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On the Number of AccePtable Task Assignments I V 

in Distributed Computing Systems 

Abstruct-In a distributed computing system, a job  is usually 
decomposed into several cooperating tasks which are then as- 
signed to a set of processors in the system to exploit the inherent 
parallelism in job  execution. The distributed computing system 
and cooperating tasks can be represented by a processor graph 
Gp = ( V p ,  Ep)  and a task graph GT = ( VT,  E T ) ,  respectively. 
An edge between a pair of nodes in G T  represents the existence 
of direct communications between the two corresponding tasks. 
The maximal number of hops between two processors in Gp to  
which two adjacent tasks in G T  are assigned is called dilation 
of that assignment. For obvious reasons, it is important to  keep 
the communication delay between any two adjacent tasks in GT 
low. This can be accomplished by keeping the dilation of an as- 
signment below some specified value. An assignment is said to  
be acceptable if its dilation is less than or equal to  the specified 
value. 

Characterization and use of the number of acceptable as- 
signments for given GT and G p  are the subject of this paper. 
First, assignments with the dilation less than or equal to  one 
are considered. This dilation constraint represents a special case 
in which two adjacent tasks in G T  must be assigned to  either a 
single processor or two adjacent processors in G p .  Let N(GT,  
C p )  denote the number of acceptable assignments under this 
constraint. We not only derive bounds of N ( G T ,  G p )  for  ar- 
bitrary GT and G p ,  but also formulate a recursive expression 
for N ( G T ,  G p )  when G T  is a tree. For some restricted cases, 
either closed-form or recursive-form expressions of N( GT, Gp) 
are derived. The knowledge of N( GT, G p )  is shown to be useful 
not only in designing a processor interconnection structure but 
also in analyzing as well as improving the state-space search for 
the task assignment problem. Finally, we extend our results on 
N( GT, G P )  to  the completely general case- assignments with di- 
lations greater than one- where two adjacent tasks in GT can be 
assigned to any two processors in G p  which are not necessarily 
adjacent to  each other. 

Index Terms- Acceptable task assignment, adjacency require- 
ment, dilation, processor and task graphs, state-space search. 

I. INTRODUCTION 

HE availability of inexpensive, high-performance micro- T processors and memory chips has made it attractive to 
build distributed computing systems with these components. 
In such a system, a job is usually decomposed into a set of 
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cooperating tasks which are then assigned to a set of proces- 
sors in order to exploit the inherent parallelism in job execu- 
tion [1]-[4]. Each job can thus be described by an indirected 
graph called the task graph, GT = (VT,  E T ) ,  where VT is 
the set of nodes (vertices), each representing a task of the 
job, and ET C VT x V ,  is the set of edges, each repre- 
senting intertask communications between the two task nodes 
connected by the edge. When there is an edge between two 
task nodes in G T ,  the two tasks are said to be related to each 
other. Similarly, a distributed computing system can be rep- 
resented by an undirected graph called the processor graph, 
Gp = ( V p ,  Ep) ,  where V p  is the set of processors in the 
system and Ep C V p  x V p  is the set of edges representing 
communication links between processors. 

The maximal number of hops between two processors to 
which two related tasks are assigned is called the dilation of 
that assignment [5]. Cooperating tasks of a job are usually 
required to be assigned to a set of processors in such a way 
that the communication delay between any two related tasks 
must be kept low. One way to accomplish this is to limit the 
dilation to a small number so that two related tasks may be 
assigned to those processors located physically close to each 
other. An assignment is said to be acceptable if its dilation is 
less than or equal to prespecified integer value. 

The problem of deriving an “optimal” (in the sense of, 
for example, load balancing or minimization of job execu- 
tion time) task assignment is very hard and known to be NP- 
complete [6], [7]. In [4], the task assignment problem is for- 
mulated as a state-space search problem which is then solved 
by the A* algorithm [8]. However, without the knowledge of 
the number of acceptable assignments for given GT and G P ,  
one cannot tell the size of the state-space to be searched in 
the A* algorithm. Note that such an algorithm often requires 
a large number of evaluations of a complex heuristic function. 

As will be discussed later, the knowledge of the number of 
acceptable assignments can be used not only for providing a 
simplified state-space search but also for reducing the size of 
the state-space to be searched. Although a search method us- 
ing this knowledge may reach a suboptimal goal node instead 
of the optimal one, it requires much less computation cost and, 
thus, provides a useful insight into the state-space search. In 
addition, the knowledge of the number of acceptable assign- 
ments and its relation with the processor and task graphs can 
play an important role in the design of a distributed computing 
system. In other words, one can derive the system’s structure 
from this knowledge by maximizing the number of acceptable 
assignments for a given set of cooperating tasks. For the rea- 
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sons mentioned above, we shall concentrate on obtaining the 
number of acceptable task assignments for given GT and GP . 

Notice that the necessity of fast communication between two 
related tasks has usually made it important to assign them to 
either a single processor or two adjacent processors, i.e., the 
dilation of an assignment is kept less than or equal to one. 
Let N(GT, G P )  denote the number of acceptable assignments 
under this constraint. As it will be pointed out later, our results 
on N(GT,  G P )  can be extended and applied to the completely 
general case, i.e., those assignments with the dilation greater 
than one. Thus, without loss of generality, we shall henceforth 
address only the formulation and application of N(GT, GP) .  
Unless mentioned otherwise, in what follows, an acceptable 
assignment is referred to as an assignment with the dilation 
less than or equal to one. 

To facilitate our discussion, the task assignment problem 
can be transformed and stated formally as follows. Given the 
task graph GT and processor graph G p ,  we want to label 
nodes in GT with the nodes in GP in such a way that each node 
in GT is labeled with exactly one node from G p  and every 
pair of adjacent nodes in GT is labeled with either a single 
node or two adjacent nodes in Gp.  This constraint will be 
termed adjacency requirement and every labeling satisfying 
the adjacency requirement is called an acceptable labeling. 
The actual task assignment is to choose one from the set of 
acceptable labelings that minimizes/maximizes the associated 
criterion function. Note that we are addressing the problem 
of determining the number of acceptable assignments, rather 
than the determination of task assignments themselves. This 
fact distinguishes our work from other related works [2], [4], 

The paper is organized as follows. Section I1 provides a 
brief introduction of necessary notation and definitions. Our 
main results are given in Sections I11 and IV. Section I11 deals 
with the derivation Of N(GT, G p ) .  First, we derive the bounds 
of N(GT, Gp),  when GP and GT are arbitrary. Then, some 
important special cases are treated: 1) when GT is a tree and 
Gp is arbitrary, and 2) when GT is a tree and GP is an 
n-regular graph. For case 1) we shall develop a recursive for- 
mula to obtain the exact number of N(GT, Gp).  2) is a special 
case of 1) for which the exact number of acceptable assign- 
ments can be determined in a closed form. Also, we shall de- 
termine expressions for the case when Gp or GT is restricted 
to a certain family of graphs. Three application examples are 
presented in Section IV to illustrate how the knowledge of 
the number of acceptable assignments can be used. In light of 
these examples, some remarks on the task assignment problem 
are also made. More importantly, it is shown that our results 
are extensible to the completely general case, i.e., those as- 
signments with dilations greater than one. Finally, the paper 
concludes with Section V. 

11. NOTATION AND DEFINITIONS 

[91-[111. 

A graph G, is said to be a spanning subgraph of another 
graph Gp if V ,  = Vp and E, C Ep [12]. A complete 
subgraph of a graph G is a subgraph which is a complete 
graph,' and a component is a maximal complete subgraph 

the other nodes in G. 
' A graph G is said to be complete if each node in G is connected to all 
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Fig. 1 .  Decomposition of a graph into its components. 

which is not a proper subgraph of any other complete sub- 
graph of G. Thus, any graph can be viewed as the union 
of all of its components. Let Hi, 1 5 i 5 r ,  denote the 
components in a graph G, where r is the number of com- 
ponents in G .  The redundance sets of G are defined as 
Bi = Hi n {U>:: H,} for 1 5 i 5 r. For example, the 
graph in Fig. l(a) is the union of its components in Fig. l(b), 
where H I  = (1 ,  2, 3}, H2 = ( 2 ,  3,4}, and H 3  = (4, 5 ) .  
The redundance sets of this graph are B1 = 0, B2 = ( 2 ,  3}, 
and B3 = (4).  

The symbol U,,, is used to denote an m-dimensional vector 
of which all entries are one, and P , ,  C,, S , ,  and K,  to 
denote, respectively, a path, cycle, star, and complete graph 
with n nodes [ 121. Examples for P4, C d  , S 4 ,  and K4 are given 
in Fig. 2. Also, Q, is used to denote an n-dimensional cube 
[12], and Q3 is shown in Fig. 2(e) as an example. Besides, 
R, denotes an n-regular graph in which every node has the 
same degree n. Unless explicitly specified otherwise, every 
vector referred to in this paper is treated as a column vector of 
positive integers, and all graphs are assumed to be connected. 
In addition, the following definitions are necessary to proceed 
with our discussion. 

Definition 1: The adjacency matrix M = [Mi,], of a 
labeled graph G with m nodes is an m x m matrix in which 
Mi, = 1 if node i is adjacent to node j in G or i = j, 
and Mi, = 0 otherwise. For convenience, in the rest of the 
paper we shall use an m x m nonnegative symmetric matrix 
A = [Ai,] to denote the adjacency matrix of a processor graph 
Gp,  where m = IVpI. 

Definition 2: Among all acceptable labelings of GT with 
the nodes of Gp, let Di(k) represent the number of accept- 
able labelings in which the node ni E VT is labeled with the 
value k ,  i.e., assigned to processor k in V p .  Then, for each 
node ni E V T ,  the vector D; = [Di(l), Di(2),. . . ,Di(m)IT is 
called the distribution vector of n;, where T denotes "trans- 
pose. " 

Definition 3: The attaching function associated with the 
adjacency matrix A,  f A :  I" 4 I", is defined as f A ( q  = 
A V ,  VJV E I" where I" is the set of all rn-dimensional vectors 
of nonnegative integers. 
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(C) 

(c) GT. 
Fig. 3 .  An illustrative example for the attaching function. (a) Gp.  (b) Gr.  

(e) 
Fig. 2.  Various example graphs. (a) P4. (b) C4. (c) S4. (d) K4.  (e )  Q3 

It can be verified that if Di is the distribution vector of 
a task node n; in GT and if GF is the resulting graph by 
attaching a new node y to n; ,  then f ~ ( D i )  is the distribution 
vector of y in GF. For the example processor' graph in Fig. 
3(a), we get D1 = [4, 3, 3, 2IT, which means there are four 
ways to label n 1 with processor 1 ,  three ways to label n 1 with 
processor 2 ,  and so on. After n3 is attached to n l ,  we have 
0 3  =f~( [4 ,  3, 3, 2IT) = [12, 10, 10, 6IT in Fig. 3(c). Notice 
that, to satisfy the adjacency requirement, n3 in GF can be 
labeled with processor 2 only when n l  in GT was labeled with 
any of processor 1, processor 2 ,  and processor 3. Then, we 
have D3(2)  = 4 + 3 + 3 = 10. The other entries in 0 3  can be 
obtained similarly. 

Also, introduced are the following four definitions, which 
will be very useful in determining N(GT, G p )  when GT is a 
tree. 

Definition 4: The product of two vectors, denoted by 0, 
is defined as V3 = V I  0 V2 iff V, (k )  = V1(k)V2(k)  for 
1 5 k < m, VVl , V,, V, E P, where Vi(k)  denotes the 
kth element of the vector V; for i = 1 ,  2, 3. Clearly, the 
product of vectors is associative and commutative. We shall 
use rI:=l V; to denote the product of q vectors. Note that this 
operation is not the same as the conventional inner product of 
vectors, since it results in a vector, rather than a scalar. 

Definition 5: The multiplication of two vectors associated 
with the adjacency matrix A ,  denoted by * A ,  is defined as 

VI *A V2 V1 o f A ( v 2 )  YVl,  V2 

Definition 6: The sorted vector of a vector V E I", de- 
noted by V* E r", is a vector whose components V*(i) ,  l < 

i 5 m,  are a descending permutation of the components of 
V.  

Definition 7: The weight of a vector, W : P  + I ,  is 
defined as 

m 

W ( W  = V ( i ) ,  vv E P .  
i = l  

111. DERIVATION OF N ( G ,  Gp)  

A .  The Case of Arbitrary Processor and Task Graphs 

cency requirement in task assignment. 
The following lemma immediately follows from the adja- 

Lemma I :  
a) N(GT, G p )  I N(GT, Gb) if Gp is a spanning subgraph 

of G;. 
b) N(GT, Gp)  2 N(G6, G p )  if GT is a spanning subgraph 

of G;. 
By a) of this lemma, the inequality N(GT, Gp)  5 

N(S(GT),  G p )  always holds, where S(GT) is an arbitrary 
spanning tree of e. Moreover, we have the following theo- 
rem. 

Theorem 1: For any arbitrary Gp and G ,  there exist the 
following bounds of N(GT, G p ) ,  which are independent of 

a)N(GT, G P )  2 N(K1v7l, G P )  = E;='=, ( l f f l i V r I  - 

b)N(GT, G P )  5 N(S(GT),  G P )  I N(S1vr1, G P )  = 
( d ; + l ) ~ v ~ ~ - ' ,  where, as before, Hi and Bi, 1 5 i 5 r ,  

are respectively the component and redundance sets of G p  , 
d;  is the degree of node i in Gp,  and S ~ V ,  I is a star with I VT 1 
nodes. 

Proof: a) Since the complete graph K I v7 1 possesses the 
maximal number of edges among all the graphs with lV7-1 
nodes, the inequality N(GT, G P )  2 N ( K  I v7 1 ,  G P )  follows 
from b) of Lemma 1. Every node in KlvTl is adjacent to 
all the other nodes; to satisfy the adjacency requirement, all 

IET 1: 

IB; I I v T I )  



102 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. I ,  JANUARY 1990 

the nodes in K I V , ~  must be labeled with nodes within one 
component in Gp. There are IHi \ I v r  1 ways to label GT with 
nodes in the component set H; of Gp, and, thus, the total 
number of such labelings can be obtained by adding up all 
(Hi ( I v T ( ,  1 5 i 5 r ,  where r is the number of components of 
Gp.  However, the number of labelings with a component set 
H; contains double counts for those labelings in which all the 
nodes in K IV, 1 are labeled with nodes in the redundant set B; . 
The redundant counts must be removed by subtracting IBi \ I V T (  
from JH;llvTI, and thus, a) follows. 

Because the proof of b) requires more bases to cover, we 
shall complete the proof of b) after Theorem 2. Q.E.D. 

Notice that when Gp is a complete graph, the number of 
acceptable assignments is IVpllvrI regardless of the type of 
GT . This fact implies that the tightness of the bounds depends 
strongly on the structure of Gp. From Theorem 1, we have 
the following corollary for the lower bound of N(GT, G P )  
when Gp is restricted to a hypercube or a cycle. Recall that 
Q, denotes an n-dimensional cube and C,,, is a cycle with m 
nodes. 

Corollary I .I: 
a> N(Kh,  Qn)  = 2nSh-1n - 2"(n - I) ,  
b) N(Kh,  c,) = zhm - m. 

Proof: Since there is no K3 subgraph in Qn , all the nodes 
in Kh must be labeled with either a single node or two adjacent 
nodes in Q,, . There are 2h ways to label Kh with each pair of 
adjacent nodes in Q,, and the number of edges in Qn is 2"-'n. 
Therefore, when each edge in Q,  is considered separately, the 
total number of acceptable labelings is 2"- '~22~.  However, 
the labeling in which all the nodes in Kh are labeled with the 
same node from Q, occurs n times. Thus, we have to remove 
the redundant counts by subtracting 2"(n - 1) from 
leading to N(Kh,  Qn)  = 2"+h-ln - 2"(n - 1 ) .  

It can be easily seen that b) is valid when m = 3. Note 
that there is no K3 subgraph in C,, 'vm > 3. Thus, b) can be 
proved similarly. Q.E.D. 

As shown above, one can derive only bounds2 of 
N(GT, Gp) when GT and Gp are both arbitrary graphs. How- 
ever, when GT is restricted to a tree, N(GT, Gp) can be ex- 
pressed in a recursive form as will be shown in the following 

As we shall prove later in Theorem 2, the carrying vector 
is so defined that we can determine the distribution vector of 
any node, say n k ,  just by rearranging the tree to make n k  the 
root and then computing the carrying vector of the node n k  

Let nl  and n2 be two nodes with distribution vectors Dl 
and D2 in task graphs G1 and G2, respectively. Suppose G' is 
the resulting graph by adding a new edge between n l  and n2 
to connect G1 and G2. Then, the distribution vectors of the 
two nodes nl and n2 in GI can be determined by the following 
lemma. 

Lemma 2: Let D{ and Di denote, respectively, the resulting 
distribution vectors of task nodes nl and n2 after connecting 
nl  and n2 with a new edge. Then 

by (1). 

a) Di = Dl *A D2 
b) Di = 0 2  *A D1 where A is the adjacency matrix of Gp. 

Proof: Consider part a). When nl in G1 and n2 in G2 
are labeled, respectively, with nodes i and j in G p ,  Aij = 
Aji = 1 is the necessary and sufficient condition that this 
labeling is still acceptable for the resulting graph GI. The 
number of labelings of G2 which are still acceptable after 
connecting nl and n2 is Cy=, AjiD20). Since the number 
of different acceptable labelings of G1 in which n l  is labeled 
with i is Dl(i), we get D{( i )  = Dl(i) Cy=, Aj;D;?(j) and 
part a) follows. Part b) can be proved similarly. Q.E.D. 

Thus, we have the following important result. 
Theorem 2: The carrying vector of the root node of a tree 

is the same as its distribution vector, i.e., Dr = Yr if nr is 
the root of a tree. 

Proof: We prove this theorem by induction. Obviously, 
the theorem holds for a trivial tree (i.e., a tree with only one 
node). In that case, both the distribution and carrying vectors 
are U,,, , where m = 1 V p  I as before. 

Assume that the theorem holds for all the children of a node, 
say n,. Let n,., , 1 5 i 5 c ,  denote the node n,'s children, i.e., 
C(n,) = {n,.,Il 5 i 5 c } ,  where c = IC(n,)l. Then, from 
Lemma 2 the distribution vector of n, with only one child n, 1 

is U,,, *A Y,, . Thus, by attaching one more child at a time, the 
distribution vector of n, with all its children attached becomes 

D, = U,,, *A Y,, *A Y,, *A . ' '  *A Y,, 
subsection. Moreover, it will be shown in Section 111-C that 
N(GT, Gp) can be expressed in a closed form when GT is a =[Urn ~ ( A y r , ) ]  O ( A Y r z ) O . . . O ( A Y r c )  

= IIAYr, 
c 

tree and Gp is an n-regular graph R , .  

B.  The Case when 6 is a Tree = n f A ( y j )  

i=l 

To derive the recursive formula for N(GT,  Gp) when GT 
is a tree and Gp is arbitrary, we must convert @ to a rooted 
tree by choosing an arbitrary node of 6 as the root. Let us 
define the carrying vector of a node of 6 as follows. 

Definition 8: The carrying vector of a node ni E V T ,  
denoted by Y,  , is defined in a recursive form, 

if n1  is a leaf, 
(1) fA(Yj)  otherwise 

y , =  

where C(n;) represents the set of children of the node n;. 

Q.E.D. 

Given an arbitrary Gp , one can compute the carrying vector 
of all nodes in a rooted tree @ by applying (1) recursively, 
and determine the number of acceptable labelings from the 
corollary below. 

Corollary 2.1: Vn; E V T ,  W(Yi)  = N(T(ni),  Gp), where 
T(n;) is the tree formed by the node ni and its descendants. 

Proof: Suppose T(ni) is the task tree, then we have Dj = 
Yi from Theorem 2. This corollary follows from the fact that 

Q.E.D. W(Di) = N(T(ni),  GP) .  
The computational complexity in obtaining N(GT, Gp),  

when GT is a tree, can be determined as follows. By Lemma 
These bounds are necessarily loose because of the wide range of structural 

variations in the processor and task graphs. 
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2 and Theorem 2 ,  N(GT, G p )  can be obtained by calculat- 
ing the carrying vector of each node in the tree with (1). 
The complexity in obtaining fA (Y,)  from given A and Yj is 
O(m2), where m = /VpI, Yj E I" and A is an m x m  matrix. 
Note that the complexity of the operation o is O(m). Thus, 
when GT is a tree, the complexity in calculating N(GT,  G p )  
is O(lVrI - l)o(m2 + m) = O(1vr1m2). 

To illustrate the ideas presented thus far, consider the ex- 
ample processor and task graphs shown in Fig. 4(a) and (b). 
We have the following adjacency matrix for Gp in Fig. 4(a). 

A =  

E 

L:: : : :I 

-27 - 4-  

16 4 

3 9 

-3 -  - 9-  

- - 

Suppose n3 in GT is chosen as the root of the tree. Then, 
we get the rooted tree in Fig. 4(c) where n l ,  n5, and n6 
are leaf nodes (i.e., 1'1 = 1'5 = Y6 = [ I  1 1 l lT),  and 
( 3 3 )  = (n2, n4},C(n2) = ( n l }  and C(n4) = {ns, n6}. 
Thus, we get 

20- 

38 

34 

34- 

[: 

- 120 

456 

340 

- 340 

- - 

Y2 =fA(YI)  =AY1 = I o  
Lo 

2 

4 

3 

1 'i I:! = i 3 

W (  Y3) = 120 + 456 + 340 + 340 = 1256. 

From Fig. 4(a) we get H I  = ( 2 ,  3,4}, H 2  = (1, 2}, and 
then B1 = 8 and B2 = ( 2 ) .  It can be verified that 36 +26 - 
l 6  = 792 < 1256 < 2' +4' + 3' + 3' = 1542, which agrees 
with the bounds in Theorem 1 .  

In what follows, we shall prove part b) of Theorem 1. To 
facilitate the proof, we need the following definition [ 131. 
Also, recall that V* denotes the sorted vector of V .  

Definition 9: Let VI  and V2 be two m-dimensional vectors. 
VI  is said to be weakly submajorized by V2, denoted by 
VI <w V2, if Vl( i )  5 E:=l V2(i) for 1 5 k I rn. 

Then, we have the following three propositions. 
Proposition I :  If VI <,+ V2, then VT 0 Vi <w Vi 0 

v;, VVI, v2, v3 E l m .  

103 
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(a) 

1 

6 

(b) 

n 
3 

(c) 

Task graph GT . (c) A root tree derived from GT. 
Fig. 4. Example processor and task graphs. (a) Processor graph G p .  (b) 

Proof: Let V; = [ a l ,  a 2 , . . . , a m l T ,  V; :: 

[bi, b2, .  . . ,bmlT,  Vi  = [cl, ~ 2 , .  . . , cmlT,  and 6; = V;( i )  - 
V;( i )  = a; - b ; .  Since VI cw V2, 6; 5 0 for 
1 5 k 5 m. We obtain 

k k k 

ciai - cib; = 1 c;(a; - b ; )  
i = l  i = l  i = l  

k 

= Cl61  + c262 + 1 cis; 
i =3 

k 

i =3 

(Since61 5 Oand {c i}  isdecreasing.) 
U k 

5 c , c s i  + cis, 
i = l  i=u+l 

k 

i= l  

and this proposition follows. Q.E.D. 
Proposition 2: Given a vector V E I" and a decreasing se- 

quence of node degrees, {d;}r=,  , in a graph with an adjacency 
matrix A ,  if V <w [(d 1 + 1)" , (d2 + 1)" , . . . , ( d ,  + 1 ) " I T ,  then 

Proof: Let 2 = fA(V). Note that W(2j = W(Z*) 
~ A ( M  <w [(dl + I)"+', (d2 + 1)"+', . ' ' 9 (d, + 1)"+'IT. 



104 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 1 ,  JANUARY 1990 

is the summation of all the elements in the set L = 

{ V ( l ) ,  . . . , V(1), V(2) ,  , . . . , V(2) ,  . . . , Vim), . . . , V(m)} in 
which V(z] appears di + 1 times. Since Z*(i) is the sum- 
mation of no more than (di + 1) elements from L ,  we 
obtain Z*(i) 5 xfZl V*(i)(d; + 1 )  5 (di  + 1)"+' 
(by Proposition 1 ) .  Thus, the proposition follows. Q.E.D. 

be a decreasing sequence of 
positive integers, and V I ,  V2, and V3 be m-dimensional vec- 
tors such that for some positive integers r and s, VI <w 
Lo;, P ; , . . . , P L I ~  and V2 <w Lo;, pZ, . . . ,p%lT.  Then, 

Proposition 3: Let 

v, = VI 0 v2 <w Lo;+', p;+s, ' .  ' ,pL+"T. 
Proof: For 1 5 k < m ,  

k k 

i = l  i=l 

k 

5 VT(i)pf (by Proposition 1 )  
i k l  

k 

5 ~ p ~ "  (by Proposition 1). Q.E.D. 

Without loss of generality, let { d i } k ,  be a decreasing se- 
quence of node degrees in Gp. Then, part b) of Theorem 1 
can be proved as follows. 

Proof forpart b) of Theorem I :  The first inequality of b) 
in Theorem 1 follows direct1 from Lemma 1 .  To obtain the 
equality, N(SlV,1, Gp)  = xkyl (di + l)lVT1-', consider the 
case where one more node is to be attached to the central node 
of a star at a time. Then, this equality follows immediately. 
Next, we want to prove the second inequality. 

We claim that the carrying vector of the root node of a tree 
with n nodes is weakly submajorized by [(dl + l)'-', (d2 + 
l)'-', . . . , (d ,  + l)n-l]T and, then, the required result follows 
from Theorem 2 .  We prove this claim by induction. Clearly, 

i=l 

construct any tree by starting with a single node and attaching 
one node at a time, thereby leading to (3). Q.E.D. 

Due to the diversity of network structures, the problem 
of determining N(GT, Gp) ,  however, becomes very compli- 
cated when GT is neither a tree nor a complete graph. Al- 
though one can derive recursive or closed-form expressions 
for N(GT,  Gp)  when GT and Gp are restricted to some fam- 
ily of graphs, it is still extremely difficult to determine the 
general formula of N(GT,  Gp). The procedure of determining 
N(Ch, Q,) is presented below to demonstrate the associated 
difficulty. 

To determine the expression of N(Ch ,  Q n ) ,  consider an 
alternative approach to the determination of N(Ph, Q n )  with- 
out applying Corollary 2.2 .  Suppose the two end nodes of a 
(task) path Ph are assigned to processors P I  and p2 in Qn,  

the distance between which is k.  Consider the case where a 
new task node is to be attached to the end node labeled with 
p2. Clearly, the new task node can be assigned to n + 1 pos- 
sible processor nodes in Qn . From the adjacency requirement 
and the structure of Q,, we know that k of these processors 
have a distance k - 1 from p1, n - k of them have a distance 
k + 1 from p1, and only one of them has a distance k from 
p1. That is, the relationship of the two end nodes of Ph+l 
can be determined from the relationship of the two end nodes 
of Ph. More formally, let us define the sequence of vectors 
{a;,o, a,,l, . . . ,a;,,} such that 

k -  for a trivial tree, i , l  5 k 5 m. Next, 
let s, be the number of nodes in the tree T(n,) which is 
formed by n, and its descendants. Assume that Y, <w [(dl + 
l p - ' ,  (d2 + l ) ' ) - ' , . . . , ( d ,  + l ) ' ~ - ' ] ~ .  Then, by Proposi- 
tion 2 we have fA (Y,) <w [(dl + l ) " ~ ,  (d2 + l)'), . . . , (dm + 
l )"~lT.  Since Y, = IInl tC( , ,J~(YJ),  b: Proposition 3 we ob- 
tain Y,  <w [(d,  + 1)"1 - ' ,  (d2 + 1),i- , . . . , (dm + l )s i - l]T,  
where C(n,) is the set of children of the node n, and s, = 

~ n J t C ( n , )  sJ + 1. The claim is thus proved by induction and 
the inequality N(GT, G P )  5 C/?' ( d ,  + l) lv~I-l  follows. 
Q.E.D. 

C. Some Restricted Cases 
In a more restricted case when GT is a tree and GP : 

R,, N(GT,  Gp)  can be expressed in a closed form as given 
in the following corollary. 

Corollary 2.2: If Gp = R, and GT is an arbitrary tree, 
then 

(3) 

Proof: If A is the adjacency matrix of an n-regular 
graph, we have W ( f ~ ( v ) )  = (n  + l)W(V), VV E P. If n, 
is an isolated node, then W(D,) = "(U,) = IVpI .  We can 

Urn@) 5 

N(GT, R,) = IT/PI(n + l)lvrl-l. 

Note that this sequence of vectors is so defined that ai,j is the 
number of acceptable labelings of Pi with Q, in which the 
distance between the two processors assigned to the two end 
nodes in P; is j .  Using this sequence, we have the following 
lemma which determines N(Ch, Q,). 

Lemma 3: 
a) N(Ph , Qn)  = Cy=, ah = 2"(n + l )h- l .  
b) N(Ch 9 Q n )  = ah,O + ah,l. 

Proof: The acceptable labelings of Ph with Q, , in which 
the distance between the two processors assigned to the two 
end nodes in Ph is j ,  come from the following three cases. 

Case 1: Adding one more node to Ph-1, in which the dis- 
tance between the two processors assigned to the two end 
nodes is j - 1 .  

Case 2: Adding one more node to Ph-1, in which the dis- 
tance between the two processors assigned to two end nodes 
is j .  

Case 3: Adding one more node to Ph-1, in which the dis- 
tance between the two processors assigned to two end nodes 
is j + 1. 

For these three cases there are n - j + 1, 1, and j + 1 
possible Ph-l's, respectively. Thus, part a) follows from the 
definition of the sequence of vectors, {a;,o, a;,l,. . . ,ai,,,}. 
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When n = 2 

p1 

p2 

p3 

p4 

p5 

When n = 3 

p1 

p2 

p3 

p4 

5 
P 

4l A 1  A 2  

4 

4 8  

1 2  1 6  8 

28 5 6  2 4  

8 4  1 6 0  8 0  

4l A 1  A 2  A 3  

8 

8 2 4  

3 2  4 8  4 8  

8 0  2 4 0  1 4 4  4 8  

320  7 6 8  7 6 8  1 9 2  

N(P,, Qz)  

4 

1 2  

36  

1 0 8  

3 2 4  

N(Pi, Q3) 

8 

32  

1 2 8  

5 1 2  

2 0 4 8  

Fig. 5. Examples of N ( P , ,  Q,,) for n = 2 and n = 3.  

TABLE 1 
THE NUMBER OF ACCEPTABLE LABELINGS IN VARIOUS CASES 
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t H ,  , B, , 1 5 i I r ,  are, respectively, the component and redundance sets of Gp. 
t t  {d,  } is the degree sequence of Gp 
t t t n ,  is the arbitrary node in G T .  

Clearly, c h  can be obtained by adding one more edge be- 
tween the two end nodes of Ph. Thus, part b) fol1ows.Q.E.D. 

Fig. 5 shows how to determine N ( P ; ,  Qn)  and thus, 
N(Ci,  Qn)  with the above method when n = 2 and n = 3, 
respectively. The entry in row Pi and column A,, denoted 
by ai,., means the number of acceptable labelings of Pi with 
Qn in which the distance between the processors assigned to 
two end nodes of P; is j .  It can be easily verified that the 
numbers N(Pi ,  Qn),i 2 1 ,  agree with the result of Corollary 
2.2 .  It is interesting to analyze the complexity of calculat- 
ing N(Ch, Qn). From Fig. 5 and the recursive definition of 
{ai,o, ai,l, . . . , ai,n }, it requires two multiplications and two 
additions to determine each entry in row Pi of Fig. 5 from 
entries in row Pi - 1 ,  and there are n + 1 entries in each row, 
meaning that the complexity of calculating all entries in a row 
is O(n). Therefore, the complexity of obtaining N(Ch, Q n )  
is O(nh). 

Notice that even in the restricted case of Gp = Qn and 
GT = c h ,  we have to appeal to some nontrivial recursive 
formula. Naturally, the difficulty in determining N(GT,  G P )  

increases with the irregularity of the graphs involved. The 
main results in this section are summarized in Table I. 

IV . APPLICATION, REMARKS, AND EXTENSION 
In this section, three application examples are presented 

to demonstrate the utility of the knowledge of N(GT,  Gp) .  
In light of these examples, some remarks are also made to 
indicate the complexity of the task assignment problem. More 
importantly, our results on N(GT,  G p )  are extended to the 
completely general case (i.e., those assignments with dilations 
greater than one) in which two related tasks in 6 can be 
assigned to any two processors in GP (which are not required 
to be adjacent to each other). 

A .  Application Examples 

Example I :  Consider the processor graph Gp and task 
graph 6 shown in Fig. 6(a) and (b), respectively. Let 
GP\(i, j )  denote the graph resulting from the removal of the 
edge ( i , ~ )  from Gp. Then, using the results in Section 111, 
we can calculate N(GT,  G P )  = 727, N(GT,  Gp\(l, 3)) = 
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1 

n 

(b) 
Fig. 6. Example processor and task graphs. (a) Processor graph G p .  (b) 

Task graph G T .  

4 1 5 

3 2 

(a) 

n 

\ D l  
n n 

n 

n 0  n e  
1 2 x 

n’ n o  n’ 
3 5 

(C ) 

composed task graph. 
Fig. 7.  An example network. (a) Processor graph. (b) Task graph. (c) De- 

is to be added in Gp. Let Gp + ( i ,  j )  denote the graph re- 
sulting from the addition of an edge between nodes i and j 
in Gp. Then, we obtain N(GT, G p  + (1,4)) = 1091 and 
N(GT, Gp + (3, 4)) = 1203. This implies a higher increase 
in the number of acceptable labelings by adding edge (3,4) 
than by adding edge (1,4). Thus, using N(GT, Gp)  one can 
determine the edge to be added for a maximal increase in the 
number of acceptable labelings. 

Example 2: Consider the example processor graph Gp and 
task graph Gr shown in Fig. 7(a) and (b), respectively. Again 
applying the procedure in Section 111, we can construct an 
enumeration tree as shown in Fig. 8, where the number in 
the square associated with each node represents the number 
of all acceptable labelings subject to the partial labeling made 
already for the node and its predecessors. 

Notice that the numbers in the squares in the first level 
(i.e., 192, 90, 81, 90, and 24) are Dl(i) ,  1 5 i 5 5 ,  and 
those in the second or lower levels can be obtained by prop- 
erly decomposing the task tree and multiplying together the 
numbers of acceptable labelings in each subtree subject to 
the partial labeling made already for the corresponding node 
and its predecessors. For example, to determine the number 
in the square of the node (n2,2) whose immediate predeces- 
sor is ( n l ,  l ) ,  we decompose the task tree into two subtrees 
as shown in Fig. 7(c) and then obtain the number associated 
with the node (n2,2) f romDIJ ( l )  x D 2 / ( 2 )  = 16 x 3 =48. 

The enumeration tree can also be used to determine the 
number of conditional acceptable labelings, N(GT, Gp IP), 
where P C { ( t , p ) ( t  E V T , ~  E Vp} .  For example, if 
P = { (n l ,  5 ) ,  (n3, l)}, then N(GT, GpJP)  = 8 + 4  = 12. 
This means that there are 12 acceptable labelings in which 
tasks nl and n3 are assigned to processors 5 and 1 ,  respec- 
tively. Moreover, in the state-space search of the task assign- 
ment problem, the enumeration tree provides a good indication 
for the search status of the current node and can be applied 
to establish a guided search. When the computation cost for 
the heuristic function is high,3 we can skip some evaluation 
steps and choose a search route toward an ampler state-space 
without computing the heuristic function of every offspring. 
For example, in Fig. 8 the node (n l  , 1) will be chosen since it 
has the highest potential (i.e., 192 > 90, 81, 24) for contain- 
ing the optimal solution. This approach is actually based on 
the fact that a larger number of acceptable labelings implies 
that unassigned tasks have a better chance to be spread out in 
the network. 

Clearly, when the goal of achieving load balancing is more 
important than that of reducing the interprocessor communi- 
cation cost, the likelihood of making a successful guess with 
the knowledge of N(GT,  Gp)  will be increased. This guided 
search holds practical importance, since it requires much less 
search cost and is attractive, especially when we want to re- 
duce the expected search cost and there are many acceptable 
goal nodes in the state-space. 

Example 3: In the state-space search, we naturally want 
to reduce the number of expanded and generated nodes in 
the worst case [8]. Consider the enumeration tree in Fig. 

evaluations of a complex heuristic function. 

477, N(GT, GP\(~ ,  5)) = 563, N(GT, Gp\(2, 3)) = 405, 
and N(GT, Gp\(3, 5 ) )  = 489. Therefore, as far as the num- 
ber of acceptable assignments is concerned, the edge (2,3) 
is the most critical since its removal will cause the largest 

Consider the case when a new edge or communication link 
decrease in the number of acceptable labelings. For example, the algorithm A * used in [4] requires a large number of 
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Fig. 8. Part of the enumeration tree with the associated graphs in Fig. 7.  

8. It is easy to see that the number of nodes in the ith 
level is equal to N(TR, ,  G p )  where TR, is the induced 
subgraph of C&- with the set of nodes {nJInJ E VT and 
j 5 i}. Note that the total number of nodes in the enu- 
meration tree, 1 + x/zl N(TR, ,  Gp) ,  and the number of 
internal nodes, 1 + E/Z1-' N ( T R J ,  Gp) ,  are, respectively, 
the number of generated nodes and the number of ex- 
panded nodes in the worst case of the state-space search. 
For the example task and processor graphs in Fig. 7, we get 

N(TR4, Gp)  = 153, and N(TR5, Gp)  = 477. That is, there 
are 1 + E/Z1-' N(TR, ,  G p )  = 221 expanded nodes and 
1 + xlz' N(TR, ,  G p )  = 698 generated nodes in the worst 
case of the state-space search. 

Clearly, while N(TR1vrl, Gp)  is just the number of ac- 
ceptable labelings, the number E/':'-' N(TR,  , G p )  closely 
depends on how we encode the task nodes in GT with n, , 1 5 
i 5 I VT 1 .  In other words, different encodings of the task tree 
lead to different enumeration trees which usually have differ- 
ent numbers of internal nodes but the same number of leaves. 
For example, in the case when the task graph in Fig. 7(b) 
is encoded as the one in Fig. 9, we have N(TR1, G p )  = 5 ,  

and N(TR5, G p )  = 477. The maximal numbers of gener- 
ated and expanded nodes are then reduced to 692 and 215, 
respectively. 

It can be verified by enumeration that among all the possible 
encodings for the task tree in Fig. 7(b), the encoding in Fig. 
9 is the enumeration tree with the minimal number of internal 
nodes; it minimizes the number of expanded nodes in the 
worst case of the state-space search when the processor graph 
is the one in Fig. 7(a). (Such an encoding is termed the best 
encoding.) Improvement in the worst case of the state-space 
search is not the only advantage of the encoding with a smaller 
enumeration tree. Since the goal node in the state-space search 
must be a leaf, searches in the enumeration tree with less 

N(TR1, G p )  = 5 ,  N(TR2, Gp)  = 15, N(TR3, G p )  = 47, 

N(TR2, G p )  = 15, N(TR3, Gp)  = 47, N(TR4, G p )  1 147, 

n 

0' 
n 

Fig. 9. A different encoding of the task graph in Fig. 7(b). 

internal nodes are naturally expected to have less than average 
number of expanded and generated nodes. 

Using the procedure proposed here, one can construct the 
enumeration tree for each encoding of the task tree and then 
determine the best encoding off-line to reduce the computation 
cost of the state-space search. 

B. Remarks 
The following remarks are in order to clarify some conjec- 

tures which may result from the above examples. 
R1. In the first example, the increase of the number of 

acceptable labelings by adding an edge between two processor 
nodes with larger degrees may always seem to be greater than 
that by adding an edge between nodes with smaller degrees. 
This is not always true. A counterexample is shown in Fig. 10, 
where Gp and G, are obtained by adding edges (1,13) and 
(7, lo), respectively, in G,. Applying the results in Section 

Note that the degrees of nodes 1 and 13 in G, are 4, whereas 
those of nodes 7 and 10 in G, are 3.  

R2. We get N(P3, G,) = 196 > N(P3, G,) = 192 in Fig. 
10. This means that the edge (1,13) in Ga is more important 
than the edge (7, 10) when the task graph is P3, but less im- 
portant than the edge (7,lO) when the task graph is ps. This 

111, We get N(p6,  Gp) = 10134 < N(P6, G,) = 10454. 
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10 

2 3 4 1 4  1 5  16 2 3 4 1 4  1 5  1 6  

G a  

10 

2 3 4 1 4  I5 16 2 3 4 1 4  1 5  1 6  

G y  Gc i  
Fig. 10. A counterexample showing that adding an edge between two nodes 

with larger degrees does not always result in a higher increase in the 
number of acceptable labelings. 

fact not only indicates that the importance of each edge in the 
processor graph depends on the structure of the associated 
task graph but also shows that N(GT,,  G p , )  > N(GT,,  Gp,) 
does not imply N(GT,, GP, )  > N(GT,, Gp,) for GT, # GT,  . 

R3. One may also conjecture in Example 2 that the pro- 
cessor node which leads to the amplest state-space is always 
the node with the maximal degree. Again, a counterexam- 
ple is given in Fig. 11 in which the degree of node 1 in 
the processor graph is greater than that of node 5 (i.e., 
d(l) = 4 > d(5 )  = 3), while Dl(1) = 225 < Dl(5) = 289. 

R4. Consider the two encodings of a task tree in Fig. 12(a) 
and (b). GT and GT, in Fig. 13(a) and (b) are, respectively, 
the TR6’s corresponding to the encodings in Fig. 12(a) and 
(b). We then have N(GT, ,  S4) = 640 > N(Gr,, S4) = 616, 
and N(GT,,  P4) = 482 < N(GT,, P4) = 484 where S4 and 
P4 are, respectively, the star and path with four nodes. It can 
be verified that the encoding of the task tree in Fig. 12(a) is 
the best encoding when GP = P4, and on the other hand, 
the encoding in Fig. 12(b) is the best encoding when GP = 
S4. This fact indicates that the best encoding of a task tree 
depends on the structure of the associated processor graph, 
i.e., N(GT,,  Gp , )  > N(GT,, Gp, )  does not always imply 

As can be seen from the above remarks, the task assignment 
problem is more complicated than it may appear to be. This is 
the very reason that a rigorous procedure like the one treated 
in this paper must be called for. 

C .  Extension 
Thus far, we dealt with only those task assignments with 

dilations not greater than one. However, our results developed 

N G T , ,  G P , )  > NGT,  9 G P * )  for G P ,  # G P ,  . 

(b) 

d(1) = 4 > d(5)  = 3.  (a) Processor graph. (b) Task graph. 
Fig. 1 1 .  An example network for Remark 3 where Dl(1) < Di(5) and 

n n n n n 
1 2 3 4 c 

n n 
6 7 

n n n n 
1 2 3 

n 
4 

0 0  
n n 
7 6 

(b) 
Fig. 12. Example of different encodings which are associated with different 

enumeration trees. (a) An encoding of a task tree. (b) Another encoding 
of a task tree. 

for the case of the dilation not greater than one can be extended 
to the completely general case, in which the dilation can be 
greater than one. Suppose the allowable dilation (AD) is a 
positive integer k > 1. Then, a communication graph Gc 
can be obtained from the processor graph Gp in such a way 
that Vc = Vp and every pair of processor nodes in Gc is 
connected iff the number of hops between the pair of processor 
nodes in G p  is less than or equal to k. For example, given 
the processor graph in Fig. l(a) and AD = 2, we have the 
communication graph in Fig. 14(b) where a solid line means a 
one-hop communication and a dashed line denotes a two-hop 
communication. Clearly, when AD = 1, the communication 
graph is the same as the processor graph. 
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7 - O - O -  
(a) 
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O-O-r-O 
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Fig. 12(a). CT, ,  TR6 according to Fig. 12(b). 
Fig. 13. TR6 according to the encoding in Fig. 12. CT,  , TRs according to 

6 
6 5 

6 
(b) 

Communication graph Gc , 
Fig. 14. Determination of a communication graph. (a) Processor graph Gp. 

Notice that the constraint “every two related tasks in GT 
must be assigned to either a single processor or two proces- 
sors, the distance between which is less than or equal to k in 
Gp” is equivalent to the constraint “every two related tasks 
in GT must be assigned to either a single processor or two 
adjacent processors in Gc.” Then, we can treat the task as- 
signment problem with processor graph Gp and AD > 1 as 
the task assignment problem with processor graph Gc and 
AD = 1. By substituting the communication graph Gc for 
the processor graph Gp in our previous results, we can for- 
mulate N(GT, Gc) instead of N(GT, Gp) .  Following exactly 
the same procedures in previous examples, we can apply this 
knowledge to provide a simplified state-space search (as in Ex- 
ample 2) and reduce the size of the state-space to be searched 
(as in Example 3). 

V. CONCLUSION 

In this paper, we have derived the bounds for the number 
of acceptable task assignments for arbitrary Ci. and Gp, a 
recursive formula for the case when G is a tree, and closed- 
form expressions for more restricted cases. Notice that the 

knowledge of N(GT, G P )  can be applied not only for improv- 
ing the state-space search of the task assignment problem but 
also for evaluating the importance of each system component 
when it is desired to have more choices in assigning tasks. 
By comparing the number of acceptable assignments before 
and after removing a certain nodeAink in Gp , the importance 
of the node/link can be evaluated. Furthermore, we have ex- 
tended the results on N(GT, Gp)  to the completely general 
case (i.e., those assignments with dilations greater than one) 
in which two related tasks in GT can be assigned to any two 
processors in Gp. 

Unfortunately, the general formula for an arbitrary G 
could not be derived. As shown in Section 111-C, even in 
the restricted case when GT is a cycle and Gp is a hyper- 
cube, we have to appeal to a nontrivial recursive formula. 
Clearly, the difficulty associated with the problem increases 
with the irregularity of the graphs involved. Unlike the iso- 
morphic mapping on which conventional approaches are based 
[ 141, the mapping under the adjacency requirement allows for 
many-to-one mappings. Such a graph mapping is of practi- 
cal importance, since the compromise between exploiting the 
parallelism and minimizing the communication cost is an im- 
portant design problem. 

APPENDIX 

LIST OF SYMBOLS 

A processor graph. 
A task graph. 
A communication graph. 
The set of nodes in the graph G,. 
The set of edges in the graph G,. 
Components (redundance sets) of a pro- 
cessor graph. 
The total number of assignments which 
satisfy the adjacency condition. 
An rn-dimensional vector all entries of 
which are one. 
The attaching function of the vector Vas- 
sociated with the adjacency matrix A .  
The product of vectors. 
The multiplication of vectors associated 
with adjacency matrix A .  
The sorted vector of the vector V .  
The weight function of the vector V .  
The set of children of a node ni in a 
rooted tree. 
The tree formed by the node ni and its 
descendants. 
The carrying vector of a node ni E V T .  
The distribution vector of a node ni E 
V T  . 
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