
Fault-Tolerant
Clock Synchronization
in Distributed Systems

Parameswaran Ramanathan, University of Wisconsin

Kang G. Shin, University of Michigan

Ricky W. Butler, NASA Langley Research Center

igital computers have become es-
sential to critical real-time appli-
cations such as aerospace systems,

life support systems, nuclear power plants,
drive-by-wire systems, and computer-in-
tegrated manufacturing systems. Common
to all these applications is the demand for
maximum reliability and high performance
from computer controllers. This require-
ment is necessarily stringent because a
single controller failure in these applica-
tions can lead to disaster. For example, the
allowable probability of failure for a com-
mercial aircraft is specified to be less than

per 10-hour mission because a con-
troller failure during flight could result in a
crash.

Because of such stringent requirements,
traditional methods for design and valida-
tion of computer controllers are often in-
adequate. Ad hoc techniques that appear
sound under a careful failure-modes-and-
effects analysis are often susceptible to
certain subtle failure modes. The clock
synchronization problem shown in Figure
1 is a classic example. The figure shows a
three-node system in which each node has
its own clock. The clocks are synchronized
by adjusting each to the median of the three

Software algorithms
are suitable only where
loose synchronization

is acceptable, and
hardware algorithms

are expensive. A hybrid
scheme achieves
reasonably tight

synchronization and is
cost-effective.

clock values. This “intuitively correct” al-
gorithm works fine as long as all the clocks
are consistent in their behavior, as Figure
l a illustrates. However, if one clock is
faulty and misinforms the other two clocks,

the two nonfaulty clocks cannot be syn-
chronized. For example, in Figure 1 b the
faulty clock B reports incorrectly to clocks
A and C. As a result, clocks A and C do not
make any corrections because both behave
as if they are the median clock.

Lamport and Melliar-Smith were the first
to study the three-clock synchronization
problem in the presence of arbitrary fault
behavior.’ They coined the term Byzantine
fault to refer to the fault model in which a
faulty clock can exhibit arbitrary behavior
including, but not limited to, misrepresent-
ing its value to other clocks in the system.
They showed that in the presence of Byz-
antine faults, no algorithm can guarantee
synchronization of the nonfaulty clocks in
a three-node system. They also showed
that 3m + 1 clocks are sufficient to ensure
synchronization of the nonfaulty clocks in
the presence of m Byzantine faults. This
condition later proved not only sufficient
but also necessary for ensuring synchroni-
zation in the presence of Byzantine faults.

Since the initial study by Lamport and Mel-
liar-Smith, the problem of clock synchroniza-
tion in the presence of Byzantine faults has
been studied extensively by several other re-
searchers. All this attention is mainly be-

October 1990 @@18~91h?i9Oll0@@-0033$@1.00 G 1990 IEEE 33

cause many applications require aconsistent
view of time across all nodes of adistributed
system, and this canbe achieved only through
clock synchronization.

Solutions proposed in the literature on
clock synchronization take either a soft-
ware or a hardware approach. The software
approach is flexible and economical, but
additional messages must be exchanged
solely for synchr~nization. '-~ Because they
depend on message exchanges, the worst-
case skews guaranteed by most of these
solutions are greater than the difference
between the maximum and minimum mes-
sage transit delay between any two nodes in
the system. The hardware approach, on the
other hand, uses special hardware at each
node to achieve a tight synchronization with
minimal time o ~ e r h e a d . ~ - ~ However, the cost
of additional hardware precludes this ap-
proach in large distributed systems unless a
very tight synchronization is essential.
Hardware solutions also require a separate
network of clocks that is different from the
interconnection network between the nodes
of the distributed system.6

Because of these limitations in the soft-
ware and hardware approaches, research-
ers have begun investigating a hybrid ap-
proach. A hardware-assisted software
synchronization scheme has been proposed
that strikes a balance between the hard-
ware requirement at each node and the
clock skews a t t a i~~ab le .~ Another recently
proposed approach is probabilistic clock
synchronization, in which the worst-case
skews can be made as small as desired."

34

However, depending on the desired worst-
case skews, there is a nonzero probability
of loss of synchronization. Also, this ap-
proach may induce very high traffic to the
system.

This article compares and contrasts ex-
isting fault-tolerant clock synchronization
algorithms. The worst-case clock skews
guaranteed by representative algorithms
are compared, along with other important
aspects such as time, message, and cost
overhead imposed by the algorithms.
Special emphasis is given to more recent
developments such as hardware-assisted
software synchronization, probabilistic
clock synchronization, and algorithms for
synchronizing large, partially connected
distributed systems.

Preliminary concepts

First we define some of the concepts
common to most clock synchronization
algorithms and introduce the notation that
will be used throughout the article (see
sidebar on next page). We begin with the
notion of a clock.

Definition 1: Time that is directly ob-
servable in some particular clock is called
its clock time. This contrasts with the
term real time, which is measured in an
assumed Newtonian time frame that is
not directly observable.

It is convenient to define the local clock

at a node as a mapping from real time to
clock time. In other words, let C be a
mapping from real time to clock time, then
C(t) = T means that when the real time is t,
the clock time at a particular node is T. We
adopt the convention of using lowercase
letters to denote quantities that represent
real time and uppercase letters to denote
quantities that represent clock time. Figure
2 illustrates the concept of aclockfunction/
mapping. A perfect clock is one in which a
unit of clock time elapses for every unit of
real time. If more or less than one unit of
clock time elapses for every unit of real
time, the clock is said to be fast or slow,
respectively.

Since a properly functioning clock is a
monotonic increasing function, its inverse
function is well defined. Let c(7') = C-'(T)
= t denote this inverse function. In the
literature some of the results in clock
synchronization are formulated using the
clock function, while others are formulat-
ed using the inverse function. We will use
subscripts to distinguish between the dif-
ferent clocks in the system. For example,
C,(t) will denote the clock at node p , and
CJt) the clock at node q. A clock is con-
sidered nonfaulty if there is a bound on the
amount of deviation from real time for any
given finite time interval. In other words,
even nonfaulty clocks do not always main-
tain perfect time.

Definition 2: A clock c is said to be
nonfaulty during the real-time interval
[t l , t2] if it is a monotonic, differentiable

COMPUTER

function on [T I , T2] where c(T,) = t,, i =
1,2, and for all T E [T I , T2]

for some constant p. The constantp is said
to be the drift rate of the nonfaulty clock.

Instead of the above definition, some
synchronization algorithms are defined
using one of the following near-equivalent
definitions for a nonfaulty clock:

Definition 2a: A clock c is said to be
nonfaulty if there exists a constant p2
such that for i l and t2

Definition 2b: A clock c is said to be
nonfaulty if there exists a constant p 3
such that for t l and t2

The near equivalence of these defini-
tions follows from the Taylor series ex-
pansion of (1 + p)-I:

(1 +p)- '=l-p+p*-pP3+p4-. . .

For a typical value of p = the second-
order and high-order terms can be ignored,
thus implying p2 = p 3 = p/2.

The above notion of a clock does not
imply any particular implementation. In
fact, some synchronization algorithms deal
with hardware clocks, while others deal
with logical clocks. Hardware clocks are
the actual clock pulses that control circuitry
timing; logical clocks are values derived
from hardware clocks. For instance, a log-
ical clock might be the value of a counter
that is incremented once every predeter-
mined number of pulses of the hardware
clock. In either case, we can talk about
synchronization in terms of the abstract
notion of the mapping function from clock
time to real time. The main difference will
be in the granularity, or skew, of synchro-
nization.

Definition 3: Two clocks c, and c2 are said
to be &synchronized at a clock time T if
and only if Icl(T) - c2(T)I 2 6. A set of
clocks are said to be wellsynchronized if
and only if any two nonfaulty clocks in
this set are 6-synchronized for some
specified constant 6.

Notations used in this article

Clock time at node p when the real time is t

Real time when the clock time at node p is T

Maximum drift rate of all clocks in the system

Maximum skew between any two nonfaulty clocks in the system

Upper bound on the read error

Maximum number of faulty clocks in the system

Total number of clocks in the system

Resynchronization interval

Upper bound on message transit delay

Node p's perception of its skew with respect to clock at node q

Because of the nonzero drift rates of all
clocks, a set of clocks does not remain well
synchronized without some periodic re-
synchronization. This means that the nodes
of a distributed system must periodically
resynchronize their local clocks to main-
tain a global time base across the entire
system. Synchronization requires each node
to read the other nodes' clock values. The
actual mechanism used by a node to read
other clocks differs from one algorithm to
another. In hardware algorithms the clock
signal from each of the other nodes (or an
appropriate subset of nodes) is an input to
the synchronization circuitry at each node.
In software algorithms each node either
broadcasts its clock value to all nodes at
specified times or sends its clock value
individually to requesting nodes.

Regardless of the actual reading mech-
anism, a node can obtain only an approx-
imate view of its skew with respect to other
nodes in the system. Errors occur mainly
because it takes a finite and unpredictable
amount of time to deliver a clock signal or
a clock message from one node to another.
In hardware algorithms, errors are due
mainly to the unpredictable propagation
delays for clock signals, whereas in soft-
ware algorithms errors are due to variation
in the message transit delays. Most of the
synchronization algorithms discussed in
this article are based on the assumption
that if two nodes are nonfaulty, the error in

.- c
Y

8
5

r

Real time

Figure 2. The clock function.

reading each other's clock is bounded. Since
the actual errors that occur differ from one
algorithm to another, we will discuss them
further as we describe each algorithm.

The time at which a node decides to read
the clocks at other nodes also depends on
the algorithm under consideration. In
hardware algorithms, synchronization cir-
cuitry continuously monitors the frequen-
cy and phase of all clocks. On the basis of
the input signals, the circuitry also updates
the local clock continuously. Hardware
algorithms can therefore be classified as
continuous-update algorithms. Software
synchronization algorithms, on the other

October 1990 35

hand, are usually discrete-update algo-
rithms; that is, correction to a local clock is
computed at discrete time intervals. How-
ever, software algorithms may differ in the
way they apply this correction to the local
clock. In some software synchronization
algorithms the correction is applied in-
stantaneously, whereas in others it is spread
over a time interval.

The time at which the correction is
computed is determined by each node on
the basis of its own clock. The time interval
between successive corrections is called
the resynchronization interval, denoted R,
and is usually a constant known to all
nodes. If T (O j denotes the time at which the
system began its operation, then the time of
the ith resynchronization is f l i) = f l O) + iR.
The time interval R(’) = [Tc’), T” + ‘’1 is often
called the ith resynchronization interval.
In discrete-update algorithms, we can view
the local clock of a node as a series of
functions, one for each resynchronization
interval. That is, the clock at nodep in the
(i + 1)th resynchronization is given by

where Cg’represents the change inp’s clock
since the start of the system.

Software
synchronization

The basic idea of software synchroniza-
tion algorithms is that each node has a
logical clock that provides a time base for
all activities on that node. This logical
clock is derived from the hardware clock
on that node, though it usually has a much
larger granularity than the hardware clock.
The algorithm executed by each node for
synchronizing the logical clocks can be
viewed as a clock process invoked at the
end of every resynchronization interval.
This clock process is responsible for peri-
odically reading the clock values at other
nodes and then adjusting the correspond-
ing local clock value.

Informally, any software synchronization
algorithm must satisfy the following two
conditions:

Agreement: The skew between all non-
faulty clocks in the system is bounded.

Accuracy: The logical clocks keep up
with real time.

The first condition states that there is a
consistent view of time across all nodes in
the system. The second condition states

that this view of time is consistent with
what is happening in the environment. The
synchronization algorithms differ in the
way these two conditions are specified, as
well as in the way the clock processes read
the clock values at other nodes. In some
algorithms, a clock process requests and
receives a clock value from each of the
other nodes, while in other algorithms the
clock process broadcasts its local clock
value when it thinks it is time for a resyn-
chronization. The other nodes receive the
broadcast message and use the clock value
for correcting themselves at a later time. In
either case, the skew perceived by a receiv-
ing clock process differs from the actual
skew that exists between the two clocks,
because of the errors in reading the clocks.
These errors are due mainly to unpredict-
able variation in the communication delay
between the two nodes. This notion is
formalized in the following discussion.

Let p and q be any two nonfaulty nodes
in the system. Let T be the clock time of
node q when the clock process at node q
initiates a broadcast of the local clock value.
In other words, let the clock process at
node q initiate a broadcast of the local
clock value at real time c,(T). This mes-
sage will reachp after some time delay, say
Q. That is, the broadcast message is de-
livered to node p at real time cq(T) + Q. At
that instant, the clock times at nodes p and

spectively. That is, the actual skew exist-
ing between p and q at the instant when p
receives this message is given by Cq(c,(T)
+ Q) - Cp(cq(T) + Q). However, nodep has
no way of determining C,(c,(T) + Q) ex-
actly. The best it can $0 is estimate the
delay Q by, say, 1 + p@, and compute the
skew as follows:

4 are C,(c,(T) + Q) and Cq(c,(T) + Q), re-

This means that the error in the perceived
skew at p is

This error is small if we can obtain a good
estimate of the communication delay and if
the clock drifts of p and q are comparable,
especially during the communication delay.
All synchronization algorithms discussed
in this article are based on the assumption
that if p and q are nonfaulty, then eqp is
bounded.

From the above discussion we can con-
clude that the read error is not a serious
problem if the algorithm is used to syn-
chronize a fully connected system. How-

ever, it can be a serious limitation in future
distributed systems because system size is
increasing, and it is difficult to fully con-
nect all the nodes in a large distributed
system. This problem has been specifically
addressed by some of the recent algo-
rithms.9*‘0

Software synchronization algorithms can
be classified as convergence algorithms
with averaging, convergence algorithms
without averaging, or consistency algo-
rithms (see Figure 3). The leaves of the tree
in Figure 3 are the representative software
synchronization algorithms surveyed in this
article. (For additional reading refer to
Schneider. ’)

Convergence-averaging algorithms.
Convergence-averaging algorithms are
based on the following idea: The clock
process at each node broadcasts a “resync”
message when the local time equals T(O) +
iR - S for some integer i and a parameter S
to be determined by the algorithm. After
broadcasting the clock value, the clock
process waits for S time units. During this
waiting period, the clock process collects
the resync messages broadcast by other
nodes. For each resync message, the clock
process records the time, according to its
clock, when the message was received. At
the end of the waiting period, the clock
process estimates the skew of its clock
with respect to each of the other nodes on
the basis of the times at which it received
resync messages. It then computes a fault-
tolerant average of the estimated skews
and uses it to correct the local clock before
the start of the next resynchronization in-
terval.

The convergence-averaging algorithms
proposed in the literature differ mainly in
the fault-tolerant averaging function used
to compute the correction. In algorithm
CNV,’ each node uses the arithmetic mean
of the estimated skews as its correction.
However, to limit the impact of faulty
clocks on the mean, the estimated skew
with respect to each node is compared
against a threshold, and skews greater than
the threshold are set to zero before comput-
ing the mean. In contrast, with the algo-
rithm in Lundelius-Welch and Lynch3
(henceforth referred to as algorithm LL),
each node limits the impact of faulty clocks
by first discarding the rn highest and rn
lowest estimated skews and then using the
midpoint of the remaining skews as its
correction, where m is the maximum num-
ber of faulty clocks to be tolerated.

One main limitation of the convergence-
averaging algorithms is that they are in-

36 COMPUTER

tended for a fully connected network of
nodes. As a result, the algorithms are not
easily scalable. In addition, they all require
known upper bounds on clock read error
and initial synchronization of the clocks.
The need for initial synchronization is not
a serious problem, because there are sever-
al algorithms to ensure it.3 However, the
assumption about the bound on the clock
read error is a serious problem because the
worst-case skews guaranteed by these con-
vergence-averaging algorithms are usually
greater than the bound on the read error.

In addition to the read error, the worst-
case skews depend on the time interval
between the resynchronizations, the clock
drift rates, the number of faults to be toler-
ated, the total number of clocks in the
system, and the duration of the time inter-
val during which the clock processes read
the clock values at other nodes. However,
among all these factors, the read error has
the greatest impact on the worst-case skew.
LamportandMelliar-Smith' show the worst-
case skew for algorithm CNV to be

max ([N/N - 3rn][2~ + p(R + 2[(N - m)/
NlS)I,60 + PR I

where 6o is the maximum skew after the
initial synchronization, N is the total num-
ber of clocks in the system, rn is the max-
imum number of faults to be tolerated, S is
the duration of the time interval during
which clock processes read the clock val-
ues at other nodes, and E is the assumed
bound on the read error. Similarly, in Lun-
delius-Welch and Lynch3 the worst-case
skew of algorithm LL was shown to be

p +E+P(7P+ U+4E) +4$(2 +p)(P + U)

where U is the maximum message transit
delay between any two nodes in the system,
E is such that U - 2~ is the minimum mes-
sage transit delay between any two nodes in
the system, and p is roughly 4(& + pR).

Since, typically, p is on the order of
R is on the order of a few seconds, U

and S are on the order of a few milliseconds,
and E is on the order of a few microseconds,
pU << E and PE << E. Dropping the higher
order terms, the worst-case skew of algo-
rithm CNV' is approximately

while the worst-case skew of the algorithm
LL3 is 5~ + 4pR. Superficially, this seems
to indicate that algorithm LL is better than
algorithm CNV. However, because of the
nature of the clock-reading process, the

Software algorithms

I I
Convergence Consistency

Averaging Nonaveraging COM
1 I

CSM

CNV LL HSSD ST

Figure 3. Classification of software synchronization algorithms.

read error in algorithm LL is much larger
than that in algorithm CNV, and the worst-
case skews of the two algorithms are actu-
ally comparable. This is an example of the
many pitfalls encountered in comparing
clock synchronization algorithms.

Convergence-nonaveraging algo-
rithms. Like algorithms CNV and LL,
convergence-nonaveraging algorithms are
discrete-update algorithms. However, they
do not use the principle of averaging to
synchronize nonfaulty clocks. Instead, each
node periodically seeks to be the system
synchronizer. All the nonfaulty nodes know
the time at which the nodes try to become
the system synchronizer. If all the nodes
are nonfaulty, only one becomes the syn-
chronizer. If the synchronizer fails, the
algorithm is designed so that the remaining
nonfaulty nodes effectively take over and
synchronize despite the faulty synchroniz-
er's erroneous behavior.

Like convergence-averaging algorithms,
convergence-nonaveraging algorithms also
require initial synchronization and a bound
on the maximum message transit delay in
the system. However, convergence-non-
averaging algorithms do not require a fully
connected network of nodes. Instead, they
require an authentication mechanism that
the nodes can use to encode their messages
in such a way that no other node can gen-
erate the same message or alter the mes-
sage without detection. This can be achieved
by using either digital signatures* or an
appropriate broadcast a l g ~ r i t h m . ~ As long
as all nonfaulty nodes can communicate
with each other, the convergence-nonaver-

aging algorithms will ensure that they are
synchronized. However, the worst-case
skew between the nonfaulty clocks is a
strong function of the maximum message
transit delay in the system. This means that
as the connectivity decreases, the worst-
case skew guaranteed by the algorithms
increases.

In convergence-nonaveraging algo-
rithms, a node resynchronizes its clock
either when its local clock reaches the time
for the next resynchronization or when it
receives a signed message from other nodes
indicating that they have resynchronized
their clocks. To prevent faulty nodes from
falsely triggering a resynchronization, each
node performs a validity check before re-
acting to any message. The validity check's
exact nature depends on the algorithm. In
Halpern et al.,* a node considers a resyn-
chronization message to be valid and hence
is willing to resynchronize even before its
clock reaches the time for the next resyn-
chronization only if

(1) all signatures in the message are
valid, indicating that the message is
authentic;

(2) the time stamp on the message cor-
responds to the time for the next
resynchronization -that is, for the
ith resynchronization, the message
should have a time stamp 7f ') = Po) +
iR; and

(3) the message is received sufficiently
close to the time for resynchroniza-
tion - that is, a message with k
distinct signatures should be received
when the local time lies in the inter-

October 1990 37

val (F’) - kU, fl’)), where U is the
maximum message transit delay be-
tween any pair of nodes in the sys-
tem.

In Srikanth and T o ~ e g , ~ however, a node
considers all resynchronization messages
suspicious. Therefore, a node is willing to
resynchronize before its clock reaches the
time for the next resynchronization only if
it receives amessage from m + 1 other nodes
indicating that they have resynchronized.
This is done to ensure that at least one
nonfaulty node’s clock has reached the
time for resynchronization.

The main limitation of convergence-
nonaveraging algorithms is that the worst-
case skew is greater than the maximum
message transit delay between any pair of
nodes. For instance, the worst-case skews
of the algorithms in Halpern et al.* and
Srikanth and Toueg4 are (1 + p) U + p (2 +

+ U(1 + p) , respectively. Since all the terms
are positive, the worst-case skew is great-
er than the maximum message transit de-
lay, U , in both algorithms. Since U can be
on the order of tens of milliseconds, espe-
cially in a large, partially connected dis-
tributed system, the worst-case skews
offered by these algorithms are also on
the order of tens of milliseconds, which
may not be acceptable in many applica-
tions.

One of the unique features in Srikanth
and Toueg’s algorithm is that the accuracy
of the logical clocks is guaranteed to be
optimal in the sense that the drift rate of the
logical clocks is the same as the drift rate of
the underlying hardware clocks. This is not
necessarily the case with other software
clock synchronization algorithms, where
the logical clocks are guaranteed only to be
within a linear envelope of the hardware
clocks. Furthermore, in contrast to the al-
gorithm in Halpern et al., Srikanth and
Toueg’s algorithm does not require aclock
value to be sent in a resynchronization
message. This characteristic can be used
to eliminate some of the possible failure
modes observed in a clock synchroniza-
tion scheme.

p) R and [R(1 + P) + U l W + p H 1 + P) I

Consistency algorithms. Consistency-
based algorithms use a completely differ-
ent principle than convergence-based al-
gorithms. They treat clock values as data
and try to ensure agreement by using an
interactive consistency algorithm.” This
is a distributed algorithm that ensures
agreement among nonfaulty nodes on the
private value of a designated sender node
through a series of message exchanges. By

“agreement” we mean the following two
conditions are satisfied:

receive three “copies” of p’s value: one
directly from p and the other two from the

(1) All nonfaulty nodes agree on the
sender’s private value.

(2) If the sender is nonfaulty, the value
agreed on by the nonfaulty nodes equals
the sender’s private value.

Note that nonfaulty nodes must agree on
the sender’s private value regardless of
whether the sender is faulty or not. How-
ever, if the sender is faulty, the value agreed
on by the nonfaulty nodes need not equal
the sender’s private value.

With consistency-based algorithms, at
the end of every resynchronization interval
each node treats its local time as a private
value and uses an interactive consistency
algorithm to convey this value to other
nodes. From the clock values thus obtained
from all the other nodes, each node computes
an estimate of the skew with respect to
every other node. Each node then uses the
median skew to correct the local clock at
the start of the next resynchronization in-
terval.

Like convergence algorithms, consis-
tency-based algorithms require a bound on
the read error. Read errors occur in these
algorithms because there can be a slight
difference between the times at which two
nodes, sayp and q, decide on the clock value
of another node, say r . Consequently, al-
thoughp andq will agree on the clock value
of r , the estimate of the skew they compute
between their own clocks and r’s clock
might be slightly different. In addition to a
bound on the read error, consistency-based
algorithms also require certain conditions
for correctly executing an interactive con-
sistency algorithm. These requirements
include conditions on the minimum num-
ber of nodes, sufficient connectivity, and a
bound on the message transit delay. Lam-
port, Shostak, and Pease provide more
details on these requirements.”

Note that these algorithms require no
assumption about initial synchronization.
Nor do they require a direct connection
between all the nodes, although the algo-
rithms described by Lamport and Melliar-
Smith’ do require such a connection.

The following example should clarify
the basic idea of these algorithms. Consid-
er a four-node system with a maximum of
one Byzantine fault. In an interactive
consistency algorithm,’2 a node p would
convey its private value to other nodes
using the following scheme: Nodep would
send its value to every other node, which in
turn would relay the value to the two re-
maining nodes. That is, each node would

other two nodes. Each node would then
estimatep’s value to be the median of the
values in the three copies. This scheme can
be modified for clock synchronization by
letting each node independently use the
interactive consistency algorithm to convey
its clock value to other nodes. At the end of
four applications of the interactive con-
sistency algorithm (one for each node), the
local clock at each node could be adjusted
to equal the median of the other nodes’
clock values.

This clock synchronization scheme can
be further extended to situations with more
than one Byzantine fault, just like the inter-
active consistency algorithm.I2 However,
this will require at least m + 1 rounds of
message exchange, where m is the maxi-
mum number of faults to be tolerated, and
this implies more overhead. The worst-
case skew guaranteed by consistency-based
algorithms, however, is usually smaller
than those guaranteed by the convergence-
based algorithms. For example, if the total
number of clocks in the system equals 3m
+ 1, then the worst-case skew of algorithm
COM in Lamport and Melliar-Smith was
shown to be (6m + 4) ~ + (4m + 3)pS + pR
as opposed to (6m + 2) ~ + (4m + 2)pS + (3m
+ 1)pR foralgorithmCNV,’ where&,S,and
R are as described earlier under “Conver-
gence-averaging algorithms.”

The number of messages required for
consistency-based algorithms can be re-
duced by using digital signatures to au-
thenticate the messages. This is true of
algorithm CSM in Lamport and Melliar-
Smith. Algorithms with authentication re-
quire fewer messages and fewer nodes to
tolerate a given number of faults. They also
achieve a tighter skew than algorithms that
do not use authentication.

Probabilistic synchronization. The
main limitation of the algorithms discussed
above is that the worst-case skew depends
heavily on the maximum read error. This
can be a serious problem in future distrib-
uted systems because read errors are likely
to increase with system size. To remedy
this problem, Cristian proposed a proba-
bilistic synchronization scheme in which
the worst-case skews can be made as small
as desired.” However, the overhead im-
posed by the synchronization algorithm
increases drastically as we reduce the skew.
Furthermore, unlike other algorithms we
have discussed, this algorithm does not
guarantee synchronization with probabili-
ty one. In fact, there is a nonzero probabil-

38 COMPUTER

ity of loss of synchronization, and this
probability increases with adecrease in the
desired skew.

Cristian’s idea is to assume that the
probability distribution of message transit
delay is known and let each node make
several attempts to read the other clocks.
After each attempt, the node can calculate
the maximum error that might occur if the
clock value obtained in that attempt were
used to determine the correction. By retrying
often enough, a node can read the other
clocks to any given precision with prob-
ability as close to one as desired. This
scheme is particularly suitable for systems
having a master-slave arrangement in
which one clock has been designated or
elected master and the other clocks act as
slaves.

More specifically, each node periodical-
ly sends a message to the master node
requesting its clock value. When the mas-
ter receives this request, it responds with a
message saying “The time is T.” When the
response reaches the requesting node, i t
calculates the total round trip delay ac-
cording to its own clock. If D is the round
trip delay as measured by a node p , and if
q is the master node, then Cristian proved
that if nodesp and q are nonfaulty, the local
time at node q when p receives the re-
sponse message lies in the interval

where U,,,,, is the minimum message transit
delay between p and q. Therefore, the
maximum read error is D(1 + 2p) - 2Urn,,.

It follows from this result that if the
round trip delay is small (close to 2Urnj,),
then so is the read error. Cristian’s algorithm
uses this observation to limit the read error.
Each node is allowed to read the master’s
clock repeatedly until the round trip delay
is such that the maximum read error is
below a given threshold. Once a node reads
the master’s clock to the desired precision,
it sets its clock to that value.

One limitation of this approach is the
need to restrict the number of read attempts,
since these are directly related to the
overhead imposed by the algorithm. This
implies that a node may not always be able
to read the master’s clock to the desired
precision and hence could result in loss of
synchronization. A second limitation is
that it is not fault tolerant, since it is not
easy to detect the master’s failure. Fur-
thermore, algorithms to designate or elect
a new master are fairly complex and time-
consuming.

Hardware
synchronization

The principle of hardware synchroniza-
tion algorithms is that of a phase-locked
loop. The hardware clock at each node is an
output of the voltage-controlled oscillator.
The voltage applied to the oscillator comes
from a phase detector whose output is
proportional to the phase error between the
phase of its clock (the output of the voltage-
controlled oscillator it is controlling) and a
reference signal generated by using the
other clocks in the system. Thus, by ad-
justing the frequency of each individual
clock to the reference signal, the clocks can
always be kept in lock-step with respect to
one another.

Algorithms. One of the first hardware
synchronization algorithms resilient to
Byzantine faults was proposed originally
by T.B. Smith. This algorithm was devel-
oped to synchronize the processors of the
fault-tolerant multiprocessor (FTMP). l 3 The
FTMP uses only four clocks and was ex-
pected to tolerate a maximum of one Byz-
antine fault, so Smith’s algorithm was
specifically developed for that situation. In
the algorithm, each clock observes the other
three clocks continuously and determines
its phase difference with each of them.
These phase differences are arranged in an
ascending order, and the clock corre-
sponding to the median phase difference is
selected as the reference signal. Each clock
uses a phase-locked loop to synchronize
itself with the reference signal it selected.

The worst-case skew in this algorithm
depends on the characteristics of the phase-
locked loop. Smith did not characterize
this worst-case skew, but experimental
results on the FTMP have shown that the
skews are around 50 nanoseconds. This
should be compared with the skews in the
software synchronization algorithms, which
are on the order of microseconds. Surpris-
ingly, this algorithm does not easily gen-
eralize to a situation in which more than
one Byzantine fault must be tolerated. This
is because with a median select algorithm
it is possible for Byzantine failures to par-
tition the set of clocks into two or more
separate “cliques” that are internally syn-
chronized but are not synchronized with
other cliques.

As an illustration, consider a system of
seven clocks. Such a system should be able
to mask the failure of two clocks. Suppose
that the five nonfaulty nodes (clocks) are
named a, b, e , d, and e and the faulty nodes

(clocks) are named x and y. If the trans-
mission delays between clocks are negli-
gible, then the order of arrival of the clock
signals from the nonfaulty nodes should be
the same at all the nodes. If the faulty
clocks behave erratically, their order may
be seen differently by different nodes.
Consider the following ordering of signals
as seen by the various nodes in the system:

Order seen by a: x y a b c d e
Order seen by b: x y a b c d e
Order seen by c: a b c d e x y
Order seen by d: a b c d e x y
Order seen by e: a b c d e x y

Now suppose each node uses the median
select algorithm to select a reference signal
to synchronize its own clock. In the above
example, this would mean that each node
selects the third clock, not counting its own,
as the reference signal; that is, nodes a, b,
c, d, and e will synchronize to nodes b, a, d,
c, and e, respectively. As a result, there are
two nonsynchronizing cliques, [a , b) and
[c, d, e) . By nonsynchronizing cliques we
mean that a and b are synchronized to each
other and e, d, and e are synchronized to each
other, but there is nothing to prevent a and
b from drifting far apart from c, d, and e .

To overcome this problem, Krishna, Shin,
and Butler proposed that each node p use
the f p (N , m)th clock signal as the reference
signal instead of the median signal, where

and where N is the total number of clocks,
m is the maximum number of faults to be
tolerated, and A,, is the position of nodep in
the perceived order of the arriving clock
signals at node p . They showed that if N Z
3m + 1, then this function for selecting the
reference signal will ensure that all the
nonfaulty nodes remain synchronized re-
gardless of how the faulty nodes b e h a ~ e . ~

For the situation above, N = 7, m = 2, and

Thus, a synchronizes to b, b synchronizes
to c, c synchronizes to e , d synchronizes to
e , and e synchronizes to c. This sequence of
synchronization among the nodes results
in a single clique containing all five non-
faulty nodes.

The problem with Krishna, Shin, and
Butler’s scheme is that selection of the
reference signal is based on the position of
the local clock in the perceived sequence

October 1990 39

loo 7
80 -

60 -

40 -

20 -

o ! , I , I , I , I , I ,

0 20 40 60 80 100 120

Number of clocks

Figure 4. Percentage of reduction over a fully connected network versus system
size.

of the incoming clock signals. This com-
plicates the hardware at each node because
the hardware must order the incoming clock
signals and dynamically choose a reference
signal by identifying the local clock’s po-
sition in the ordered sequence. To overcome
this problem, Vasanthavada and Marinos
proposed a slight variation of the above
scheme, using two reference signals instead
of one.8

In their scheme it is not necessary to
generate the complete sequence of all in-
coming signals. Instead, i t is sufficient to
identify the (m + 1)th and the (N - m - 1)th
clocks in the temporal sequence. This is
easy to do in hardware because we can
count the clock signals that have arrived
and record the identity of the (m + 1)th and
the (N - m - 1)th clock signals. The aver-
age phase difference of the local clock with
respect to these two clock signals is used to
correct the local clock in the subsequent
cycles.

Eliminating major limitations in
hardware synchronization. The main
advantage of the above hardware syn-
chronization algorithms is that the worst-
case skews are several orders of magnitude
smaller than those in software synchroni-
zation algorithms. However, these hardware
synchronization algorithms have two ma-
jorlimitations. The first is that the hardware
synchronization algorithms as described
above require a fully connected network of
clocks. Because of the many interconnec-

tions in a fully connected network, this
requirement means that the reliability of
synchronization would be determined by
the failure rates of these interconnections
rather than by the failure rate of the clocks.
Furthermore, the large number of intercon-
nections would cause problems of fan-in
and fan-out.

The second limitation is that the above
hardware synchronization algorithms are
based on the assumption that the trans-
mission delays are negligible compared
with other parameters relevant to the algo-
rithms. In a large system, the physical sep-
aration between a pair of clocks can be
enough to result in non-negligible trans-
mission delays. A significant difference in
the transmission delays between two pairs
of nonfaulty clocks can change the order in
which a nonfaulty clock perceives other
nonfaulty clocks and thus affect the selection
of the reference signal.

These two limitations can be eliminated
from any of the above algorithms with the
help of the recent developments surveyed
below.

Interconnection problem. Shin and Ra-
manathan recently proposed an intercon-
nection strategy for synchronizing a large
distributed system using any of the above
hardware synchronization algorithms6
Their interconnection strategy requires only
20-30 percent of the total number of in-
terconnections in afully connected network.

The idea behind their strategy is to

synchronize the clocks in the system at two
different levels. The clocks are first parti-
tioned into several clusters. Each clock
then synchronizes itself not only with re-
spect to all the clocks in its own cluster but
also with one clock from each of the other
clusters. As aresult of this mutual coupling
between the clusters, the clusters remain
synchronized with respect to each other,
and the system as a whole remains well
synchronized.

Shin and Ramanathan formulate the
problem of partitioning the clocks into
clusters as a small integer-programming
problem. The objective is to minimize the
total number of interconnections subject to
the constraint that the fault tolerance re-
quirement is satisfied. For each clock, the
solution to the integer-programming
problem identifies all other clocks that it
should monitor. Shin and Ramanathad
show that this interconnection strategy does
not result in loss of synchronization and
the worst-case skew increases by a factor
of three as compared with the skew in a
fully connected network of clocks.

The reduction in the total number of
interconnections over a fully connected
network as a function of system size is
shown in Figure 4. It follows from this plot
that the percentage of reduction increases
with system size; this is precisely the sit-
uation in which the number of intercon-
nections is a serious problem.

Transmission delay problem. The ef-
fects of transmission delay in phase-locked
loops have been studied extensively in the
communication area but not in the presence
of Byzantine faults. Shin and Ramanathan’
show that it is easy to incorporate ideas
from the communication area to take into
account the presence of Byzantine faults
and non-negligible transmission delays.

Figure 5 illustrates their underlying idea
and shows the hardware required at node i
to determine the exact phase difference
between its clock and the clock at node j .
Instead of one phase detector for every
node pair, as in other algorithms, this solu-
tion requires two phase detectors and an
averager. The inputs to the first phase de-
tector, PD1, are theclock signals fromnodes
i and j . Since the clock signal from node j
encounters a delay in reaching node i, the
phase difference detected by PDI does not
represent the true phase difference between
the two clocks.

The inputs to the second phase detector,
PD2, are the clock signals from node; and
the clock signal from node i that is returned
from node j . In other words, the clock signal

40 COMPUTER

1 --

that node j is monitoring is returned to node
i to be compared with the signal from node
j . Because of the transmission delays, the
phase difference detected by PD2 also does
not represent the true phase difference be-
tween the two clocks. However, Shin and
Ramanathan prove that the average of the
outputs of PD, and PD,, e,,, is proportional
to the exact phase difference between the
clocks at nodes i and j regardless of the
transmission delays.

This true phase difference can then be
used for any hardware synchronization al-
gorithm. The disadvantages of this approach
are the need for two phase detectors instead
of one and the doubling of the number of
interconnections. However, when this so-
lution is combined with Shin and Ra-
manathan’s interconnection scheme, we
get a viable solution even for a very large
distributed system.

Hybrid synchronization

Earlier we noted that the main drawback
of software synchronization algorithms is
that the worst-case skews are at least as
large as the variation in the message transit
delay in the system. This can be a serious
problem in a large distributed system be-
cause this variation can be substantial. For
example, in some systems worst-case mes-
sage transit delays as large as 100 times the
mean message transit delay have been ob-
served. In other words, the worst-case skews
in such systems would be at least this large
if a software clock synchronization algo-
rithm were adopted. At the other extreme,
hardware algorithms achieve very tight
skews with minimal overhead. The skews
in hardware algorithms are typically on the
order of tens of nanoseconds,8 as opposed
to tens of milliseconds in the software
algorithms. However, the hardware schemes
are prohibitively expensive, especially in
large distributed systems.

To remove the inherent limitations of
both the hardware and software approaches,
Ramanathan, Kandlur, and Shin recently
proposed a hybrid synchronization scheme
that strikes a balance between the clock
skews attainable and the hardware require-
ment.9Their scheme is particularly suitable
for large, partially connected homogeneous
distributed systems with point-to-point
interconnection topologies such as hyper-
cubes or meshes.

This hybrid scheme is similar to algorithm
CNV.’ As in CNV, each node has a clock
process that is responsible for maintaining
the time on that node. At a specified time in

October 1990

To node j Clock at - f T fl Delay T node i

Clock at
node i

Delay

Delay I At node i

Figure 5. Elimination of transmission delay effects.

the resynchronization interval, a clock
process broadcasts the local clock value to
all other clock processes. The broadcast
algorithm is such that all clock processes
receive multiple copies of the clock mes-
sage through node-disjoint paths. The
number of copies used in the broadcast
algorithm depends on the maximum num-
ber of faults to be tolerated and the fault
model for the system. When a clock pro-
cess receives a clock message sent by some
other clock process, it records the time
(according to its local clock) at which the
message was received. Then, in accordance
with the broadcast algorithm, i t relays the
message to other clock processes.

Before relaying the message, a clock
process appends to the message the time
elapsed (according to its own clock) since
receipt of the message. At the end of the
resynchronization interval, it computes the
skews between the local clock and the
clock of the source node for each copy it
has received. The clock process then selects
the (m + 1)th largest value as an estimate of
the skew between the two clocks. The av-
erage of the estimated skews over all nodes
is used as the correction to the local clock.
As in CNV, a minimum of 3m + 1 nodes is
required to tolerate m Byzantine faults.

Ramanathan, Kandlur, and Shin’s algo-
rithm has several advantages over the algo-
rithms discussed earlier. First, the sending
of clock values by different nodes occurs
throughout the resynchronization interval
rather than during the last S time units of
the interval. For hypercube and mesh ar-
chitectures, they show that the resynchro-
nization interval in their algorithm is so

large that there is at most one node broad-
casting its clock value at any given time.
This prevents abrupt degradation in the
message delivery times, which occurs when
all nodes in the system broadcast clock
values almost simultaneously. Second, the
only hardware requirement at each node is
for time-stamping of clock messages. The
third, and probably most important, advantage
is that the worst-case skews are about two to
three orders of magnitude tighter than the
skews in software schemes. Furthermore, be-
cause of the hardware support, the worst-
case skews are insensitive to variations in
message transit delay in the system.

To compare the hybrid synchronization
scheme with the various software and
hardware synchronization schemes, con-
sider the worst-case skew this algorithm
guarantees. Ramanathan, Kandlur, and Shin
show that this worst-case skew is

+- 6 , + p N U)
(N-3m)’

where the notation is the same as that used
for characterizing algorithm CNV under
“Convergence-averaging algorithms.” The
slight difference between the above ex-
pression and the corresponding expression
for algorithm CNV is that for algorithm
CNV the read error E incorporated the ef-
fects of message transit delays between
any two of the system nodes. This is be-
cause algorithm CNV was intended for a
fully connected system in which the mes-
sage transit delays are very small. In con-

41

trast, the algorithm in the hybrid scheme is
intended for a partially connected system
in which the message transit delay can be
fairly large. Therefore, the effect of mes-
sage transit delay (U) on the skew has been
separated from the effect of other read
errors (E).

The key conclusion we can draw from
the above expression is that the worst-case
skew is not an explicit function of U as in
most software synchronization algorithms
but a function of p . U. As a result, for
typical values of p = and E = 20 mi-
croseconds, Ramanathan, Kandlur, and Shin
show that the worst-case skew in a 512-
node hypercube with m = 2 is less than 200
microseconds even when the maximum
message transit delays are as large as 50
milliseconds. These skews are still much
larger than those achieved by hardware
synchronization algorithms, but the cost of
hardware synchronization for a system this
large would be exorbitant.

lock synchronization is an impor-
tant matter in any fault-tolerant dis- C tributed system and has been ex-

tensively studied in recent years. Unfortu-
nately, the various solutions proposed are
difficult to compare because they are pre-
sented under different notations and as-
sumptions. Additional difficulty arises be-
cause of slight differences in the assumptions
made by the different synchronization al-
gorithms. In this article we classified and
presented several software and hardware
synchronization algorithms as well as a
hybrid synchronization algorithm, all us-
ing a consistent notation. We also identi-
fied the assumptions each algorithm makes.

Software algorithms require nodes to
exchange and adjust their individual clock
values periodically. Since the clock values
are exchanged via message passing, the
time overhead these algorithms impose can
be substantial, especially if a tight synchro-
nizationis desired. They are therefore suitable
for applications that can tolerate a loose
synchronization between the system nodes.

Hardware algorithms, on the other hand,
use special hardware to ensure a very tight
synchronization. Although the overhead
they impose on the system is minimal, the
hardware algorithms are too expensive to
use for all but small systems.

The hybrid scheme is cost-effective and
achieves a reasonably tight synchroniza-
tion. It is also suitable for synchronizing
large, partially connected systems and hence
is the most viable scheme for future dis-
tributed systems. H

Acknowledgments
The work reported in this article was support-

ed in part by NASA under grant No. AG- 1-296
and the Office of Naval Research under contract
NO. N00014-85-K-0531.

References
1. L. Lamport and P.M. Melliar-Smith, “Syn-

chronizing Clocks in the Presence ofFaults,”
J.ACM,Vol. 32,No. 1, Jan. 1985,pp. 52-78.

2. J.Y. Halpern et al., “Fault-Tolerant Clock
Synchronization,” Proc. Third Ann. ACM
Symp. Principles of Distributed Computing,
ACM, New York, 1984, pp. 89-102.

3. J. Lundelius-Welch and N. Lynch, “A New
Fault-Tolerant Algorithm for Clock Syn-
chronization,” Information and Computa-
tion, Vol. 77, No. 1, 1988, pp. 1-36.

4. T.K. Srikanth and S. Toueg, “Optimal Clock
Synchronization,” J . ACM, Vol. 34, No. 3,
July 1987, pp. 626-645.

5. C.M. Krishna, K.G. Shin, and R.W. Butler,
“Ensuring Fault Tolerance of Phase-Locked
Clocks,” IEEE Trans. Computers, Vol. C-
34, NO. 8, Aug. 1985, pp. 752-756.

6. K.G. Shin and P. Ramanathan, “Clock Syn-
chronization of a Large Multiprocessor
System in the Presence of Malicious Faults,”
IEEE Trans. Computers, Vol. C-36, No. 1,
Jan. 1987, pp. 2-12.

7. K.G. Shin and P. Ramanathan, “Transmis-
sion Delays in Hardware Clock Synchroni-
zation,”IEEE Trans. Computers, Vol. c-37,
NO. 11, NOV. 1988, pp. 1,465-1,467.

8. N. Vasanthavada and P.N. Marinos, “Syn-
chronization of Fault-Tolerant Clocks in the
Presence of Malicious Failures,”lEEE Trans.
Computers, Vol. C-37,No. 4, Apr. 1988,pp.
440-448.

9. P. Ramanathan, D.D. Kandlur, and K.G.
Shin, “Hardware-Assisted Software Clock
Synchronization for Homogeneous Distrib-
uted Systems,”IEEE Trans. Computers, Vol.
C-39, No. 4, Apr. 1990, pp. 514-524.

10. F. Cristian, “Probabilistic Clock Synchroni-
zation,”Tech. ReportRJ6432 (62550), IBM
Almaden Research Center, Sept. 1988.

11. F.B. Schneider, “A Paradigm for Reliable
Clock Synchronization,” Tech. Report TR-
86-735, Computer Science Dept., Cornell
Univ., Ithaca, N.Y., Feb. 1986.

12. L. Lamport, R. Shostak, and M. Pease, “The
Byzantine Generals Problem,” ACM Trans.
Programming Languages andSystems, Vol.
4, No. 3, July 1982, pp. 382-401.

13. A.L. Hopkins, T.B. Smith, and J.H. Lala,
“FTMP - A Highly Reliable Fault-Toler-
ant Multiprocessor for Aircraft,” Proc. IEEE.
Vol. 66, NO, 10, Oct. 1978, pp. 1221-1240.

4L

Parameswaran Ramanathan is an assistant
professor of electrical and computer engineer-
ing at the University of Wisconsin, Madison.
From 1984 to 1989 he was aresearch assistant in
the Department of Electrical Engineering and
Computer Science at the University of Michi-
gan, Ann Arbor. His activities have focused on
fault-tolerant computing, distributed real-time
computing, VLSI design, and computer archi-
tecture.

Ramanathan received the B. Tech degree from
the Indian Institute of Technology, Bombay,
India, in 1984 and MSE and PhD degrees from
the University of Michigan, Ann Arbor, in 1986
and 1989, respectively. He is a member of the
IEEE Computer Society.

Kang G . Shin joined the University of Michi-
gan, Ann Arbor, in 1982, where he is currently
a professor of electrical engineering and com-
puter science. In 1985 he founded the Real-Time
Computing Laboratory, where he and his col-
leagues are currently building a 19-node hexag-
onal mesh multicomputer to validate various
architectures and analytic results in the area of
distributed real-time computing.

Shin received a BS in electronics engineering
from Seoul National University, South Korea, in
1970 and MS and PhD degrees in electrical
engineering from Cornell University, Ithaca,
New York, in 1976 and 1978, respectively. He is
a member of the IEEE Computer Society.

Ricky W. Butler is a research engineer at the
Langley Research Center. His research interests
lie in the design and validation of fault-tolerant
computer systems used for flight-critical appli-
cations. He received his BA in mathematics in
1976 and his MS in computer science in 1978,
both from the University of Virginia.

Inquiries to the authors can be addressed to
Parameswaran Ramanathan, Dept. of Electrical
and Computer Engineering, University of Wis-
consin, Madison, 3436 Engineering Bldg., 1415
Johnson Dr., Madison, WI 53706-1691.

COMPUTER

