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ABSTRACT

This paper addresses the distributed self-diagnosis of a
multiprocessor/multicomputer system based on inter-processor tests with
imperfect fault coverage (thus also permitting intermittently faulty pro-
cessors). We show that by using multiple fault syndromes, it is possible
to achieve significantly better diagnosis than by using a single fault syn-
drome, even when the amount of time devoted to testing is the same.
We derive a multiple syndrome diagnosis algorithm which is optimal in
the level of diagnostic accuracy achieved (among diagnosis algorithms of
a certain type to be defined) and produces good results even with sparse
interconnection networks and inter-processor tests with low fault cover-
age. Furthermore, we prove upper and lower bounds on the number of
fault syndromes required to asymptotically produce 100% correct diag-
nosis as N — e, Our solution and another multiple syndrome diagnosis
solution by Fussell and Rangarajan (6] are evaluated both analytically
and with simulations.

1. INTRODUCTION

This paper addresses the problem of the distributed diagnosis of
faulty processors in a multiprocessor or multicomputer system. The diag-
nosis is done on the basis of a fault syndrome consisting of a collection
of binary pass-fail inter-processor test results as in the PMC model [10}.
However, unlike most of the system-level diagnosis methods based on the
PMC model, we do not place an upper bound on the number of permitted
faulty processors nor do we assume inter-processor tests with perfect fault
coverage. In addition, for ease of implementation, we assume that pro-
cessors test one another by comparing the outputs of identical tasks
(commonly referred to as comparison-testing). Since inter-processor tests
with imperfect fault coverage and intermittently faulty processors can
result in the same types of fault syndromes, we can handle intermittent as
well as permanent faults.

Several authors [8,9, 12] addressed the problem of diagnosing inter-
mittent faults in ¢;—diagnosable systems, in which if no more than #;
nodes are intermittently faulty, a non-faulty node will never be diagnosed
as faulty [8]. However, because a node is identified as faulty only if
there is sufficient evidence to definitely identify it as faulty given the
upper bound ¢; on the number of faulty nodes, these methods rarely
achieve correct diagnosis (by which we mean that the diagnosed fault set
is the same as the actual fault set).

Other authors {1,3,5,6] proposed probabilistic diagnosis algorithms
which achieve correct diagnosis with high probability given intermittently
faulty processors. Such probabilistic diagnosis algorithms offer the most
general solutions with the highest level of diagnostic accuracy, defined as
the percentage of diagnoses which are correct. Three arguments used to
support probabilistic diagnosis algorithms are: (1) using analysis to show
that high diagnostic accuracy is achieved in certain situations [5], (2)
guaranteeing that the set of nodes most likely to have caused the syn-
drome is found [3], and (3) showing that as the number of nodes in the
systems grows to infinity, diagnostic accuracy approaches 100% [1,6].
While argument (2), guarantecing the most probable diagnosis, is the
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most appealing, it has been shown that finding the most probable diag-
nosis given the global syndrome information is an NP-hard problem
[2,7]. From a practical perspective, argument (3) is insufficient as good
diagnostic accuracy is desired for finite systems. However, since
automated diagnosis is particularly important for large systems, asymptot-
ically correct diagnosis is certainly a desirable property of any probabilis-
tic diagnosis algorithm. In this paper, a diagnosis algorithm is presented
which has the property of asymptotically correct diagnosis and is qptimal
(in diagnostic accuracy) among all diagnosis algorithms of a certain type
to be defined. Our diagnosis algorithm is further supported by simula-
tions using square mesh and TMR structures.

Blough et. al. [1) showed that they could asymptotically achieve
100% correct diagnosis in an N processor system as N — e provided
that a(N)log N tests were performed on each processor, where
o(N) — oo arbitrarily slowly as N — oo, In their method, the numper
of tests on processor 4; is equivalent to the number of processors testing
;. Fussell and Rangarajan [6) improved on [1] by showing that the
same asymptotic result can be obtained for systems with lower connec-
tivity (e.g., meshes or rings) if each pair of processors conducts multiple
tests and the number of these tests on each processor grows faster than
log N. Fussell and Rangarajan’s algorithm can be viewed as a multiple

syndrome diagnosis algorithm, in which testing is conducted in stages
and a fault syndrome is collected after each testing stage. Our analysis
in Section 3 shows that the multiple syndrome diagnosis method [6] can
achieve significantly higher diagnostic accuracy than diagnosis using a
single syndrome, even when the time devoted to testing is the same.

In this paper, we improve upon Fussell and Rangarajan’s (FR)
algorithm (6] by deriving a multiple syndrome diagnosis algorithm which
is optimal in the level of diagnostic accuracy achieved. Since multiple
syndromes can be formed in many different ways and since many
different types of syndrome information can be used in the diagnosis, we
define a specific category of multiple syndrome diagnosis (of which the
FR algorithm is a member) and restrict our analysis to this category. Our
diagnosis algorithm is provably optimal among all multiple syndrome
diagnosis algorithms which use the same type of syndrome information as
the FR algorithm. In addition, our optimal multiple syndrome diagnosis
algorithm has the same desirable asymptotic properties as the FR algo-
rithm. Upper and lower bounds on the number of tests required for
asymptotically correct diagnosis are derived.

The rest of this paper is organized as follows. Preliminaries and a
description of the FR algorithm are given in Section 2. In Section 3, we
use probability analysis to show that significantly higher diagnostic accu-
racy can be achieved by restricting the manner in which inter-processor
comparison tests are conducted. Our optimal multiple syndrome diag-
nosis algorithm is derived in Section 4. Section 5 presents the asymp-
totic analysis for our diagnosis algorithm. In Section 6, we use simula-
tions to provide a comparison of the FR algorithm, our optimal multiple
syndrome diagnosis algorithm, and an optimal single syndrome diagnosis
algorithm [7). We conclude with Section 7.

2. BACKGROUND

2.1. Preliminaries

A system § is composed of N processing nodes, denoted by the
set V= {ug, - ,uy_;}. Inter-processor testing is assumed to be



done by comparison-testing, in which a test between two processors i;
and u; is actally a comparison of their execution results/outputs for an
identical task. The set of tests ¢ d in this is rep d by
an undirected graph G = (V, E), called the testing graph, where vertex
u; € V represents a processing node and undirected edge ¢; € E
represents the fact that a comparison test is performed between u; and
u;. The testing graph is assumed to be a subgraph of the graph represent-
ing the interconnection network of the system. A (fault) syndrome SD is
a function from E to (0, 1). SD(g;) is denoted by a;; and is equal to
1 if and only if nodes #; and u; produce different execution results for
the same task. A diagnosis is said to be correct if the set of nodes diag-
nosed 1o be faulty is the same as the actual fault set. For a given node
u;, let T'(u;) denote the set of nodes that u; tests (which are the same
nodes that test ;), and let d(&;) =|{uj e T(;): a; =1})|. The fault
status of u; is denoted by §; for ““u; is faulty’” and {5,- for ‘‘u; is non-
faulty’””. The actual set of faulty nodes which are o be diagnosed is
denoted by F’.

The following probability parameters are used. Given a node
w; € V, f; is the prior fault probability of 4;. Given anode u; € V

and a test task f, py is the probability that i; produces an incorrect
result for task #, given that u; is faulty. p; values will be referred to as
fault coverage. In part of the probability analysis, we will require the
use of average probability parameter values. The average values of
parameters will be denoted by the corresponding letters without sub-
scripts. For example, f and p will refer to the average f; and py
values, respectively.

The testing methods used in single and multiple syndrome diag-
noses are referred 10 as single syndrome testing and multiple syndrome
testing, respectively. Most of the previous work on diagnosis based on
comparison-testing have assumed single syndrome testing. In single syn-
drome testing, it is assumed that the comparison test between a node u;
and another node 1, € T(4;) is independent of any other comparison
test. If two nodes #; and u; execute and compare more than one task,
then a; = a;; =1 if any of the task outputs are different for the two
nodes. The syndrome formed in this manner is the one used by a single
syndrome diagnosis algorithm

In multiple syndrome testing, testing is done in stages, and in each
testing stage, it is assumed that the same task is used in the comparison
tests between a node u; and nodes in T'(%;). A “‘new’’ fault syndrome is
formed after each testing stage using the same testing graph. In a single
testing stage, each processing node is assigned at most one task to exe-
cute. Thus, all nodes in the same connected component of the testing
graph must execute the same test task in a testing stage. The results of
the comparison tests in different testing stages are assumed to be statisti-
cally independent of each other. The number of testing stages used in
multiple syndrome testing is denoted as R.

There are several ways in which diagnosis can be done using the
syndromes generated by the multiple syndrome testing method. In gen-
eral, the optimal diagnosis method (in terms of diagnostic accuracy) is to
produce the most probable diagnosis given all of the information con-
tained in the muitiple syndromes [7]. However, it has been shown that
even with a single syndrome, finding the most probable diagnosis is an
NP-hard problem (7]. In addition, an extremely high communication
overhead is required to reliably distribute the syndrome information to all
of the nodes. This problem is compounded when multiple syndromes are
used.

Therefore, to obtain an efficient and practical diagnosis algorithm,
we consider diagnosis algorithms in which each node ; is only aware of
the results of its tests with its immediate neighbors, referred to as local
syndrome information. For a node u; € V, summarized local syndrome
information is defined as {d¥(#;) : 0 < k S R}, where d*(u) = d(w)
for testing stage k (the number of nodes which test &; to be faulty in
stage k). There are two dimensions to the syndrome information: one
dimension is d*(u;) for a fixed k and the other dimension is the number
of testing stages in which d* (u;) is greater than a fixed threshold. Given
an integer m, m-threshold local syndrome information is defined as
[{k:0<k <R andd*(u;) >m)|. Category 3, 34, and 3AM diag-
nosis are defined as diagnosis using local, summarized local, and m-
threshold local (for any fixed m) syndrome information, respectively.
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This categorization is shown in Table 1. The diagnosis algorithm .derive'd
in this paper is the optimal category 3AM multiple syndrome diagnosis

algorithm.
Category Syndrome Info Interpretation
3 Local a;; values for u; € ;)
3A Summarized local | {d*(u;):0Sk SR}
3AM | m-threshold local | |{k : 0 <k <R and d*(w;) >m]|

Table 1: Categorization of diagnosis using local syndrome information.

2.2. Description of Fussell and Rangarajan’s Algorithm

In this section, we describe Fussell and Rangarajan’s (FR) algo-
rithm [6] in detail since the FR algorithm is characteristic of category
3AM diagnosis. In the FR algorithm, testing is conducted in stages and
two thresholds kv; and sv; are used. In testing stage i, it is assumed that
all processors execute the same test task £. Let T={t;, " g}
be the set of R test tasks executed on all processors, where all tasks are
treated identically. M is the total number of possible distinct incorrect
results which a faulty processor can produce for a given test task. It is
assumed that the probability distribution of producing incorrect results is
uniform.

Algorithm FR:

0. Let F « @ be the set of diagnosed faulty nodes;
1. For eachu; € V do

ij (—|I1(uj)| - 1;

s « R — kR -p(1- !;7)'”“1"), where 1 < k, €2;
2. Foreacht; € T do

for each u; € V do

ifdu) > by;
then L(i, j)=1;
else L(i, j)=0;

3. For each u; € V do
it Y L3, j)>sv;
1eT
then F « F U {4}

In Step 1 of the description of the FR algorithm, kv; is chosen to be
|I'(uj)| — 1 and a range of values is indicated as being acceptable for the
choice of sv;. These thresholds were simply chosen in order for the the
algorithm to satisfy desirable asymptotic properties. The authors proved
that as N — oo, the diagnostic accuracy of the FR algorithm asymptoti-
cally approaches 100%. An carlier algorithm by the same authors [11]
can be considered to be the same as the FR algorithm with sv; = 0 for
allu; € V.

3. ANALYSIS OF MULTIPLE SYNDROME TESTING

The two main differences between multiple and single syndrome
testing are the use of multiple versus single syndromes and the con-
strained manner in which the syndromes are formed in multiple syndrome
testing. In [11), examples are given to show that the additional informa-
tion available when multiple syndromes are used permits correct diag-
nosis in some fault situations where an ‘‘accumulated’ single syndrome
results in incorrect diagnosis. In this section, we show that the way in
which syndromes are formed in multipie and single syndrome testing also
results in a significant difference in diagnostic capability.

Suppose we take all of the syndromes associated with the multiple
testing stages in a multiple syndrome testing method and form an updated
syndrome. The single syndrome generated using this process has the pro-
perty that for a given node u; € V, all of the tests ey for uy € T(;)
use the same set of tasks in their testing. However, the syndrome used in
single syndrome testing has no such restriction. In single syndrome test-
ing, it is assumed that the test e € E is independent of all of the other
tests in E. As will be shown shortly, this “‘small”* difference in testing
method results in a significant difference in diagnostic capability.

To get a direct comparison, let us compare the difference in diag-
nostic capability between single and multiple syndrome testing when only



one syndrome is used in the multiple syndrome testing method. For sim-
plicity of analysis, it is assumed that all nodes have identical parameter
values and that the testing graph is ‘regular with node-degree Y. The
analysis can easily be individualized for each node (average parameter
values are used for a given node’s neighbors). Given a node u; and any
node u; € I(y;), let A=P@;=1]8) =p(Ud-f)
'p;
=30 +Q-p)fpp = =f)p +fp@-p-E)
and B =P(a; =1} §;) =f;p; = fp. For single syndrome testing,
the probability of having z ='d (u,—) one-links incident on u; out of a

maximum of Y links (denoted as z one—links : ) given that u; is faulty
and non-faulty are

P(z one—links :y| &)= B’] AP (1-AY"* (1a)
P(z one-links :vy| ;) = [;Y] B* (1-B)* (1b)

For Eq. (1a), z of the Y neighbors of u; are chosen such that those z
neighbors test u; to be faulty and the Y — z other neighbors test 4; to be
non-faulty. Eq. (1b) is obtained similarly. It follows that

P(®; | z one-links : %)
P(z onelinks :y| &) f;
P(z one-links :y| &) f; + P(z one-links :y| 8,) (1 = f))

_ 1
- z Y-z
f Al l1-4

For multiple syndrome testing with a single syndrome, the proba-
bility that there are z one-links incident on a node #; € V given that i;
is non-faulty and faulty are:

P(z one-links :y| §;)

(1)

Y . (i .
s ra-prifra-p = he . e
]=z
P(z one-links :y| §;)
o v Macry rr-i [Y=4) (- By -icPyr-=
Pz Y a-ry i (12 a- Zy-icky
+(1-p)h(z) (2v)

pg)+(1~p)hiz) .

For Eq. (2a), u4; must have z or more faulty neighbors, of which exactly
z execute the test task incorrectly. For the first part of Eq. (2b), ; pro-
duces an incorrect test result and has j < z non-faulty neighbors and
(z — j) faulty neighbors that either execute the test task correctly or pro-
duce a different incorrect result from u;. It follows that the posterior
fault probability of ; given z one-links incident on u; is

P(3; | z one-links : %)
f [pg(z)+<1—p>h(z)]
f pe@+a-praa| + a-rrre

(2c)

1 ifz=vy,
fa-pyla-fpy ifz=y.
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The approximation holds if M is large and Y < 4. Then, Eq. (2¢) is
close to a delta function with a spike at z = 7y since f (prior fault proba-
bility) values are typically fairly small. If 'y > 4, then Eq. (2c) becomes
close to a step function. In general, Eq. (Ic) is a much more smoothly
increasing function of z than Eq. (2c).

Let us consider the testing time required for single versus multiple
syndrome testing. Suppose that it takes T units of time to execute each
task and that each task has the same level of fault coverage p. Then, for
multiple syndrome testing using a single syndrome, it takes T units of
time to obtain the syndrome since each node executes at most one task.
In single syndrome testing, T *y units of time are required for testing since
each node executes ¥ tasks (in order to make Y comparison tests). Thus,
using the same amount of testing time, we can execute Y test tasks
(treated as one ‘‘large’” test task) in one testing stage of the multiple syn-
drome testing method, thereby achieving an effective fault coverage of
1= (1 -p). In Section 6, it is shown that good diagnosis results can
be obtained when using multiple syndrome testing on a TMR structure.
Thus, for concurrent diagnosis, ‘‘useful”’ tasks can be used for the test
tasks required in single and multiple syndrome testing.

In Fig. 1, we have shown the distributions of z = d(i;) given u;
faulty and u; non-faulty for both multiple syndrome testing (Egs. (1a)
and (1b)) and single syndrome testing (Egs. (2a) and (2b)) using
M =1000, y=4, p =04, and two different values of f. The fault
coverage value p used for multiple syndrome testing is actually
1-(1~-p) =0.87 since this level of fault coverage can be obtained
in the same amount of testing time required to achieve fault coverage of
p for single syndrome testing. A high level of diagnostic accuracy can
be achieved if the syndrome information perceived when u; is faulty is
drastically different from the syndrome information perceived when ¥; is
non-faulty. From our analysis, it can be seen that the syndrome used in
multiple syndrome testing fits this mold much more closely than the syn-
drome used in single syndrome testing.

4. OPTIMAL MULTIPLE SYNDROME DIAGNOSIS

Theorem 1: For any category of diagnosis, the algorithm which
makes the most probable diagnosis for each node given the type of syn-
drome information available is the optimal (in terms of diagnostic accu-
racy) diagnosis algorithm,

Proof: Refer to [7].

To derive the optimal category 3AM multiple syndrome diagnosis
algorithm, we must analyze the probability of a node #; € V being
faulty given the syndrome information for u;. Category 3AM multiple
syndrome diagnosis is based on m -threshold local syndrome information
for any fixed m. Under the assumption that the test evaluation by a
non-faulty processor is at least as good as the test evaluation by a faulty
processor, the posterior fault probability of #; is a non-decreasing func-
tion of d*(u;) and also of | {k : 0 k S R and d*(%;) > m}| for any
m. Then, the optimal category 3AM multiple syndrome diagnosis algo-
rithm is based on the selection of two thresholds. The first threshold Zp,
is for the number of one-links incident on u; during a single testing
stage. The second threshold H,,,._ is for the number of testing stages in
which a given node passes the first threshold. In the FR algorithm,
z, = kv; =Y — 1 and Hy, = sv;. The thresholds kv; and sv; in the FR
algorithm were simply chosen to prove desirable asymptotic properties of
the algorithm.

Optimal threshold values can be obtained by calculating posterior
fault probabilities. The optimal choice for 2yp, is obtained using Eq. (2¢).
The optimal z, value, denoted as z,;,‘, , is equal to z such that
P(®; | z one~links :¥) < 0.5 and P (5; | z+1 one—links : y) > 0.5,
since u; is more probably non-faulty (faulty) in the former (latter) case.
Although calculation of Eq. (2c) for large values of y is computationally
expensive, since 7y is at most the node-degree of the processor intercon-
nection network, very large ¥ values will not be needed for most practical
partially-connected systems. Also, from the analysis done ll;l Section 3
(approximation for Eq. (2c)), it is evident that when Y < 4, zp, =Y- L
Since Eq (2c) is a monotonically non-decreasing function of z, we can
obtain z,, for Y > 4 by evaluating Eq. (2c) for several values of z near
v.




We now use probability analysis to derive H,;,,, , the optimal value
o{ Hy,. For simplicity of analysis, we will assume that ¥< 4 so that
2z, =Y — 1. (The changes required in the analysis when > 4 is dis-
cussed at the end of this section.) For a single syndrome,
Ay=p+(Q-p)pY ifTWw)cF’

P (Y one-links : y| 8,~)={A2=p

otherwise ,

By=pY ifTW)cF

P (y one—links : Y| 59:{32:0 @

otherwise .

The approximations in Eq. (3) hold since M is assumed to be large, that
is,

A1=p.»<1—1',(;)*+(1—p.-)py =p+(1-p)p?,
p- Ly lsar sy = Aa=p

€ Tw) < F ’ then Ay and B are the probabilities of having greater
than z,, one-links incident on %; given that u; is faulty and non-faulty,
respectively. A, and B, are the same probabilities  when
Tw)cV ~-F ’” Next, the probabilities of having H syndromes in
which d(u;) > Zl;.- (denoted as H passes) given that u; is fauity and

non-faulty are

P(H passes | &) = f¥ [Z] AP a-a)f" o+

a-mEaga-ar-r. o
P(H passes | ;) = fY[Z] BY 1 -B )Y +
a-sn R B a-Bf-n O]

For Eq. (5), the first additive term corresponds to the case when all of the
neighbors of ; are faulty and the second additive term corresponds to all
other cases: for all cases, there must be H testing stages in which all of
the neighbors of i; test ¥; to be faulty. Eq. (6) is obtained analogously.
The posterior fault probability of u; given that du;) > z,;.l, for H syn-
dromes is

P(3; | H passes)

P(H passes | §;) P(3;)

= P(H passes | 8;) P(8;) + P(H passes 13)P@) ™

The value of H at which P(3; | H passes) = 0.5 is the optimal
H,y, value, Hy, . 1tis difficult to determine H,, directly because of the
form of Eq. (7). However, since H ,7,. is to be used as a threshold for an
integer quantity, we only need to determine Hy, = (Ha, ). Ba. (Misa
monotonically non-decreasing function of H. Thus, Hy, can be deter-
mined by calculating Eq. (7) for several v?lues of H. This process is
made simpler if a close upper bound for H, can be calculated. Denot-

ing this upper bound by H‘,,i,
1-B,
log
1-A,

log 7,
A, = : + R . ®
) {Alcl—so}
o |~ %

" tog | A1L=BD
(1-Ap B, (1-4))B,
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Theorem 2: ﬁ,,,i is an upper bound for H;,i .

Proof. Fig. 2 shows the distributions of three random variables Zq,
Z,, and Z3. Zg denotes the number of testing stages (out of R) that a
faulty node u; has d(4;) > zy, . Thus, the distribution for Z has Eq.
(5) as its probability mass function. Z, is the binomial random variable
with parameters R and A;. Likewise, Z; is the binomial random vari-
able with parameters R and A,. Since Ay 2 A, it is clear that the dis-
tribution for Z, is strictly to the right of the distribution for Z,. Also,
from the form of Eq. (5), we can see that the distribution for Zo must lie
in between the distributions for Z, and Z,. This relationship is shown
graphically in Fig. 2. Since B 2 By, the distribution for Eq. (6) can be
shown 10 reside between two analogous random variable distributions.
Thus, the distributions for Egs. (5) and (6) are both shifted to the right
when A, and B, are replaced by A; and By, respectively. When these
replacements are made, Hy, _is the value of H _ at which

P(H passes | &;) P(a,-)] = [P (H passes | 8;) P(S‘-)].
.E.D.
To calculate 17,,,'_. we need to execute the following procedure.
Procedure Calc_H:

1. Calculate I?,,,', using Eq. (8);
2. For H from 0 o min(R , |Hy, | + 1} do
_calculate P (3; | H passes) using Eq. (7);
3. Hy,  H' such that P(3; | H' passes) £ 0.5
and P(3; | H’ + 1 passes) > 0.5.

Algorithm OPTM, the optimal category 3AM multiple syndrome
diagnosis algorithm, is essentially the same as the FR algorithm except
that the thresholds are chosen differently. This, however, is a crucial
difference since the performance of the algorithm hinges upon the choice
of thresholds. Our algorithm is described below using the same assump-
tions as the FR algorithm with test tasks T = {1, -+ - . g}

Algorithm OPTM:

1. For each u; € V doparallel
calculate Zup, using Eq. (2¢);
calculate H,, ; using procedure Calc_H;

2. For each u; € V doparallel
for cach t; € T do

if d(u;) > z,;,l_
then L(i, j)=1;
else L(i, j)=0;

3. For cach u; € V doparallel
it LG, > H,,,j

ueT
then u; is faulty;
else u; is non-faulty;

Although the OPTM algorithm is the optimal category 3AM diag-
nosis algorithm, it is not the optimal category 3 or even category 3A
diagnosis algorithm. Since the effort required to obtain and use the syn-
drome information for category 3 or 3A is only slightly more than for
category 3AM, it might secem worthwhile to derive the optimal category
3 and 3A multiple syndrome diagnosis algorithms. However, the diag-
nostic accuracy achieved by the OPTM algorithm is very close to the
best possible even when category 3 or 3A syndrome information is used.

To see the reason for this, let us refer to the analysis of Section 3
and Fig. 1. Given a non-faulty node u;, it is most likely to not have any
one-links incident on it. Given a faulty node u;, if it fails a test task ¢;
(in other words, ¢; covers the fault), then it is most likely to have Y one-
links incident on it; otherwise, if %; passes f;, then it is most likely to
not have any one-links incident on it. Therefore, in all cases, u; will
most likely either have Y one-links or zero one-links incident on it.
Given this observation, the syndrome information used in category 3AM
contains almost all of the important category 3A syndrome information.
In simulations using the experimental setup to be described in Section -6,



out of 80,000 syndromes generated for a 100-node torus-wrapped square
mesh, there was exactly one syndrome in which a node u; had neither
d(u;) =Y nor d(u;) =0. Thus, the OPTM algorithm produced the
optimal category 3A diagnosis over 99.998% of the time. Also, as
explained in [7], the optimal category 3A diagnosis algorithm approxi-
mates the behavior of the optimal category 3 diagnosis algorithm since
average probability parameter values are used in the analysis for category
3A. In summary, the OPTM algorithm is the optimal category 3AM
multiple syndrome diagnosis algorithm and the ‘‘near-optimal’ category
3A and category 3 multiple syndrome diagnosis algorithm.

In deriving the thresholds for the OPTM algorithm, we have used
the assumption that Yy < 4. If y > 4, then it is possible v.hatz,,,‘ <y-1
In that case, the Ay, Ay, B, and B, values used in Egs. (3) — (8) must
be changed. Let A; =|T'(%;)  F] =x (number of faulty neighbors
of u;). Then,

AV =P@E) >z | 8,8 =D, -,
Ap’=P@W;) >z :y| 8,48, =0) and
By =PdW)>z, ;Y| 8. A =9,

Byt =P@w) >z Y| 5, A =0)
should be used instead of Ay, Ay, B, and B5. Ay and B, are replaced
by Ay’ and By, respectively. Aj is replaced by Ay’ through A.,," and
B, is replaced by By’ through B.,’. Note that Eqgs. (3) and (4) will
now have more additive terms. It may be possible to combine some of
thc A" or By’ values as was done in the analysis for the case of
zlh =y-1L

5. ASYMPTOTIC ANALYSIS

One of the main desirable aspects of the FR algorithm was that it
was shown to asymptotically achieve 100% correct diagnosis as N — oo
if Y2 2and R grows faster than log N. But, when Hy, is calculated as
in the previous section, we note that ﬁ,,,‘ is not necessarily one of the
permitted values for sv; in the FR algorithm (refer to Section 2.2). How-
ever, it is possible to directly prove that the OPTM algorithm also
asymptotically achicves 100% correct diagnosis as N ~> o=, Let ou(N)
be any function of N such that lxm ou(N )=-co. In this section, we

prove that the OPTM algorithm asymptohcally achieves 100% correct
diagnosis as N — eo if Y22 and R 2 a(N) log N. We also prove
that no category 3AM multiple syndrome d.lagﬂDSlS algorithm achieves
100% correct diagnosis as N — e if R < —g—
alN)
For the asymptotic analysis of the OPTM algorithm, we need the
following corollary [2] to a theorem proved by Chernoff [4].

Corollary 1: Let Z be a binomial random variable with parame-
ters n and ¢. Then

PZ <cng)<e -2 ogcc<t,

P(Zchq)Se*“l)z"m, c21.

For the purposes of analysis, let us assume that H,,, = H,, for all

u; € V (the proofs also work when this does not hold). Since H,,, is
equivalent to H,,‘ when used as a threshold, the analysis will be done
assuming that Hy, is the threshold used in the OPTM algorithm. Also,
let a be the base of the logarithm unless otherwise specified. Let the
random vanable Y denote the number of faulty nodes u; for which
d;) > z,,,l for < H,, syndromes. Let the random vanable X denote
the number of non-faulty nodes u; for which d(u;) > z,,,. for > Hy,
syndromes. For a multiple syndrome diagnosis situation, if there are no
nodes which fit the requirements for random variables Y or X, then
OPTM produces correct diagnosis. However, if there is any node that fits
the requirement for random variable Y or X, then OPTM does not pro-
duce correct diagnosis. Thus, 1 — E[X] — E(Y] < P({OPTM produces
correct diagnosis}) < 1 —max{E[X], E[Y]}. The proofs of the

lemmas and theorems in this section are based on showing limiting
values for E[X] and E[Y].

Lemma 1: If R 2 o(N)log N, where h}ima(N):», and
RB{ < Hy S RA,, then lim E[X] = lim E[¥Y] =
Ny N
Proof. In the following, let m =|H,, |. The comments refer to
Fig. 2.
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Since Hj, 2m 2 RBy and R 2 a(V) log N, lim E[X]=0. Simi-
larly, for E[Y], No=
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(H,;, SRAp =>(m <RA,) and R 2 oN) log N. Thus, it follows
that A}im E(Y}= Q.E.D.
—poo

Theorem 3: If R 2 o(N) log N, where A;im o(N) = o, then
—poo
P({OPTM produces correct diagnosis}) — 1 as N — oo,

Proof. Let the random variables Zg, Z; and Z, be as defined in
the proof of Theorem 2. As shown in Fig. 2, Z, is sandwiched in
between Z; and Z,. Since Z, and Z, are binomial random variables,
E[le—RAl and E[Zz] RA2 Thus, RA2<E[ZQ]<RA| Like-
wise, if we let the random variable W denote the number of syndromcs
for which a non-faulty node u; has d(u;)> z,,, then
RB, < E[Wg] < RB,. Then, from Egs. (3) and (4),

By=pYsp(-Ly'<a,

since M has been assumed to be a large number.



Now, let D be a category 3AM multiple syndrome diagnosis algo-
ritm  with z,, =z, and Hy =05 R(B,+Aj). Then, since
RB, < H,, <RA,, D produces correct diagnosis as N — oo provided
the conditions of the theorem are satisfied. Thus, for any € > 0, there
exists an N’ > 0 such that P({D produces correct diagnosis}) > 1 — €.
Hy, is the optimal Hy, threshold value. Therefore, P((OPTM produces
correct diagnosis)) > P({D produces correct diagnosis}) > 1 — €. Since
this holds for any € > 0, the theorem follows. Q.E.D.

Theorem 3 could also have been proven by using the fact that the
FR algorithm is in category 3AM since the OPTM algorithm is the
optimal category 3AM multiple syndrome diagnosis algorithm and
Theorem 3 was proven for the FR algorithm [6]. However, we have pro-
vided a more direct proof of Theorem 3.

We now prove lower bounds on the number of testing stages
required for asymptotically correct category 3AM multiple syndrome
diagnosis. In [2], Blough essentially proved that if < log N/o(N) tests
are performed on each processor, where Nlim O(N) =0, then no

—$o0

category 3AM diagnosis algorithm which uses a single syndrome can

achieve asymptotically correct diagnosis as N — 0. It follows that if Y

is constant and R < log N/a(N), where h}lm O(N) = oo, then no
—jo0

category 3AM multiple syndrome diagnosis algorithm can achieve
asymptotically correct diagnosis as N — co. However, what happens
when R =log N? The following theorem answers this question.

Theorem 4: IfA; <1 - 1 (recall that g is the base of the loga-
a

rithm) and R =1log N, then for any category 3AM multiple syndrome
diagnosis algorithm D, P({D produces correct diagnosis})) — 0 as
N — 0.

Proof- Suppose that Ay <1 — % and R = log N. Then,

HmE¥Y]2 TmNf (1= AR =f tim[(1-Apa| =
Noseo A ! _fNina[( - l)a] T

Thus, as N — e, P({OPTM produces correct diagnosis}) — 0 and
likewise for any other category 3AM multiple syndrome diagnosis
algorithm. QED.

As an example of the use of Theorem 4, if @ = 2 (as in a hyper-
cube structure), Theorem 4 tells us that we must have A; 2 0.5, which
implies that p > 0.4 (with y 2 2). It is unlikely that we can get such a
high p (fault coverage) value using a single test task of short duration.
A slightly higher upper bound for A can be obtained by using a closer
lower bound approximation for E[Y]. In summary, it appears unlikely
that any category 3AM multiple syndrome diagnosis algorithm can
achieve asymptotically correct diagnosis when R = log N unless a is
very small, implying a quickly growing logarithm function, or very long
test tasks are used.

6. SIMULATIONS

Simulations were conducted to evaluate the performance of the di-
agnosis algorithms studied. In assigning prior fault probability values,
failure arrivals were assumed to follow a Poisson process. For each node
u;, a time value T;, corresponding to the length of time u; has been in
the system, was generated from a uniforﬂ distribution over the interval
[0, T1 for some T. Then f; =1—e ' was assigned to u;, where
A = MTTF"! is the mean failure arrival rate.

The simulated experiments were conducted on a Sun 4/280 for a
100-node torus-wrapped square mesh and a 300-node TMR structure. A
TMR structure is a 2-regular graph in which nodes are clustered into
completely connected components of size 3 each. We used T = 1K
hours and MTTF values of SOK and 100K hours, resulting in AT values
of 0.1 and 0.01 respectively. Clearly, the same results can be obtained
by decreasing T and increasing MTTF by the same factor. Thus, this
can model components which have been in the system for different
lengths of times and components which have different MTTF values
(their T; values can be adjusted). Given MTTF values of 50K and
100K , E[f;] = 0.0099 and 0.0050, respectively.
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For all diagnosis algorithms evaluated, 1000 fault situations were
produced and diagnosed assuming p values of 0.1 to 0.5 (in 0.1 incre-
ments) and the two MTTF values given above. For each fault situation,
R = 16 testing stages were used, resulting in 16 syndromes. The OPTM
algorithm was compared with the FR algorithm and the OPT3A algo-
rithm, a category 3A single syndrome diagnosis algorithm. In 7, it is
shown that the algorithms presented in Blough et. al. [1] and Dahbura
et. al. [S] are category 3A single syndrome diagnosis algorithms, and
that the OPT3A algorithm is the optimal category 3A single syndrome di-
agnosis algorithm. Assuming that it takes T units of time to execute a
single test task, multiple syndrome testing requires R7 time units while
single syndrome testing requires Y T time units. Thus, for single syn-
drome diagnosis, if the same amount of time is devoted to festing, it is
possible to use test tasks which are R/Y times as long as those used in
multiple syndrome diagnosis. Therefore, in the simulations for the
OPT3A algoritm, p’ =1-(1 - p)Y*! was used as the fault coverage
value.

In the simulations for the FR algorithm, we must choose values for
kv; and sv;. The FR algorithm specifies that kv; =y — 1 but indicates
that a range of values is acceptable for sv; (refer to Section 2.2). If the
equation for sv; in Section 2.2 is used, it is possible to get a negative
value for sv;. Since a negative sv; threshold value implies that all nodes
in V will be diagnosed to be faulty, this possibility is discounted. Then

the modified equation for sv; is max{0,R —2R(1 -p(1- !1;7)7))

< sv; S R-R(Q1-p(1- L)"). In our simulations, sv; was chosen
p M i

to be the value halfway between the lower and upper bounds for sv;. M
was chosen to be 1000. Tables 2 and 3 show the values of H,, and sv;
for the torus-wrapped square mesh and TMR structure, respectively. H,
values shown in Tables 2 and 3 are for both f =0.0099 and
f = 0.0050 unless otherwise specified. sv; and sv/™@ (used in the simu-
lations) are independent of f. In Table 3, threshold values for p = 0.7
and f = 0.0099 are shown to demonstrate that H; and sv; values do
diverge.

Hy SV; svite
p=01] 0 |[0—160 | 080
p=02{ 0 |0—320| 160
p =03 0 0—4380 [ 240
p=041! 0 |0—640 | 320
p=05| 0 |0—800]| 400

Table 2: Threshold values for torus-wrapped square mesh (Y = 4).

Hy, sV; s
p =01 0 0—160 | 080
p=02 0 0—320 | 160
p =03 0 0—4.80 240
p=04 0 0— 640 3.20
p =05 1 0—800 | 4.00
p =07 | 4 =0.0099) | 640 —11.20 8.80

Table 3: Threshold values for TMR structure (Y = 2).

Figs. 3 and 4 show the results of the simulations for the torus-
wrapped square mesh and TMR structure, respectively. In all cases, the
OPTM algorithm performs significantly better than the OPT3A algorithm,
with the difference more acute when p is small. The FR algorithm per-
forms the same as the OPTM algorithm for p = 0.1, but then quickly
falls off in accuracy as different |sv/™?] threshold values are used. Simi-
lar results were obtained for all simulations attempted.

7. CONCLUSION

In this paper, we have derived an optimal category 3AM (and
near-optimal category 3A and category 3) multiple syndrome diagnosis
algorithm. Using probability analysis, multiple syndrome testing is
shown to be more effective than single syndrome testing. Our simulation
results support the probability analysis. It is proven that Algorithm
OPTM, the optimal category 3AM multiple syndrome diagnosis algo-
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rithm, achieves 100% correct diagnosis in an N processor system as
N — oo provided that R 2 o(N) log N testing stages are used, where
O(N) —> oo arbitrarily slowly as N — eo. It is also shown that no
category 3AM can achieve asymptotically correct diagnosis as N — oe if
7Y is constant and R < log N/o(N). If ¥ is constant, the computational
complexity of the OPTM algorithm is O(R ), which is the minimum pos-

sible for any multiple syndrome diagnosis algorithm since R testing

stages are required.

The OPTM algorithm requires each processor to execute identical
tasks with its neighbors, send and receive the results of the tasks from its
neighbors, compare the results received with its own results, and execute
a diagnosis procedure to determine whether it should diagnose itself to be
faulty or non-faulty. This distributed algorithm must be executed by a
diagnostic component which operates in a fail-safe mode or is part of the
hard-core of the processor. There must also be reliable communication
between neighboring nodes. This can be accomplished by sending identi-
cal messages along multiple disjoint paths [7]. The thresholds used by
the OPTM algorithm can be precomputed. Thus, the OPTM algorithm
simply requires the diagnostic component to accumulate integer quantities

and compare them against precomputed threshold values. The diagnostic
component can therefore be a very simple digital circuit.
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Figure 1: Probability distributions with MTTF of (a) 10K and (b) 100K.
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Figure 2: Distributions of random variables Z, Z,, and Z,.
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Figure 3: Accuracy with sq. mesh and MTTF of (a) SOK and (b) 100K.
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Figure 4: Accuracy with TMR structure and MTTF of

(a) 50K and (b) 100K.



