
870 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7, JULY 1990

Minimal Order Loop-Free Routing Strategy

Abstract- Conventional distributed adaptive routing strategies
usually work well for packet switching networks only in the ab-
sence of linkhode failures. However, they cannot avoid looping
messages for an extended period in case of linkhode failures.

In this paper, we develop a multiorder routing strategy which
is loop-free even in the presence of linkhode failures. Unlike
most conventional methods in which the same routing strategy is
applied indiscriminately to all nodes in the network, nodes un-
der the proposed strategy may adopt different routing strategies
in accordance with the network structure. We not only develop
the formulas to determine the minimal order of routing strategy
for each node to eliminate looping completely, but also propose
a systematic procedure to strike a compromise between the op-
erational overhead and network adaptability. Several illustrative
examples are also presented.

Index Terms- Distributed adaptive routing strategies, distri-
bution vector, looping effects, multiorder strategy, strategy com-
patibility.

I. INTRODUCTION

OR packet switching networks, routing is a key to their F performance and reliability [l], [2]. Among the vari-
ous routing algorithms proposed thus far [3]-[lo], distributed

because of their high potential for reliability and adaptability.
The ARPANET’s previous routing strategy (APRS) [3] is a
typical example of these. Under APRS, the path from one
node to every other node is not determined in advance. In-
stead, every node maintains a network delay table to record
the shortest delay via each link emanating from the node. A
minimal delay table in a node, which contains the delays of
the optimal paths (i.e., the path requiring the minimal delay)
from that node to all the other nodes is passed to all of its
adjacent nodes as a routing message at every fixed time inter-
val (i.e., 128 ms in APRS). Note, however, that under APRS
each node sends the same routing message to all its neigh-
bors without making any distinction between receiving nodes.
This forces some nodes to receive useless routing messages,
thereby resulting in undesirable looping in case of linkhode
failures. The network recovery process after certain failures
will thus be delayed [1 11. An example of the network recov-
ery process under APRS for the network in Fig. 1 is given

I adaptive routing algorithms have drawn considerable attention

Manuscript received August 1, 1987; revised January 28, 1988. This work
was supported in part by the Office of Naval Research under Contract N00014-
85-K-0122. Any opinions, findings, and conclusions or recommendations ex-
pressed in this paper are those of the authors and do not necessarily reflect
the view of ONR.

K. G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science. The University of Michigan,
Ann Arbor, MI 48109.

M.-S. Chen was with the Real-Time Computing Laboratory, the University
of Michigan, Ann Arbor, MI 48109. He is now with the IBM Thomas J .
Watson Research Center, Yorktown Heights, NY 10598.

IEEE Log Number 903595 1.

Fig. 1. An example network where L4.5 is broken.

in Table I. Notice that it requires 20, 19, 17, and 20 time
intervals, respectively, for N I , N2, N3, and N4 to get their
new optimal paths to Ng.

The routing algorithms proposed in [5]-[7] have the same
major features as the one in APRS, except they employ more
provisions to cope with network failures. However, they still
cannot avoid some inherent drawbacks such as poor adaptabil-
ity and inefficiency [7], [12]. The ARPANET’s current rout-
ing strategy (ACRS) [8] uses a different approach for handling
routing messages. In ACRS, every node in the network is re-
quired to keep and maintain information of the entire network.
ACRS will always reach a correct routing decision as long as
the global information at each node is accurate and consistent.
However, this strategy requires every node to contain a large
storage area for the global information and may make the en-
tire network congested with messages for updating the global
information.

The TIDAS network in [9] adopted a routing strategy which
is similar to APRS except for the following modification. If
the routing message is sent from node N j to node N ; which
is the second node in the optimal path from N j to some other
destination node Nd, the delay of the optimal path from N j
to Nd was replaced with the delay of its second optimal path
in the routing message passed to Ni . An example of the net-
work recovery process for the network in Fig. 1 under the
above modification to APRS is given in Table 11. It can be
seen that the time intervals required for N I , N2, N3, and
N4 to determine their new optimal paths to N5 become 11,

0

001 8-9340/90/0700-0870$01 .OO O 1990 IEEE

87 1

entry to E (- 00 ,O) t = O t=l t=2

7 7 7 9

N3 9 9 9 11

N2

SHIN AND CHEN: MINIMAL ORDER LOOP-FREE ROUTING STRATEGY

t=3 t=k, 4<k<15 t=16 t=17 t-18 t- 19 t E l2OL?J-

9 I!! j 2+7 23 23 25 25 27

11 1:] 2+9 25 25 25 25 25'
.._ -

entry to E (- 03 ,0) t=O t= l t=2 t=3 t=k ,4<k<15

N2 4 4 4 6 6 [E] 2+4

N3 6 6 6 8 8 12 J 2+6

N6 2 00 00 00 W W

t=16 t=17 t=18 - t=19 t f 120,001

20 20 22 22 24

22 22 22 22 22*

W W 00 W W

entry I N2
N3

(a) Network delay table of NI.

$ E (- w ,0) t = O t = l t=2 t=3 t.-4 t=5 t=6 t-7 t=8 t=9 t=10 t== l l t E 1 1 2 , ~)
7 7 7 11 13 13 17 19 19 23 25 25 27 27
9 9 9 11 15 15 17 21 21 23 2 5 25 25' 25

-. - - __

entry b E (- w , O) t = O t=l t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 ' t=10 t=ll
NI 13 13 13 13 15 19 19 21 25 25 27 29 29 '

N, 7 7 7 13 13 13 19 19 19 23 23 23 23*
N, 3 3 9 9 9 15 15 15 21 21 21 23 23

(b) Network delay table of Na.

t E [1 2 , w)
29-
23- ~~

2 3 __

(c) Network delay table of Ns.

entry
N,
N,
Nf,

b E (- o o , O) I t=O t=l t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
8 j 8 8 8 14 14 14 20 20 20 24 24

2 w w w w w w w w w w w W 00

8 j 8 8 8 14 14 14 20 20 20 22* 22 22 22

(d) Network delay table of N,.

872 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7 , JULY 1990

10, 8 , and 9, respectively. Although this modification leads
to a significant improvement over APRS in reducing the loop-
ing effects, it does not eliminate them completely. In [4], we
have rigorously analyzed the performance of a routing strategy
using the above modification. We proved that, although ping-
pong type loops (i.e., loops with two nodes) can be removed
by the above modification, multinode loops (i.e., loops with
more than two nodes) may still exist. More importantly, we
extended our analytical results to routing strategies which are
free of multinode loops. We showed that a routing strategy
can eliminate multinode loops by keeping in network delay
tables not only the delay of each minimal path but also a set
of first few nodes in the path. The number of nodes included
in the routing message is referred to as the order of the cor-
responding routing strategy. The number of nodes in a loop
that can be present under a routing strategy increases with the
order of the routing strategy [4].

To eliminate looping completely, one may consider the fol-
lowing straightforward approach. All nodes in each path are
included in routing messages and sent to neighboring nodes.
However, this naive approach is very inefficient due to its
excessive overhead. Consequently, it is very important to de-
termine the minimal order of routing strategy required for
each node to make the network completely loop-free. As we
shall prove later, depending on the network structure, we can
determine the portion of a path that each node should keep
and send to its neighboring nodes in order to eliminate loop-

where the same strategy is applied indiscriminately to every
node in a network, the order of a node’s routing strategy de-
pends on the network topology and varies from one node to
another. It will be interesting to see that our proposed strat-
egy will require most nodes to keep only a fairly small portion
of each path and can still remove looping completely. Notice
that we remove looping effects by augmented minimal delay
vectors, whereas the method described in [lo] is based on the
use of extensive protocols.

This paper is organized as follows. In Section 11, we present
necessary definitions and notation, and then introduce the mul-
tiorder routing strategy. In Section 111, we develop formulas
to determine the order of the routing strategy required for
each node to eliminate looping effects completely. We take
into consideration the operational overhead in handling rout-
ing messages in Section IV and optimize the tradeoff between
the network adaptability and the operational overhead. Com-
plexity of the optimization algorithm is also analyzed. This
paper concludes with Section V.

11. DESCRIPTION OF THE ROUTING STRATEGY

I

? ing completely. Unlike the other distributed routing strategies

A . Definitions and Notation

For a computer network N, let V(N) and E(N) denote,
respectively, the set of computer nodes and the set of computer
links with)V(N)I = p and IE(N)) = q , where IS1 represents
the cardinality of the set S . Let DL,, be the delay of a direct
link L,, from NI to N,. The set of nodes adjacent to NI
is denoted by A , . There are usually many paths from N, to
N,, which are represented by the set SP,,, and let SP =

U N , , N , ~ V (N) SP,,. Let PI, denote the path with the shortest

delay (i.e., the optimal path) in SPij and Pij-,, be the shortest
delay path in the set SPij - {L,”}. Clearly, Pij-,, is the new
optimal path from Ni to Nj if the link L,, becomes faulty.
Note that P i j - u u = Pij only when L,, is not a part of Pi j .

A path in N is expressed by an ordered sequence rep-
resentation of nodes. For example, a path Pi E SP can
be represented by (Ni l , Ni,, . . . ,Ni,). Let Hk(Pi) be the
set of the first k nodes of a path Pi E SP. For a path

if m 2 k , and Hk(Pi) = {Ni, , Ni,,. . . , N;,} otherwise. In
addition, a function h : SP +I+ is the hop function of a path,
where h(Pi) denotes the number of links in a path Pi E SP
andI+ the set of positive integers, and a function d : SP ---f R +
is the delay function of a path, where d(Pi) is the summation
of all link delays in a path Pi E SP and R + the set of positive
real numbers. A loop is a path with the minimal number of
nodes which starts and ends at the same node, and the set of
loops starting and ending at Nj is denoted by SLjj. Also, a
loop L, is called a kth order loop if the number of hops in
Li is k + 1, i.e., h(Li) = k + 1.

For example, while (N2, N3, N2, N3, N2) is not a loop,
(N I , N2, N 3 , N I) is a second-order loop. Besides, to il-
lustrate the network recovery process after linWnode failures,
we assume that the network N is connected throughout our
discussion.

Pi = (Ni , ,Ni , , . . . ,Ni ,) , Hk(Pi) = {Ni , ,Niz , ’ . ’ ,Nik}

B . Description of Multiorder Routing Strategy

The main schemes used in all kth order routing strategies
are basically the same, except that different values of k indicate
different amounts of information to be recorded in the network
delay table. Let NTf\,, denote the information kept in the
network delay table of Ni about the shortest delay path from
Ni via N, E Ai to N d under the kth order routing strategy.
Also, let Pi\jd be the path specified by NTiljd. Then, NTf\jd
is a record containing two fields: NTF\jd.dly and NT; set,

is an ordered set of the first k + 1 nodes in Pi\jd. That is,

RMitjd denote the routing message sent from Nj E A, to
Ni about the optimal from Nj to Nd under the kth order
routing strategy. RMf-jd is again composed of two fields,
RMf-jd .dly and RMftjd.set, which can be determined from
the network delay table of Nj as follows.

0

X ’ . where NTf\,.,.dly denotes the delay of Pi\jd and NTiijd.Set

NTf ,d.dly = d(Pi\jd) and NTf\jd.Set = Hk+,(Pi\jd). Let A ’

RMb -jd .dly = N q 5: and NT;\,, .dly, (1)
N , @NT;,,, .set

RMf,jd.Set = Hk(Pi*) where Pi. is the path with

the delay RMft’_;,.dly. (2)

When the routing message RMftjd is received by Ni , Ni
uses this message to update its network delay table as follows,
where 0 means prefixing a node to an ordered set.

NTfljd.dly = RMft,d.dly + DLij, (3)

SHIN AND CHEN: MINIMAL ORDER LOOP-FREE ROUTING STRATEGY 873

t E I 6 , W) t = O t= 1 t=2 t=3 t=4 t=5 entry to E (- 70)

2 h - ~. N2 7 R O 70.4) 7{2Q 11 (2.3) 19{2,4) 19{2,4) 19{2,41
N3 9{3,4) 9{3,4) 90.4) 1 h3 .2) 2h3.4) 2 1 m 21{3,41 25{3.5)* .

(a) Network delay table of NI.

(b) Network delay table of N,.

(C) Network delay table of N,.

(d) Network delay table of N4.

Notice that APRS and the routing strategy in TIDAS are
actually special cases of the above strategy when k = 0 and
k = 1, respectively. For the network in Fig. 1, the network
operations under the second-order routing strategy are de-
scribed in Table 111, where the subscript of each entry in the
network delay tables represents the set of the second and third
nodes of the corresponding path. If enough routing informa-
tion is recorded, a node can determine that the use of some of
its neighbors will not lead to loop-free paths; such neighbors
will be removed from the construction of loop-free paths. The
entries in Table I11 marked by - represent such cases. It can
be verified by Tables I, 11, and I11 that the kth order routing
strategy is free of jth-order loops V 1 5 j 5 k . It is interest-
ing to see that the second-order routing strategy eliminates
the first-order loop (N2, N4, N2) and the second-order loop
(N z , N J , N3. N I) , which had caused the slowdown of the
recovery processes in Tables I and 11, respectively. As a re-
sult, the required time intervals for N I , N2, N3, and N4 to
get their new optimal paths to N5 are reduced, respectively,
to 6 , 5. 5 and 4. It can be seen that increasing the order of
routing strategy speeds up each node’s adaptation to failures
of linkshodes in the network.

111. MIKIMAL ORDER LOOP-FREE ROUTING STRATEGY

Although a higher order routing strategy is necessary for
some nodes to avoid potential looping. it usually contributes

nothing but higher operational overheads to other nodes. Thus,
it is very important to determine the minimal order routing
strategy required for each node to avoid all potential looping.
Consider the case when Lij becomes faulty. Let Ritk,j denote
the required order of routing message sent from Nk E Ai to
Ni such that the routing message will not result in any path
containing loops in the network delay table of Ni . To facilitate
our presentation, we define a set of loops S i c k , j as follows.

S i t k , j E {Lj* ILj* E SLij, 2nd(Li*) = Nk

and d(Li*) < d(P;j-; j) - DLij}

where Ni E V (N) , NkN, € A i , and 2nd(Li*) is the second
node in the loop Li*. Then, the quantity Rick,, can be de-
termined by the following theorem.

Theorem 1:

Proof: If the required order of the routing message
about the path Pkj from Nk E Ai to N i , denoted by rick, j ,

is less than Ri+k,j, there is a loop Li* E SLii such that
2nd(Li.) = Nk and d(Li*) + DLij < d(Pij-i j) . Thus, the
path from Nk via Li* to Ni and then via Lij to N j contains the
delay d(L;.)-DLik SDLi,. The delay of the new optimal path

874 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7, JULY 1990

0 =[3,2.3.1.1.1,1.1]

*
0 = 1 7

0 = 1

A network for Example 1.

8 0 =3 3

Fig. 2.

from Nk to N , must be greater than d(L; .) - DL;k + DL;,,
since d(P;,-;,) will otherwise be less than d(L;*) + DL;,,
leading to a contradiction. Thus, if ritk, j < h(L;-) before
Nk finds its new optimal path, the delay d(Li*) -DL;k +DL;,
will be sent to N ; , thereby resulting in a path with a loop in
the network delay table of N ; . Therefore, Ritk , j 5 r i t k , j .

Next, we want to prove that a routing message of the order
Rick,, sent from Nk to N; will not result in a path with
loops for N ; . Suppose there is a resulting loop L;. . Then,
d(L; .) + DL;j < d(P;,-;,) and 2nd(L;.) = Nk. By (2) and
(4), we get h(Li*) > Rick,,, leading to a contradiction. This
means R;,k,j 2 r;-k,j, and R;,k,, = r ;+k , j thus follows.
Q.E.D.

Note that the minimal order routing strategy for N ; must
be determined by routing messages from all of its neighboring
nodes. Let R;-k represent the order of routing message sent
from Nk E A; to Ni to avoid all potential looping, i.e.,

R;+-k = maX {Ri tk , j } . (5)
N,EA, and

j#k

The minimal order of routing strategy required for N ; to avoid
all potential looping, denoted by 07, can be determined by
the following corollary.

Corollary 1 .1 : There is no looping in the network if and
only if

07 = max { R j - ; } , V N ; E V (N) .
N, EA,

Proof: If 07 = maxN,E~, {R, , ;} , then it immediately
follows from Theorem 1 that there is no looping when Ni
adopts the O/th order routing strategy. Next, we want to prove
that 0; is the minimal order of routing strategy for N; to avoid
all potential looping. Suppose that the order of routing strategy
adopted by N ; , denoted by O ; , is less than 07. Then there
exists an Rj,; such that R,,; > 0;. From the equations in

Theorem 1, there is a node Nk such that Rj-;, k > 0;. Thus,
when the link Ljk becomes faulty, the routing message sent
from N ; to N j will result in a path with an Rj,;th order loop
in the network delay table of N j , where 0; < R,,; 5 0;.
This is contradictory to the hypothesis of no 1ooping.Q.E.D.

Although the above formulas can determine the minimal
order routing strategy for each node, one can find from the
operation of routing strategy that the difference between the
orders of routing strategies of two adjacent nodes cannot be
greater than one. (We term this fact the “strategy compatibil-
ity.”) Otherwise, a node with the lower order routing strategy
would not be able to generate the routing messages required
for all of its neighboring nodes. Thus, we may have to in-
crease the orders of routing strategies of some nodes to hold
the strategy compatibility. We present a simple example to
demonstrate the ideas presented thus far.

Example 1 : Consider the example network in Fig. 2. For
this network we will determine the minimal order of loop-free
routing strategy for each node.

a) The required order of loop-free routing strategy, 07,
1 5 i 5 8, can be determined by the following two steps.

Step 1: Using Theorem 1 and (3, determine R;,j,
N j € A i , 1 l i 5 8. For N I , we get

For N2, we have R2-1.3 = R2-1 = 1 and R2-3, I = R2-3 =
1.

7

SHIN AND CHEN. MINIMAL ORDER LOOP-FREE ROUTING STRATEGY 875

In case of N3, we obtain A . Optimization of Tradeofl
Although various procedures are conceivable to determine

the operational overhead in (1) and (2) , the main idea can be
described as follows. The cardinality of RMf-,, .set increases
linearly with the order of routing strategy, meaning that the
memory requirement for the routing strategy is linearly de-
pendent on the value of k . The computational overhead for
(3) and (4) is straightforward and has little dependence on k .
However, from (1) it is easy to see that for a given network
structure the number of comparisons required is linearly pro-
portional to k . The computational cost is therefore linearly
proportional to k .

Let c, and m, denote the incremental cost of computation
and memory, respectively, when the order of routing strategy
is incremented by one. Let R,(k) be the cost required per
second for a node adopting the kth order strategy to generate
and process a routing message. Note that the exact expression
of R,(k) has a close dependence on the hardware and software
used for each node computer. Following the above reasoning,
R,(k) can, however, be approximately expressed as [(m, +
c,)k + offset], where offset is the sum of contributions from
the factors unrelated to k .

Define a strategy vector as a p-tuple whose ith element is
the order of the routing strategy adopted by N ; . (Recall that
p is the number of nodes in N.) A network together with its
adopted strategy vector is termed a configuration. Let 0:
denote the order of the routing strategy adopted by N; when
the configuration is c k . The operational overhead per second
induced with the configuration c k can then be determined by
the formula

P

RC(Ck) = X R , (O , k) . (6) b

i = l

Assume that the traffic density between every pair of nodes
in the network is uniform. The expected number of time in-
tervals required for an arbitrary node to find a new nonfaulty
optimal path to any other node when L;; becomes faulty can
be expressed as

1
muu-ij(Ck)(7> and then, R4-5 = 0, R6-5 = 1 * O : = 1; R5-g = 1,

R7-6 = 1 + 0; = 1; R6-7 = 1, R8-7 = 0 + 0; = 1 and

we get the minimum order vector, O* = [3, 2 , 3, 1, 1, 1,
1, 11, and then [3, 2, 3, 2 , 1 , 1, 1 , 21 after considering the
strategy compatibility.

R[(L;,; ck) = ____
p (p - N , € V (N) N , € V (N)

R3-8 = 0, R7-8 = 1 + 0; = 1. For this example network and U#,

where muu-;j(Ck) denotes the number of time intervals for
N u to obtain a new nonfaulty optimal path to N , when the
configuration is ck and L;, becomes faulty. The expected

IV. OPERATIONAL OVERHEAD AND LOOPING DELAY TRADEOFF

As mentioned earlier, the multiorder routing strategy in a
node usually causes its neighboring nodes to increase their
orders of routing strategies to satisfy the strategy compati-
bility. If we consider the operational overhead in handling
routing messages, it may not be worth introducing a consid-
erable amount of overhead for infrequent failures or for some
failures whose recovery costs are not high. This implies the
need of striking a compromise between looping effects and
the operational overhead, and determining the optimal order
of routing strategy for each node.

number of time intervals to recover from an arbitrary link
failure (i.e., switch from a broken path to a new nonfaulty
path) in the configuration c k can then be determined by

Note that RT(ck) can be viewed as a measure of adapt-
ability of c k . The smaller RT(ck), the better adaptability C k

possesses. To compute (7), we must show how to determine
muu-;,(Ck)'du, U , i , j , and k . Consider the case when in a
configuration c k , N; does not adopt a routing strategy of

876 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7, JULY 1990

an order sufficient enough to remove looping completely. In
such a case, by Corollary 1.1, certain link failures will induce
looping. From (5) and Theorem 1, we can represent the set
of loops (SPL) induced by the insufficient order of routing
strategy as follows.

SPUN,; C k) = U U {L]*IL,* ES,,,,,
N, EA, NI €A,

and qfr

and h(L,*) > OF}. (9)

The set of all potential loops in the network with the con-
figuration Ck can be expressed by

SPL(Ck) = U SPL(N,; Ck). (10)
N, E V(N)

Let L(Pi*) denote the set of loops in the path Pi* . Pi*
is said to be a possible path in the configuration ck if
L(P;*) C SPL(Ck); i.e., every loop contained in Pi- belongs
to SPL(Ck). Denote the set of all possible paths in the config-
uration Ck by LP(Ck). Then, n ~ , ~ - ; ~ (C k) can be expressed

1

by

< d(Puu-;j) -d(Piu)}* (11)

Note that P,. in (11) does not have to contain all loops
in SPL(Ck). The loops contained in P,* could be any subset
of SPL(Ck) though. Let Sb denote a subset of SPL(Ck) and
V(Sb) be the set of the starting nodes of all the loops in
Sb. Also, let SP,\V(s,b),i be the set of paths from N u to Ni
which go through each node in V(Sb) at least once. To obtain
muu-i,(Ck) systematically, the maximal function in (1 1) can
be decomposed into two maximal functions as in (12) and
computed by the algorithm A1 given below.

< d(Puu-,,) - W i ")) . (12)

Algorithm A I :
begin

max := 0;
For all Sb E 2SPL(Ca) do
begin

so. Denote the looPS in Sb by Ld,, Ld2, .",Ld, , ,
where n = JSbl.

SI . sort Ld,, 1 5 i 5 n, with the key d(Ld,)/h(Ld,)
in ascending order and check if the values
of hop functions of loops in the resulting se-
quence are in descending order, i.e., V & , ,

h(Ld,) 2 h(Ld,) .
S2. If the test result of S1 is true then

for all P,. E SP,/v(s,b),r such that

Ld, E Sb, d(Ld,)/h(Ld,) 5 d(Ld,)/h(Ld,) iff

d(Pu*) < d(Puu-rj) -d(Piu) - d(Ld,) do

begin

mizes X I l nih(Ld,) subject to
Cy=, nid(Ld,) 5 d(Puu-ij) - d(Piu) - d(P,*).

Find an n-tuple [nl , n2, . . . , n,] which maxi-

If max < Cy=l nih(Ld,) + h(P,*) then
max := CyT, n i h (~ d ,) + h(P,.);
end /* inner maximal function of (12) * /
end /* outer maximal function of (12) * /
muu-;j(Ck) := max;
end

Note that the number of subsets of SPL(Ck) is 2"', where
m = ISPL(Ck)I, and different subsets (Sb's) will be associ-
ated with different sP,\v(S"b), i 's. We have to determine the
inner maximal function in (12) for each Sb before applying
the outer maximal function. S1 in A1 shows that some sub-
sets of SPL(Ck) that definitely do not lead to the solution can
be skipped. Since the number of subsets with cardinality n
is C r and the number of possible permutations of loops in
such a subset is n!, the average probability for an arbitrary
Sb with lSbl = n to pass the test in S1 is l /n! . Thus, the ex-
pected number of times S2 is to be executed is Er=:=, C r /n! .
This is significantly less than Cr=:=, Cr = 2m, a brute-force
enumeration.

Once the network is given, using the above algorithm
we can obtain muu-i j (Ck) for all N u , N u E V (N) and
L;, E E (N) , and then RT(Ck) from (7) and (8). RC(Ck) is
determined by (6). Since the required order of routing strat-
egy for each node can be obtained by Corollary 1.1, the num-
ber of possible configurations under the constraint of strategy
compatibility can thus be determined. Once a design objec-
tive function F (C k) = f(RC(Ck), RT(Ck)) is decided, the
optimal configuration can be determined by evaluating each
possible configuration.

Note that instead of exhaustively evaluating all possible
strategy vectors, we can skip the evaluation of the config-
urations in either of the following two cases: 1) there is a
node assigned a routing strategy of an order higher than it
requires, i.e., OV[i] > 0; and OV[i] 2 OVV] VNj E Ai ,
where OV[i] denotes the order of routing strategy for
N; VNi E V (N) , and 2) the difference in the order of strategy
between any two adjacent nodes is greater than one. Clearly,
the knowledge of the minimal order for loop-free routing and
the strategy compatibility reduces the number of configura-
tions to be evaluated significantly. Configurations of the exam-
ple network in Fig. 2 are evaluated in the following sequence.

9

[3, 2, 3, 2, 1, 1, 1, 21 (evaluated)

[3, 2, 3, 2, 1, 1, 1, 11 (OV[3] - OV[8] > 1 + skipped)

[3, 2, 3, 2, 1, 1, 0, 21 (OV[8] - OV[7] > 1 + skipped)

[3, 2, 3, 2, 1, 1, 0, 11 (OV[3] - OV[8] > 1 + skipped)

[3, 2, 3, 2, 1, 0, 1, 21 (evaluated)

[3, 2, 3, 2, 1, 0, 1, 11 (OV[3] -OV[8] > 1 =+ skipped)

SHIN AND CHEN. 511SISlAL ORDER LOOP-FREE ROUTING STRATEGY

the difference between the numbers assigned to any two ad-
jacent nodes must be less than or equal to one, how many
assignments are there? Notice that if the labeled graph is
G = (V(N), E (N)) , then the answer to the above problem is
exactly the number of possible configurations in the case of

i) DA =

0: = mVN; E V (N) .

877

- 2 - - 4 -

3 9
from Fig. 3 +Dd =

3 9

- 2 - -4,

[3, 2 , 2 , 2 , 1, 1, 1 , 21 (OV[8] >Oz and

(OV[8] 2 OV[3], OV[7] + skipped)

N;, the kth component of which, denoted by D;(k), represents

is an illustration of this idea with m = 3.
Now, consider the case when one more node N g is to be

attached to a node Nd in a given graph. The D-vectors of N,

the number of times N, is assigned the value k E I,. Fig. 3
and D, =

[3, 2 , 2 , 2 , 1, 1, 1, 11 (evaluated)

- 5

8

8

- 5

[0 , 0, 0 , 0 , 0 , 0, 0, 01 (evaluated)

B . Complexity of the Optimization Algorithm

For each configuration C k , the number of muu-ij(Ck)’s
needed to obtain F (C k) is p (p - l)q, where p = IV(N)I and
q = IE(N)I. That is, AI has to be executed p (p - l)q times
for each configuration. Therefore, the number of configura-
tions to be evaluated is a dominating factor in the execution
time of the whole procedure.

respectively, while the D-vector of N d in the original graph
is represented by D&. Then, the relationship between these
quantities can be determined by the following lemma.

Note that Lemma 1 is a special case of Lemma 2 in [13]. ii) DA =

0

1

2

3

D 1 = [i]

- 5 - - 10-

8 24
from D, of i) + Dd =

8 24

- 5 - - 10-

@-@
0 0

0 1

1 0 D 1 = E]

2 3 D 2 = E]
1 1

1 2

2 1

2 2

3 2

and D, =

3 3

- 13

21

21

- 13

To estimate the number of configurations to be evaluated, Fig. 3 . Illustration of D-vectors.

consider the following interesting combinatorial problem first.
Given a labeled graph, if we want to assign each node With an

three = 3. The D-vectors of
attaching and attached nodes can be easily obtained as follows.

shown in ~ i ~ . 4, where

1 integer chosen fromlm = YO, 1, 2 , . . . , m) in such a way that

Lemma 1:

D,(O) = D&(O) + D&(I).
j = i + l

a) ~ , (i) = ~ & (j) , 1 5 i 5 m - 1

D,(m) = D&(m - 1) +D$(m).

j=;-1

Dd(0) = D&(1)-2,

iii) D& Dd(m) = D&(m)*2.

I
b) Dd(i) = D&(i)*3, 1 5 i 5 m - 1 I

Proof a) Suppose the node N , is assigned 0. Then, it
can be attached to Nd only when Nd was originally assigned
0 or 1. Thus, Dg(0) = D&(O) + D&(1). Similarly, we can get
the other two equations.

b) When Nd is assigned 0, possible numbers assigned to
N, are 0 and 1, each of which corresponds to a different as-
signment in the resulting graph. Thus, Dd(0) = Dh(0)’2. The
other two equations in b) can be obtained similarly. Q.E.D.

To demonstrate how Lemma 1 can be used, consider the

878 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7. JULY 1990

Fig. 4. Three example cases of adding a node N , to a node Nd

Note that for any node in the graph the sum of entries in
its D-vector represents the number of assignments. It is also
easy to see that xco Dd(i) = CEO Dg(i) . Using D-vectors,
we can determine the bounds of the number of assignments
by the theorem below.

Theorem 2: The number of assignments from the integer
set I , to any connected graph with p nodes, subject to the
constraint that the difference between the numbers assigned

within the interval [m(2P - 1) + 1, 2P +3P-I(m - l)], where
m 2 1.

Proof: Obviously, the number of acceptable assignments
for any connected graph is always less than or equal to that
of its spanning tree. That is, the upper bound is attained by
a tree structure. Now, we want to prove that the maximum is
attained when the tree is a star structure, and then the upper
bound follows from Lemma 1.

Since Cr=oDi (k) is the same for every Ni in a tree T,
let N (T , m) Ckm_ODi(k). For convenience, a tree T with

3P-'(m - 1). Clearly, the C-property is satisfied by every
tree with p nodes when p 5 3. Consider the case when
one more node N, is attached to a tree T with the C-
property. Let Dd and DL denote, respectively, the D-vectors
of N d in the resulting and the original trees. Note that
from Lemma 1 we have Dd(i) 5 3P-' VNj E V (N) , and
thus Cy=T'Dd(i) 5 3P-'(m - 1). Since T satisfies the C-
property, we get E:;' Dd(i) + D ~ (o) +Dd(m) 5 3p-'(m -
1) + 2P which, by b) of Lemma 1, leads to CEoD&(i) =
(~ z ! ' ~ d (i)) * 3 + (D ~ (o) + ~ d (m > > * 2 5 3p(m - 1) + 2 ~ + ' .
This means that the resulting tree also satisfies the C-property,
and the upper bound thus follows by induction.

Consider the lower bound. Since the complete graph Kp
with p nodes possesses the maximal number of edges among
all the graphs with p nodes, K p attains the minimal number of
assignments. Note that there are at most two distinct numbers
which may occur in each assignment to K p , and their differ-
ence must be less than or equal to one. There are 2" ways to
assign the numbers in the pair { j , j - 1) to p nodes, where

P to two adjacent nodes must be less than or equal to one, lies

I

I p nodes is said to satisfy the C-property, if N (T , m) 5 2p +

1 5 j 5 m. Assignment of the same number to every node,
say j , occurs both in the case of { j + 1, j } and { j , j - l},
where 1 5 j 5 m - 1. Thus, the total number of assignments
is obtained by adding up the number of assignments from each
pair { j , j - 1}, where 1 5 j 5 m, t o p nodes and subtracting
double counts. Then, we get 2Pm - (m - 1) = (2P - l)m + 1
for the lower bound. Q.E.D.

By Theorem 2, for a given network withp nodes the number
of configurations to be evaluated must be within the interval
[n(2P-l)+l , 2P+3P-'(m-l)], wheren =minl l j lp (0;)
and m = maxl<;sp (0;). Note that due to the special na-
ture of our problem, for a given topology a network with a
higher average order of loop-free strategy does not always
possess more configurations to be evaluated than the one with
a lower average order of loop-free strategy. An example is
shown in Fig. 5, where the network A has a higher average
order of loop-free strategy than the network B, but B has
more configurations to be evaluated. This is the very reason
why maxlljlp (07) and minlsjsp (0;) have to be used for
upper and lower bounds, respectively.

Example 2: Consider the example network in Fig. 6. Fol-
lowing the same procedure shown in the part a) of Example
1, we can obtain [l , 1, 1, 11 as the minimal order vector of
loop-free routing strategies. Clearly, there are 24 = 16 possi-
ble configurations in this network.

As discussed in Section IV-A, the operational overhead re-
quired per second for the nth order routing strategy R,(n)
can be assumed to have the form of a n + b , where the values
of a and b depend on the node computer at hand. For the sake
of numerical demonstration, let a = 2.1, b = 1.2, and C,,
Cp , C , be the configurations with strategy vectors [1, 0, 0,
01, 11, 1, 0, 01, and [l, 1, 0, 11, respectively.

a) RC(C,), RC(Cp), and RC(C,) are obtained from (6) as
follows.

RC(C,) = Rc(1) + 3Rc(0) = 6.9

a

RC(Cfi) = 2Rc(1) + 2Rc(0) = 9

RC(C,) = 3Rc(1) +Rc(0) = 11.1.

7

SHIN AND CHEN: MINIMAL ORDER LOOP-FREE ROUTING STRATEGY 879

0 <=.

A .

L
0 = 1 6 0 = 2

4

1

0 = 1 7 0 =1
5

*
0 =1
4

0 = 1 5

0 =3

0 =2 8: 2

U
*
0 = 1 8

Network B

0 = 2 8

Network A

Fig. 5. Two comparative example networks where A has a higher average
order of looping-free strategy, whereas B has more configurations to be
evaluated.

62

w
Fig. 6. A network for Example 2.

b) RT(C,), RT(Cb), and RT(C,) can be determined as

i) With configuration C, whose strategy vector is [1, 0, 0,
follows.

01, we find

Then, from (7) we get

0 = 1 6

0 =1 7

ii) With the configuration Cp whose strategy vector is [1,
1, 0, 01, we get

SPL(Cp) = {(N2, N3, N2), (N3, N4, N3)).

From A I , we can obtain muu-i,(Cb) as follows:

m32-32(CB) = 2, m42-32(CB) = 1, m24-34(CO) = 1, and
m,,-ij(Cp) = 0 elsewhere.

Then, by (7), we get Rt(L21; Cp) = 1/4, Rt(L23; C,) =
1/12, Rt(L32; cp) = 1/4, Rt(L34; Cp) = 1/12 and

iii) With configuration C , , whose strategy vector is [1, 1 ,
0, 13, following the same procedure, we obtain SPL(C,) =
((N2, N3, N2)), and then RT(C,) = 1/20.

m21-21(C0) = 2, m31--2I(Cp) = 1, m13-23(cp) = 1,

RT(Cp) = 1/15.

880 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 7, JULY 1990

c) Suppose our design objective is to minimize the function
g(Ck) = RC(Ck) +hRT(ck), where h is the weighting factor
between the network adaptability and operational overhead in
handling routing messages. Note that F(Ck) = l /g(Ck) in
this case. If we choose h to be 120, then we get’

120
10

g(C,) = 6.9 + ~ = 18.9,

120
20

g(C,) = 11.1 + ~ = 17.1

When the above objective function is used, the configura-
tion with a strategy vector [1, 1 , 0 , 01 is better than those with
strategy vectors [l , 0, 0, 01 and [l , 1 , 0, 13. Therefore, from
this procedure we can determine the optimal configuration of
this network.

C. Remarks
Using the procedure discussed thus far, one can determine

the optimal configuration from a given network topology and
its link delays. The minimal order routing strategy for each
node can be used to indicate how to construct a routing mes-
sage for the node in order to avoid looping. It is worth men-
tioning that the order of loop-free routing strategy for each
node is determined from the number of links on a certain

vicinity of the node change drastically within a short time pe-
riod. A sudden, drastic change in link delays may force some
nodes to alter their optimal paths. In such a case, new mini-
mal order routing strategies for these nodes must be derived.
This usually introduces significant overheads, thus making it
practically unacceptable.2

However, in light of the derivation of Theorem 1 , it can be
verified that a higher order loop is less likely to occur, since
the delay of the higher order loop is unlikely to be less than
that of a second optimal path. Moreover, as we formulated
in [4] and illustrated in Tables I, 11, and 111, recovery from
a linkhode failure is sped up significantly when the order of
routing strategy is increased; this is true even if the order
of routing strategy is increased not so high as that derived
from Corollary 1 . 1 . Considering the above observations, one
can determine the minimal order of routing strategy off-line,
incorporate it into each node’s routing strategy, and ignore
small on-line changes in link delays. This will remove the
necessity of on-line recalculation of minimal order routing
strategies while allowing for acceptably fast recovery from
nodetlink failures.

4

I loop around that node, and may vary if link delays in the

V. CONCLUSION

In this paper, we have developed a minimal order loop-
free routing strategy. Unlike most conventional methods in
which the same routing strategy is applied indiscriminately

’ This choice is arbitrary and does not affect our method but yields inter-
esting solutions.

This fact was pointed out by one anonymous referee.

to all nodes in the network, each node under the proposed
strategy adopts its optimal routing strategy. We have not only
developed the formulas to determine the minimal order of
the routing strategy for each node to eliminate looping com-
pletely, but also proposed a systematic procedure to strike a
compromise between the operational overhead and network
adaptability. The number of configurations to be evaluated is
rigorously analyzed with a combinatorial approach.

Note that the order of the optimal routing strategy for each
node can be determined off-line from a given network and
incorporated into each node before the network executes cer-
tain missions if the propagation delay is the main factor of
link delay. The network is thus made to attain the maximal
adaptability in case of linkhode failures during such missions.
However, in the case when reducing the operational overhead
is the essential issue and infrequent looping is tolerable, the
use and implementation of a high-order routing strategy may
have to be justified. This can be accomplished by the selection
of an appropriate design objective function addressed in Sec-
tion IV-A. In our discussion, we assumed 1) a uniform traffic
density between every pair of nodes in the network and 2) an
equal probability of failure in every linkhode. Both assump-
tions can be relaxed by changing the corresponding formulas
to include appropriate stochastic aspects. This will make the
problem more realistic and complicated.

V (N) :
E (N) :
DL;j:

Ai :

SPj j :
SLii :
SP:
d(Pj):
h(Pj):
Pjj:

PijpUu:

Hk(Pi):

NT;,,,:

R M ~ ~ ~ ~ :

Rick, j :

R i t k :

APPENDIX

LIST OF SYMBOLS

Set of computer nodes in a network N.
Set of computer links in a network N .
Delay of a direct link L;, from node Ni to

Set of nodes adjacent to Ni , i.e., N, E Ai if
a direct link Li, exists.
Set of all paths from Ni to N,.
Set of loops starting and ending at N ; .

Summation of all link delays in a path P, .
The number of links in a path Pi.
The path with the shortest delay (i.e., the
optimal path) in SPi, .
The shrotest delay path in the set SPij -

The set of the first k nodes in the ordered
sequence representation of a path P; E SP.
The information kept in the network delay ta-
ble of N ; about the shortest path from Ni via
N j E Ai to Nd under the kth order routing
strategy.
The routing message sent from N j to Ni
about the routing from N j to Nd under the
kth order routing strategy.
The required order of routing message sent
from Nk E A; to N ; to avoid all potential
looping when Li, became faulty.
The required order of routing message sent

s

N j .

SP = U N , , N , E V (N) S P ~ ~ .

{L”U 1.

SHIN AKD CHEN: MINIMAL ORDER LOOP-FREE ROUTING STRATEGY 88 1

from Nk E A , to N , to avoid all potential
looping.
The minimal order of routing strategy re-
quired for N I to avoid all potential looping.
The order of the routing strategy adopted by
N , when the configuration is c k .
The cost required per second for a node
adopting the kth order strategy to generate
and process a routing message.
The operational overhead per second induced
under configuration Ck .
The expected number of time intervals re-
quired for an arbitrary node to obtain a new
nonfaulty optimal path to any other node
when L,, became faulty.
The expected number of time intervals for a
path to recover from an arbitrary link failure
under the configuration c k .

o; :
0; :

Rc(k):

RC (c k) :

R,(L,,; Ck):

RT(Ck):

[2] M. Schwartz and T. E. Stern, “Routing technique used in computer
communication networks,” IEEE Trans. Commun., vol. COM-28,
no. 4 , pp. 539-552, Apr. 1980.
J. M. McQuillan and D. C. Walden, “The ARPA network design
decisions,” Comput. Networks, vol. 1, no. 5 , pp. 243-289, Aug.
1977.
K. G . Shin and M.-S. Chen, “Performance analysis of distributed
routing strategies free of ping-pong-type looping,” IEEE Trans. Com-
put . , vol. C-36, no. 2 , pp. 129-137, Feb. 1987.
P. M. Merlin and A. Segall, “A failsafe distributed routing protocol,”
IEEE Trans. Commun., vol. COM-27, no. 9, pp. 1280-1287, Sept.
1979.
W. D. Tajibnapis, “A correctness proof of a topology information
maintenance protocol for distributed computer networks,” Commun.

J. M. Jaffe and F. H. Moss, “A responsive distributed routing algo-
rithm for computer networks,” IEEE Trans. Commun., vol. COM-
30, no. 7, pp. 1758-1762, July 1982.
J. M. McQuillan, I. Richer, and E. C . Rosen, “The new routing
algorithm for the ARPANET,” IEEE Trans. Commun., vol. COM-
28, no. 5, pp. 711-719, May 1980.
T. Cegrell, “A routing procedure for the TIDAS message-switching
network,” IEEE Trans. Commun., vol. COM-23, no. 6, pp.
575-585. June 1975.

[3]

[4]

[5]

[6]

ACM, vol. 20, pp. 477-485, 1977.
[7]

[8]

[9]

m,,,,-,,(Ckk The number of time intervals rewired under 1101 W. E. Navlor, “A loop-free adaptive routing algorithm for packet -. .,- .., . -
, the configuration c k for N u to obtain a new switched networks,” in’Proc. 4th Data Co&m;n. Symp, P. Q . ,

Canada, Oct. 1975, pp. 7-9 to 7-14. nonfaulty Optimal path to N u when L;J be- 1111 L. Kleinrock and H. Opderbeck, “Throughput in the ARPANET- .~

came faulty. protocols and measurement,” IEEE Trans. kommun., vol. COM-25,

SPL(Ni; Ck): Set of loops induced by the insufficient order
of routing strategy of N ; in the configuration
c k .
Set of all potential loops under the configu-
ration c k .

no. 1, pp. 367-376, Jan. 1971.
M. J. Johnson, “Updating routing tables after resource failure in a dis-
tributed computer network,” Networks, vol. 14, pp. 379-391, 1984.
K. G . Shin and M . 3 . Chen, “On the number of acceptable task as-
signments in distributed computing systems,” IEEE Trans. Comput.,
vol. 39, no. 1, pp. 99-110, Jan. 1990.

[12]

[13]
sPL(ck):

L(P;*) :
Di :

Set of loops in the path P;. .
The distribution vector (D-vector) of node
N ; .
Set of integers {0 ,1 ,2 , . . . ,m}.

Kang G . Shin (S’75-M’78-SM’83), for a photograph and biography, see
the January 1990 issue of this TRANSACTIONS, p. 18. I , :

REFERENCES
[l] J. M. McQuillan. “Routing algorithms for computer networks-A

survery,” in P m . 1977 Not. Telecommun. Conf. , Dec. 1977, p.
28.

Ming-Syan Chen (S’87-M’88), for a photograph and biography, see the
January 1990 issue of this TRANSACTIONS, p. 18.

