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ABSTRACT : Although SPP is generally regarded as a solved prob- 
lem in 2D space. few of the existing 2D solutions can be applied to 
3D. Since many of the real world applications are based on 3D or 
higher space, this deficiency severely limits the applicability of 2D 
solutions. In this paper, we present a new method of partitioning 
the workspace using the rectilinear visibiliry in 3D or higher space. 
Unlike the case of 2D space where the shape of a partition in 2D is a 
rectangle, the shape of a panition in 3D or higher space is arbitrary. 
In spite of the arbitrary shape of partitioned regions, we first prove 
that there exist dominance relations between regions. This relation 
is then utilized to efficiently solve the SPP problem in 3D or higher 
space. 

1 INTRODUCTION 

One of the main problems in achieving automatic task schedul- 
ing is Automatic Path Planning (APP) in the presence of obstacles 
in the workspace. Applications of APP are quite diverse, the most 
notable being automatic path generation for mechanic41 manipulators 
[9, 71 and/or autonomous vehicles [13]. Another important applica- 
tion is automatic channel routing in VLSI design [IO] and computer 
networks [3]. In particular, the APP of mechanical manipulators, 
known as robot motion planning, is quite a challenging task due to 
their large number of degree of freedom (DOF). Another factor to be 
considered is the various costs and constraints associated with a path, 
such as length, safety, and time of completion. In this paper, we 
develop a new technique for managing these costs and constraints. 

APP usually deals with an object to be moved and a workspace 
cluttered with obstacles. The goal of an automatic path planner is 
to find a path for the object from an origin to a destination withoui 
colliding with any of the obstacles while optimizing a certain critcrion 
function. Some of the most widely used criteria are traveling distancc 
[2,8], clearance from the obstacles [ l l ] ,  and combination of distance 
and clearance [12]. In particular, the APP that minimizes the traveling 
.kance is called the Shortest Pnth Planning (SPP) Problem while 
the other APPs are usually called the Find Path (FP) Problem. 

One problem in solving the SPPP is the various shapes of moving 
objects. The specific solution for a specific shape usually does not 
apply to other shape. To remedy this problem, the Configuration 
Space Approach (CSA) was proposed in [8, 11. In the CSA, the 
origin and the destination are represented as configuration vectors, 
not as Cartesian positions. Thus, a moving object is represented as 
a point along with the forbidden configurations due to constraint> 
i.e., extended obstacles. With the development of CSA, many issue, 
associated with FPP can be resolved with the solution techniquca 

Thc work dcacrihed in this papc’r was wpportcd i n  pdrl by 1111: U S Airlor 
ULC of Snenafic Research under contract No. F33615-85X-5105 and the h u w u  
Science Foundation under grant DMC-8721492. 

developed for SPP. 

The most popular solution to the SPP hinges on the visibility 
graph (VG). The VG method is based on the premise that when two 
points in a plane are not visible from each other, the shortest path 
always contain one or more vertices of the obstacle in the plane. 
Following this premise, the workspace is transformed into a graph 
in which the distances between all pairs of mutually visible vertices 
are precalculated. The optimal solution can then be obtained using 
Dijkstra’s graph search algorithm [5]. Though the VG is very useful 
in ZD, it is very difficult to use in higher dimensional problems. 

In this paper, we shall introduce the L1 visibility between two 
points in a digitized workspace, based on which we can derive dom- 
inance relations between certain partitions of the workspace. These 
dominance relations show some useful properties that can be utilized 
to solve the SPP. 

The paper is organized as follows. Section 2 states the SPP for- 
mally. In Section 3 we define L1 visiblity and demonstrate how it par- 
titions the workspace. In Section 3.1, the properties of a partitioned 
workspace are examined. Section 3.2 presents a graph representation 
of the workspace based on which an SPP solution algorithm is de- 
rived. Section 4 presents an example and simuilation results. The 
paper concludes with Section 5. 

2 PROBLEM STATEMENT 

Consider the problem of moving an object in a workspace clut- 
tered with obstacles. We want to find a path, or determine a set 
of points, for the object to traverse from a starting point (origin) to 
an end point (destination) without colliding with any obstacle in the 
workspace. There are two sources of difficulty associated with this 
problem: (i) an infinite number of paths exist for each given origin- 
destination pair, and (ii) it is in general difficult to represent obstacles 
of arbitrary shape in the workspace. One way of circumventing these 
sources of difficulty is to divide the workspace into a finite number of 
cells’. Such division not only reduces the infinite number of possible 
paths to a finite number of paths, but also allows each obstacle to be 
represented by the set of cells it occupies. 

Let the workspace be divided into e x m x n identical cclls. 
‘%..(:ording to the CSA 181. the object to bc moved can he ~ ~ I ~ - - ~ ~ n k  

to a point by growing obstacles. In what follows, cells are reprc- 
sented as o ,p ,  q, . . . when their locations need not be specified, as 
o,jk,plmn, q&, . . . when their locations need to be specified, and as 
wl, v2, w3,. . . when a sequence of cells needs to be specified. In- 
formally, the goal of a path planner is to find a path formed by a 
sequence of neighboring free (unoccupied) cells from the origin to 
the destination while minimizing a certain path cost. 

. 4  cell IS a squme in 2D and a cube in 3D 
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The cost of a path P, denoted by C ( P ) ,  is defined to be the length 
of P measured in Ll-rnetric. ' b o  cells are said to be neighbors 1 1  
they are physically adjacent. Since all the cells are identical, the 
Ll-distance between the centers of any two neighboring cells are 
identical and will be treated as unit distance. The path planning 
problem can now be stated formally as follows: 
For given two points. I and y, and a set, U, of cells that are occupied 
by obstacles, a sequence, P = vIv2.. . v,, of neighboring cells 
such that 

z E q, y E U,,, dl(ui,vi+l) = 1, v; 0 for 1 5 i 5 n - 1, 

while minimizing n. 

3 PARTITIONING THE WORKSPACE 

It is necessary to defme the following terms for clarity of presen- 
tation. 

Mini t ion 1 In L1-metric space, a cell v is said to be visible from a 
cell w. denoted by VRW, if there exists a sequence P = vovl . . . vdl(v,w) 
of free cells such that Vo = v ,  vdl(v,w) = w ,  dl(V;- i , t~; )  = 1, and 
dl(vi ,vdl(vp))  = di(v,w) - i ,  1 I i I di(v ,w) ,  where d i ( ~ , v )  
is the L1drstance between U and v. Otherwise, v is said to be not 
visible from w, denoted by v jRw. 

Definition 2 A set, N = {n:, n;, n:, n;, n t  , n; }, is called the set 
of neighbor operators if 

n:(vijk) = vtmn 

n , ( v i j k )  = vtmn 

j f, = i t  1, m = j, n = k 
=+ C = i - 1, m = j, n = k 

n;(vjjk) = vtmn e f, = i, T72 = j ,  71 = k - 1. 

and a set. 0 c N, is called the orthogonal set of neighbor operators 
if they always generate the neighbors in orthogonal directions of a 
cell, e.g., {n:, n;,nt}. 

Definition 3 For any two free3 cells, v and w, in the workspncc. 
9 %  is ?aid to be visible from u~ if there exists an orthopond sct, ' 
of neighbor operators such that P = vovl . . . vdl(v,w) where vo = 
v ,  Vdl(,,w) = w, v, = n(v,- l )  for some n E 0, and 0 is callcd 
the generating operator set of P .  The dual of 0, denoted by O', 
is the generating operator set of the reverse sequence of P ,  i.e., 
vdl(u.w)vd~(v,w)-l . .. v0. 

Using the above definition of visibility, the dominance relation 
between cells and that between two sets of cells are defined as follows. 

Definition 4 For any two cells U and v in a workspace W ,  U is said 
to dominate w, denoted by U > c  v ,  iff wgZv -+ wnu,  V w E 1V. 
Similarly, for any two sets, A and B, of cells in W ,  A is said to 
dominate B, denoted by A >s B. iff for any v E B ,  3u E A such 
that U > c  v. 

Having defined the dominance relation between cells, the equal 
relation is defined as follows. 

Definition 5 For any two cells U and v. II IS said to be equal 111 

denoted by U wC v, iff U > c  v and v >c U .  
- -  

" ' ' > h c i r r r i t  c h i ,  ~ ~ ' > < r w t ~ r ,  , 8 ,  

'It is reflexive, symmetric, and transitive. 

Figure 1: Partitioning of the workspace into regions. 

Notice that the relation mC is an equivalence relation4 and its 
central importance is that it induces a partition of the workspace. 
That is, the relation divides the workspace into several sets of 
cells such that U E R(v)  + S(u) = S(v) ,  where R(v)  is a partition 
containing v and S(u) the set of all the cells that are not visible from 
U. Such a set will henceforth be referred to as a region. In the 2D 
example of Fig. 1, any cell in RI is visible from any other cell in the 
entire workspace except for those in Rg. Similarly, no cell in R2 is 
visible from any cell in R8 U Rg U R1l. 

There are several ways of obtaining regions. In case of 2D space, 
a border of the regions is formed by projecting the edges of obstacles 
along r and y directions, as shown in Fig. 1. ?he I'ollowing PIUL- 
dure, P1, is used to determine the total number of cells visible from 
a given cell. Since total numbers of cells visible from two equivalent 
cells are the same, P1 can be used to partition the workspace under 
the assumption that no two neighboring regions have the same num- 
ber of visible cells. (This assumption can be relaxed trivially as we 
shall see shortly.) Informally, the procedure works as follows. All 
the cells visible from a given cell, v, of the workspace are obtained 
and expressed with an indicator vector Z, i.e., I ( r )  = 1 (0) if a cell 2 
is free (occupied by an obstacle). Starting with a cell v of distance 0 
(i.e., itself), one can determine all the visible cells of distance 1 from 
v. Using a recursion, one can then calculate all the cells visible from 
v of distance 2,3, .  . . K, where K is the maximum possible distance 
between any two cells in the workspace. After determining all the 
cells visible from a given cell U, the total number, N ( v ) ,  of cells 
visible from v is obtained from the vector I. 

Procedure P1 
For every cell 8 in the workspace W 

if v is a free cell 
begin 

initialize I ( w )  t 0 for all w E W 

for i = 1 to K 
begin 

Z(v) + 1 

Generate D;(v)  which is the set of cells of distanci 

for every w E D;(v)  
from v. 

max I(v) + u E D i - l ( u ) n D l ( w )  

WEW 

end 
end { Pl} 

The output of P1, N, is a matrix that contains the total numbcr 
of cells visible from each cell v. According to PI, if the number 
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of cells visible from any two neighboring cells is different, then the 
two cells belong to different regions. Another notable fact is that all 
the boundaries of a region are perpendicular to one or more principal 
axes. "herefore, the vertices, edges, and surfaces of regions can be 
determined fmm N as follows: 

1. For any vertex, & + 0. 

2. For any edge parallel with z-axis, & # 0. Similarly, edges 
parallel with x-axis or y-axis can be obtained. 

3. For the surfaces that are perpendicular to x-axis, # 0. 
Similarly, other surfaces can be determined. 

P1 cannot detect the boundary between two adjacent regions when 
the total number of visible cells for the two regions happens to be 
the same. Such undetected boundaries can be easily recovered by 
extending some of detected boundaries. 

By partitioning the workspace based on the relation we,  the path 
planning problem can be divided into two subproblems: (i) Path 
planning between two cells in the same region. and (ii) path planning 
between two cells in different regions. 

3.1 Properties of Partitioned Regions 

essary to define the following term. 
Before describing the properties of a partitioned region, i t  is nec- 

Definition 6 Search between two nodes is said to be Free Of Back- 
tracking (FOB) if depth-first search can always find the shortest path 
between them without backtracking. 

If we know a priori the search between certain two nodes to be 
FOB, search efficiency can be improved greatly. However, it is veIy 
difficult, if not impossible, to know this before the actual search takes 
place. The following lemma provides one useful instance of FOB. 

Lemma 1 (Random-Path) For any two cells U and w such that U >c 

v,  the shortest path between U and w is FOB if the search started from 
U. 

Due to limited space, the proofs of the lemmas and theorems are 
omitted in this paper. 

Corollary 1 For any U and v such that U w C  U, the shortest path 
between them is FOB regardless of the search direction used. 

According to Corollary 1, the shortest path between two cells 
in the same region can always be constructed by depth-first search. 

. Furthermore, the shortest path between any two cells with dominance 
relation can be constructed by depth-first search without backtracking. 
In Fig. 2a, any cell in & dominates all other cells in the workspace. 
Consider the construction of a path from a cell p E to a cell q # 
Ro. Fig. 2b shows some of decision points during the search. Without 
knowing p we q, the search would start from p.  The search may 
proceed towards a or h. If a is chosen, any subsequent search will end 
up with e or g and then fail. Even if h is chosen, the subsequent search 
may fail by choosing k instead of i as the next point. To remedy this 
problem, many algorithms are based on breadth-first search [ I I ,  41 
or best-first search [6, 51. Hence, the computational complexity of 
these algorithms is O ( n 2 )  for 2D and 0(n3) for 3D, where 71 is the 
number of decision points. 

(a) 

1 I I I 
n 

I 

Figure 2: Dominance relation between the regions and its effect on 
the search. 

By conuast, if the search had started from q, there are still two 
directions to choose from: one towards j and the other towards m. 
However, the search pmeeding towards m subsequently finds the 
shortest path between p and q; so does the search proceeding towards 
j .  The absence of backtracking guarantees the success of depth-first 
search for a shortest paath, thus resulting in computational complexity 
O(n). With the discretization resolution of 100 x 100 for 2D (100 
x 100 x 100 for 3D), use of the dominance relation is shown to 
improve the search efficiency by a factor of 2 for 2 0  (4 for 3D) when 
the time taken to decide among several available directions is not 
considered. To determine the dominance relation between regions, it 
is first necessary to understand the shape of each region. 

Theorem 1 (2D case) Let v and w be two orthogonal neighbors5 of 
a free cell U such that v w e  W .  Then, U wC U. 

Corollary 2 (3D case) Let U, tu, and z be three orthogonal neighbors 
of a free cell, U, such that v w e  tu and v wC z. Then U w C  w. 

Corollary 3 In 2D space, there exists a rectangle that contains all the 
connected cells in the same region but no cells from other regions. 

Corollary 4 In 3D space, there exists a rectangloid that contains all 
the cells in the same region and may also contain other embedded 
rectangloids. 

Corollary 3 provides valuable information on the whereabout < 7 

5An onhogonal neighbor of a node is the neighbar obtained as aresult of applyin& 
an orthogonal operator to the node. 
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the neighboring regions in 2D. It should be noted that neighboring re- 
gions of a region are always found alongside its edges. Furthermore, 
the shortest path between two cells in neighboring regions passes 
through the projection of one of the two cells to an edge between the 
two regions. Any other path that does not pass through the projection 
will have the same or longer length. Note that there are four edges 
in a rectangle, and thus, there are at most four projections for each 
region as some of its edges may be occupied by obstacles (see Rs in 
Fig. 1). 

Unlike the 2D case, Corollary 4 implies a region in 3D to have an 
arbitrary shape. This is due to the fact that one orthogonal neighbor 
of a cell may belong to a region different from the one that the other 
two ti orthogonal neighbors belong to. Due to this irregular shape of 
region, it is very difficult to represent a region in 3D. One method 
of representing a 3D object is to enumerate its vertices, edges, and 
surfaces. This representation method is not attractive because of the 
difficulty in determining whether or not a cell belongs to a certain 
region. Moreover. enumerating all the members associated with a 
region could be costly due to the existence of a large number of cells 
in the region. The following lemma provides an important property 
of such an irregular region. 

Lemma 2 Let Vijk and utmn be any two cells such that V,jk w C  utmn. 
For any cell uopq such that min( i, e )  5 o I mar( i ,  Z), min(j, m) 5 
P I "(Am),  min(k,n)  I q 5 maz(k ,n) ,  ~ , ~ ~ % v ; ~ k  implies 
vijk >c uopq. 

The above lemma implies that when vow is not visible fror:i 
h.>lh vijk and utmn. it is completely isolated from the rectanpln; 1 

formed by uijk and utmn. This is because all other cells within such 
a rectangloid are dominated by uijk and utmn. and thus, those cells 
not visible from both Vijk and utmn are not visible from all other cells 
in the rcctangloid either. In other words, any cell v that is visible 
from both uijk and uOPq is located outside the rectangloid. Therefore, 
the shortest path berween vi,k and vOpq should contain at least one 
cell outside the rectangloid. 

Corollary 5 For the smallest rectangloid containing a given cell U 
and for all the cells v such that U w C  U, ugZw =+ U > c  w for all cells 
w inside this rectangloid. Such a rectangloid is called the Rectungloid 
ofDomiMnce (ROD) of U. 

Since the shape of region and/or ROD is a rectangloid, it is suf- 
ficient to represent the member cells in the region with the two ex- 
treme points (Zminr Ymin, zmin) and (Zmcw, Ymaz, zmaz). Whether a 
cell belongs to a region or not can easily be checked by comparing 
its location with these two points of the region or ROD. These two 
points will henceforth be called the range of region R and denoted by 
rmin(R) and rmaz( R). Using the range, the cover relation is defined 
as follows. 

Definition 7 For any two regions R1 and R2, RI is said to cover 
Rz, denoted by R1 b Rz. when 

rmin(R1) I rmin(&), rmaz(R2) I rmaz(Rl)?R1 # R2. 

3.2 Workspace Representation 

and so can the workspace. 
Dominance relations among regions can be represented as a graph 

'There are at most three. orthogonal neighbors of a cell in 3D 

Figure 3: Generation of 3D regions. 

Figure 4 DG and MDG. 

Definition 8 The workspace is represented as a digraph, G = (V,  E), 
where V is the set of regions and E is the set of edges such that there 
exists an edge e from RI E V to Rz E V if and only if RI b R2. 

There are two sources of difficulty to obtain the dominance graph 
(DG): (i) it is difficult to check the dominance relation between all 
pairs of regions due to the large number of possible combinations, 
and (ii) it is difficult to describe a 3D region due to its irregular shape. 

To circumvent these difficulties, a modified dominance graph 
(MDG) is defined as follows. 

Definition 9 The MDG is a digraph, MDG = (V,  E'), where V is 
the set of regions and E' is the set of edges such that 3 an edge e 
from R1 E V to R2 E V if and only if RI b R2, RI # Rz. and there 
is no R E V such that R1 b R and R b Rz. 

Notice that a MDG contains partial information on the domi- 
nance relation for a given workspace. Especially. E' = 8 for 2D as 
shown in Corollary 3. A similar example can also be found in Fig. 2. 
Though &, dominates all other regions in the workspace, it will not 
be shown in the MDG. Though using the MDG will make the com- 
putation somewhat inefficient, it will not degrade the quality of the 
path obtained. Fig. 3 shows an example workspace with two obsta- 
cles and the same workspace after partition. Then, the workspace is 
converted into DG and MDG as shown in Fig. 4. Notice that most 
of the dominance relations in DG are shown in MDG except those of 
two region {(0,0,0),(18,15,2)} and {(19,0,0),(20,15,2)}. This is 
uue to the limited range of those two regions. 
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We have shown that the shortest path can be found with depth- 
first search when a dominance relation exists between the origin and 
destination. In some cases, however, no dominance relation may 
exist between a given pair of origin and destination. Consider the 
problem of finding a shortest path between two cells U and v such 
that U )’= w and v )’, U. Let R(u) be a region containing the cell 
U. The shortest path between U and v should contain at least a cell 
from one of the regions next to R(u). Such regions will henceforth 
be called bordering regions of R(u). The closest cell that belongs 
to a bordering region of R(u) can be found by projecting U to its 
borders. There exist at most 4 projections in 2D and 6 projections in 
3D because the shape of region (and ROD) is rectangular. Suppose 
the shortest path P(u,  w )  between U and v passes through R(w), one 
of R(u)’s bordering regions where w is the projection of U. Then 
one of the following cases is true. 

1. w is visible from U. 

2. w is not visible from U. 

3. tu is occupied by an obstacle. 

In Case 1, P(u, v) can be obtained by concatenating P ( u ,  w) and 
P(w,v) in Lr-metric. Note that P(u,  w) is a straight-line segment 
between U and w; otherwise, w cannot be visible from U. Case 2 
cannot be true since no cell in R(w)  can be visible from U and R(w) 
is not next to R(u).  

Fig. 5 shows an example of Case 3. Among 4 projections a, b, 
c, and d of a cell U, b and c are occupied by an obstacle. Unlike b, 
we may have to find a replacement cell z E R( c )  for c that is closest 
to U but not inside the obstacle. Finding such a cell may be difficult 
as, in many cases, such a cell is not unique in 3D. It should be noted 
that we need a replacement for c only when shortest path should 
pass through the border of R(u) and R(c) .  For example, it is not 
necessary to find a replacement for c when the destination is e as the 
shortest path can pass d. On the contrary, the shortest path between 
U and f should pass through the common border between R(u) and 
R(c) .  That is the case when R(u), R(c) .  y d  R(f) are separated by 
obstacles that are located completely outside R(u)  U R ( c )  U R ( f ) .  
Such obstacles do not intefere with the path between U and f, and 
can thus be ignored. In other words, construction of P ( u ,  f) is FOB 
when starting from U. 

The following algorithm constructs a shortest path between U and 
v for the general case. Informally, after initialization, the algorithm 
examines the MDG to see whether there exists any dominance relation 
between the current cell (initially, the origin) and the destination. If 
there is, the algorithm constructs the path using depth-first search. 
Otherwise, a set T of projections of the current cell is obtained. For 
each member of T, check whether it is occupied by obstacle or not. 
If it is occupied, check whether construction of a path between the 
destination and the current cell is FOB or not. If so, the algorithm 
stops after constructing the path. Otherwise, that projection is delclcd 
‘rnm 7‘. the remaininrr members of T are added IO S. the sct 
examined cells. Then, we choose the most attractive cell (the closest 
cell to the destination) in S as the current cell and the procedure 
repeats itself until path constructuion is completed or S becomes 
empty. What we said above can be summarized in algorithm form 
as follows. 

1. Let Best := U, P(u,Best)  = nil, S := 0, T := 0 and U := 0. 
2. If Best >c v then construct P(Best ,v)  and go to Step 8. 

3. If v >e Best then construct P ( B e s t , v )  and go to Step 8. 

a 
I 
I 

Figure 5: Regions separated by an obstacle outside their RODs. 

4. T := { Projections of Best } - S. For every w E T ,  
If tu IS occupied by an obstacle then try to construct 

using depth-tint search. 
If path construction is successful then go to Step 8. 

else P(u, w) := concat(P(u, Icarrent-cell), P ( B e s t ,  w)). 

P(Best ,  v) 

Else T := T - {w}. 

5. 5‘ := S U T ,  S := S - { B r s t }  and U := U U { B e d )  

6. Let Best be such that mil 1 Icngth(P(u, BLbt))+dl(Besr,  )). 

7. Go to Step 2. 

8. P(u ,  v) := concat(P(u, Best), P(Best,  v)) 

BeafES 

The computational complexity from Step 2 to Step 4 is O ( n )  
where n is the resolution of the workspace, i.e., the number of cells 
in each axis. As the algorithm stops when either path is found or S 
is empty, the maximum number of iterations from Step 2 to Step 5 
occurs when S is empty. That is, the maximum number of iterations is 
identical to the total number of regions, m, and the overall complexity 
hrcomes O(mn). Since the total number of regions can be as high as 
the total number of cells (i.e.. m = O(n3)) ,  the overall complexity 
can be as high as O(n4). This overall complexity is deceiving as 
the total number of regions is much smaller than the total number of 
cells (i.e., m << n3). Since RODs, rather than individual regions, 
are searched, search efficiency is also improved. 

4 AN EXAMPLE WORKSPACE 

In this section, we consider an example workspace cluttered with 
obstacles with various shapes as shown in Fig. 6. Specifically, the 
effects of various orientations of an obstacle on workspace partition- 
ing are described and a typical path in such an environment is also 
constructed. 

The workspace is digitized as a 32 x 32 x 32 grid. The resulting 
MDG has statistics as shown in Table 1. Region sizes vary from 
one to several thousand cells. Most one-cell regions are due to the 
pyramid shape obstacle K z .  Diagonal edges in K z  usually divide 
the workspace into small regions. Due to these one-cell regions, the 
median region size is 2 while the mean region size is 71.6. 

According to our simulation based on 1,000 randomly selected 
origin-destination pairs, the average number of regions searched is 
less than three. For 63.6% of the cases considered, there exists a 
dominance relation between the region containing the origin and that 
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Figure 6: A sample workspace with various obstacles. 

containing the destination. thus requiring no region to be searched at 
all. This is mainly due to the fact that the largest region dominates 
all the other regions and requires no regions to be examined, and 
On the average, either the origin or the destination lies in the largest 
region for approximately 50% of the time. Furthermore, only one 
region needs to be searched for 28.2% of the time. This implies that 
we need to search less than two regions for 91.8% of the time. 

The fragmentation has little effect on path construction, i.e., the 
probability of the destination or origin falling in a one-cell region 
is less than 0.01. Even in the case when the origin falls in a one- 
cell region. the number of regions to be searched is very small if 
the destination belongs to a larger region by changing the search 
direction. For the source-destination pair (A, E )  in Fig. 6, the total 
number of regions examined is zero since there exists a dominance 
relation between A and B, even though E falls in a one-cell region. 
The worst-case occurs when both the origin and destination fall in 
one-cell regions and are placed on the opposite side of Ii2, shown 
as C and D in Fig. 6, respectively. In such a case, the total number 
of regions searched can be as high as 200. However, the probability 
of such a case occurring is less than O.OOO1. 

5 CONCLUSION 

In this paper, we presented a new method of partitioning the 
workspace using L1-visibility. It was shown that the optimal path 
w.r.t. L1-metric between two partitioned regions can be obtained 
easily if a dominance relation exists between them. When no such 
relation exists between the origin and destination, we have presented 
an O(mn) algorithm. Our path planner is shown to find an optimal 
solution for the digitized workspace. Though the workspace with 
polyhedral obstacles m regarded as a more general solution, many 
workspace configurations are obtained in digitized form and our al- 
gorithm provides a very efficient solution in such an environment. 

This paper mainly addressed the SPPP in 3D. Unlike other ap- 
proaches, our method does not depend on any particular geometry. 
Since each region is represented with two extreme points or inequality 
predicates, our algorithm can be extended to k 2 4 D space without 
much difficulty. 
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Total number of cells 11 32,768 
Total number of cells occuDied by obstacles 11 3,550 

Total number of free cells 
Total number of regions 
Size of the largest region 

Size of the smallest region 
Median rerjon size 

29,218 

8,857 

H Mean region size 11 71.6 
Ave. number of reeions examined 11 2.23 

Table 1: Statistics of regions. 
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