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Design of a Knowledge-Based Controller 
for Intelligent Control Systems 

Kang G. Shin, Senior Member, IEEE, and Xianzhong Cui 

Abstract- A hierarchical knowledge-based controller is proposed to 
improve the performance of complex control systems, such as robots. 
Unlike parameter- and performance- adaptive controllers, this controller 
is designed only to modify the reference input of a lower-level servo 
conpoller. Because the internal parameters and structure of the lower- 
level controller are not affected, commercial servo controllers can be 
made to perform more sophisticated tasks than originally intended. The 
principle of the knowledge-based controller, modification of the reference 
input, knowledge representation, existence of the solution, and analyses 
of the controller’s stability and tracking error are described in detail. A 
self-tuning multiple-step predictor is designed as part of the controller to 
eliminate the undesirable effects of system time delay. Both linear and 
nonlinear example control systems are tested via extensive simulations 
and have all shown promising performances. 

I. INTRODUCTION 
ONVENTIONAL, CONTROL THEORY is developed based C on mathematical models that describe the dynamic behavior 

of controlled systems. Usually, such a model consists of a set 
of linear or nonlinear differential/difference equations, most of 
which are derived under some forms of approximation and 
simplification. However, the complexity and model and/or pa- 
rameter uncertainties of the controlled systems often make the 
controllers very complicated. On the other hand, human operators 
do not always handle the system control problem with a detailed 
mathematical model, but rather with a qualitative or symbolic 
description of the controlled system. This fact calls for the need 
of intelligent control (IC) for complex systems. An extensive 
survey of IC can be found in [l]. Most related IC work can be 
referred to as parameter-adaptive [2,3], or performance-adaptive 
[4], [SI. The fundamental difference between these two lies in 
the goal of the knowledge base designed. 

A typical structure of parameter-adaptive IC is presented in [2], 
[3], where IC is used to tune the parameters of a conventional 
controller as sketched in Fig. l(a). In [2], a programmable logic 
controller (TI 565 PLC) performs the functions of a PID con- 
troller. Six different features are monitored, such as overshoot, 
rise time, settling time, etc. Two sets of production rules are 
established on the basis of the measurement of these features. 
One is called the alarm rules which will be fired when system 
instability is identified, and the other rules will be fired to re-tune 
the PID parameters. Another expert tuner for a PI controller is 
presented in [3]. Its main objectives are wind-up protection of the 
I part and tuning of PI gains. The transient response of a closed- 
loop system is characterized with nine categories including 
too-low-monotone, too-low-oscillatory, and so on. Moreover, 
the open-loop response is described with eight categories and 
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Fig. 1. Basic structures of intelligent controllers. (a) Parameter-adaptive 
intelligent controller. (b) Basic structures of intelligent controllers. 

the nonlinearity with eight categories. Similarly to [2], system 
stability is monitored by the knowledge base itself. 

The performance-adaptive IC’s attempt to simulate human 
expert control or human cognitive ability directly. Their basic 
structure is shown in Fig. l(b). An example of this structure, 
called a cognitive controller, is presented in [4]. Two types of 
rules are designed: training rules and machine rules. The training 
rules are represented by a set of production rules that directly 
map the position and velocity errors of the control object to the 
linear motion of the control mechanism, a joy stick. The machine 
rules are dynamic, learned from the accumulated experience of 
control, and implement the machine learning process. Using 
performance-adaptive IC, the principle of learning control can 
also be implemented [5]. In control theory, a learning controller 
is a trial-and-error mechanism that repeats a fixed procedure. The 
work in [5] replaced this fixed procedure by a knowledge-based 
controller such that the intermediate output errors are treated 
as knowledge. The error and error increment are quantified 
into eleven intervals, such as negative-big, positive-low-middle, 
etc. Based on this quantification, an 11 x 11 table is formed 
corresponding to 121 rules. Considering the global control per- 
formance, a set of rules is designed to determine the magnitude 
of reference input modification for different learning periods. 

Though many IC schemes have been proposed, it is difficult 
to compare them, because of lack of theory and a universal per- 
formance criterion. For a successful design of IC, the following 
issues seem to be important: 

1) What characteristics are used to express the performance 

2) How to extract qualitative knowledge from quantitative 

3) How to quantify the result of qualitative reasoning into the 

of a system? 

sensor data? 
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quantitative control signal of actuators? 
4) How to analyze and guarantee the system stability? 
5) How to implement the rules of learning from experience? 
In contrast to the parameter-adaptive and performance-adaptive 

ICs, we propose a new hierarchical knowledge-based controller. 
In Section 11, the basic principles of this controller are described. 
The characteristics of the lower-level subsystem and the modi- 
fication of reference input are also presented in this section. A 
detailed description of the knowledge-based controller is given in 
Section 111, including knowledge representation, existence of the 
solution, and inference process. The stability of the knowledge- 
based controller is analyzed in Section IV. In Section V, the 
procedure for designing a predictor is briefly discussed, and 
a detailed error analysis gives the lower and upper bounds of 
the trajectory tracking error when this controller is introduced. 
Finally, the simulation results in Section VI show the promis- 
ing performances of the knowledge-based controller. The paper 
concludes with Section VII. 

11. DESIGN PRINCIPLES AND CHARACTERISTICS 

A. Basic Principles 

A control system is evaluated by examining its response 
to some typical, preplanned trajectories, such as step, slope, 
parabola and/or sinusoidal signals. There are two ways to im- 
prove the performance of the control system. One is to set the 
desired trajectory as the system reference input, and redesign 
the internal structure of the servo controller so as to track the 
reference input precisely. For a complex control system, if this 
approach is used, the servo control level will become more 
complicated, and the fine tuning of the controller parameters 
will be extremely tedious (particularly for nonadaptive schemes). 
Moreover, there are some design trade-offs to consider, such as 
the one between rise time and maximum overshoot. The other 
way is to choose and adjust a reference input such that the 
controlled system tracks the preplanned trajectory. This forms a 
hierarchical structure, but requires little change in the internal 
structure of the servo control level. This is exactly what a 
hierarchical system is supposed to be; each level in the hierarchy 
is independent and does not affect the internal structures of other 
levels. 

In the high-level controller’s view, the lower-level subsystem 
is nothing but a mapping Lo from the reference input, X,, to the 
system output, X. There are two ways to improve the performance 
of the subsystem. One is to mod@ the map itself, e.g., some 
parameters or even the structure of the controller. This requires 
the high-level controller to know the detailed internal structure 
of the lower level. The other way is to modify the domain of the 
map only, (i.e., the reference input of the lower level) without 
requiring any detailed knowledge of the subsystem’s structure. 
Considering the generality, and the inexactness of the structure 
of the lower-level subsystem, we have adopted the latter in 
this paper. This adoption also coincides with the principle of 
increasing intelligence with decreasing precision as we move up 
the levels of hierarchy. 

It is assumed that the servo controller is designed indepen- 
dently of the high-level controller, and its dynamic structure 
and parameters are unknown to the high-level controller. In this 
paper, we shall design a knowledge-based controller (as a high- 
level controller) which modifies only the reference input to the 
subsystem as shown in Fig. 2. As a result, the internal structure 
and/or parameters of the (lower-level) servo controller are not 

required to be altered at all, thus imposing no constraints on 
the servo control level. This will, in turn, enable commercially 
designed servo controllers to perform more sophisticated tasks 
than originally intended. 

B. Characteristics of the Subsystem and the Modification Process 
To design a knowledge-based controller, one has to specify the 

input space of the knowledge base, or choose a typical represen- 
tation of the system dynamic characteristics. The most commonly 
used components are output error and/or error increment, and the 
standard figures of step response. However, to express the system 
characteristics more directly and to eliminate the undesirable 
effects of time delay, we propose to use predicted system outputs 
from which suitable reference inputs are determined. Because the 
lower level of hierarchy is a well-designed closed-loop control 
system, designing an output predictor for such a system is not 
difficult. 

Now, the problem is how to modify the reference input 
so as to make the system output track a desired trajectory. 
Using system output prediction, the desired performance can be 
achieved by iterative trial as is done in learning control. Note 
that learning control is usually used for a repetitive trajectory 
and needs a learning period during which an unacceptable output 
error could occur. By contrast, our knowledge-based controller 
is designed for an arbitrary trajectory and has to complete 
the iterative learning process in each sampling interval. The 
modification process is to 1) give a reference input, 2) compute 
a predicted system output, 3) calculate the predicted tracking 
error by comparing the prediction and the desired trajectory, 
and 4) modify the reference input based on this error. Note that 
actions taken in a control system are in general irrecoverable; that 
is, each reference input to the servo controller is the final decision 
at each sampling interval and cannot be undone. However, the 
combined prediction and modification allows us to analyze the 
“anticipated” consequence of each reference input, thereby at 
least partially solving the irrecoverable problem. 

This modification process can be formalized as follows. Let 
X:(k) be the reference input, X,*(k)  the desired trajectory, and 
XE(k + d / k )  the d-step ahead prediction of the system output 
at time k, where the superscript i denotes the ith iteration. The 
reference input X : ( k )  is modified by 

X?’(k) = X : ( k )  + Ki(k)e*(k + d) ,  i = 0, 1, 

where e’(k + d)  = X a ( k  + d / k )  - X,*(lc + d), X:(lc) = X,*(k),  
K;(k) is the learning gain at time k during ith iteration, and 
K;(k) = 0. Then we get 

1 

Xi+’(k) = X,*(k)  + CK,3(k)e.’(k + d). 
3 =O 
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Accurate tracking will be achieved by the iterative operation and 
the predictor, and this iterative operation must be completed in 
each sampling interval. To make the above modification feasible, 
the following conditions need to be met: 1) the iterative operation 
converges fast, and 2) the output prediction of the system is 
computable. Condition 1) is usually met because the lower level 
is a carefully designed control system, and X : ( k )  is near the 
optimal point. Condition 2) will be discussed in the following 
sections. 

The lower-level subsystem is equipped with some well- 
designed servo controllers whose behavior is assumed to be 
linear. Then, following an argument similar to the one in [6], 
one can prove that there exists a learning gain K i ( k )  such that 
e 2 ( k  + d )  -+ 0 as i + 00. Though such a K;(k)  exists, due to 
lack of knowledge of the lower-level subsystem, it is not easy 
to calculate the gain accurately. Moreover, the parameters and/or 
model uncertainties are not even considered, thus necessitating 
design of a knowledge-based controller. 

111. DESCRIPTION OF THE KNOWLEDGE-BASED CONTROLLER 

A. Knowledge Representation 

Using the predictor, the subsystem performance is character- 
ized by the predicted tracking error and the current reference 
input. Therefore, the space E of predicted tracking error forms the 
input space of the knowledge base. The goal of the knowledge- 
based controller is to implement the modification process dis- 
cussed thus far. It is not difficult to express this process by a set of 
production rules. The possible actions that the knowledge-based 
controller can take include: increase the reference input, decrease 
the reference input, and keep the reference input unchanged. The 
problem is how much to increase/decrease and how to determine 
the bounds of the reference input. Because this scheme is based 
on the modification of reference input and the resulting predicted 
output, the internal structure and parameters of the lower-level 
subsystem are not affected. This property allows us to consider 
the predicted tracking error, but not its derivative, as the system 
characteristics or the input of the knowledge base, so as to 
simplify the design of production rules. The basic modification 
process can be represented by a decision tree as shown in Fig. 3. 
The ijth node is represented by ( [ a ; ,  bt,] , c ; )  where c; is the 
quantity added to the reference input, 

Xi+'(?-) = X,*(k)  +- c;, 

and [cifl  b;] is the interval to be searched, and U; < c; < b; 
for all i,j. By giving the reference input X:(IC), at any node 
([at , ,  b;] ct,), the interval [ut,, b;] will be split into two subin- 
tervals [a;", U:'] [a;, ct,] and [akyl, VZ1] [c;, b j ] ,  
which form the two successor nodes of [at,, bt,] . During the ith 
iteration and at ijth node, let e ; ( k )  denote the predicted tracking 
error resulting from X:(IC): 

ef(k)  ez(k + d )  = X' ( IC + d / k )  - X,*(IC + d) .  

Then, C; is computed as 

4 - (bt, - a ; ) K ,  
a; + (b; - a;)K,  

if ej(k) < O 
if .;(IC) > 0 c; = { 

and 0 < K < 1 is a weighting factor that determines the step size 
of the iterative operation. a: and b: are the predesigned lower 
and upper bounds of the reference input modification, and usually 
c: = 0, i.e., at the beginning, the reference input is not modified. 

([a ;+zr  t 

0 . .  0 . .  

Fig. 3. Decision tree. 

B. Existence of the Solution 
The basic forms of production rules are 

IF { ( e ; ( k )  < 0) AND (Iej(k)l > E ) }  THEN 

{increase ci AND compute x:+' ( k )  = ~ , i  (IC) + c; } . 
IF { ( e ; ( k )  > 0) AND (le;(/c)l > E ) }  THEN 

{decrease cf AND compute Xi+' ( k )  = X,* ( k )  + c: } . 
IF {lei(k)l  5 E }  THEN 

{set X:+'(k) = X : ( k )  AND stop the iterative operation}. 

E > 0 is the prespecified error tolerance. Because the amount of 
modification to the reference input is bounded, or a: < cf < b:, 
for all i,j, there may be a case that Ief(IC)l > E for all c; To 
avoid this situation, the desired trajectory needs to be carefully 
designed. For example, when the desired trajectory is a step 
function and the system time delay is equal to two sampling 
intervals, at k = 0 the continuous system response cannot have 
a jump no matter how large the reference input is. A reasonable 
choice of E is another way to prevent this problem. This existence 
problem can be monitored by adding, for example, the following 
rule into the knowledge base: 

IF {((IC; - b:\ < 6) OR ( I C ;  -a i l  < 6 ) )  AND 

(lef(k)l > E ) }  THEN 
{(change at or b: automatically and continue the search) 

OR (ask the operator for an adjustment) OR 

(stop the iterative operation and choose c3 with the 

smallest e; (IC) as the best output)}. 

Suppose the weighting factor K is set too small or too large, 
then the search for c; may take a very long time. This would not 
be acceptable if the required computation cannot be completed 
within one sampling interval. The case of the computation/search 
time exceeding one sampling interval is equivalent to having no 
solution. This case is monitored by: 

IF {(the search time > N )  AND (Iej(k)l > E ) }  THEN 

{(stop the iterative operation) AND 

(choose ci with the smallest e i ( k )  as the best output) 

AND (modify the weighting coefficient K ) } .  
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- I Lower-level subsystem I 
Fig. 4. Block diagram of the knowledge-based controller. 

C. Inference Process 

Based on the structure of the decision tree, one can see that 
the simplest inference process is similar to forward chaining, 
starting from the root node. However, it may be learned after a 
period of operation that, for example, a positive augment cf is 
always needed. Once this fact is learned, the inference process 
can start from any node with c; > 0 and go forward or backward, 
depending on the sign of predicted tracking error. Note that 
the backward search does not mean a reverse search, but rather 
intends to find a suitable node from which a forward search can 
begin. As soon as the forward search begins, the search process 
is not reversible. 

IV. STABILITY ISSUES 

It is easy to establish the stability of the lower-level subsystem 
for a fixed reference input, because it is a well-designed closed- 
loop control system. However, this does not imply the stability 
of the whole system. See Fig. 4 for a block diagram of the 
knowledge-based controller. Both system poles and zeros are 
affected by the presence of the knowledge-based controller and 
the predictor. If the transfer functions for all the blocks in 
Fig. 4 are given, one may be able to derive the conditions for 
system stability. But this is not the case in reality: C(s)  and 
G(s) may not be known accurately, and the iterative learning 
with prediction and the knowledge-based controller do not form 
a simple feedback loop and cannot be expressed as simple 
mathematical transfer functions. 

Suppose the prediction gives the true system output and let 
us consider the knowledge-based controller and the closed-loop 
subsystem. (The assumption of perfect output prediction is of 
course unrealistic and will be relaxed in our later discussions.) 
The knowledge-based controller can be viewed as a map M O  : 
E + X R ,  specified by all the production rules, where E C R 
is the space of tracking error and X R  C R the reference input 
space. The lower-level closed-loop subsystem is also a map, L : 
X R  -+ E ,  which is specified by the desired dynamic properties 
of the servo controller. Because L represents a well-designed 
controller and there exists a reference input at time k ,  X:(k )  E 
X R ,  such that the trajectory tracking error e ' (k  + d )  = 0. Thus, 
it is reasonable to assume that L is a linear map. The properties of 
the map M L M o  : E -+ E depends mainly on the properties 
of the map M O .  In fact, all the antecedents of production rules 
are established based on the output prediction. If the predictor 
gives the true output, then the properties of the invariant map 
M : E -+ E is determined solely by the knowledge base. 

For system stability, all production rules in the knowledge 
base must form a contraction map. More formally, we have the 
following theorem. 

Theorem: Suppose 1) the output prediction of the lower-level 

subsystem is computable and the predictor gives the true output, 
and 2) L : X R  + E of the lower-level closed-loop subsystem 
is a linear map. If the map M O  : E -+ X R  is given by the 
decision tree, then the composite map M G L M ,  : E + E 
is a contraction map. 

Proof: See the Appendix. 

At each node in the structure of decision tree, the rules always 
keep the search direction pointed to the node where the track- 
ing error decreases. Because the iterative learning process is 
performed at each node, this is equivalent to that the iterative 
learning process decreases the tracking error. As mentioned in 
Section 111, the inference process is not reversible, and thus, it is 
impossible to have an unstable system response. 

V. PREDICTOR DESIGN AND ERROR ANALYSIS 
As mentioned earlier, the lower-level subsystem is equipped 

with a servo controller which is assumed to have a linear response 
to the reference input. For such a linear system, there are several 
algorithms available to design a predictor. For convenience, we 
have chosen a self-tuning predictor among them. Its principle 
is briefly stated below (see [7] for a detailed account). The 
lower-level, closed-loop subsystem is represented by an ARMAX 
model: 

A ( z - ' ) X ( k )  = B ( z - ' ) X , ( k  - do)  + C ( z - ' ) [ ( k )  (1) 

where 

A(.- ' )  = l + ~ l . i - '  + . . . + u , z - ~ ,  

B ( z - ' )  = bo + biz-' + . . .  + b n z P n ,  
c ( z - 1 )  = 1 + c12-' + .  . . + c,z-,. 

do is an index representing the time delay, X ( k )  and X, (k )  are 
the output and the reference input of the subsystem, respectively. 
[ ( k )  is an uncorrelated random series with zero mean represent- 
ing the modeling error and disturbances. Define the d-step ahead 
prediction error as 

e,(k + d )  = X ( ~ C  + d )  - X ( k  + d / k ) .  (2)  

Substituting (2) into (l), and representing A ( z - ' ) ,  B ( z - ' )  and 
C(z- ' )  as A ,  B ,  and C for simplicity, we get 

Ae,(k) = B X , ( k  - d o )  - A X ( k / k  - d )  + C[(k ) .  (3) 

Equation (3) can be viewed as a new system, in which the input 
is the prediction X ( k / k  - d) ,  the output is the prediction error 
e , (k ) ,  X,(k - d o )  is the measurable noise and [ ( k )  is the un- 
measurable noise. Define the cost function as J = E [ e ; ( k  + d) ]  
and let 

C = E o A  + z - ~ ~  F ,  

where Eo and F are polynomials of z - l ,  and deg(Eo) = d - 1 ,  
deg(F) = n - 1. By minimizing J ,  we get the optimal predictor 

Bz-dO F 
X,(k  + d )  + ~ e,(k). (4) Eo A 

X ( k  + d / k )  = - A 

This is the prediction during the first iteration, i.e., X ' ( k  + 
d / k )  X ( k  + d / k ) .  The prediction error corresponding to (4) 
is 

e,(k + d )  = EoE(k + d) .  (5)  
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All the parameters of the system and the predictor are un- 
known and estimated on-line by a recursive least square (RLS) 
algorithm, X ( k  + d / k )  is then computed using the estimated 
parameters. 

In the knowledge-based controller, fo: each computed X:  ( k ) ,  
the corresponding output- prediction X * ( k  + d / k )  should be 
computed. Note that only X’ ( k  + d / k )  is computed by (4), while 
given X:  ( k )  = X,”(k) .  The subsequent steps within this iteration 
are computed as 

2 = 2, 3 , 4 , . . ‘ .  (6) 
This formula is based on the assumption that the lower-level, 
closed-loop subsystem has a linear response to its reference input. 
For the case of i > 1, using (6) instead of (4) not only simplifies 
the computation, but also reduces the sensitivity of the iteration 
to some estimated parameters. In (6), Kk ( k )  is the gain factor. A 
servo controller is usually designed with a unity gain with respect 
to its reference input, so it is reasonable to set K;(k) = 1. 
However, X’(k  + d / k )  is computed with the error (5); in case 
the prediction error increases after the iterative operation, the gain 
factor would not necessarily be one for i > 1 so as to compensate 
for the prediction error. 

Thus far, we have assumed that the predictor gives the true 
output, which is not realistic. The effect of prediction error on 
the tracking error is thus analyzed below. The tracking error is 
defined as 

e t ( k )  = X ( k )  - X i ( k ) .  (7) 

As a result of the ith iteration, suppose the actual reference input 
becomes X : ( k )  and the d-step ahead prediction of the output 
is X 1 ( k  + d / k ) .  X’ (k  + d / k )  is computed by the self-tuning 
predictor (4) and X ’ ( k  + d / k ) ,  i > 1, is computed by (6). When 

lel(k + d)l = l X 1 ( k  + d / k )  - ~ ; ( k  + d)l 5 E ,  (8) 

the iterative learning process is stopped, and the result is given 
as the actual reference input Xrf(,k) and the corresponding out- 
put prediction X f ( k  + d / k ) .  Because the iteratively computed 
prediction error is e; (k)  = X ( k )  - X * ( k / k  - d) ,  using (7) we 
get 

e t ( k )  - eL(k) = X 2 ’ ( k / k  - d)  - X;( IC) .  (9) 

Equation (8) can be used to convert (9) in the farm (e , (k )  - 
e, f (k) l  5 E. Because let(k)l - Ie,f(k)l 5 le,(k) - e,f(k)l  and 
l e t (k )  - e, f (k) l  = le , f (k)  - et(k)l, we conclude 

This formula gives the upper and lower bounds of tracking error 
when the knowledge-based controller is added. Specifically, it 
shows that the tracking error cannot be much less than the 
iteratively computed prediction error. 

Obviously, the inaccurate prediction may degrade the perfor- 
mance of the knowledge-based controller. It can be seen from 
(5) that the prediction error of the self-tuning predictor is the 
moving average of a zero mean, uncorrelated random series of 
order d - 1. Based on this observation, the subsequent steps of 
prediction are iteratively computed by (6). To reduce the tracking 
error, a sophisticated predictor needs to be designed as a part of 
the iterative operation. The other way is to change the gain factor 
KL ( k )  in (6) so as to compensate for the prediction error. 

60 80 100 120  140  160 180  2 
Time ( X  0 01 sec ] 

Fig. 5. Output response of a linear system without the knowledge-based 
controller. Dashed lines dashed lines show desired trajectory; solid lines show 
actual output. 

VI. SIMULATION RESULTS 
Extensive simulations were carried out for two types of 

systems. First, we tested a linear open-loop system whose model 
is 

y ( k )  = 0.45181 y ( k  - 1) + 0.47546 y ( k  - 2) 

- 0.04560 ~ ( k  - 1) - 0.00404 ~ ( k  - 2) 

where y and U are the system output and control input, re- 
spectively. Using a proportional controller with K p  = 20.9, 
its closed-loop response is calculated and plotted in Fig. 5. The 
mean square tracking error is M S  = 4.55485. By adding the 
knowledge-based controller, the performance is improved as 
shown in Fig. 6 with M S  = 1.69398. The second system we 
tested is a two-link robot manipulator, a nonlinear open-loop 
system: 

H(q)ii + h(q, 4) + G(q) = 7 ,  (11) 

where q and T are the vectors of joint position and torque, respec- 
tively; N ( q )  is the inertia matrix, h(q, q )  represent the Coriolis 
and centrifugal forces, and G(q)  represent the gravitational force. 
Its configuration and dynamic and kinematic parameters are 
presented in Fig. 7. A controller is designed with the computed 
torque algorithm [8]. The proportional and derivative gains are 
K, = 986.96 and K D  = 62.83, which correspond to C = 1.0 
and f n  = 5 Hz, respectively. The sampling frequency used is 
fc = 100 Hz. For simplicity, the desired trajectory is specified 

3 



SHIN AND CUI: DESIGN FOR KNOWLEDGE-BASED CONTROLLER 313 

O I  
I 

1 2  40 io Time ( X  0 01 sec 1 

Fig. 6. Output response of a linear system with the knowledge-based con- 
troller. Dashed lines dashed lines show desired trajectory; solid lines show 
actual output. 

in joint space. To achieve desired performance, the computed 
torque algorithm requires the accurate values of each term in 
(11). If inaccurate values of the inertia matrix are used in 
the computed torque algorithm, the performance is degraded as 
shown in Fig. 8 with mean square tracking error M S  = 0.08543. 
When the knowledge-based controller is added, the performance 
is improved as shown in Fig. 9 with M S  = 0.00932. For 
comparison, with accurate values of the inertia matrix, the closed- 
loop response of the first link are plotted in Figs. 10 and 11. The 
corresponding mean square tracking errors are M S  = 0.05742 
without the knowledge-based controller and M S  = 0.00179 with 
it. One can see that the performance is also improved. Moreover, 
the simulation results of the second link are similar to that of 
the first link. 

VII. CONCLUSION 
A knowledge-based controller is proposed as a new archi- 

tecture of IC and analyzed in detail. Its basic principle is to 
modify the reference input of the lower-level subsystem so as 
to track a predesigned trajectory accurately, and to leave the 
internal structure and/or parameters of the subsystem unaffected. 
With the concept of iterative learning control, the knowledge 
base is simple to design and the stability of the overall system 
is guaranteed. By using a d-step ahead predictor, the undesirable 
effect of system time delay is eliminated and each reference input 
is analyzed in advance. This, in turn, solves the irrecoverable 
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Fig. 7. Two-link robot manipulator and its parameters. 
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Fig. 8. Output response of the first link using inaccurate inertia matrix 
without the knowledge-based controller. Dashed lines show desired trajectory; 
solid lines show actual output. 

control problem such that commercially designed controllers can 
be made to perform more sophisticated tasks than originally 
intended. 

The proposed knowledge-based controller is simulated exten- 
sively, and the results are quite promising. Our immediate future 
work is to extend this scheme to the problem of coordinating 
multiple systems. 
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50 100 150 200 2 5 0  300 350 4 0 0  4 
T,me ( X  0.01 sec ) 

Fig. 9. Output response of the first link using inaccurate inertia matrix with 
the knowledge-based controller. Dashed lines show desired trajectory; solid 
lines show actual output. 

APPENDIX 
PROOF OF THEOREM 

The basic production rules are in the form of 

IF {by the reference input Xi(IC), 
the predicted tracking error e; ( I C )  < 0} 

THEN {increase ct, to get c;lt:1, c;yl > C; } , 
IF {by the reference input X:  ( I C ) ,  

the predicted tracking error et, ( I C )  > 0} 

THEN {decrease c; to get c;", c;+' < c; } , 

where e;(IC) is the predicted tracking error resulting from the 
augment c; at the jth node of the ith level in the decision 
tree. These rules associate each predicted tracking error with a 
specified value of c; .  From a new augment or c;yl, the 
predicted tracking error e:" ( I C )  and e;yl ( I C )  are then computed. 

Since the decision tree is searched downward after finding 
a starting node in the tree, we want to show that this search 
process has the following property: 

d(c;+', c;+') < d(c;+', c ; ) .  (12) 

for all i, j ,  I C ,  I = 0, 1, 2 , .  . .  , and d( ,) is a metric on X R .  

100 150 200 250  300 350 400 4 
Time (X 0 01 sec ) 

0 

Fig. 10. Output response of the first link using accurate inertia matrix 
without the knowledge-based controller. Dashed lines show desired trajectory; 
solid lines show actual output. 

Referring to Fig. 3, we get 
c l+ l  k - - k + - a;+')K = a; + (c; - af )K 
c l+ l  = b'+l k+' - (Vel - a;Tl)K = b j  - ( b j  - c ; ) K  

c;+' = a;+' + - a;+2)K = a; + (&+I - a;)K 
c;;: = b;:: - (b;;: - a;;;)K = c; - (c; - c;+')K 
c;;; = a;;; + ( b ; g  - a;;;) K = c; + ( c;yl - c ; )  K 
cl+' ,+3 - - bj:; - ((,I*+' 1+3 - a"')K 1+3 = bf, - (b; - c2+l k+l)K.  

The metric defined on X R  is given by 

d(c;+', c ; )  = IC;+' - c;1 = I(.; - c ; )  (1 - K)I 
d(c',+:,, c ; )  = \c;yl - CjI = I(bf - c ; )  (1 - K ) ]  

d(c;+', c;") (13) 

d(cj:f, c;+') E IC;:; - c;+'l = I(c; - a ; )  (1 - K)'I (14) 
d(c;::, c;Tl) E IC;:: - c;yll = I(c; - b f )  (1 - K)'I (15) 
d(c;::, c;yl) c IC;:," - c;yll = I (bj  - cfi) (1 - K)KI.  (16) 

Suppose 0.5 < K < 1, then at node 2, from (13) and 
(14) we get d ( ~ ; + ~ ,  CL+') > d(c;,ff, CL"). Taking the larger 
of d(cf+', c;+') and d(c;Tq, cfk+') and comparing it with 
d(c;+', c ; ) ,  we get 

IC;+'  - c;+,+'l = [ ( U ;  - c ; )  (1 - K)KI 

d(c;+2, c;+') < d(c;+,+', c ; ) ,  (17) 
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50 100 150  200 2 5 0  300 350 400 L 
Time (X 0 01 sec ) 

Fig. 11. Output response of the first link using accurate inertia matrix with 
the knowledge-based controller. Dashed lines show desired trajectory; solid 
lines show actual output. 

because (1 - K ) K  < (1 - K ) .  Similarly, at node 3, from (15) 
and (16) we get d(ci:;, c;yl) > d(c;:;, c;yl). Taking the 
larger of d(c;:;, c;y1) and d(c;:;, ciyl) and comparing it with 
d(c;yl, c ; ) ,  we get 

because (1 - K ) K  < (1 - K ) .  Both (17) and (18) show that 
(12) holds. 

For the case of 0 < K 5 0.5 (12) can be proved similarly. 
Because L : X R  + E is a linear map, the property of (12) in 

X R  is preserved under the map L and has the form of 

dl(e;+’, e;+’) < dl(ei+l,  e;), (19) 

for all i, j ,  I C ,  1 = 0, 1, 2 , .  . . and dl(  ,) is a metric on E .  By 
(19), M : E + E is a contraction map, and the theorem is 
proved. 
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