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Intelligent Coordination of Multiple 
Systems with Neural Networks 

Xianzhong Cui, Student Member, IEEE, and Kang G. Shin, Senior Member, IEEE 

Abstruct- Many control applications require cooperation of 
two or more independently designed, separately located, but mu- 
tually affecting, subsystems. In addition to the good behavior of 
each subsystem, effective coordination of these subsystems is very 
important to achieve the desired overall system performance. 
However, such coordination is very difficult to accomplish due 
mainly to the lack of precise system models and/or dynamic 
parameters as well as the lack of efficient tools for system 
analysis, design, and real-time computation of optimal solutions. 
A new multiple-system coordinator that combines the techniques 
of intelligent control and neural networks, and forms the high- 
level coordinator in a hierarchical structure, is proposed. The 
basic idea is to estimate the effects of the control commands 
to subsystems using a predictor and modify these commands 
using a knowledge-based coordinator so as to achieve the de- 
sired performance. The predictor is designed for multiple-input, 
multiple-output systems using neural networks. The knowledge- 
based coordinator is responsible for a goal-oriented search in 
its knowledge base and the overall system stability. Because the 
internal structure and parameters of the low level are not affected 
by using the proposed method, some commercially designed servo 
controllers for single systems can be coordinated to perform more 
sophisticated tasks for multiple systems than originally intended. 

I. INTRODUCTION 
LTHOUGH some basic principles in coordinating mul- A tiple systems were developed in early 80s [l], most 

related publications addressed only conceptual interpretation, 
and very few of them dealt with actual applications. The main 
difficulty in coordinating multiple systems comes from the lack 
of precise system models and parameters as well as the lack 
of efficient tools for system analysis, design, and real-time 
computation of optimal solutions. New methods for analysis 
and design are thus required for the closed-loop coordination 
of multiple systems. 

Since intelligent control does not depend only on mathemat- 
ical analyses and manipulations, it is an attractive candidate 
to deal with complex system control problems. An intelligent 
controller achieves the desired performance by searching for a 
goal in its knowledge base. There are three basic structures for 
intelligent control: performance-adaptive, parameter-adaptive, 
and hierarchical structure. The performance-adaptive structure 
is motivated by human expert control andlor human cognition 
ability, and attempts to control a system directly with an 
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intelligent controller. Several examples of this structure are 
given in [2]-[5]. On the other hand, in a parameter-adaptive 
structure, the intelligent controller works as an on-line tuner 
of a conventional (usually PID) controller [6]-[8]. In a hier- 
archical structure, the intelligent controller [9] is a high-level 
controller, which attempts to modify only the reference input 
to the low level. The low-level subsystem could be a servo 
control system, and its internal structure and parameters are 
not affected by adding this high-level controller. One of the 
main tasks associated with an intelligent controller is to design 
a knowledge base. An inference engine will then conduct a 
goal-oriented search in the knowledge base according to the 
characteristics of system performance. The error and/or error 
increment of system output, and the quality of a step response 
are commonly used to evaluate system performance. Other 
additional characteristics were also suggested. For example, 
the estimated, dominant pole location of a closed-loop system 
was suggested to express system performance in [5], though 
no knowledge base was built on it. In [4], the output error and 
its derivative were arranged into a F’lase plane divided into 
48 areas, on the basis of which rules were designed. The goal 
was to control the system to reach the origin of this plane. In 
[9], the multiple-step prediction of system output was used to 
characterize system performance, and the knowledge to control 
the system was then simply represented by a decision tree. 

However, all the results reported in the literature were 
intended for single systems. Most of the system characteristics 
mentioned above may not be suitable for coordinating multi- 
ple systems, because system performance may not be easily 
defined and related to the measured data and control inputs. In 
fact, for a complex multiple-system, even human’s knowledge 
on how to coordinate it to achieve the desired performance is 
limited and incomplete. So, it is difficult to design a complete 
knowledge base for such a system. Addition of a coordinator 
(not necessarily an intelligent one) leads the problem of 
coordinating multiple systems to form a hierarchical struc- 
ture. Such an addition should not interfere with the internal 
structure and parameters of low-level subsystems, making the 
structure of performance- or parameter- adaptive intelligent 
controllers unsuitable for multiple-system coordination. The 
internal structure and/or parameters of low-level subsystems 
are usually not known to the coordinator. Moreover, stability 
analysis becomes very important, due mainly to the uncertain 
low-level structure and/or parameters, incomplete knowledge 
of the coordination and system characteristics. We should 
therefore answer the following questions when designing an 
intelligent coordinator: 
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Fig. 1. Interaction of two systems. 

What are the strategy and the structure to coordinate 
multiple systems? 
What are the characteristics of multiple-system perfor- 
mance? 
What is the knowledge necessary for coordination? 
How should knowledge be represented? 
How can the qualitative knowledge be extracted from 
sensor data? 
How can the result of qualitative reasoning be changed 
into the quantitative control signals of actuators? 
How can system stability be analyzed and guaranteed? 

We propose a knowledge-based coordinator (KBC) for 
multiplc systems by combining the techniques of intelligent 
control and neural networks (NN's). The KBC is a high- 
levcl coordinator within a hierarchical structure. The detailed 
structure and/or parameters of low-level subsystems are not 
required by the KBC, thus allowing individual subsystems to 
be designed independently. This implies that some commer- 
cially designed controllers can be coordinated to perform more 
sophisticated tasks than originally intended. In Section 11, the 
problem of multiple-system coordination is stated, and some 
basic principles of multiple-system coordination are reviewed. 
The proposed scheme and the assumptions used are described 
in Section 111. Section IV addresses the design of a KBC, 
including the knowledge representation, solution existence, 
and system stability. Section V deals with the design of an NN- 
based predictor with multiple-input multiple-output (MIMO). 
The basic structure of the NN-based predictor, a vector version 
of the back propagation algorithm, and the updating problem 
will be discussed there. As an example, the coordination of two 
2-link robots holding a single object is discussed in Section 
VI. The paper concludes with Section VII. 

11. THE PROBLEM AND PRINCIPLES OF 
MULTIPLE-SYSTEM COORDINATION 

Fig. 1 describes two interacting systems, and this description 
can be easily generalized to the case of more than two systems. 
Thc system dynamics are described by 

S ~ ( U ~ , Y ~ , W ~ )  = 0 and S2(w,y2,w1) = 0 

where U, E Ry7, w, E R", and y, E Rpa for i = 1 , 2 .  Let 
p = p 1 + p 2 ,  q = qlfq2 and m = mlfm2, then the constraints 
are expressed by SO = {(U,Y,W) : SI = 0,Sz = 0}, 
where U = [ulT,u:] E Ry is the augmented control input 
vector, Y = [ylT,yzT] E Rp the augmented system output 
vector, and W = [wlT, wzT] E R" the vector representing 
interactions between the two systems. 

T 

T 

T 

Fig. 2. Goal coordination of two systems. 

Usually, the cost function of a multiple-system is the sum 
of the cost functions of all component systems: 

J(U,Y,W) = Jl(Ul,Y1,W2) + 5 2 ( ' 1 1 2 , Y 2 , W ) .  (1) 

The problem of coordinating multiple systems can be stated as 
an optimization problem: minimize the cost function J subject 
to the constraint SO. 

Though there are no general approaches to solving this 
problem for a complex multiple-system, some conceptual 
methods and basic principles have been suggested in [l]. One 
of these methods is called model coordination. Under this 
method, the problem is divided into two-level optimization 
problems. First, suppose the interaction W is fixed at 2, then 
compute 

where H ( 2 )  is then minimized over all allowable values of 
Z. This two-level optimization problem is solved iteratively 
until the desired performance is achieved. Another method is 
called goal coordination, in which the system is represented 
as in Fig. 2. Suppose wz is not necessarily equal to 2,. The 
overall optimality is achieved by sequentially optimizing two 
subsystems, while treating w, as an ordinary input variable 
of each corresponding subsystem. This requires x, and w, to 
be equal, which is called the interaction balance principle. 
Similar to the process of model coordination, the optimality is 
achieved iteratively. Another basic principle of coordination, 
called the interaction prediction principle, is stated as follows. 
Let 

w = [w:,w:lT 

T be the predicted interaction and W = [ z u ~ ~ , w ~ ~ ]  be 
the actual interaction under the control U .  Then the overall 
optimumwill be achieved if the prediction gives the true value, 
that is: W = W .  

Obviously, solving these optimization problems largely de- 
pends on the knowledge of the structure and/or dynamic 
parameters of low-level subsystems and mathematical syn- 
thesis. Moreover, in a hierarchical system it is desirable that 
adding a high-level coordinator should not affect the internal 
structure and/or parameters of the low-level subsystems, and 
should only give appropriate coordination commands to them, 
so that each level can be designed independently of other 
levels. That is, the higher the level is, the more intelligence 
it has, and the less precise its knowledge about the low 
levels becomes. These requirements motivated us to design 
a knowledge-based coordinator (KBC). 
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To design a coordinator, we first need to define a system 
performance index. It should be chosen to express the de- 

Then Y can be represented as 

sired system performance and should also be amenable to y = F(YT1,YT2,W1,W2) (2) 
some optimization methods. For example, the performance 
index defined in (1) is suitable for the concepts of model 
coordination and goal coordination. To design a KBC, one 
needs an index to explicitly express system performance, and 
such an index will henceforth be called the principal output. 
The overall system performance index may not necessarily 
be the simple summation of the performance indices of all 
component systems. Because only the system constraints are 
important for coordination, one may not even be able to define 
subsystem performance indices. Moreover, we want to relate 
the principal output directly to the coordination commands. 
The coordination commands are defined as the reference 
inputs to subsystems. From the following sections, one can 
see that both the explicit expression for system performance 
and the direct relationship between the principal output and 
the coordination commands will simplify the design of the 
knowledge base and the goal-oriented search. 

111. DESCRIPTION OF THE PRINCIPAL 
OUTPUT PREDICTION SCHEME 

In a hierarchical structure, each level can be viewed as a 
mapping from its reference input to the output. The servo 
controller of each subsystem is usually designed separately 
from, and independently of, the others. In order not to interfere 
with the internal structure and/or parameters of the lower level, 
the only effective control variable is the reference input to 
the lower level. The reference inputs are a set of predesigned 
commands, which represent the desired overall behavior of 
the multiple systems. For example, when multiple robots 
work in a common workspace, the reference input is the 
desired trajectory of each robot generated without considering 
the presence of other robots. The purpose of a high-level 
coordinator is to modify the desired trajectories to avoid 
collision among the robots. From a high-level coordinator's 
points of view, the following conditions are assumed. 
C1: Each subsystem is a stable, closed-loop control system. 
C2: Each subsystem has a linear response to its reference 

C3: Each subsystem will remain stable even during its inter- 

C4: System performance can be described explicitly by the 

In Fig. 1, let Y be the principal output vector of the multiple- 
system, Y ,  = [YTl, YT21T be the vector of reference input to 
the low level. Note that the components of Y may not be 
simply the outputs of subsystems, but could be a function of 
these outputs: 

Y = Fo(yl,yz),  where Fo : Rpl x Rpz -+ Rp.  

Because each subsystem is a closed-loop control system, yz 
can be represented as 

input. 

action with other subsystems. 

principal output. 

where F : R"' x Rn2 x R" x Rm2 --+ Rp.  The principal- 
output vector Y in (2) establishes an explicit relationship 
between the overall system performance and the reference 
input. Let Y ( k  + d / k )  and Y d ( k  + d) be the d - step ahead 
prediction and the desired value of the principal output Y ( k )  
at time k + d, respectively. Then, the performance index of 
the overall system can be defined as 

J ( k )  =[Y& + d )  - Y ( k  + d / k ) I T  

. [Y,(k + d )  - Y ( k  + 4. 
The purpose of using a coordinator is to choose a suitable 
reference input vector Y , ( k )  so as to minimize J ( k )  at time 
k subject to a set of constraints. 

Suppose the prediction of the principal output corresponding 
to each choice of Y r ( k )  is available, and the constraints can 
be expressed with a set of production rules. Then, in each 
sampling interval, the desired performance can be obtained by 
iteratively trying different reference inputs and adjusting them 
according to the principal output prediction. For example, we 
propose the following algorithm to coordinate two subsystems, 
where the superscript i denotes the iteration count. 

1) Compute the principal output prediction Y o ( k  + d / k )  
for given reference inputs y;,(k) and ~ ; ~ ( k ) .  

2) Using Y z ( k  + d / k ) ,  modify the reference inputs of 
subsystem 1, y:,(k), i = 0,1 ,2 , .  . .. 

3)  Compute YZ+ls(k + d / k )  for given reference inputs 

4) Set i +- a + 1 and repeat steps 2) and 3) until Y ( k  + 
d / k )  cannot be improved any further with yFl(k) due 
to the constraints. 

A z + l  
Y:,(k) and Y0r2(k). 

5 )  Set i c 0. 
6) Using Y z ( k  + d / k ) .  modify the reference inputs of 

7) Compute Y z + l ( k  + d / k )  for given reference inputs 

8) Set i c z + 1 and repeat steps (6) and (7) until 
Y " ' ( k  + d / k )  cannot be improved any further with 
yr2(k) due to the constraints. 

9) Set z +- 0 and repeat steps 2)-8) until Y z ( k  + d / k )  
reaches its desired value. 

The conceptual structure of this scheme is given in Fig. 
3. Obviously, this scheme needs a multiple-step predictor 
to compute Y z ( k  + d / k ) ,  and a KBC for the modification 
process of the reference inputs. By using this principal output 
predictor to characterize system performance, the knowledge 
to coordinate multiple systems becomes clear, thus simpli- 
fying the design of a knowledge base. We now need to 
address the following two problems: 1) Given the principal 
output prediction, how can we design this KBC? This will 
be discussed in the next section. 2) How can we design 
such a principal output predictor? In Section V, an MIMO 

subsystem 2, yF2(k), i = 0 ,1 ,2 , .  . . . 

Y ; l W  and YL(JC). 
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Fig. 3. Conceptual structure of the knowledge-based coordination system. 

predictor is designed using NN’s. With the ability of learning 
an input-output (I/O) mapping from experience, an NN can be 
used to track the variation of the mapping. However, an NN 
alone cannot form an intelligent coordination/control system. 
As a general method of representing systems with learning 
ability, NN’s lack the ability of logical reasoning and decision 
making, interpretation of environmental changes, and quick 
response to unexpected situations. Therefore, a KBC is needed. 
Despite its drawbacks, the NN-based predictor establishes 
an explicit relationship between the principal output and the 
reference inputs to subsystems. Hence, the knowledge base is 
simplified. One can also add easily to the knowledge base such 
rules as the constraints of subsystems, operation monitoring, 
system protection, and switching of the coordination schemes. 
The KBC will emphasize system coordination but not data 
interpretation, while the ability of learning will rely mainly on 
the NN, that is, the NN will adapt itself to the model/parameter 
uncertainties, disturbances, component failures, and so on. 

Iv. DESIGN OF THE KNOWLEDGE-BASED COORDINATOR 

A multiple-system with the KBC forms a hierarchical struc- 
ture, and the low-level subsystems are viewed as a mapping 
from their reference input to the principal output. The goal is to 
modify the reference input so that the principal output reaches 
its desired value. For a given multiple-system we must define 
the principal output. Note that knowledge-based coordination 
is not strictly a mathematical optimization problem. The 
principal output must 1) have an explicit relation to the 
reference inputs, and 2) be measurable or computable from 
measured data. Because a multiple-system is designed to 
perform a common task(s) among the component systems, 
such a principal output is usually defined to express the 
situation of the common task(s), though it may not explicitly 
reflect some of generally used optimization criteria, such as 
energy or time. 

As an example, consider the coordinated control of two 
robots. The two robots’ operations may be tightly coupled 
or loosely coupled. They are tightly coupled, for example, 
when they hold a single object rigidly and are coordinated 
to move the object. On the other hand, they are loosely 
coupled, when they work in a common workspace and are 

coordinated to avoid collision. Suppose each robot is equipped 
with a servo controller that was originally designed for a 
single robot. The two robots are coordinated by modifying 
each robot’s reference input. For the tightly coupled case, 
the principal output can be defined as the object’s position 
error or the internaVexterna1 force exerted on the object. For 
the loosely coupled case, on the other hand, the positions 
and/or velocities of the robots’ end-effectors can be used to 
represent the status of collision avoidance, and thus, they 
are qualified to be the principal output. For both cases, an 
explicit relationship between the system performance and 
the reference input is established by defining the appropriate 
principal output. 

As stated in the previous sections, we want to use the 
principal output predictor to see where each reference input 
of the subsystem will lead to. In this section, it is assumed 
that such a predictor is well-designed and gives the true value 
of the principal output. (The design of such a predictor is 
treated in the next section.) 

Given the principal output prediction, the simplified knowl- 
edge on how to coordinate a multiple-system can be stated in 
two steps: 

1) Modify the reference input and feed the modified input 
to the predictor. 

2) IF the principal output prediction yield good perfor- 
mance THEN feed the reference input to individual 
subsystems ELSE remodify it. 

Since only one reference input is modified at each time, the 
remaining problems are then in which direction the reference 
input is modified (increase or decrease), how much it should 
be modified, and what its limits are. For a single-system, we 
have already developed such a KBC in [9]. For a multiple- 
system, the modification process of each reference input is 
similar to that of a single-system, so only the related results 
of [9] are summarized below. 

A. Knowledge Representation 
Using a predictor, the performance of a multiple-system is 

characterized by the predicted tracking error in its principal 
output that results from the application of the current reference 
input. Thus, the space of predicted tracking errors E forms 
the input space of the KBC’s knowledge base. The goal of the 
KBC is then to implement the modification process discussed 
thus far. It is not difficult to express this process in terms 
of a set of production rules. The possible actions that the 
KBC can take include: increase the reference inputs, decrease 
the reference inputs, or keep them unchanged. Because our 
scheme is based on the modification of the reference input 
according to the corresponding principal output prediction, the 
internal structure and parameters of low-level subsystems are 
not affected. To simplify the design of production rules, the 
predicted output error is considered as the system character- 
istics or the input of the knowledge base. For each element 
of the reference input, the basic modification process can be 
represented by a decision tree as shown in Fig. 4. The i j th 
node in the tree is represented by ([a; ,  b j ] ,  ci),  where c$ is the 
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f [ a i ,  b'. I ,  c j  ) B. Solution Existence and Stability Analysis 

IF ( (e ; . (k)  < 0) AND (leg(k)l > E) 

IF ( e : ( k )  > 0) AND ( le ; (k) l  > E )  

IF leg(k)l < E 

The basic forms of production rules are as follows. 

THEN increase C) AND compute y;+l ( k )  = y," ( k )  + c;; 
THEN decrease e: AND compute y;++' ( k )  = y: ( k )  + ci; 

THEN set y;+'(k) = y;(k) AND stop the iterative oper- 

t > 0 is a prespecified error tolerance. Because the amount 
of modification to the reference input is bounded, or U: < 
c:. < b: for all i ,  j ,  there may be a case where leg ( k )  I > E for 
all c;. To avoid such a case, the desired trajectory needs to be 
designed carefully. For example, when the desired trajectory 
is a step function, for a second order system, at k = 0 the 
system response cannot have a jump no matter how large 
the reference input is. A reasonable choice of E is another 

f [ ak+l ,  b z l  I , c$ 

[a,",  b y ] ,  c,") 

( f a ? ,  b 2 1 ,  c z )  ( I  a z ,  b 2 1 ,  cg) 
( I  a z ,  b $ i ,  c z )  ation. 

d -  
( I  a y ,  b y / ,  c y )  

... .. .... .... .. .......... 

Fig. 4. Decision tree. 

quantity added to the reference input,' 

y;++l(k) = g ( k )  + C i ,  

where y,"(k) is an element of the original reference input vector 
to one of the subsystems at time k ,  y;+' is its modified value 
after the ith iteration, and [a;, b4] is the interval to be searched, 
where U: < C; < bg for all , i , j .  By giving the reference 
input y;(k), at any node ( [U: ,  b i ] ,  e:), t;;+'intyal [U:, b:] 
will be split into two subintervals [u2,", b,  ] = [U; ,  c:] and 
[ukyl b",+:,] [c: , b i ] ,  which form two successive nodes. At 
the ith iteration and at the i j th node, let the predicted tracking 
error resulting from y;(k) be denoted as 

. .  

e i . (k)  = $(l~ + d / k )  - Y d ( k  + d )  

where ?Jd is an element of Y d  and yZ(k + d / k )  is the 
corresponding element of Y z ( k  + d / k ) .  

Then, C: is computed as: 

and 0 < K < 1 is a weighting coefficient that determines 
the step size of the iterative operation. U: and b: are the 
predesigned lower and upper bounds for the amount of ref- 
erence input modification, and usually c: = 0, that is, at the 
beginning, the reference input is not modified. 

The structure of this decision tree shows that the simplest 
inference process is similar to forward chaining, starting from 
the root node. However, after a period of operation, we may 
learn that a positive augment C: is always needed. Then, the 
inference process may start at any node with C: > 0 and 
go forward or backward according to the sign of predicted 
tracking error. Note that this backward search does not mean 
a reverse search, but rather intends to find a suitable node 
to start the forward search. As soon as the forward search 
begins, the process is not reversible. 

'Because only the reference input to one subsystem is modified at a time, 
to simplify the notation, subsystem 1 and 2 will not be distinguished within 
this section, that is, y, ( k )  will represent one element of either y, , ( k )  or 
Y d ! ( k ) .  

way to prevent this problem. This existence problem can be 
monitored by adding, for example, the following rule into 
the knowledge base: 

IF ((IC; - b:( < 6 ) OR ( IC; - u:l < 6)) AND ( le:(k)l > E 

THEN (change U: or b: automatically and continue the search) 
OR (ask the operator for an adjustment) 
OR (stop the iterative operation and choose with the 
smallest e ) ( k )  as the best output). 
6 > 0 is a prespecified tolerance. 

Suppose the weighting factor K is set too small or too 
large, then the search for C; may take a long time. This 
would not be acceptable if the required computation cannot 
be completed within one sampling interval. The case of the 
computation/search time exceeding one sampling interval is 
equivalent to having no solution. This case is monitored by 

IF (the search time > T,,,) AND 
(Iei(k)I > t) THEN (stop the iterative operation) 
AND (choose C; with the smallest ej(k) as the best 
output) AND (modify the weighting coefficient K).  
T,,, is the prespecified maximum search time. 
Suppose the prediction gives the true principal output, and 

let us consider the KBC and the closed-loop subsystem. The 
KBC can then be viewed as a map MO : E Y R ,  specified 
by all the production rules, where E is the space of predicted 
principal output tracking error and Y R  the reference input 
space. The low-level closed-loop subsystem is also a map, 
L:YR + E,  which is specified by the desired dynamic 
properties of the servo controller. Because L represents a well- 
designed controller and there exists a reference input at time 
I C ,  Y:(k) E Y R  such that e i ( k )  = 0. Thus, it is reasonable 
to assume that L is a linear map. The properties of the map 
M =_ LMo : E --+ E depends mainly on the properties of the 
map MO. In fact, all the antecedents of production rules are 
established based on the prediction of principal output. If the 
predictor gives the true principal output, then the properties 
of the invariant map M:E i E is determined solely by 
the knowledge base. For system stability, all production rules 
in the knowledge base must form a contraction map. More 
formally, we give the following theorem without proof. (See 
[9] for its proof.) 



CUI AND SHIN: INTELLIGENT COORDINATION OF MULTIPLE SYSTEMS WITH NEURAL NETWORKS 1493 

Theorem: Suppose 1 )  the principal output prediction of a 
multiple-system is computable and the predictor gives the true 
principal output, and 2) L:YR -7' E of the low-level closed- 
loop subsystem is a linear map. If the map Mo:E + Y R  
is given by a decision tree, then the composite map M 
LMo:E -i E is a contraction map. 

At each node of the decision tree, the iterative learning 
process is performed and the rules always keep the search di- 
rection pointed to the node where the tracking error decreases. 
This implies that the iterative learning process decreases the 
tracking error. As mentioned in Section 111, the inference 
process is not reversible, and thus, it is impossible to have 
an unstable system response. 

v. DESIGN OF AN "-BASED PREDICTOR 

Though it is assumed that the principal output Y is measur- 
able or computable from the measured data, it may be very 
difficult to derive a closed-form expression for (2). Therefore, 
i t  is almost impractical to design such a principal output 
predictor with mathematical synthesis alone, even if such a 
closed form exists. The development of NN's suggested that an 
1/0 mapping can be approximated by a multilayer perceptron 
[ I O ] ,  [I 11. With the ability of learning from examples, an 
N N  can be trained to retain the dynamical property of an 
1/0 mapping. Typically, a set of 1/0 pairs is arranged as 
( u I , ~ I ) ,  ( u 2 , ~ ~ ) .  . . ., where yt = f(u,) is a mapping. Using 
these training data, the connection weights within the NN are 
reorganized so as to represent the mapping relation. One of 
the most popular NN structures is the multilayer perceptron 
with the back propagation (BP) algorithm [12], [13]. The 
computation of BP includes two steps: 1) compute the NN's 
output forward from its INPUT to OUTPUT layers, and 2) 
modify the connection weights backward from its OUTPUT 
to INPUT layers. In what follows, an MIMO predictor is 
designed using an NN. The BP algorithm is extended to a 
vector form, and the problem of tracking a time-varying system 
is also addressed. 

Referring to (2) ,  the d-step ahead prediction of Y can be 
represented by 

Y ( k  + d / k )  = Fp(Yr1 ,Yr2 ,Y)  (3) 

where 

~ r 1 =  ( , , I ( ,  + 2 1 1 , .  . . > Y r l ( k ) , Y r l ( k  - 11, 

. . . ) y r l ( k  - 2 2 ) )  

Y r 2 ( k  + 3 1 ) ) .  . . ,Y7-2(k),Y7-2(k - I), 

. . . , y r 2 ( k  - 3 2 ) )  

Y12 = ( 

( .)> Y = Y ( k ) , Y ( k  - l), . . . ,Y(k - 

Fp : Rnl x Rn2 x Rp -+ Rp 

where /, ? 1 , 2 2 , j l  and j 2  are constant integers. The interac- 
tion effects among subsystems are implicitly included in the 

6 k n  wljk 

. . . . . . . . . . . . . . . . 
\\ I 

OUTPUT 
layer 

HIDDEN 

Fig. 5 .  Structure of the NN-based predictor. 

historical data of Y. In (3), the principal output prediction is 
directly represented as a mapping of the reference inputs and 
the historical data of Y. A three-layer (with one hidden layer) 
perceptron is designed to learn the relationship of (3), and 
forms the backbone of the NN-based predictor. Fig. 5 shows 
the structure of the predictor, where the reference inputs Yrl 
and Y r 2 ,  and the historical data Y are fed to the nodes at 
the INPUT Layer. When the NN becomes well-trained, the 
predictions Y(k + d / k )  for d = 1 , 2 , .  . . are then produced 
from the OUTPUT nodes. Two problems should be solved 
before implementing this NN-based predictor: 

1) How to efficiently represent and compute an MIMO 

2) How to track a time-varying mapping ? 
mapping with the NN ? 

These problems have been treated in [14], and thus, only the 
key points are summarized below for completeness. 

A. Multidimensional Back Propagation Algorithm 

Traditionally, each node of a multilayer perceptron is de- 
signed only to perform scalar operations, and the number of 
nodes or layers is increased to represent a more complex I/O 
mapping. However, if each node handles only one element 
of a vector, then a multilayer mesh is required to learn a 
complex MIMO mapping, such as (3). Training such a mesh 
is impractical due to the lack of a systematic algorithm. 
Therefore, we design a multilayer perceptron with the ability 
of vector operations in order to easily specify some known 
coupling relations within the predicted system, and to get an 
easier (thus more intuitive) form of the training algorithm. 
Referring to Fig. 5, the corresponding multi-dimensional BP 
algorithm is summarized below. 

All inputs and outputs of this NN are vectors, Xi  E 
, X , j  E R m x l ,  and X2k E Rpxl  are the output R"X1 
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of INPUT, HIDDEN and OUTPUT layers, respectively, for 
1 5  z 5 N,1 5 5 N I ,  and 1 2  k 5 Nz.  

I )  Compute the Output of the HIDDEN Layer X I , :  
T X I ,  E [ 2 1 j 1 ,  . . . > 2 1 j m ]  = f , ( 0 1 , )  

1 
= [ I  + exp (-(01,1 + 0 1 3 1 ) ) ’  

I T  1 . . .  
’ 1 + ~ X P  ( - ( 0 1 j m  + 01,m)) 

where 0 1 ,  = E,”=, W z 3 X 2 ,  j = 1 , 2 , .  . . , N I ,  and W,, E 
IS the weights from the INPUT to the HIDDEN layer, 

8 1 ,  = [81 ,1 , .  . , , QlJmIT the threshold at the HIDDEN layer. 

R m x n .  

2) Compute the Output of the OUTPUT Layer 

X 2 k  [ Z 2 k l r . .  . , X 2 k p l T  = f k ( 0 2 k )  

1 
= [ 1 + exp ( - ( 0 2 k 1 +  Q z k l ) ) ’  

I T  1 . . .  
’ 1 f exp ( - ( 0 2 k p  + 0 2 k p ) )  

where 0 2 k  = wlj,+xl,, k = 1 , 2 , .  . . , N 2 ,  and W i j k  E 
Rpxm is the weights from the HIDDEN to the OUTPUT layer, 
8 z k  = [ @ 2 k l ,  . . . , 6‘2kplT the threshold at the OUTPUT layer. 

3) Update the Weights from the HIDDEN to the OUTPUT 
Layer w 1 , k :  

W l j k ( k  + 1) = W l j k ( k )  + a w l j k  

where 

and T I  is a p x m x p tensor, with the lth matrix as 

r O 1’ 
Til = I ( x ~ j ) ~  ‘ . .  I -at the lth row, 1=1,2,. . . , p .  

I O 1  
L . . .  J 

4) Update the Weights fvom the INPUT to the Hidden Layer 
w i j  : 

Wij(k + 1)  = W i j ( k )  + AW,, 

where 
w . .  23 - - q [ 4 T 2 I T  

~ l j ~ ( 1 - ~ 1 j ~ ) , ~ . . , ~ 1 j m ( 1 - 2 1 j m ) ]  

and T 2  is a m x n x m tensor, with the Ith matrix as 

1 .o. l T  
T z ~  = I (x!T 1 -at the Ith row , 1=1,2,. . . , m. 

5) Update the Thresholds at the OUTPUT and the HIDDEN 
Layers & k ,  O l j :  

e 2 k ( k  + 1 )  @ 2 k ( k ) q 1 0 [ d l k ] T  

f 1) e l j ( k )  + ‘ % [ d l k ] T  

where q l , q , q 1 8 ,  and qe > 0 are the gain factors. 

B. Tracking a Time-Varying System 

prediction error 
In the above algorithm, the NN is trained by using the 

E k ( k )  = x$,(k) - x 2 k ( k )  = y ( k  + d )  - y ( k  + d / k ) ,  (4) 

where X$,(k)  is the desired value of X$,(k) at time k .  
This implies that the NN should be trained by using the 
system’s future output Y(k + d) ,  which are unknown. A set 
of training data can be acquired beforehand, and used to train 
the NN. After the NN is “well trained,” its weights will no 
longer be modified. Then, the NN produces the correct outputs, 
whenever the inputs are present at the INPUT layer. However, 
for time-varying mappings, it is meaningless to say that an NN 
is “well trained”. Moreover, in a real-time control system, it 
is desirable to always operate the system in closed-loop. This 
means that the NN-based predictor should be “updated” (rather 
than trained) so as to track a time-varying system. To update 
the NN-based predictor on-line, the basic idea is to modify the 
weights of the NN using the a posteriori prediction error: 

E k ( k - d )  = X $ k ( k - d ) - X Z k ( k - d )  = Y ( k ) - Y ( k / t - d ) .  
(5  1 

It is shown in [14] that one can use (5 )  instead of (4) in the 
algorithm, and keep all other formulas unchanged. The scaling 
problem and error analysis have also been addressed in [14], 
and concluded that the accuracy of the NN-based predictor 
depends only on the accuracy of the NN’s approximation of 
the actual mapping. 

VI. COORDINATED CONTROL OF T W O  2-LINK ROBOTS 

To demonstrate how to apply the proposed scheme for 
solving real life problems, we consider the problem of coordi- 
nating two 2-link robots holding a rigid object. The low-level 
subsystems include two robots each with a separately designed 
servo controllers. The basic configuration of this example is 
given in Fig. 6. The Cartesian frame is fixed at the base of 
robot 1, and the trajectories of the object and the robots’ end- 
effectors are specified relative to this frame. The task is to 
move the object forward and then backward in X direction 
while keeping the height in Y direction constant. The desired 
trajectory of the object is selected by a high-level planner as 
the reference input to the low level. If the two robots hold the 
object firmly, then the dynamics of the system are modeled 
as follows. 

Dynamics of the Object: Let f ,  = (fiZ, f;,)T be the force 
exerted by the end-effector of robot i on the object in Cartesian 
space. Then the motion of the object is described by 
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Robots Link 1 
Length l m  
Mass Center 0.5 m 
Mass 20 kg 

+X 

Link 2 
lm 
O S  m 
10 kg 

Moment of inertia 
Obiect: mass=S kg; length=l m. 

1 0.8 kg ms2 1 0.2 kg ms2 

Fig. 6. Two 2-link robots holding an object 

where ‘ I ~ I ,  is the mass of the object, P the position of the 
object in Cartesian space, g the gravitational acceleration, f 
thc external force exerted on the object by the two robots, and 
I2 is a 2 x 2 unit matrix. From (6), one can see that, to achieve 
the object’s specified acceleration, the combination of forces 
shared by the two robots is not unique. 

Suppose 
two robots have an identical mechanical configuration, then the 
force-constrained dynamic equation of robot i in joint space 
is given by [15]: 

Dynamics of Each Robot with Servo Controller: 

where q, is the vector of the robot’s joint positions, H is the 
inertia matrix, h is the centrifugal, Coriolis, and gravitational 
forces, J ,  is the Jacobian matrix, and T,  is the vector of joint 
torques. Suppose both robots are position-controlled with the 
Computed torque algorithm. That is, the control input to robot 
I is 

T !  = & ( i z d  - Kot(qt - q r d )  - K p t ( q z  - q t d ) )  f c1 (7) 

where & and are the estimated values of H and h, q t d  is the 
desired value of qL,  Ko,  and I fp t  are the controllers’ gains. 
The reference input to the system is the.. desired trajectory 
of the object specified by P d , P d  and P d ,  which will be 
transformed into the desired trajectories of the end-effector 
and the joints of each robot. 

Problem Statement: Suppose the object is a rigid body and 
there is no relative motion between the end-effectors and the 
object. For (6), let f and F d  be the desired values of f and 
F ,  respectively. Then, we have 

F d  = F n f d  + F I d  2 w * f d  + ( 1 4  - W*w)!/o (8) 

where W *  E R4x2 is the pseudo-inverse of W ,  14 is a 4 x 4 
unit  matrix, and yo E R4x1 an arbitrary vector in the null 
space of W .  Therefore, the forces exerted by the end-effectors 
consist of two parts: 

is the force to move the object and 

F I d  5 [ E R4x1 

is the internal force. The following two problems arise: 1) 
sharing the moving force F M d  by two robots, 2) changing the 
internal force so as to satisfy a set of constraints, such as joint 
torque limits or energy capacity. 

In (8), F n d d  can be specified by the desired trajectory. 
F I d  is given as the desired internal force, for example, 
F I d  = 0 for the least energy consumption. Because W* is 
a constant matrix and both f d  and F I d  are specified, the 
desired force F d  is determined uniquely. However, this ideal 
situation of load sharing may not be achieved due to the force 
and trajectory tracking errors. These errors may be caused 
by modeling/parameter errors, control performance tradeoff, 
and/or disturbances. It is therefore necessary to share the load 
by, or reassign the load to, each robot dynamically. Our goal 
is to design a KBC to coordinate the two robots moving the 
object while minimizing the internal force. 

Principal Output and Its NN-Based Predictor: The reference 
inputs to the low-level subsystems are the desired acceleration 
P z d ,  velocity P , d  and position P a d  of robot a’s end-effector, 
i = 1,2.  The internal force can be used to evaluate system 
performance, and has an explicit relation to the reference 
inputs. So, the internal force is defined as the principal output. 
Because the force exerted by each robot to achieve a specified 
acceleration of the object is not unique, it is possible to adjust 
the internal force by modifying the reference inputs. Since the 
position tracking error needs to be kept small and the desired 
acceleration has an explicit relationship to the force exerted on 
the object, only the desired acceleration is modified so as to 
reduce the internal force. Then, the desired acceleration issued 
to each robot is p a d m  - the modified value of P o d ,  i = 1,2.  
An NN-based predictor is designed to predict the force exerted 
on the object, which corresponds to each reference input. The 
predicted internal force (that is, the principal output) is then 
computed. The NN-based predictor has eight nodes at the 
INPUT layer, and the inputs are P l d ( k ) ,  P l d ( k  - l ) ,  P Z d ( k ) ,  

P 2 d  ( I C  - I ) ,  P i d m  ( I C ) ,  p l d m ( k -  1)) p 2 d m ( k ) ,  and P 2 d m ( k  - 
1). There are five HIDDEN nodes and six OUTPUT nodes 
with outputs j , ( k  + d / k ) ,  for C= 1 ,2 ,  d = 1 ,2 ,3 .  

Simulations Results: The two robots move the object in X 
direction from the initial position to the final position over 
one-meter distance in five seconds, and then move back to 
the initial position. The sampling interval is 10ms. Force 
predictions are used for the modification process, and position 
tracking is achieved by the position controllers. The 1-step 
ahead predictions f + l / k ) ,  i = 1 , 2  are used in the KBC. 
The desired internal force is set to zero. Without the KBC, the 
internal force error in X direction is plotted in Fig. 7. After 
adding the KBC, the root-mean-square error of the internal 
force in X direction is reduced by 63% as shown in Fig. 
8. Moreover, both the external force error and the position 
tracking error are kept almost the same as those without the 
KBC. The detailed results are summarized in Table I. Since 
there is no motion in Y direction, the internal force error in 
that direction is small enough not to require the KBC. 
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Sample Interval for Statistics 

0 - 1000 

1001 - 2000 

2001 - 3000 

in S direction 
in l7 direction 
in A- direction 
in Ir direction 
in S direction 
in I? direction 

.4J . , , , , , . , , , . , , , , 
0 500 1000 1500 2000 2500 3000 3500 4000 

time (x 0.01 sec.) 

RMS Errors of Internal Forces (!\’) 
without KBC with KBC 
9.58447 3.85020 
0.93141 0.53177 
9.57130 3.53340 
0.92339 0.49949 
9.57097 3.53688 
0.92339 0.49956 

Fig. 7. Internal force error in X direction without the KBC. 

0 - 1000 

1001 - 2000 

in S direction 
in I‘ direction 
in S direction 

- E  . , . , , , , , , , , , , , , 
0 500 3000 1500 2000 2500 3000 3500 4000 

time (x 0.01 sec) 

Fig. 8. Internal force error in X direction with the KBC. 

without KBC with KBC 
0.72359 0.95822 
2.54853 2.54345 
0.34883 0.70199 

TABLE I 
RMS ERRORS OF INTERNAL FORCES, EXTERNAL FORCES AND 

OBJECTS POSITION TRACKING 

2001 - 3000 

~ 

in I.’ direction 0.01436 0.03345 
in S direction 0.34883 0.70346 
in 1’ direction 0.01436 0.03355 

1 Sample Interval for Statistics I RMS Errors of External Forces I I I (-\-) 

VII. CONCLUSION 

Focusing on the problem of coordinating multiple systems, a 
knowledge-based coordinator is designed using the techniques 
of both intelligent control and neural networks. As the high- 
level coordinator in a hierarchical structure, its basic principle 
is to modify the reference inputs of low-level subsystems 

according to the principal output prediction so as to achieve 
the desired performance. By adding the proposed KBC, the 
internal structure and parameters of the low-level subsystems 
are not affected. Hence, each servo controller of the low4evel 
subsystems can be designed separately from, and indepen- 
dently of, the others; no constraints need to be imposed on 
the design of low-level controllers. This implies that some 
commercially designed servo controllers for a single system 
can be coordinated to work for a multiple-system. 

Using the principal output and its prediction, and a structure 
of decision tree for knowledge representation, the knowl- 
edge base necessary to coordinate multiple systems is greatly 
simplified while guaranteeing system stability. By using a 
predictor, the negative effects of system time delay is elimi- 
nated and each reference input is analyzed before putting it 
in operation. The unknown parameters and/or time-varying 
properties of a multiple-system are handled by the “-based 
predictor, while leaving the logical reasoning and decision 
making on the coordination to the KBC. 

To test this new scheme, the coordination problem for two 
2-link robots holding a rigid object is simulated. By modifying 
the reference input of each robot, the internal force exerted on 
the object is reduced by 63%, indicating the scheme’s potential 
for the effective coordination of multiple robots. 
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