
368 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 2, MARCHIAPRIL 1991

Design of a Knowledge-Based Controller
for Intelligent Control Systems

Kang G. Shin, Senior Member, IEEE, and Xianzhong Cui

Abstract- A hierarchical knowledge-based controller is proposed to
improve the performance of complex control systems, such as robots.
Unlike parameter- and performance- adaptive controllers, this controller
is designed only to modify the reference input of a lower-level servo
conpoller. Because the internal parameters and structure of the lower-
level controller are not affected, commercial servo controllers can be
made to perform more sophisticated tasks than originally intended. The
principle of the knowledge-based controller, modification of the reference
input, knowledge representation, existence of the solution, and analyses
of the controller’s stability and tracking error are described in detail. A
self-tuning multiple-step predictor is designed as part of the controller to
eliminate the undesirable effects of system time delay. Both linear and
nonlinear example control systems are tested via extensive simulations
and have all shown promising performances.

I. INTRODUCTION
ONVENTIONAL, CONTROL THEORY is developed based C on mathematical models that describe the dynamic behavior

of controlled systems. Usually, such a model consists of a set
of linear or nonlinear differential/difference equations, most of
which are derived under some forms of approximation and
simplification. However, the complexity and model and/or pa-
rameter uncertainties of the controlled systems often make the
controllers very complicated. On the other hand, human operators
do not always handle the system control problem with a detailed
mathematical model, but rather with a qualitative or symbolic
description of the controlled system. This fact calls for the need
of intelligent control (IC) for complex systems. An extensive
survey of IC can be found in [l]. Most related IC work can be
referred to as parameter-adaptive [2,3], or performance-adaptive
[4], [SI. The fundamental difference between these two lies in
the goal of the knowledge base designed.

A typical structure of parameter-adaptive IC is presented in [2],
[3], where IC is used to tune the parameters of a conventional
controller as sketched in Fig. l(a). In [2], a programmable logic
controller (TI 565 PLC) performs the functions of a PID con-
troller. Six different features are monitored, such as overshoot,
rise time, settling time, etc. Two sets of production rules are
established on the basis of the measurement of these features.
One is called the alarm rules which will be fired when system
instability is identified, and the other rules will be fired to re-tune
the PID parameters. Another expert tuner for a PI controller is
presented in [3]. Its main objectives are wind-up protection of the
I part and tuning of PI gains. The transient response of a closed-
loop system is characterized with nine categories including
too-low-monotone, too-low-oscillatory, and so on. Moreover,
the open-loop response is described with eight categories and

Manuscript received March 16, 1990; revised July 28, 1990. This work was
supported in part by the National Science Foundation under Grant No. DMC-
8721492.

The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122.

IEEE Log Number 9039996.

Knowledge-Based

Controller

.. X(k) Plant Conventional
Controller

nowledge-Based Plant _X(k)
r b

Conlroller

Fig. 1. Basic structures of intelligent controllers. (a) Parameter-adaptive
intelligent controller. (b) Basic structures of intelligent controllers.

the nonlinearity with eight categories. Similarly to [2], system
stability is monitored by the knowledge base itself.

The performance-adaptive IC’s attempt to simulate human
expert control or human cognitive ability directly. Their basic
structure is shown in Fig. l(b). An example of this structure,
called a cognitive controller, is presented in [4]. Two types of
rules are designed: training rules and machine rules. The training
rules are represented by a set of production rules that directly
map the position and velocity errors of the control object to the
linear motion of the control mechanism, a joy stick. The machine
rules are dynamic, learned from the accumulated experience of
control, and implement the machine learning process. Using
performance-adaptive IC, the principle of learning control can
also be implemented [5]. In control theory, a learning controller
is a trial-and-error mechanism that repeats a fixed procedure. The
work in [5] replaced this fixed procedure by a knowledge-based
controller such that the intermediate output errors are treated
as knowledge. The error and error increment are quantified
into eleven intervals, such as negative-big, positive-low-middle,
etc. Based on this quantification, an 11 x 11 table is formed
corresponding to 121 rules. Considering the global control per-
formance, a set of rules is designed to determine the magnitude
of reference input modification for different learning periods.

Though many IC schemes have been proposed, it is difficult
to compare them, because of lack of theory and a universal per-
formance criterion. For a successful design of IC, the following
issues seem to be important:

1) What characteristics are used to express the performance

2) How to extract qualitative knowledge from quantitative

3) How to quantify the result of qualitative reasoning into the

of a system?

sensor data?

0018-9472/91/0300-0368$01.~ 0 1991 IEEE

SHIN AND CUI: DESIGN FOR KNOWLEDGE-BASED CONTROLLER 369

quantitative control signal of actuators?
4) How to analyze and guarantee the system stability?
5) How to implement the rules of learning from experience?
In contrast to the parameter-adaptive and performance-adaptive

ICs, we propose a new hierarchical knowledge-based controller.
In Section 11, the basic principles of this controller are described.
The characteristics of the lower-level subsystem and the modi-
fication of reference input are also presented in this section. A
detailed description of the knowledge-based controller is given in
Section 111, including knowledge representation, existence of the
solution, and inference process. The stability of the knowledge-
based controller is analyzed in Section IV. In Section V, the
procedure for designing a predictor is briefly discussed, and
a detailed error analysis gives the lower and upper bounds of
the trajectory tracking error when this controller is introduced.
Finally, the simulation results in Section VI show the promis-
ing performances of the knowledge-based controller. The paper
concludes with Section VII.

11. DESIGN PRINCIPLES AND CHARACTERISTICS

A. Basic Principles

A control system is evaluated by examining its response
to some typical, preplanned trajectories, such as step, slope,
parabola and/or sinusoidal signals. There are two ways to im-
prove the performance of the control system. One is to set the
desired trajectory as the system reference input, and redesign
the internal structure of the servo controller so as to track the
reference input precisely. For a complex control system, if this
approach is used, the servo control level will become more
complicated, and the fine tuning of the controller parameters
will be extremely tedious (particularly for nonadaptive schemes).
Moreover, there are some design trade-offs to consider, such as
the one between rise time and maximum overshoot. The other
way is to choose and adjust a reference input such that the
controlled system tracks the preplanned trajectory. This forms a
hierarchical structure, but requires little change in the internal
structure of the servo control level. This is exactly what a
hierarchical system is supposed to be; each level in the hierarchy
is independent and does not affect the internal structures of other
levels.

In the high-level controller’s view, the lower-level subsystem
is nothing but a mapping Lo from the reference input, X,, to the
system output, X. There are two ways to improve the performance
of the subsystem. One is to mod@ the map itself, e.g., some
parameters or even the structure of the controller. This requires
the high-level controller to know the detailed internal structure
of the lower level. The other way is to modify the domain of the
map only, (i.e., the reference input of the lower level) without
requiring any detailed knowledge of the subsystem’s structure.
Considering the generality, and the inexactness of the structure
of the lower-level subsystem, we have adopted the latter in
this paper. This adoption also coincides with the principle of
increasing intelligence with decreasing precision as we move up
the levels of hierarchy.

It is assumed that the servo controller is designed indepen-
dently of the high-level controller, and its dynamic structure
and parameters are unknown to the high-level controller. In this
paper, we shall design a knowledge-based controller (as a high-
level controller) which modifies only the reference input to the
subsystem as shown in Fig. 2. As a result, the internal structure
and/or parameters of the (lower-level) servo controller are not

required to be altered at all, thus imposing no constraints on
the servo control level. This will, in turn, enable commercially
designed servo controllers to perform more sophisticated tasks
than originally intended.

B. Characteristics of the Subsystem and the Modification Process
To design a knowledge-based controller, one has to specify the

input space of the knowledge base, or choose a typical represen-
tation of the system dynamic characteristics. The most commonly
used components are output error and/or error increment, and the
standard figures of step response. However, to express the system
characteristics more directly and to eliminate the undesirable
effects of time delay, we propose to use predicted system outputs
from which suitable reference inputs are determined. Because the
lower level of hierarchy is a well-designed closed-loop control
system, designing an output predictor for such a system is not
difficult.

Now, the problem is how to modify the reference input
so as to make the system output track a desired trajectory.
Using system output prediction, the desired performance can be
achieved by iterative trial as is done in learning control. Note
that learning control is usually used for a repetitive trajectory
and needs a learning period during which an unacceptable output
error could occur. By contrast, our knowledge-based controller
is designed for an arbitrary trajectory and has to complete
the iterative learning process in each sampling interval. The
modification process is to 1) give a reference input, 2) compute
a predicted system output, 3) calculate the predicted tracking
error by comparing the prediction and the desired trajectory,
and 4) modify the reference input based on this error. Note that
actions taken in a control system are in general irrecoverable; that
is, each reference input to the servo controller is the final decision
at each sampling interval and cannot be undone. However, the
combined prediction and modification allows us to analyze the
“anticipated” consequence of each reference input, thereby at
least partially solving the irrecoverable problem.

This modification process can be formalized as follows. Let
X:(k) be the reference input, X,*(k) the desired trajectory, and
XE(k + d / k) the d-step ahead prediction of the system output
at time k, where the superscript i denotes the ith iteration. The
reference input X : (k) is modified by

X?’(k) = X : (k) + Ki(k)e*(k + d) , i = 0, 1,

where e’(k + d) = X a (k + d / k) - X,*(lc + d), X:(lc) = X,*(k),
K;(k) is the learning gain at time k during ith iteration, and
K;(k) = 0. Then we get

1

Xi+’(k) = X,*(k) + CK,3(k)e.’(k + d).
3 =O

370 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 2, MARCH/APRIL 1991

Accurate tracking will be achieved by the iterative operation and
the predictor, and this iterative operation must be completed in
each sampling interval. To make the above modification feasible,
the following conditions need to be met: 1) the iterative operation
converges fast, and 2) the output prediction of the system is
computable. Condition 1) is usually met because the lower level
is a carefully designed control system, and X : (k) is near the
optimal point. Condition 2) will be discussed in the following
sections.

The lower-level subsystem is equipped with some well-
designed servo controllers whose behavior is assumed to be
linear. Then, following an argument similar to the one in [6],
one can prove that there exists a learning gain K i (k) such that
e 2 (k + d) -+ 0 as i + 00. Though such a K;(k) exists, due to
lack of knowledge of the lower-level subsystem, it is not easy
to calculate the gain accurately. Moreover, the parameters and/or
model uncertainties are not even considered, thus necessitating
design of a knowledge-based controller.

111. DESCRIPTION OF THE KNOWLEDGE-BASED CONTROLLER

A. Knowledge Representation

Using the predictor, the subsystem performance is character-
ized by the predicted tracking error and the current reference
input. Therefore, the space E of predicted tracking error forms the
input space of the knowledge base. The goal of the knowledge-
based controller is to implement the modification process dis-
cussed thus far. It is not difficult to express this process by a set of
production rules. The possible actions that the knowledge-based
controller can take include: increase the reference input, decrease
the reference input, and keep the reference input unchanged. The
problem is how much to increase/decrease and how to determine
the bounds of the reference input. Because this scheme is based
on the modification of reference input and the resulting predicted
output, the internal structure and parameters of the lower-level
subsystem are not affected. This property allows us to consider
the predicted tracking error, but not its derivative, as the system
characteristics or the input of the knowledge base, so as to
simplify the design of production rules. The basic modification
process can be represented by a decision tree as shown in Fig. 3.
The ijth node is represented by ([a ; , bt,] , c ;) where c; is the
quantity added to the reference input,

Xi+'(?-) = X,*(k) +- c;,

and [cifl b;] is the interval to be searched, and U; < c; < b;
for all i,j. By giving the reference input X:(IC), at any node
([at , , b;] ct,), the interval [ut,, b;] will be split into two subin-
tervals [a;", U:'] [a;, ct,] and [akyl, VZ1] [c;, b j] ,
which form the two successor nodes of [at,, bt,] . During the ith
iteration and at ijth node, let e ; (k) denote the predicted tracking
error resulting from X:(IC):

ef(k) ez(k + d) = X' (IC + d / k) - X,*(IC + d) .

Then, C; is computed as

4 - (bt, - a ;) K ,
a; + (b; - a;)K,

if ej(k) < O
if .;(IC) > 0 c; = {

and 0 < K < 1 is a weighting factor that determines the step size
of the iterative operation. a: and b: are the predesigned lower
and upper bounds of the reference input modification, and usually
c: = 0, i.e., at the beginning, the reference input is not modified.

([a ;+zr t

0 . . 0 . .

Fig. 3. Decision tree.

B. Existence of the Solution
The basic forms of production rules are

IF { (e ; (k) < 0) AND (Iej(k)l > E) } THEN

{increase ci AND compute x:+' (k) = ~ , i (IC) + c; } .
IF { (e ; (k) > 0) AND (le;(/c)l > E) } THEN

{decrease cf AND compute Xi+' (k) = X,* (k) + c: } .
IF {lei(k)l 5 E } THEN

{set X:+'(k) = X : (k) AND stop the iterative operation}.

E > 0 is the prespecified error tolerance. Because the amount of
modification to the reference input is bounded, or a: < cf < b:,
for all i,j, there may be a case that Ief(IC)l > E for all c; To
avoid this situation, the desired trajectory needs to be carefully
designed. For example, when the desired trajectory is a step
function and the system time delay is equal to two sampling
intervals, at k = 0 the continuous system response cannot have
a jump no matter how large the reference input is. A reasonable
choice of E is another way to prevent this problem. This existence
problem can be monitored by adding, for example, the following
rule into the knowledge base:

IF {((IC; - b:\ < 6) OR (I C ; -a i l < 6)) AND

(lef(k)l > E) } THEN
{(change at or b: automatically and continue the search)

OR (ask the operator for an adjustment) OR

(stop the iterative operation and choose c3 with the

smallest e; (IC) as the best output)}.

Suppose the weighting factor K is set too small or too large,
then the search for c; may take a very long time. This would not
be acceptable if the required computation cannot be completed
within one sampling interval. The case of the computation/search
time exceeding one sampling interval is equivalent to having no
solution. This case is monitored by:

IF {(the search time > N) AND (Iej(k)l > E) } THEN

{(stop the iterative operation) AND

(choose ci with the smallest e i (k) as the best output)

AND (modify the weighting coefficient K) } .

SHIN AND CUI: DESIGN FOR KNOWLEDGE-BASED CONTROLLER 371

- I Lower-level subsystem I
Fig. 4. Block diagram of the knowledge-based controller.

C. Inference Process

Based on the structure of the decision tree, one can see that
the simplest inference process is similar to forward chaining,
starting from the root node. However, it may be learned after a
period of operation that, for example, a positive augment cf is
always needed. Once this fact is learned, the inference process
can start from any node with c; > 0 and go forward or backward,
depending on the sign of predicted tracking error. Note that
the backward search does not mean a reverse search, but rather
intends to find a suitable node from which a forward search can
begin. As soon as the forward search begins, the search process
is not reversible.

IV. STABILITY ISSUES

It is easy to establish the stability of the lower-level subsystem
for a fixed reference input, because it is a well-designed closed-
loop control system. However, this does not imply the stability
of the whole system. See Fig. 4 for a block diagram of the
knowledge-based controller. Both system poles and zeros are
affected by the presence of the knowledge-based controller and
the predictor. If the transfer functions for all the blocks in
Fig. 4 are given, one may be able to derive the conditions for
system stability. But this is not the case in reality: C(s) and
G(s) may not be known accurately, and the iterative learning
with prediction and the knowledge-based controller do not form
a simple feedback loop and cannot be expressed as simple
mathematical transfer functions.

Suppose the prediction gives the true system output and let
us consider the knowledge-based controller and the closed-loop
subsystem. (The assumption of perfect output prediction is of
course unrealistic and will be relaxed in our later discussions.)
The knowledge-based controller can be viewed as a map M O :
E + X R , specified by all the production rules, where E C R
is the space of tracking error and X R C R the reference input
space. The lower-level closed-loop subsystem is also a map, L :
X R -+ E , which is specified by the desired dynamic properties
of the servo controller. Because L represents a well-designed
controller and there exists a reference input at time k , X:(k) E
X R , such that the trajectory tracking error e ' (k + d) = 0. Thus,
it is reasonable to assume that L is a linear map. The properties of
the map M L M o : E -+ E depends mainly on the properties
of the map M O . In fact, all the antecedents of production rules
are established based on the output prediction. If the predictor
gives the true output, then the properties of the invariant map
M : E -+ E is determined solely by the knowledge base.

For system stability, all production rules in the knowledge
base must form a contraction map. More formally, we have the
following theorem.

Theorem: Suppose 1) the output prediction of the lower-level

subsystem is computable and the predictor gives the true output,
and 2) L : X R + E of the lower-level closed-loop subsystem
is a linear map. If the map M O : E -+ X R is given by the
decision tree, then the composite map M G L M , : E + E
is a contraction map.

Proof: See the Appendix.

At each node in the structure of decision tree, the rules always
keep the search direction pointed to the node where the track-
ing error decreases. Because the iterative learning process is
performed at each node, this is equivalent to that the iterative
learning process decreases the tracking error. As mentioned in
Section 111, the inference process is not reversible, and thus, it is
impossible to have an unstable system response.

V. PREDICTOR DESIGN AND ERROR ANALYSIS
As mentioned earlier, the lower-level subsystem is equipped

with a servo controller which is assumed to have a linear response
to the reference input. For such a linear system, there are several
algorithms available to design a predictor. For convenience, we
have chosen a self-tuning predictor among them. Its principle
is briefly stated below (see [7] for a detailed account). The
lower-level, closed-loop subsystem is represented by an ARMAX
model:

A (z - ') X (k) = B (z - ') X , (k - do) + C (z - ') [(k) (1)

where

A(.- ') = l + ~ l . i - ' + . . . + u , z - ~ ,

B (z - ') = bo + biz-' + . . . + b n z P n ,
c (z - 1) = 1 + c12-' + . . . + c,z-,.

do is an index representing the time delay, X (k) and X, (k) are
the output and the reference input of the subsystem, respectively.
[(k) is an uncorrelated random series with zero mean represent-
ing the modeling error and disturbances. Define the d-step ahead
prediction error as

e,(k + d) = X (~ C + d) - X (k + d / k) . (2)

Substituting (2) into (l), and representing A (z - ') , B (z - ') and
C(z- ') as A , B , and C for simplicity, we get

Ae,(k) = B X , (k - d o) - A X (k / k - d) + C[(k) . (3)

Equation (3) can be viewed as a new system, in which the input
is the prediction X (k / k - d) , the output is the prediction error
e , (k) , X,(k - d o) is the measurable noise and [(k) is the un-
measurable noise. Define the cost function as J = E [e ; (k + d)]
and let

C = E o A + z - ~ ~ F ,

where Eo and F are polynomials of z - l , and deg(Eo) = d - 1 ,
deg(F) = n - 1. By minimizing J , we get the optimal predictor

Bz-dO F
X,(k + d) + ~ e,(k). (4) Eo A

X (k + d / k) = - A

This is the prediction during the first iteration, i.e., X ' (k +
d / k) X (k + d / k) . The prediction error corresponding to (4)
is

e,(k + d) = EoE(k + d) . (5)

372 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 2, MARCWAPRIL 1991

All the parameters of the system and the predictor are un-
known and estimated on-line by a recursive least square (RLS)
algorithm, X (k + d / k) is then computed using the estimated
parameters.

In the knowledge-based controller, fo: each computed X: (k) ,
the corresponding output- prediction X * (k + d / k) should be
computed. Note that only X’ (k + d / k) is computed by (4), while
given X: (k) = X,”(k) . The subsequent steps within this iteration
are computed as

2 = 2, 3 , 4 , . . ‘ . (6)
This formula is based on the assumption that the lower-level,
closed-loop subsystem has a linear response to its reference input.
For the case of i > 1, using (6) instead of (4) not only simplifies
the computation, but also reduces the sensitivity of the iteration
to some estimated parameters. In (6), Kk (k) is the gain factor. A
servo controller is usually designed with a unity gain with respect
to its reference input, so it is reasonable to set K;(k) = 1.
However, X’(k + d / k) is computed with the error (5); in case
the prediction error increases after the iterative operation, the gain
factor would not necessarily be one for i > 1 so as to compensate
for the prediction error.

Thus far, we have assumed that the predictor gives the true
output, which is not realistic. The effect of prediction error on
the tracking error is thus analyzed below. The tracking error is
defined as

e t (k) = X (k) - X i (k) . (7)

As a result of the ith iteration, suppose the actual reference input
becomes X : (k) and the d-step ahead prediction of the output
is X 1 (k + d / k) . X’ (k + d / k) is computed by the self-tuning
predictor (4) and X ’ (k + d / k) , i > 1, is computed by (6). When

lel(k + d)l = l X 1 (k + d / k) - ~ ; (k + d)l 5 E , (8)

the iterative learning process is stopped, and the result is given
as the actual reference input Xrf(,k) and the corresponding out-
put prediction X f (k + d / k) . Because the iteratively computed
prediction error is e; (k) = X (k) - X * (k / k - d) , using (7) we
get

e t (k) - eL(k) = X 2 ’ (k / k - d) - X;(IC) . (9)

Equation (8) can be used to convert (9) in the farm (e , (k) -
e, f (k) l 5 E. Because let(k)l - Ie,f(k)l 5 le,(k) - e,f(k)l and
l e t (k) - e, f (k) l = le , f (k) - et(k)l, we conclude

This formula gives the upper and lower bounds of tracking error
when the knowledge-based controller is added. Specifically, it
shows that the tracking error cannot be much less than the
iteratively computed prediction error.

Obviously, the inaccurate prediction may degrade the perfor-
mance of the knowledge-based controller. It can be seen from
(5) that the prediction error of the self-tuning predictor is the
moving average of a zero mean, uncorrelated random series of
order d - 1. Based on this observation, the subsequent steps of
prediction are iteratively computed by (6). To reduce the tracking
error, a sophisticated predictor needs to be designed as a part of
the iterative operation. The other way is to change the gain factor
KL (k) in (6) so as to compensate for the prediction error.

60 80 100 120 140 160 180 2
Time (X 0 01 sec]

Fig. 5. Output response of a linear system without the knowledge-based
controller. Dashed lines dashed lines show desired trajectory; solid lines show
actual output.

VI. SIMULATION RESULTS
Extensive simulations were carried out for two types of

systems. First, we tested a linear open-loop system whose model
is

y (k) = 0.45181 y (k - 1) + 0.47546 y (k - 2)

- 0.04560 ~ (k - 1) - 0.00404 ~ (k - 2)

where y and U are the system output and control input, re-
spectively. Using a proportional controller with K p = 20.9,
its closed-loop response is calculated and plotted in Fig. 5. The
mean square tracking error is M S = 4.55485. By adding the
knowledge-based controller, the performance is improved as
shown in Fig. 6 with M S = 1.69398. The second system we
tested is a two-link robot manipulator, a nonlinear open-loop
system:

H(q)ii + h(q, 4) + G(q) = 7 , (11)

where q and T are the vectors of joint position and torque, respec-
tively; N (q) is the inertia matrix, h(q, q) represent the Coriolis
and centrifugal forces, and G(q) represent the gravitational force.
Its configuration and dynamic and kinematic parameters are
presented in Fig. 7. A controller is designed with the computed
torque algorithm [8]. The proportional and derivative gains are
K, = 986.96 and K D = 62.83, which correspond to C = 1.0
and f n = 5 Hz, respectively. The sampling frequency used is
fc = 100 Hz. For simplicity, the desired trajectory is specified

3

SHIN AND CUI: DESIGN FOR KNOWLEDGE-BASED CONTROLLER 313

O I
I

1 2 40 io Time (X 0 01 sec 1

Fig. 6. Output response of a linear system with the knowledge-based con-
troller. Dashed lines dashed lines show desired trajectory; solid lines show
actual output.

in joint space. To achieve desired performance, the computed
torque algorithm requires the accurate values of each term in
(11). If inaccurate values of the inertia matrix are used in
the computed torque algorithm, the performance is degraded as
shown in Fig. 8 with mean square tracking error M S = 0.08543.
When the knowledge-based controller is added, the performance
is improved as shown in Fig. 9 with M S = 0.00932. For
comparison, with accurate values of the inertia matrix, the closed-
loop response of the first link are plotted in Figs. 10 and 11. The
corresponding mean square tracking errors are M S = 0.05742
without the knowledge-based controller and M S = 0.00179 with
it. One can see that the performance is also improved. Moreover,
the simulation results of the second link are similar to that of
the first link.

VII. CONCLUSION
A knowledge-based controller is proposed as a new archi-

tecture of IC and analyzed in detail. Its basic principle is to
modify the reference input of the lower-level subsystem so as
to track a predesigned trajectory accurately, and to leave the
internal structure and/or parameters of the subsystem unaffected.
With the concept of iterative learning control, the knowledge
base is simple to design and the stability of the overall system
is guaranteed. By using a d-step ahead predictor, the undesirable
effect of system time delay is eliminated and each reference input
is analyzed in advance. This, in turn, solves the irrecoverable

4

3.:

3

p 2.:
I

P

C I m .

6 E
B

l . !

I

mass center L
mass m

Fig. 7. Two-link robot manipulator and its parameters.

> l o o 150 200 250 300 350 400
Time (X 0 01 sec)

Fig. 8. Output response of the first link using inaccurate inertia matrix
without the knowledge-based controller. Dashed lines show desired trajectory;
solid lines show actual output.

control problem such that commercially designed controllers can
be made to perform more sophisticated tasks than originally
intended.

The proposed knowledge-based controller is simulated exten-
sively, and the results are quite promising. Our immediate future
work is to extend this scheme to the problem of coordinating
multiple systems.

374

3 !

g 2 :

3
-

P .

h:

"

g

1 :

1

5

0

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 2, MARCHIAPRIL 1991

50 100 150 200 2 5 0 300 350 4 0 0 4
T,me (X 0.01 sec)

Fig. 9. Output response of the first link using inaccurate inertia matrix with
the knowledge-based controller. Dashed lines show desired trajectory; solid
lines show actual output.

APPENDIX
PROOF OF THEOREM

The basic production rules are in the form of

IF {by the reference input Xi(IC),
the predicted tracking error e; (I C) < 0}

THEN {increase ct, to get c;lt:1, c;yl > C; } ,
IF {by the reference input X: (I C) ,

the predicted tracking error et, (I C) > 0}

THEN {decrease c; to get c;", c;+' < c; } ,

where e;(IC) is the predicted tracking error resulting from the
augment c; at the jth node of the ith level in the decision
tree. These rules associate each predicted tracking error with a
specified value of c; . From a new augment or c;yl, the
predicted tracking error e:" (I C) and e;yl (I C) are then computed.

Since the decision tree is searched downward after finding
a starting node in the tree, we want to show that this search
process has the following property:

d(c;+', c;+') < d(c;+', c ;) . (12)

for all i, j , I C , I = 0, 1, 2 , . . . , and d(,) is a metric on X R .

100 150 200 250 300 350 400 4
Time (X 0 01 sec)

0

Fig. 10. Output response of the first link using accurate inertia matrix
without the knowledge-based controller. Dashed lines show desired trajectory;
solid lines show actual output.

Referring to Fig. 3, we get
c l+ l k - - k + - a;+')K = a; + (c; - af)K
c l+ l = b'+l k+' - (Vel - a;Tl)K = b j - (b j - c ;) K

c;+' = a;+' + - a;+2)K = a; + (&+I - a;)K
c;;: = b;:: - (b;;: - a;;;)K = c; - (c; - c;+')K
c;;; = a;;; + (b ; g - a;;;) K = c; + (c;yl - c ;) K
cl+' ,+3 - - bj:; - ((,I*+' 1+3 - a"')K 1+3 = bf, - (b; - c2+l k+l)K.

The metric defined on X R is given by

d(c;+', c ;) = IC;+' - c;1 = I(.; - c ;) (1 - K)I
d(c',+:,, c ;) = \c;yl - CjI = I(bf - c ;) (1 - K)]

d(c;+', c;") (13)

d(cj:f, c;+') E IC;:; - c;+'l = I(c; - a ;) (1 - K)'I (14)
d(c;::, c;Tl) E IC;:: - c;yll = I(c; - b f) (1 - K)'I (15)
d(c;::, c;yl) c IC;:," - c;yll = I (bj - cfi) (1 - K)KI. (16)

Suppose 0.5 < K < 1, then at node 2, from (13) and
(14) we get d (~ ; + ~ , CL+') > d(c;,ff, CL"). Taking the larger
of d(cf+', c;+') and d(c;Tq, cfk+') and comparing it with
d(c;+', c ;) , we get

IC;+' - c;+,+'l = [(U ; - c ;) (1 - K)KI

d(c;+2, c;+') < d(c;+,+', c ;) , (17)

SHIN AND CUI: DESIGN FOR KNOWLEDGE-BASED CONTROLLER 375

50 100 150 200 2 5 0 300 350 400 L
Time (X 0 01 sec)

Fig. 11. Output response of the first link using accurate inertia matrix with
the knowledge-based controller. Dashed lines show desired trajectory; solid
lines show actual output.

because (1 - K) K < (1 - K) . Similarly, at node 3, from (15)
and (16) we get d(ci:;, c;yl) > d(c;:;, c;yl). Taking the
larger of d(c;:;, c;y1) and d(c;:;, ciyl) and comparing it with
d(c;yl, c ;) , we get

because (1 - K) K < (1 - K) . Both (17) and (18) show that
(12) holds.

For the case of 0 < K 5 0.5 (12) can be proved similarly.
Because L : X R + E is a linear map, the property of (12) in

X R is preserved under the map L and has the form of

dl(e;+’, e;+’) < dl(ei+l, e;), (19)

for all i, j , I C , 1 = 0, 1, 2 , . . . and dl(,) is a metric on E . By
(19), M : E + E is a contraction map, and the theorem is
proved.

REFERENCES

[1] J. R. James and G. J. Suski, “A survey of some implementations
of knowledge-based systems for real-time control,” in Proc. ZEEE
Int. Con$ Decision Contr., 1988, pp. 580-585.

[2] K. L. Anderson, G. L. Blankenship, and L. G. Lebow, “A rule-based
adaptive PID controller,” in Proc. IEEE Int. Conf: Decision Contr.,

[3] B. Porter, A.H. Jones and C.B. McKeown, “Real-time expert
controller for plants with actuator non-linearities,” in Proc. IEEE
The 2nd Znt. Symp. Intelligent Contr., 1987, pp. 171-177.

1988, pp. 564-569.

[4] S. Lee and M.H. Kim, “Cognitive control of dynamic systems,”
in Proc. IEEE The 2nd Int. Symp. Intelligent Contr., 1987,

[5] Z. Geng and M. Jamshidi, “Expert self-learning controller for robot
manipulator,” Proc. IEEE Znt. Conf: on Decision Contr., 1988,
pp. 1090- 1095.

[6] M. Togai and 0. Yamano, “Leaming control and its optimal-
ity: Analysis and its application to controlling industrial robots,”
Proc. ZEEE Int. Con$ on Robotics Automat., Apr. 1986, vol. 1,

[7] R. M. C. D. Keyser and A. R. V. Cauwenberghe, “A self-tuning
multistep predictor application,” Automatica, vol. 17, no. 1,

[8] H. Asada and J.J. Slotine, Robot Analysis and Control. New

pp. 455-460.

pp. 248-253.

pp. 167-174, 1981.

York: Wiley, 1986.

Kang G. Shin (S’75-M’78-SM’83) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, Korea in 1970,
and both the M.S. and Ph.D. degrees in electrical
engineering from Cornell University, Ithaca, NY
in 1976 and 1978, respectively.

He is Professor of Electrical Engineering and
Computer Science, The University of Michigan,
Ann Arbor, Michigan, which he joined in 1982.
From 1978 to 1982 he was on the faculty of
Rensselaer Polytechnic Institute, Troy, NY. He

has held visiting positions at the U.S.- Airforce Flight Dynamics Lab-
oratory, AT&T Bell Laboratories, Computer Science Division within
the Department of Electrical Engineering and Computer Science at UC
Berkeley, and Intemational Computer Science Institute, Berkeley, CA.

Dr. Shin has been very active and authored/coauthored more than 180
technical papers in the areas of fault-tolerant computing, distributed real-
time computing, computer architecture, and robotics and automation.
In 1987, he received the IEEE TRANSACTIONS ON AUTOMATIC CONTROL
Outstanding Paper Award for a paper on robot trajectory planning.
In 1989, he also received the Research Excellence Award from The
University of Michigan. In 1985, he founded the Real-Time Computing
Laboratory, where he and his colleagues are currently building a 19-
node hexagonal mesh multicomputer, called HARTS, to validate various
architectures and analytic results in the area of distributed real-time
computing. He was the Program Chairman of the 1986 IEEE Real-
Time Systems Symposium (RTSS), the General Chairman of the 1987
RTSS and the Guest Editor of the 1987 August special issue of IEEE
TRANSACTIONS ON COMPUTERS on Real-Time Systems. He is currently a
Distinguished Visitor of the Computer Society of the IEEE and an Area
Editor of International Journal of Time-Critical Computing Systems, and
chairs the IEEE Technical Committee on Real-Time Systems.

Xian-Zhong Cui graduated from North China
Institute of Electric Power, Baoding, China, in
1976. He received the first M.S. degree in power
plant automation from Electric Power Research
Institute (EPRI), Beijing, China, in 1982, and
the second M.S. degree in electrical engineering-
system from the University of Michigan, Ann
Arbor, MI, in 1989. Since 1987, he has been
working toward the Ph.D. degree and as a re-
search assistant in the Department of Electrical
Engineering and Compute; Science, the Univer-

sity of Michigan.
From 1976 to 1980, he served Tainjin Power Plant Construction Com-

pany as a technician of instrument and control. From 1982 to 1986, he
worked for EPRI as an electrical engineer for power plant automation. He
spent 1986-1987 as a visiting researcher in the University of Michigan.
His research interests include intelligent control, neural networks, robot
control systems, and process control of power plants and electric power
systems.

