delay bounds. For
instance, one can select a delay bound such that the probability
of a message being delivered within that bound is greater
than a specified threshold. This would provide a probabilistic
measure on the guarantees that can be provided in a real-time
system during its operation.

Figs. 6, 7, and 8 compare the analytic model against a

low-level functional simulation of the routing hardware in
HARTS. The results show that the analytic model predicts,
with a reasonable accuracy, the delivery times for the loads
shown. The jumps in the simulation results are due to the
discrete distribution of the message length. It is found that at
higher loads (greater than 65% of the peak load) the differences
between the simulation and the model can be significant.
Reasons for these differences are currently being investigated.
Also note, the analytic model overestimates the actual delivery
times and therefore the model produces a pessimistic result.
The slight discrepancy at small delivery times between the
model and the simulation result from the model not taking
into account the overheads of processing the message headers.

V. CONCLUSION

The main contribution of this paper is the derivation of
the distribution of message delivery times in a C-wrapped
H-mesh that has virtual circuit cut-through capabilities. The
techniques used in this paper can be extended to other inter-
connection topologies like hypercubes or rectangular meshes.
The parameters pp, T', and p. can be calculated for a hypercube
or a rectangular mesh using techniques similar to the ones
in Section III-B because the techniques depend only on the
ability to determine the fraction of minimal routes between a
pair of nodes passing through a given node. Once T and p.
are determined, the derivation of the distribution for delivery
times does not depend on the topology.

The distribution functions derived in this paper are essential
in the design of real-time systems with deadlines. They provide
a probabilistic measure on the guarantees that the system

- —7
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PROOF OF ONE-TO-ONE CORRESPONDENCE

Definition 7: A pseudo-shape corresponding to the route
ng - - - ng is the sequence a; - - - a; - - - ay, of directions such that
a; = cwhm{n;_1,n;) for 1 < i < k.

Note that a shape is a pseudo-shape with constraints on
the permissible directions (to form minimal routes). Define
an operator @ between two directions in {dg,d;,---ds} as

The @ operator is undefined between two directions d; and d;
such that j = ¢ or j = [i + 1] or j = [i + 5]¢. Intuitively,
traveling first along direction d; and then along d; equivalent
to traveling a single step along direction d; @ d; if d; ® d; is
well-defined. For instance, traveling along dp and then along
dy is equivalent to a single step along d;.
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Observation 1: A route ng---ni can be transformed to
any other route myg ---mg with &’ < k using the following
procedure:

1) Transform ng---n; to the pseudo-shape a; - - - ax.

2) Transform the a; - --ak to by - - - by by a finite number

of applications of the following operations:
a) Replace a component a; with a component a;» # a;.
b) Replace any two components a; and aj, i # j, by
a; ® aj, where a; ® a; is well-defined.
c) Permute the components of a; - - - ak.
3) Transform the pseudo-shape b;---by to the route
Mo M.
Note that operation 2a) does not “preserve the source—destina-
tion node pair.” This observation can be formally stated as
follows. Let a; - - - ax be the pseudo-shape associated with the
route ng - - - ng. Let by - - - b be a pseudo-shape obtained from
a1 - - - ay, by a single application of 2a). Also let mgq - - - my be
the route associated with the pseudo-shape by - - - bx. Then by
“preserving the source—destination pair” we mean by - - - by is
such that mg = ng implies my = ng. With this definition of
preserving the source—destination pair we can conclude that
the operations 2b) and 2c) preserve the source—destination
node pairs. Operation 2b) is the only operation that reduces
the length of a pseudo-shape and the corresponding route.

Lemma 6: A route ng---my is a minimal route iff the
associated pseudo-shape is a shape.

Proof: We will first prove that the pseudo-shape of a
minimal route is a shape.

Suppose not. Then there exist components a; and a; in the
pseudo-shape such that we can apply operation 2b) to reduce
the length of the pseudo-shape. The route associated with
this reduced pseudo-shape will be shorter than the assumed
minimal route. A contradiction.

Now consider the reverse direction of the lemma, i.e., the
route associated with a shape is minimal.

Suppose not. Then there exists a minimal route between the
same source—destination pair whose pseudo-shape is shorter
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than the given shape. Therefore, we should be able to reduce
our given shape to the pseudo-shape of the minimal route using
operations that preserve the source—destination pair. But this
cannot happen since no operation of type 2b) can be applied
to this shape. Thus, our initial assumption the route associated
with our shape is not minimal is false. n
Theorem 3: There is a one-to-one correspondence between
anchored shapes and anchored routes anchored at node 0.
Proof: We first show that (3.2) transforms anchored
shapes to anchored routes at node 0. Consider the anchored
shape (s, £). Construct the pair (r,0) using (3.2). We show that
(r,0) satisfies the three necessary properties of an anchored
route.

1) Since s has a length of at least 2, the corresponding route
r has a length at least 3.

2) Follows from Lemma 6 that r is a minimal route.

3) Follows directly from the construction that node 0 is
contained in the route r.

We now show that (3.1) transforms anchored routes at
node 0 to anchored shapes. Consider the anchored route (r,0)
anchored at 0. Construct the pair (a; - - - ax, ) using (3.1). By
Lemma 6, a; - - - ay, will be a shape since the route r is minimal
by definition. £ is bounded by construction between 1 and k—1
as required by the definition of an anchored shape. n
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