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DESIGN OF AN INDUSTRIAL PROCESS CONTROLLER
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There are many problems in industrial process control systems
due to a long system response delay, dead-zone and/or saturation of
the actustor mechanisms, wncertainties in the system model andfor
parameters, and process noise. To overcome these problems, an adap-
tive controller is designed using ncural networks and tested extensively

One of the key problems in designing such a controller is to
develop an efficient training algorithm. Neural networks are usually
trained using the output errors of the network, instead of using the out-
put errors of the controlied plant. However, when a neural netwoik is
used 1o control a plant directly, the output ermors of the network are
unknown, since the desired control actions are unknown. In this paper,
we propose a simple training algorithm for a class of nonlinear sys-
tems, which enables the neural network to be trained by the output
errors of the controlled plant. The only a priori knowledge of the con-
trolled plant is the direction of its output response. A detailed analysis
of the algorithm is presented and the cormesponding theorems are
proved. Due to its simple structure and algosithm, and good perfor-
mance, the proposed controller has high potential for handling difficult
problems in industrial process control systems.

1. INTRODUCTION

The main issues to consider for the design of an industrial pro-
cess control system are the negative effects such as a long system
response delay, dead zone and/or saturation of actuator mechanisms,
and nonlinear response of control valves. Process and measurement
noises also degrade system performance. The dynamic property of a
controlied plant may not be very complex, even though its detailed
structure and parameters are usually unknown. However, when such a
plant is put in operation, the control system is difficult to achieve high
performance due mainly to the negative effects mentioned above. Con-
temporary industrial process control systems dominantly rely on PID-
type controllers, though the hardware to implement control algorithms
has been improved significantly in recent years. Despite the difficulty
to achieve high control quality, the fine tning of the controller’s
parameters is a-tedious task, requiring experts with knowledge both in
control theory and process dynamics. The reliability of such a system
is also very important for operation security and efficiency. All of
these call for the development of new controllers. The goal of this
paper is to develop such a new controller using neural networks (NNs).
Particularly, we shall focus on dealing with the nonlinearity of dead
zonc and saturation, and the negative effects of long response delays
and process noises.

The potential of NNs for control applications lies in the following
properties: (1) they could be used to approximate any continuous map-
ping, (2) they achieve this approximation through learning, (3) paraliel
processing and fault tolerance are easy to be accomplished with NNs.

One of the most popular NN architectures is a multilayer percep-
tron with the back propagation (BP) algorithm. It is proved that a
four-layer (with two hidden layers) perceptron can be used 1o approxi-
mate any continuous function with the desired accuracy [3]. BP has
been successfully used for pattem classification, though its original
development placed more stress on control applications [13]. A con-
troller is usually connected serially to the controlled plant under con-
sideration. For a multilayer perceptron, the weights of the network
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need t0 be updated using the network's output error. For an NN-
controfler, the NN's output is the control command to the system.
However, when the NN is serially connected 10 a controlled plant, the
network’s output error is unknown, since the desired control action is
unknown. This implies that BP cannot be applied to control problems
directly. Thus, one of the key problems in designing an NN-controller
is to develop an efficient training algorithm.

Several related schemes have been proposed to solve this prob-
lem. One of them is training an NN to leam the system's inverse, and
then the desired system output is achieved using the control input pro-
duced by the system’s inverse. Certainly, this requires the system to be
invertible. [2], [7], and [9] are such examples. In [2], the controlled
plant was treased as an additional, unmodifiable layer, and the output
error of the network was computed from the output error of the

system. In [9], the system's output error was propagated back through
the plant using its partial derivatives at an operating point. In [7], a set
ofmalsystemwtp\miresdcuedasmmngdaumdfedmﬂz
NN during its training period. Comparing the output of the NN with
the desired system output, the network’s output emor is computed,
which is then used to train the NN. After the NN becomes well-
trained, the input of the NN is switched to the desired system output.
Then.ﬂleNNaasasﬂieinverseofmephm.mmamwﬂldﬁve

the system to reach the desired valve, However, in practice, even if the
system is invertible, the inverse control scheme may be not acceptabie.
Forexanple,nfﬂ:esym:smam—mmmmph&,ﬂmmemmlt
ing design is not internally stable, The investibility of nonlinear sys-
tems was discussed in {4], and a sufficient-input criterion for designing
an NN © leam a system’i inverse was established. Other examples of
NN-controllers ase {1] [5], which used reference models to train the
NN. Kraft and Miller designed controllers using a similar structure to
CMAC (cerebellar model articulation controller) [6] [8]. Five dominant
system architectures- with NNs for control applications were summar-
ized in [13] and [14], and the importance and applications of NNs to
control and system identification were also addressed there.

However, most of the work mentioned above has the problems of
compiex training methods and system structures. Thas, we shall in this
paper propose a simple algorithm based on the BP for a class of non-
linear systems typified by industrial process control applications. The
proposed NN-controller is trained by using the system’s output errors
duealymthlmleaprionhnwhdgeofﬂzeomonedplm.lnSec-
tion 2, the control problem using NNs is stated formally, and the basic
structure of the proposed NN-controller is analyzed. The training algo-
rithm is developed in Section 3, and the corresponding theorems are
proved. Section 4 presents the procedures of designing the NN-
controlier, and addresses problems related to implementation. Section 5
summarizes the simulation results. A system model with a long
response delay, nonlinearity of dead zone and saturation, and process
noise is used 1o test the proposed NN-controller. The paper concludes
with Section 6.

2. PROBLEM STATEMENT AND THE NN-CONTROLLER
Any controlled plant can be viewed as a mapping from control
input to System output:

x=f(x, u, 1), y=g(x. u, ),

wherexe R*, ye R*, andu e RY? are the state, system output and
input, respectively. The controller is also a mapping from the system



feedback and/or feedforward to control commands:
u=cly, ¥i t) @1

where y, is the desired system output. It is assumed that only the sys-
tem output is measured.

We want to design an NN-controller to replace a conventional
controller. In other words, the NN-controller is cascaded with the con-
troied plant as shown in Fig. 1, and trained to leamn the mapping in
Eq. (2-1). The contsol input ug(s) is required to produce the desired
output y(t). The system-outpus error and the control-input error are
then defined, respectively, by

e, (t) = yo(t) - y@) 2-2)
e, (1) = ug(t) - u(t). 2-3)

The control-input error e, (¢) is also called the network-output error,
since u(z) is the output of the NN-controller. An NN is usually trained
by minimizing the network-output error e, (t). However, if the NN
controller is cascaded in series with the controlled plant, e,(t) is not
known, since the desired control input u,(t) is unknown. So, the
immediase problem in designing such an NN-controller is how to train
the NN.

One of the well-developed NNs is a multilayer perceptron with
BP [10] [12]. The basic structure of a three-layer perceptron is shown
in Fig. 2. The BP algorithm is based on the gradient algorithm to
minimize the network-output error, and derived from the special struc-
ture of the networks. Let 9,; and 6 be the thresholds at the HIDDEN
and the OUTPUT layer, respectively, where 1< j SN, and
1<k €N, Using the structure in Fig. 2, computation of the NN out-
put and updating of the NN weights are summarized in the following
five steps.
(1). Compute the output of the HIDDEN layer:

1

Xy;(0) = ,
j 1+ exp[—O V- 01,-] 24)
N
where 0y = TW;X;(t), 1<) SNy
i=l

(2). Compute the output of the OUTPUT layer:

o oy @

LD
where Oy = Z W,ﬁ XU(‘)'
j=1

1Sk SN,

(3). Update the weights from the HIDDEN to the OUTPUT layer:
WU‘(!+&)=WU‘(I)+ AWU,. (2-6)

where AWy =, 8y Xy;(0),
81! = [X (t) Xu(t)] Xu(‘) [1 -xzt(t)] (2'7)
(4). Update the weights from the INPUT to the HIDDEN layer:
Wi(t48¢) = W;;(0) + AW, 2-8)

where AW‘I =1 81 X,-(t).
Na
= [El Sk Wlﬁ] X1;() [1 -le(t)]-

(5). Update the thresholds: ,, and 6,;.
82, (148¢) = B34 (1) + Nyg 5y, 29

0,;(¢4+8¢) = 81;(1) + 1y §;, (2-10)

where 1), 0;, Tlg, and Ty > 0 are the gain factors.

In any control system design, it is desired to specify the system
performance in terms of system-output errors, rather than the unknown
network-output error e, (¢). To design such a controller using NNs, we
adopt the basic principle of BP, because of its ability of universal
approximation and its convergent property based on the gradient aigo-
rithm [11]. The major obstacle to design such an NN-controller is to
train the NN using system-output errors, rather than the network-output
errors. The next section presents 2 solution to this problem.

3. TRAINING AN NN-CONTROLLER WITH SYSTEM-
OUTPUT ERRORS

To derive the BP algorithm, the cost function of the network is
defined as:

En=1 z{e.(r)]’

k=1

where €, (1) = Uy (t) — 4, (¢t) is the network-output error at the k™
node of the OUTPUT layer. As mentioned eardier, E, (¢) is not avail-

able since u,(r) is unknown for all k. Let the [ component of the
system-output error be defined by
e,,(t) =y (t) =y, (), =1, ... , B @3-

Then, the cost function in terms of the system-output error is defined
as:

M
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where Gy(u) is_the " of thermapping ¥=G(u) where
, and u= |y, ... ,uu’].Eq.(B-Z)iscanptnabh

from the measurement of the system output. In other words, we know
a function of the network-output error, though the detailed structure
and parameters of the mapping G(.) may not be known. We want w0
train the NN by minimizing the cost function Eq. (3-2).

Using the gradient algorithm, the weights from the HIDDEN to
the OUTPUT layer are modified by

Wia(480) = Wi, (0) + AW, 4, (3-3)

al:'z )

and set .
W, 5(t)

AW = - 34

Noting that u, () = X4, (¢) in the NN-controller !, we get

9E@) _ = _ dy(t) OXu(t) 00y
W a0 ,}.:i["‘(') ) @) 0y Wpo &

aX ()

Because =Xy () [1 —Xu(t)]. and
dE,(t)

3-5) becomes —E’—

@3 ELATYO)

R _ a)l(')
E‘; [yu(r) Yl(‘)] F) Xu(t)[ Xu(t)] X1;(). (3-6)

30
—me(t) =X,;(*) Eq.

Substituting Eq. (3-6) into Eq. (3-4), one can get
AW 3 (e) = 1] Ok X,;(0), 30

where 5(&'2[?14(‘) 20 ::‘i))xno) [1-xa0). o9

‘hﬁc.xa(l)nhwvﬁudl.(l). At this it is assumod that the scaling
factor is ome. The scaling problem will be discwssed later. iy
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n{ > 0 is a constant. The only unknown in Eq. (3-8) is ::(())

(/. kY* component of the Jacobian matrix of the controlled plant.
Recall that the network-output emmor at the £* node of the OUT-
PUT layer is defined by

Cu(t) = uw(®) = 1. 3-9)

the

Referring to Eq. (3-8), the component of system-output error contri-
buted by the £* control input is defined by

_ o ;)
"‘""E{ [ - %) _—

(3-10)

To apply the gradient algorithm, we have the following tieeosem.

Theorem 1: Suppose the system response delay corresponding
w0 the k% control input is 4. To train the NN using the system-output
error and ensure the convergence of the training algorithm, the neces-
sary and sufficient condition is

signea (1) = siga[ew1-0))

Proof: In. the gradient algorithm, the solution comverges to a
minimum of the cost function if sad only if the search is made along
thenegamzedmcuonofthegnd:mofﬂnoostﬁmon.BPlsbased
mﬂnmdmmmhmdm&p (2-6) to (2-10). Because
U (8) — 4 (£) = X5,(8) — X5.(t), Eq. 2-7) becomes

G-

slk = Gg(t) Xu(f) [ -Xu(l)]. G-12)
Substituting Eq. (3-10) into Eq. (3-8), we get
sfk= e:t(‘) X?.t(‘) [l —Xu(t)]. (3_13)

Because both Egs. (3-12) and (3-13) are derived by applying the gra-
dient algorithm, to ensure the convergence of the training algorithm
given in Egs. (3-3) and (3-7), the necessary and sufficient condition is
Eq. (3-11), when the system response delay is accounted for. O

mmnaevalneofl-ay——lnsnumpommmeswp

19 (2) |
aJ’I(l)
size can be adjusted by setting n, = n{'au (')I

of :"(('t)) at each instant is not available and difficult to estimate on-
iy

line. So, a further simplification is necessary. In what follows, the case
of SISO (single input, single output) systems is considered for simpli-
city.

Definition 1: If the system output monotomically increases
(decreases) as the control input of a controlled plant increases, then the
system is called positive-responded (negative-responded). Both
positive-responded and negative-responded systems are called
monotone-responded.

Definition 2: For an SISO system y = G (), if the system is
positive-responded (negative-responded), then the system direction is
defined by direction(G) = 1 (direction(G) = -1).

. However, the sign

Definition 1 characterizes a class of systems. For example, a lincar sys-
tem in this class is cascaded with an clement of pure response delay,
dead zone and/or ssturation. Fortumately, there are many industrial
process control systems that possess the property of monotone-
response. To train an NN-controller for such a class of systems, we
have the following theorem.

Theorem 2 : For an SISO monoione-responded System, in order
to train the NN-controller in Fig. 2 using system-output error, the
weights on the arcs from the HIDDEN to the OUTPUT layer arc
updated by:

W1ji(e+3t) = W1;00) + AWy, 3G-19)

where AW ; =n{ 8] X,;(1),

8= [3ett) - (0] direction(@) Xt [1-xut0)).

Proof: For 1 SISO sysim, Egs. (39) md (3-10) e simpiiied
© () = 1) - uge) 3 €,6) = [346) ~y0) 29, prom £q
(3-1D, we get the condition of convergence:
:ignfe, (z)] = .u'gn[e.(t-d)]. If the system response delay is d, then
for a positive-responded system

signfu,0—4) - x0-d) = signfy ()~ 20) 3-15)
Similasly, for'a negative-responded system, we bave
sin{used) - ue—0)] = ~sign[ya(t) - y60) 316

From Egs. (3-15) and (3-16), we conclude that the condition for con-
vergence is

signuae—d} ~ wt-d)] = Agn{ya(1) - y(©)] drecrion ). 317

Eq. (3-17) then implics that the comresponding training algorithm be
based on Eg. (3-14). o

4. DESIGN OF THE NN CONTROLLER

Figs. 1 and 2 show the basic structures of the system and the
NN-controller, respectively. For an SISO system, there is one node at
the QUTPUT layer, ie, Ny = 1. The inputs of the NN-controller are
usually the system'’s desired and actual outputs, and tracking emors:
Ya(t) ya(t—5¢), ......, y lt—m 8¢), y{(£), ya-8¢), ......, y(t-moie),
ey (t), e, (t=t), ......, e,(t-m3dt), where mym; and my>0Q are
integer constants, and e, () = y4(t) — y(t). The number of the HID-
DEN nodes depends on the coetrolled plant under consideration.
However, selection of a suitable number may require extensive experi-
menits.

Based on Theorem 2, the formulas for updating the weights from
the INPUT to the HIDDEN layer and the thresholds are derived using
the same procedure given in Section 3. The computation of the NN-
controller for an SISO system is then summarized as follows.

A. Compute the output of the HIDDEN layer: Xy;(1).

x]j(t)= 1 .
1+ cxp[—OU - OU

where 0y = ZW.,X(t). J=12 Ny

B. Compute the output of OUTPUT layer: X,,(¢).

Xa(t) = 1 .
1+ exp[—O 21— 6y

Ny
where 02=ZWU Xll(t)
j=

C. Update the weights from HIDDEN to OUTPUT layer: W ;1(t)
W-,jl(¢+5:) = Wm(l) + AW,,-,,

where AWy, =nf 8y X,;(s).

81 = 1) - y(0)) direction(@) X ko) [1 - Xar(®)-
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D. Update the weights from INPUT to HTDDEN layer: W;;(1)
Wij(""&) =W;(t) + AW,;,

where AW, =W 8/ X0), 87 =8, Wy Xyy(0) (1-x,,-(z)]

where iy > 0 is the gain factor.

E. Update the thresholds: 6, and 6.
B2 (t+56) = () +nfo 8),  8,;(1+30) = 8,;(1) + 4 ],

where nfy and 1 > 0 are the gain factors of the thresholds at the
OUTPUT and the HIDDEN layer, respectively.

It is not difficult to extend this algorithm to the case of SIMO
(single input, multiple owtputs) systems. However, for the case of cou-
pled MIMO (multiple inputs, multiple outputs) systems, we have not
get a set of simple formulas, dee mainly to the coupling effects.

Another problemr in designing suchk an NN-comtroller is the
choice of scaling factors. The sigmoid function in NN computation
forces the NN outputs 10 be within the range of (0, 1), alhough the
control are fimited by the range of actwators, (U, Ul
Therefore, the NN outputs should coincide with, or tittie nssrower
than, the range of the acmator’s limits. The outpmt of the NN-
controller is then compuated by x(t) = X21(t) (Vinex = Uin) + Ui

Generally, aa NN works in the mode of rais-firss-then-operate.
In other words, an NN is put into operation only aftes it is *‘well-

incd.”” By ‘‘well-trained,”” we mean that the weights of the NN
not be modified anry more. However, for a time-varying system, it
is meaningless to say that am NN is ‘‘well-trained”’, since the system
always changes with time. Thus, not apdating the weights for a time-
varying system m3ay result in the sysiem going out of comtrol It is
therefore necessary 10 always update the weights of the NIN-consrolier,
though the updating may not be dome dwsing every sampling interval.

§. SIMULATION RESULTS AND DISCUSSION

1

where water becomes steam. The system is represented by an ARMAX
model:

AGCY) y k) =B uk~d) + C7) &k) -1
where A7) =1- 045181 27 - 047546 272,
B(z)= - 0.04560 z~! — 0.00404 272,

Cz) =1-035740 7 - 0.03392 272,
d = 18 sampling intervals.

Here the sampling interval is chosen to be 8 seconds, y(k) and u (k)
are the system output and control input at a discrete time k. respec-
tively, and ¥(k) is an umcomelsted random seqmence with zero mesn
and variance R that represents the process noise.

There are six inputs at the INPUT layer of the NN-controller
(N = 6), which are the desired system outputs and the output ermors:
Ya(k), ya(k-1), ya(k-2), Yalk) - y(&), Yatk=1) = yk-1),
¥4(k—2} — y(k—2). The number of the HIDDEN nodes is selected to
be three, i.e., Ny = 3. A nonlinear element of dead zone and saturation
is cascaded with the system Eq. (5-1) to model an actuator, which is
described by

511

0 i lu()| < dead_zone

k() =1{ n(t) if dead zome < )l < Uy 5-2)

Ve if W@ 20U, .

The overali system straotwre is sketched in Fig. 3. The main simula-

(1) When dead zone =50, Upy =100, and no process noise
(R:0.0).ﬂumhismhﬁg.&'meimialweigmsof
ﬂnNNmsdemdm.mmmvdglmmage
within 150 sampling interwals.

@ When dead_zome =1.0, Upyy = 10.0, and R = 0.0, Figs. 5 and 6
pteaem‘ﬂtsystemmspomeandlhemupaﬂmg' control input,
sespectively. Obviously, & teqge-dead zone affects the system per-
formance seriously, but the NN-controller still works well.

(3) When deod z0me =50, U, =100, and R =05 to test the
ability of noisc rejecsion, the desiced and actual system output
responses are plotted in Fig. 7. The corsesponding control input
and the noisc are showm in Fig. 8, where
#(k) = E(k) — 035740 E(k—1) — ORI g(k-2).

From the abowe simulation-resulss, we conciude that the proposed
NN-controlier performs well for this class of nomlinear systems. In the
NN-controller, the system-output emor is computed fzom the measure-
menis. As a priori knowledge, the system direction is casily obtained
cither from a step response cxperiment or the physical property of a
controlied plant. To test the aced. of Eq. (3-14), —direction(G) is used
in the traiming algorithm, which instanily results in the NN's diver-
gence.

The remxaining peeblems include:

e  Choice of the mamber of the HIDDEN nodes: There is no sys-
tematic way to choose the number of the nodes at the HIDDEN
layer(s) © approximate a given mapping. Fig. 9 shows the result
using Ny = 6, desl 20me = 5.0, U = 100 and R = 0.0. Com-
paring with Fig. 4, onc can see that adding more HIDDEN nodes
may not improve the system performance. But imtuitively, adding
more nodes may improve the system's relisbility.

e  Training the NN-controier for an open-loop unstable system:
Even for an open-loop stable system, large oscillation in the
Sysiem ouput may not be acceptable for a controlled plant. This
problens is important, especiaily at the beginning of training.

e  Applying the NN-controller for-other kinds of nonlinear systems,
such as robotic manipulators.

6. CONCLUSION
Focusing on industrial process control systems, we designed and

tesied a new NN-controller. The negative effects of a long system

respoase delay, nonlincar clements with dead zone and/or satuation,
and process moises are the main obstacies in designing a controdier and

fine tuning its parameters. The proposed NN-controller can replace a

conventional controlier, and has overcome all of the problems men-

tioned above,

A training algorithm is derived based on BP, enabling the NN to
be trained with system-outpwt ervors, rather than the network-output
errors. In the BP algorithm, it is requived to modify the weights by
network-output emor which is not known when a multilayer perceptron
is applied directly to the controlied plant. Therefore, the proposed
algorithm enhances the NN's ability %o handle control applications. A
detailed analysis of the algorithm is presented and the .corresponding
theorems are proved. The only a priori knowledge about the controlled
plant is the direetion of its response, which is usually easy to deser-
mine. Extensive simulations have been carried out and the results are
quite promising. Good performance, a simple structure and algorithm,
and the potential for fault tolerance make the proposed NN-controller
atrractive to industrial process control applications.
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Fig. 1. A control system with an NN controller.
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Fig. S. System output response with dead_zone = 7.0.
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g 6. System contro} input w Fig. 0. System output response with six HIDDEN nodes.
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Fig, 7. System output response with process noise R=05.
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