
1406 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 12. DECEMBER 1990

Adaptive Fault-Tolerant Routing
in Hypercube Multicomputers

Ming-Syan Chen, Member, IEEE, and Kang G. Shin, Senior Member, IEEE

Abstract-A connected hypercube with faulty links and/or nodes is
called an injured hypercube. To enable any nonfaulty node to commu-
nicate with any other nonfaulty node in an injured hypercube, the
information on component failures has to be made available to non-
faulty nodes so as to route messages around the faulty components.

We propose first a distributed adaptive fault-tolerant routing scheme
for an injured hypercube in which each node is required to know only
the condition of its own links. Despite its simplicity, this scheme is
shown to be capable of routing messages successfully in an injured
n-dimensional hypercube as long as the number of faulty components is
less than n. Moreover, it is proved that this scheme routes messages via
shortest paths with a rather high probability and the expected length of
a resulting path is very close to that of a shortest path.

Due to the insufficient information on faulty components, however,
the paths chosen by the above scheme may not always be the shortest.
To guarantee all messages to be routed via shortest paths, we propose to
equip every node with more information than that on its own links. The
effects of this additional information on routing efficiency are analyzed,
and the additional information to be kept at each node for the shortest
path routing is determined.

Index Terms-Depth-first search, distributed adaptive fault-tolerant
routing, failure information, injured and regular hypercubes, looping
effects, network delay tables.

I. INTRODUCTION

N RECENT years, advances of VLSI and computer network- I ing technologies have made it attracr,ve to build multicom-
puter systems for numerous applications. Hypercube multicom-
puters, among others, have been drawing considerable attention
due mainly to their structural regularity for easy construction
and high potential for the parallel execution of various algo-
rithms. Numerous research projects related to hypercube archi-
tectures, operating systems, and programming languages have
been undertaken [11 - [6], and several research and commercial
hypercube multicomputers have been built [7], [8].

Efficient routing of messages is a key to the performance of a
multicomputer system. Especially, the increasing use of multi-
computer systems for reliability-critical applications has made it
essential to design fault-tolerant routing strategies for such sys-
tems. By fault-tolerant routing, we mean the successful routing

Manuscript received April 12, 1988; revised February 17, 1989. This
work was supported in part by the Office of Naval Research under Contracts
N00014-85-K-0122 and N00014-85-K-0531. and by NASA under Grant

M . 4 . Chen is with IBM Thomas J . Watson Research Center, Yorktown
Heights, NY 10598.

K. G. Shin is with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science. The University of Michigan.
Ann Arbor, MI 48109.

NAG-1-296.

IEEE Log Number 9040078.

of messages between any pair of nonfaulty nodes in the presence
of faulty components (links and/or nodes). Several important
results on the fault-tolerant routing in various networks have
been reported (91-[Ill. A few architectures are also proposed
and shown to possess fault-tolerant routing capabilities [121 -[141.
When hypercube multicomputers are to be used for reliable
applications, they must be made to be able to route messages
even in the presence of faulty links and nodes [9], [151 - [171.

A connected hypercube with faulty components is called an
injured hypercube, whereas a hypercube without faulty compo-
nents is called a regular hypercube. It is well-known that
routing in a regular hypercube can be handled by a systematic
procedure [6]. Some results on improving the routing efficiency
in regular hypercubes are reported in [18]. Routing in an
incomplete hypercube is also shown to be straightforward [191.
In a regular hypercube, each intermediate node can determine
the next hop of a message by examining the message’s destina-
tion address and choosing, from all its neighboring nodes, the
one which is closest to the destination. Clearly, this can be
accomplished by aligning the address of the source node with
that of the destination node from right to left bit-by-bit. How-
ever, this scheme becomes invalid in an injured hypercube, since
the message may be routed to a faulty component. In order to
enable nonfaulty nodes in an injured hypercube to communicate
with one another, enough network information has to be incor-
porated into either the message to be routed or each node in the
network so as to route messages around the faulty components.
Using additional hardware called a hyperswitch, a best-first
search algorithm for routing messages in a hypercube is devel-
oped in [9]. Several adaptive packet routing algorithms are also
presented in [171, which are based on the routing strategies used
for wide-area computer networks such as ARPANET. In addi-
tion, various algorithms are proposed in [111 and [20] to broad-
cast the information about faulty components to all the other
nodes in a hypercube so that messages can be routed around the
faulty components. Clearly, if each node is equipped with the
information on all faulty components, then it can always deter-
mine a fault-free path for every message to its destination.
However, it is usually too costly (in space and time) to equip
every node with the information on all faulty components,
especially when the network is large. Hence, it is important to
develop routing schemes which require each node to keep only
the failure information essential for making correct routing
decisions.

For the reasons above, we shall develop first a routing scheme
which requires each node to know only the condition of its own
links. As will be seen later, this scheme attempts to route every
message to its destination via an optimalpath which is defined

0018-9340/90/1200-1406$01.00 0 1990 IEEE

CHEN AND SHIN: FAULT-TOLERANT ROUTING IN HYPERCUBE MULTICOMPUTERS 1407

as a path of length equal to the Hamming distance' between the
message's source and destination nodes. When the insufficient
knowledge on faulty components causes a message to be sent to
an intermediate node from which there is no optimal path to the
destination node, an alternative path will be chosen in such a
way that the connectivity of a hypercube is fully exploited, and
those faulty components encountered before will not be encoun-
tered again in future. This scheme is proven to be capable of
routing messages between any pair of nonfaulty nodes as long as
the total number of faulty components is less than n in an
n-dimensional hypercube, Q,. More importantly, this scheme,
despite its simplicity, is shown to be very powerful in that the
probability of routing messages via shortest paths is very high
and the expected length of a resulting path is very close to the
optimal one. Note that the assumption that the number of faulty
components is less than n in an injured Q, could limit the
usefulness of the above algorithm. To remove this limitation, we
introduce a second routing scheme based on depth-first search
v nich requires more provisions but works in the presence of an
arbitrary number of faulty components. The performance analy-
sis of the routing scheme based on depth-first search can be
found in [2 I].

Due to the absence of information on all faulty components in
the network, the paths chosen by the above two schemes may
not be shortest. The efficiency of routing (measured in terms of
the length of a path chosen) can be improved if every nonfaulty
node is equipped with more information than that on its own
links, since in such a case the faulty components on the way of
every message to its destination can be foreseen, and thus,
bypassed. It can be observed that the abundant connections in a
hypercube usually make routing decisions in a node unaffected
by the failure of a component which is located far away from the
node. Based on this observation, we shall develop a third routing
scheme for which each node is required to keep only the
information essential for the shortest path routing of messages.
The information in each node required for the shortest path
routing will be determined in light of some properties of the
hypercube. Since the third method is again based on the assump-
tion that the total number of faulty components is less than n in
an injured Q,, we introduce a fourth routing scheme which uses
network delay tables [22] and works in the presence of an
arbitrary number of faulty components. However, this scheme
requires each node to maintain and update a delay table, which
could be costly for large hypercubes.

The paper is organized as follows. Necessary notation and
definitions are given in Section 11. We shall present in Section 111
two adaptive fault-tolerant routing schemes whch require each
node to know only the condition of its own links. Section IV
presents two fault-tolerant routing schemes which require each
node to include more information than that on its own links: one
with propagation of failure information, and the other with
network delay tables. Illustrative examples and some remarks
are also given. The paper concludes with Section V.

11. PRELIMINARIES
An n-dimensional hypercube (or n-cube or Q,) is formally

Definition 1: An n-cube, Q,, is defined recursively as fol-

a) Qo is a trivial graph with one node, and

defined as follows.

lows.

' TO be defined formally in the next section.

1110 1111

11

1001

Fig. 1. A Q2 with address O* 1 * in a Q4

b) Q, = K2 X Q n - i
where K , is the complete graph with two nodes, Qo is a trivial
graph with one node, and x is the product operation of two
graphs [23].

It follows from Definition 1 that a Q, contains 2" nodes and
n2"-' links since the degree of each node in a Q, is n. Let Z:
be the ternary symbol set (0 , 1, *}, where * is a don't care
symbol. Every subcube in a Q, can then be uniquely repre-
sented by a string of symbols in C. Such a string of ternary
symbols is called the address of the corresponding subcube. For
example, the address of the subcube Q2 formed by nodes 0010,
0011, 0110, and 0111 in a Q4 is 0*1*. Fig. 1 shows a Q2 with
address 0*1* in a Q4. The rightmost coordinate of the address
of a subcube will be referred to as dimension I , and the second
rightmost coordinate as dimension 2, and so on. For each
hypercube node, the communication link in dimension i is called
the ith link of this node. For notational simplicity, each link is
represented by a binary string with a "-" symbol in the corre-
sponding dimension. For example, the link between nodes oo00
and 0010 is represented by 00-0. Let r+ and r - denote the two
end nodes of a link r , where r+ (r -) represents the node whose
address is obtained by changing the "-" symbol in the link's
address to 0 (1).

Definition 2: The Hamming distance between two hyper-
cube nodes with addresses U = U,U,_, ... U, and w =

w,w,- , . * . w,in a Q, is defined as

1 , if U , # wi,
0, if u i = wi.

i = 1

where h(ui, wi) =

For the nature of distributed routing strategies to be pre-
sented, it is necessary to introduce the exclusive operation
between two binary strings, and the concept of relative address
between two hypercube nodes.

Definition 3: The exclusive operation of two binary strings
q = qnqn-, q, and rn = m n m n - , . . . m , , denoted by
q Q m = r,,r,-, ... r , , is defined as r j = 0 if qi = mi and
ri = 1 if q i = Hi for 1 I i 5 n.

Obviously, the exclusive operation is commutative, i.e., q Q

m = m Q q. We use e:=, to denote k sequential exclusive
operations. The relative address of a node U with respect to
another node w, denoted by U,,,,, can then be determined by

1408

1110 1111

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 12, DECEMBER 1990

1110 1111

Fig. 2. An optimal path from OOO1 to 1010.

ulw = U d w. The relative address of a subcube with respect to
a node U can be determined by the relative addresses of all the
nodes it contains. Let ek = enen- . . . e , where ek = 1 and
ej = 0 v j # k . For example, 1001 e e* = 1011, 0011 =
1010, and O*1TIool = 1*1*.

Definition 4: The spanning subcube of two nodes U =
U,U,-, . * U , and w = w,w,- , . . . w , in a Q,, denoted by
SQ(u , w) = S , S , - ~ . . . s,, is defined as si = ui if ui = wi,
and s, = * if ui # wi for 1 5 i 5 n.

For example, when U = 0010 and w = 0111, we get
H (u , w) = 2 and SQ (U, w) = 0*1*. It is easy to see that
SQ(u , w) is the smallest subcube that contains both U and w ,
and H (u , w) is the dimension of SQ (U, w) .

A path in a hypercube is represented by a sequence of nodes
in which every two consecutive nodes are physically adjacent to
each other in the hypercube. The number of links on a path is
called the length of the path. An optimal path is a path whose
length is identical to the Hamming distance between the source
and destination nodes. A shortest path is a path of minimal
length among all fault-free paths from the source to the destina-
tion. Clearly, an optimal path is a shortest path, but a shortest
path is not always an optimal path in an injured hypercube.
Also, a link of node U is said to be toward any node w if this
link is in an optimal path between U and w. Note that due to the
special structure of a hypercube, once the source node of a path
is given, the path can be described by a coordinate sequence
that represents the order of the dimensions in which every two
consecutive nodes in a path differ [24]. As shown in Fig. 2,
[OOOl, 0011,0010, 10101 is an optimal path from the source
node OOO1 to the destination node 1010, and can also be
represented by a coordinate sequence [2 , 1,4]. In addition, we
shall assume that the source and destination nodes are nonfaulty.

111. ROUTING WITH INFORMATION ON LOCAL LINK
FAILURES

In this section, we first develop and analyze an adaptive
routing algorithm, called Algorithm A which requires every
node to know only the condition of its own links. This algorithm
will be shown to successfully route messages between any pair
of nonfaulty nodes as long as the number of faulty components is
less than n in a Q,. As mentioned earlier, the assumption of the
total number of faulty components to be less than n in a Q, may
limit the usefulness of A , . Thus, we shall introduce a secona

U00

1

Fig. 3. Four disjoint paths from oo00 to 01 11

routing scheme based on depth-first search which works in the
presence of an arbitrary number of faulty elements.

A . Description of Algorithm A ,
Before describing Algorithm A , , it is necessary to introduce

the following lemma which was derived in [21] to determine
relative addresses of those nodes traversed by a given path.

Lemma 1 [21]: Let [c , , c2, * * , ck] be the coordinate se-
quence of a given path in a Q, starting from node U, and
w!,, = w,w,-, . . w , denote the relative address of node w
with respect to U, where k = H (u , w) . Then, the path specified

For example, a path with the coordinate sequence [3,4,2]
from 0110 will traverse nodes 0010, 1010, and then 1OOO. The
following theorem, which was previously introduced in [25], is
useful for our discussion that follows.

Theorem I [25]: Let U and w be two arbitrary nodes in a Q,
such that W (u , w) = k . Then, there are exactly n disjoint paths
of length less than or equal to k + 2 from U to w. These paths
are composed of k disjoint paths of length k , and (n - k)
disjoint paths of length k + 2.

Fig. 3 gives an example for four disjoint paths in a Q4 when
H(U, w) = H(0000,Olll) = 3. Theorem 1 leads to the follow-
ing corollary.

Corollary 1.1: let f be the number of faulty links and g be
the number of faulty nodes in an injured Q, such that f + g < n.
Then, there always exists at least one path of length less than or
equal to k + 2 between any two nonfaulty nodes U and w ,
where H (u , w) = k .

We can now describe Algorithm A , as follows. To indicate
the destination of a message, the coordinate sequence of a path is
sent along with the message. Additionally, each message is
accompanied with an n-bit vector tag = d,d,- , . . * d, which
keeps track of “spare dimensions” that are used to bypass faulty
components. All bits in the tag are reset to zero when the source
node begins the routing of a message. Therefore, such a message
can be represented as (k , [c, , c 2 , . . . , c k] , message, tag), where
k is the length of the remaining portion of the path and is
updated as the message travels towards the destination. A mes-
sage reaches its destination when k becomes zero.

When a node receives a message, it will check the value of k
to see if the node is the destination of the message. If not, the
node will try to send the message along one of those dimensions
specified in the remaining coordinate sequence. (Note that the

by [c,, c 2 ; . . , ck] ends at w if and only if ai:, e‘; = w / U ’

CHEN AND SHIN: FAULT-TOLERANT ROUTING IN HYPERCUBE MULTICOMPUTERS

coordinate sequence will also be updated as the message travels
through the hypercube.) Each node will attempt to route mes-
sages via shortest paths first. However, if all the links in those
dimensions leading to shortest paths are faulty, the node will use
a spare dimension to route the message via an alternative path.
(Recall that the spare dimensions are kept track of by a tag.)
More formally, this routing scheme can be described in algorith-
mic form as follows.

Algorithm A,: Fault-tolerant routing algorithm to be used by
each node only with the information on its own links.
/* For each node receiving (k , [cI , c 2 , . . a , c,], message, tag)

if k = 0 then {the destination is reached!}
*/

else begin
/* Try to send the message along a dimension in the

f o r j := 1, k do
remaining coordinate sequence. */

if (the c,th link is not faulty) then
/* (t) is a conditional statement which will be

----(t)

modified later in Section IV-A. */
begin

send (k - 1, [c,, . . . c,-,, c,+~; .,
c,], message, tag) along the cith link;
stop; /* terminate Algorithm A , */

end- begin
end-do

/* If the algorithm is not terminated yet, all dimensions
in the coordinate sequence are blocked because of faulty compo-
nents and a spare dimension needs to be used. */

for j := 1, k do /* record all blocked dimensions in
tag. */

d , := 1
end-60;
h := min { i : d, = 0, 1 5 i 5 n } ; /* choose a spare

d, := 1; /* update the tag * /
send (k + 1, [c,, c2 . . . , ck, h], message, tag) along

stop; /* terminate Algorithm A , */

dimension * /

the hth link;

end - begin.
Consider the Q4 in Fig, 4, where links 0-01, 1-01, and 100-

are faulty. Suppose a message, fm, is routed from U = 0110
to w = 1001. The original message in U = 0110 is
(4, [l , 2 ,3 ,4] , fm, oo00). Following the execution of A,, node
0110 sends (3,[2,3,4],fm,oooO) to node 0111 which then
sends (2, [3,4], fm, oo00) to node 0101. Since the third dimen-
sional link of 0101 is faulty, node 0101 will route
(1,131, fm. oo00) to 1101. However, since the third dimensional
link of 1101 is faulty, node 1101 will use the first dimension
(tag = 0100 then), and send (2, 13, 11, fm, 0101) to 1100, which
will, in turn, send (1, [I] , fm, 0101) to 10oO. Again, the first
link of node IO00 is faulty. The second dimension (tag = 0101
then) will be used and (2, [I , 21, fm, 0111) is routed to 1010.
After this, the message will reach the destination 1001 via 101 1.
The length of the resulting path is 8.

B. Performance Analysis of Algorithm A ,

The following theorem proves that Algorithm A , can route
messages between any two nonfaulty nodes as long as the
number of faulty components is less than n .

Theorem 2: Algorithm A , can always route messages be-
tween any two nonfaulty nodes successfully as long as the
number of faulty components is less than n , i.e., f + g < n,

1409

1110 1111

n

Fig. 4. An injured Q4 where links 0-01, 1-01, and 100- are faulty

1110 1111

Fig. 5 . An injured Q4 where links 0-1 1, -01 1, and 11 1 - are faulty

where f and g are the numbers of faulty links and faulty nodes
in a Qo, respectively.

Proof: Note that each node will try to use a spare dimen-
sion only when faulty components are encountered in all the
dimensions specified by the coordinate sequence. Those faulty
components which block the optimal paths from an intermediate
node to the destination node and force the first use of a spare
dimension are called type-A blocking components. On the other
hand, a faulty component is said to be type-B if it is encoun-
tered first after using a new spare dimension. For the example
routing in Fig. 4, 1-01 is a type-A blocking component and 100-
is a t y p e 4 blocking component, whereas the faulty link 0-01 is
neither type-A nor type-B. For the example in Fig. 5 where
U = oo00 and w = 11 11, 0-1 1 and -01 1 are type-A blocking
components while 11 1- is a type-B blocking component. Notice
that both the types of blocking components can be either faulty
nodes or faulty links. Thus, it is easy to see that the number of
both type-A and type-B blocking components in the route
determined by A , usually increases as the message is routed
towards its destination.

Let bh be a type-B blocking component which is encountered
first after using a new spare dimension h. We claim that the
blocking component b, does not belong to the set of those
blocking components that had already been encountered before.

1410

3
4
5

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 12, DECEMBER 1990

1 2 3 4 5 6
0.916 0.818 0.700 0.557 0.386 0.182
0.968 0.935 0.900 0.862 0.821 0.777
0.987 0.974 0.961 0.948 0.934 0.920

TABLE I
LOWER BOUNDS OF THE PROBABILITIES OBTAINED FROM THEOREM 3 FOR THE

OPTIMAL PATH ROUTING BETWEEN Two NODES OF DISTANCE n APART IN

THE PRESENCE OF LINK FAILURES

This claim is proved by considering two possible cases of b,: 1)
b, is a link of the destination node, and 2) b , is not a link of the
destination node. In the case of l) , b, is the hth link of the
destination node. Since dh of the tag was 0 before the spare
dimension h is used, this faulty link had definitely not been
encountered before. In the case of 2). since b, is the blocking
component encountered first after using the spare dimension h ,
6 , and the set of previous blocking components must be located
in the two different Q,-,'s separated by the dimension h. The
claim is thus proved. Since a certain faulty component will not
be encountered more than once as long as the number of faulty
components is less than n , this theorem thus follows. Q.E.D.

The corollary below follows from Theorem 2 and the fact that
the number of hops is increased by two whenever a spare
dimension is used.

Corollary 2.1: Suppose k spare dimensions are used for
routing a message from node u to node w by A , . Then, the
length of the resulting path is H (u , w) + 2 k .

It can be easily verified that the worst case of Algorithm A ,
needs H (u , w) + 2(n - 1) steps to send a message from U to
w. To facilitate our presentation, the first node which is forced
to use a spare dimension is called an obstructed node. For
example, the obstructed nodes in the examples of Figs. 4 and 5
are 1101 and 0011, respectively. Then we have the following
lemma.

Lemma 2: Suppose there are f faulty links in a Q,,, and a
message is routed by A , from node u to node w, where
H (u , w) = k . Let mA be the Hamming distance between the
obstructed node and the destination node. Then P (m A = j) 5
Cf"->J/Cf" if 1 I j 5 k , and P (m , = j) = 0 if j > k , where
Cy" represents the combinations of choosing y out of x possibil-
ities, Cy" = 0 when y < 0, and L = n2"-' is the number of
links in a Q,.

Proof: P (m A > k) = 0, since the inequality mA > k
represents an impossible case in which a message is not directed
towards its destination before encountering the obstructed node.
Consider the case of 1 5 j I k and assume there are f faulty
links in an injured Q,. Since these faults may occur at any f
links in the Q,, there are Cf" different configurations (of faulty
links) where L = n2"-'. Without loss of generality, we can let
U = 0" and w = O " - k l k . The problem of obtaining P (m A = j)
is then reduced to that of counting the number of configurations
which lead to the case of m A = j . We claim that, the number of
such configurations is less than or equal to Cj-;J.

When mA = j , the obstructed node must be within the sub-
cube O n - k * k , and all its j links towards w must be faulty (i.e.,
j type-A blocking components). Although there are many possi-
ble locations of the obstructed node, according to the systematic
procedure of A , , the location of the obstructed node is deter-
mined by those nontype-A faulty links which are not within
O n - k * k . Suppose x = O n - k f J l k - J is the obstructed node, then
the j links of node x within SQ (x , w) are faulty and there are
Ck-;J different distributions of these nontype4 faulty links.

When these nontype-A faulty links cause node y , instead of x ,
to be the obstructed node, we switch the links (including faulty
links) in SQ (y , w) to those in SQ (x , w), and obtain a configu-
ration which leads to the case when the obstructed node is y and
mA = j . Notice that some of the Cf"->J different distributions of
nontype-A faulty links may lead to mA > j , meaning that the
number of configurations leading to mA = j is less than or equal
to Ck-;J. This lemma thus follows. Q.E.D.

From Lemma 2, we can obtain the following theorem, show-
ing that Algorithm A , can route a message to the destination via
an optimal path with a very high probability.

Theorem 3: Suppose there are f faulty links in a Q,.
Algorithm A , will route a message from a node U to another
node w via an optimal path between U and w with a probability

greater than 1 - E j = , - , where L = n2"-', and

H (u , W) = k .

C&j

cr"
Proof: From Lemma 2, the probability that A , has to use

spare dimensions is , P(mA = j) I , - . Thus,

the probability that A , will not use any spare dimension at all is

1 - C j = , P (m A = j) 2 1 - E;=, - . Q.E.D.

When there are n - 1 faulty links in a Q,, the lower bound
of the probability that A , will result in the optimal path routing
can be derived as follows.

Corollary 3. I : Suppose there are n - 1 faulty links in a Q,.
Algorithm A , will route a message from a node u to another
node w via an optimal path between U and w with a probability
greater than 1 - (r , (l - r f) / (l - r ,)) , where H (u , w) = k
and r , = (n - l) /n2"- ' .

Cf"->J

cr"
Cg;J

cf"

Proof: From Theorem 3, we have

(n - 1) (n - 2) (n - k)
L (L - 1) e - . (L - k + 1)

+ where L = n2"- ' . '

n - 1 n - 2 n - k
, we get Since r , = - > - > . ..

L L - 1 L - k + l

k c,Lr:'-j 1 7 < r , + r: + . . . + r f l
j = ~ cn-l

This corollary thus follows. Q.E.D.
From Theorem 3, we derive Table I which shows the lower

1411 CHEN AND SHIN: FAULT-TOLERANT ROUTING IN HYPERCUBE MULTICOMPUTERS

bound of the probability of A , routing messages via optimal
paths (we shall henceforth call this optimal path routing)
between two nodes of Hamming distance n apart in a Q, with f
faulty links. It can be seen from Theorem 3 that A , will route a
message to its destination via an optimal path with a rather high
probability in the presence of faulty links. Notice that the
expression in Theorem 3 can also be applied to the case that the
number of faulty links is greater than n in a Q,. This is the very
reason that we included such cases as n = 3 and f = 5 in Table
I, i.e., f > n. Similarly to the case of faulty links, the perfor-
mance of A , can be analyzed in terms of node failures as
follows.

Lemma 3: Suppose there are g faulty nodes in a Q,, and
messages are to be routed from an arbitrary node u to another
node w, where H (u , w) = k . Let m B be the Hamming distance
between the obstructed node and the destination node w. Then,

P (m , = j) I ~ if 2 5 j 5 k , and P(m, = j) = 0 if

j = 1 or j > k , where N = 2" is the total number of nodes in a

Proof: Following the same reasoning as in the proof of
Lemma 2, we get P (m , > k) = 0. Besides, P(m, = 1) = 0
since the dsetination node is assumed to be nonfaulty. Next, let a
configuration and the obstructed node be defined analogously to
the case of faulty links. (Link failures are replaced by node
failures.) There are CfP2 different configurations for a Q, with
g faulty nodes since the source and destination nodes are
assumed to be nonfaulty. In order to determine P(m, = j) , we
need to count the number of configurations which lead to the
case of m B = j . By the same reasoning as the one used in the
proof of Lemma 2, the number of such configurations is less
than Cf-;'-J. Notice that we use C,"-;'-J instead of CF-;2-J
because the obstructed node must be nonfaulty, and this lemma
thus follows. Q.E.D.

From Lemma 3 and the reasoning in the proof of Theorem 3 ,
we can obtain Theorem 4 and its corollary, showing that A , can
also route a message between any pair of nonfaulty nodes in an
injured hypercube via an optimal path with a high probability.

Theorem 4: Suppose there are g faulty nodes in a Q,.
Algorithm A , will route a message from a node u to another
node w via an optimal path between u and w with a probability

greater than 1 - E:=2 g-/ , where H (u , w) = k .

e;-;' - j

e,"-'

Qn.

c N - , 3 - j

e;-2

Corollary 4. I : Suppose there are n - 1 faulty nodes in a Q,.
Algorithm A , will route a message from a node u to another
node w via an optimal path between u and w with a probability
greater than 1 - ((n - l)r2(l - r2-')/(2" - 2)(1 - r2)) ,
where H (u , w) = k , and r2 = (n - 2)/(2" - 3).

Proof: Notice that
N - 3 - j Cn- 1 - j

e:--:
(n - l) (n - 2) . . . (n - j + l) (n - j) (N - n - 1)

(N - 2) (N - 3) . . . (N - j - 2)
- -

(n - l) (n - 2) . . . (n - j + l) (n - j)
I

(N - 2) (N - 3) . - (N - j - 1)

(Since N - n - 1 I N - j - 2) .

n - 1
- 1 -

N - 2

By letting g = n - 1 in Theorem 4 we get

where N = 2". Q.E.D.
Furthermore, as it will be shown below, the expected length

of a path resulting from the use of A , is very close to that of an
optimal path, i.e., the Hamming distance between the source and
destination nodes. Before analyzing the quality of the paths
selected by A ,, it is necessary to introduce the following propo-
sition.

Proposition I : Let { pi}:= , and { qi}:= , be, respectively, two
decreasing sequences with p , = qn = 0. Suppose pi 5 qi for
1 I i I n - 1, then ~ y ~ , ' i (p , - pi+,) I xyi,'i(qi - q i+ ,) .

Proof: Let di = qi - pi for 1 5 i I n. Then, we get

, - I n - 1

i (q i - q,+,) - C i (p i - pi+,)
i = 1 i = I

(Since d i 2 0 for 1 I i I n - 1) . Q.E.D.

We can now derive the following important theorem.
Theorem 5: Let u and U be a pair of nodes with H(U, w) = n

in an injured Q, which contains n - 1 faulty links. Let H I be
the length of a path between u and w that is chosen by A , .
Then, ,??(AH,) I (n - 1)/2" ', where E (x) denotes the ex-
pected value of a random variable x , and A H , = H I - n.

Proof: Notice that P (A H , L 2i) I CI,;P(rn, = j) .
Then,

n - 1

E (A H ,) = 1 2 i P (A H , = 2 i)
i = 1

n - 1

i = 1
= 1 2 i [P (A H , 2 2 i) - P (A H , L 2(i + l))]

(By Proposition 1) .

n - l

i = 1
= 2 i ~ (m , = n - i)

(By Lemma 2 and L = n2"- ' .)
n - l

i = 1
< 1 2 (n - i) r ;

n - 1

= 2n 1 r ; -

= 2nr, + 2nr,(r , + r: + . . . + r ; - ')

i = 1

n - 1
< 2nr, = -+-. (Since nr, < 1) . Q.E.D.

1412 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 12. DECEMBER 1990

Using the same reasoning in the proof of Theorem 5, we have
the following corollary for an injured Q, with n - 1 faulty
components.

Corollary 5.1: Suppose messages are to be routed from an
arbitrary node U to another node w in an injured Q, which
contains n - 1 faulty nodes. Let H2 be the length of a path
between U and w that is chosen by A , , and let A H 2 = H2 - n ,
where H(u, w) = n. Then, E (A H 2) I: 2n(n - l) (n - 2)/(2"
- 2)(2" - 3) .

C. Depth-First Search Routing and Other Remarks
Note that in the presence of more than n - 1 faulty compo-

nents in a Q,, Algorithm A ,, due to its simplicity, cannot
ensure a faulty component not to be encountered more than
once, and thus, cannot always lead to a successful message
routing. Depth-first search can be applied to deal with the
problem of routing messages between connected pairs of non-
faulty nodes in a hypercube with an arbitrary number of faulty
components [26]. In such a case, a set of faulty components
encountered before has to be added to the message, and a more
complicated procedure is required to guide the backtracking
whenever it is forced to backtrack from a deadend. Instead of
keeping track of the entire path traveled, the depth-first search
routing can also be implemented by using a stack, in which case
the operations required for backtracking are simplified, but
additional provisions are needed to ensure that a node will not be
visited more than once. Note that our results on the performance
analysis of A , can be extended and applied to the analysis of the
depth-first search routing. In order not to distract the readers
from the main theme of this paper, we have not included here
such an extended analysis. Interested readers are referred to

Despite its limiting assumption on the number of faults, using
the concept of spare dimensions, Algorithm A , only needs to
keep an n-bit vector (tag), and is shown to be very simple and
powerful. One cannot overemphasize two important aspects of
this algorithm: the ability to route messages via optimal paths
with a high probability, and the fact that the expected length of a
resulting path is very close to the Hamming distance between the
source and destination nodes.

However, due to the absence of information at each node on
components other than its own links, the presence of a certain
faulty component is not known until a message gets to the faulty
component. This may force an intermediate node to use a spare
dimension for routing messages around the faulty component,
thus increasing the length of the actual path taken. Conse-
quently, in order to route messages more efficiently, each node
needs to be equipped with more information than that on its own
communication links such that the faulty components on a path
to the destination can be bypassed.

Iv. ROUTING WITH LIMITED GL.OBAL INFORMATION

As mentioned before, routing efficiency can be improved by
increasing each node's information on component failures. We
shall examine the effects of failure information at each node on
the efficiency of routing. First, we shall propose and analyze in
Section IV-A a routing scheme in which the condition of each
component is not only known to its adjacent nodes but also
available to those nodes one hop away from that component.
Although this scheme improves routing efficiency, the paths
chosen are not guaranteed to be the shortest. Thus, we shall in
Section IV-B investigate the information essential for the short-
est path routing. The approach of using network delay tables

[22] to the fault-tolerant routing in hypercubes with an arbitrary
number of faults will be discussed in Section IV-C.

A . Propagation of Failure Information to Neighboring
Nodes

Consider a simple modified scheme of Algorithm A, . In
addition to keeping track of the condition of its own links, every
node also makes this information available to all its neighboring
nodes. Thus, every node will know not only the condition of its
own links but also that of those links which are one hop away
from it. To use this information, the conditional statement in A
marked with (t) is modified in such a way that every intermedi-
ate node checks one more hop in the coordinate sequence of each
message, and uses a spare dimension to bypass faulty compo-
nents if necessary. From a reasoning similar to the one in the
proof of Theorem 2 , it can be verified that this modified routing
scheme can also successfully route a message to any other node
if the number of faulty components is less than n. More
specifically, the performance of this modified routing scheme
can be described by the following theorem.

Theorem 6: Suppose a message is to be routed in an injured
Q, with f faulty links from node U to node w where H (U , w)
= k . Let m, be the Hamming distance between the obstructed
node and the destination when each node is informed about the
conditions of its own links as well as those links one hop away
from the node. Then, P(m, = j) < xi= ,C/Cj-;~p;$~~l/ C j if

r 6 1

2 5 j I: min (1 + I;I, k - l } , P (m , = k) I:
I L I

C ~ = , C k C f " _ ; . ~ k - p ~ ~ ~ i / C f " , and P(m, = j) = 0 otherwise.
Proof: Let x denote the obstructed node. First, consider

the case when the obstructed node is the source node, i.e.,
mC = k . Clearly, x has k links within S Q (x , w). There will
be no optimal path from x to w if and only if each of these k
links is either faulty or connected to a neighboring node with
k - 1 faulty links toward w. Suppose x has exactly i nonfaulty
links toward w. Then, there are Cf ways to determine which of
x's links are nonfaulty. For each case, there are (k - i) + i(k
- 1) specific faulty links, thus resulting in Cj-;ik--F$2i differ-
ent configurations of faulty links. The expression for the case of
P (m , = k) thus follows.

Since every node is informed about the condition of the links
one hop away, a message will not be routed to any neighboring
node whose every link toward w is faulty. Thus, every link of
the obstructed node toward w can be faulty only when the
obstructed node is the source node. This is the very reason that
different expressions are needed for the cases of 2 5 m, I: k -
1 and mc = k . Note, however, that when m, = j # k and the
obstructed node x has i nonfaulty links toward w , these i links
are connected to those nodes with j - 1 faulty links toward w.
Therfore, from the fact that the total number of faulty links

i(j - 1) + j - 1 is less than f, we get j 5 1 + , and thus,

Q.E.D. this theorem follows.
To illustrate the improvement of routing efficiency with the

above additional information at each node, let h A (j) =
Cj-;J/Cj and h,(j) = 1:- ,C;Ct-;:J-;Jz2.i/C$. As shown in
Lemma 2 and Theorem 6, P (m , = j) I: hA(j) and P(m, =
j) I: h,(j). It can be verified that h,(j) < h A (j) for j > 2,
meaning that P(mc = j) has a smaller upper bound than P(mA
= j) . Note, however, that h,(2) > hA(2). This is based on the
fact that, under our modified routing scheme, an intermediate
node located two hops away from the destination may foresee

If1

CHEN AND SHIN: FAULT-TOLERANT ROUTING IN HYPERCUBE MULTICOMPUTERS 1413

the unreachability from itself to the destination and thus use
spare dimensions to bypass those faulty components which could
not be seen by the same intermediate node under A 1. The upper
bound of P (m , = 2) is thus greater than that of P(mA = 2) .
(Note, however, that hc(2) < h,(2) + hA(l).) Therefore, in
light of the reasoning in Theorem 5, routing efficiency is im-
proved with the additional information at each node.

Note, however, that even the above routing scheme cannot
guarantee the shortest path routing. When a pair of nodes
communicate with each other frequently, it is desirable to have
the shortest path routing, since extra hops will otherwise be
traveled during each transmission. Although each node can
always find a shortest fault-free path from itself to any other
node if it contains the information on every faulty component, it
is impractical to maintain and update such information, espe-
cially when the size of the network is very large. Therefore, it is
important to determine the information required for the shortest
path routing.

B. Routing via Shortest Paths
To reduce the amount of information at each node required

for the shortest path routing, the unnecessary propagation of
information on faulty components should be avoided. Notice that
a faulty node can be viewed as a node with its all links faulty.
Therefore, the network information kept at each node can be
represented by a set of addresses of faulty links. As will be
proved later, when the number of faulty components is less than
n in a Q,,, each node does not have to propagate the information
on faulty links to its neighboring nodes unless these faulty links
block all the optimal paths from itself to another node. In other
words, only when node U finds that all its optimal paths to
another node, say x , have been blocked by a set of faulty links
F, will node U propagate the information on F to its neighbor-
ing nodes so as to prevent them from choosing node U as a next
hop toward node x.

Note that the coordinate sequence of an optimal path from U
to w consists of H(U , w) different numbers representing those
dimensions in which U and w differ, meaning that there are
H(u ,w) ! different optimal paths from U to w. Then, we have
the following proposition, describing the effect of a link failure
on the optimal paths between the two nodes.

Proposition 2: Let N(U \ w, r) be the number of optimal
paths from U to w which traverse a link r . Then,

a) For any link r E S Q (u , w) , N (u \ w, r) = [H (u , w) -
H (u , x) - l] !H(u,x)! , where x is the one of link r's two end
nodes that is closer to U.

b) For any link r # S Q (u , w) , N (u \ w, r) = 0.
For example, if U = 0100, w = 1001, and r = 0-01, then

x = 0101 and N (u \ w, r) = 2!1! = 2. On the other hand, if
r = 0-11, then N (u \ w, r) = 0, since0-11 # S Q (u , w) = **O*.
In light of Proposition 2, we can derive the condition for a set of
faulty links to block all the optimal paths between any given pair
of nodes as follows. Let rx and ry be the relative addresses of
any two links with respect to node U . Then, the link ry is called
a downstream link of rx , written as rx < r y , if rx appears
before ry in an optimal path from U to r ; . Note that rx =
x,x,- I . . . x1 < ry = y , y , - , . * * y , iff 1) x i I y j for 1 I i
I n, where the symbol "-" is ordered such that 0 I -I 1, and
2) rx and ry are the links placed in different dimensions. This
fact results in a straightforward procedure for determining if a
link is a downstream link of another. Each node can thus store
the relative addresses of faulty links as a partially ordered set
[27] . A set of relative addresses of faulty links is called a linear

set if for any two links rx and ry in the set, either rx < ry or
ry < rx . It can be verified that an optimal path from U to w will
traverse all links in a set of links B only if B is a linear set. Let
M (u \ w, F) be the number of optimal paths from U to w which
traverse every link in F. Then, following the concept of exclu-
sion and inclusion [28], we obtain the following theorem which
can determine the number of optimal paths blocked by a set of
faulty links.

Theorem 7: Given a set of faulty links F , the number of
the optimal paths from U to w blocked by the links in F
is N (u \ w , F) = ~ ~ = l (- l) i + l m i , where mi =
C s j e F n S Q (u , W) M (~ \ w , Bi) and B j denotes a linear set of i
links.

Clearly, the condition for a set of faulty links to block all the
optimal paths between two nodes U and w is N (u \ w, F) =
H (u , w) ! . The operations of Algorithm A, can be outlined as
follows. Each node keeps the information about two types of
faulty links in the form of relative addresses. The first type,
denoted by F,, is the set of those faulty links whose status has
not yet been propagated to neighboring nodes, whereas the
second type, denoted by Fl , is the set of those faulty links whose
status has already been propagated to neighboring nodes.

Since relative addresses of faulty links of a node are kept in
that node, the information on F, must be modified in accordance
with the addresses of receiving nodes when it is propagated to
neighboring nodes. A formal description of the algorithm for the
determination and modification of link failure information is
given below.

Algorithm A : Collection of failure information for the short-
est path routing

Testing
/* Each node tests all its communication links.*/

if (the kth link of the node is faulty) then
begin

Fl := Fl U { e k } ;
for i := 1 to n do

if i # k then send ek @ e' along the ith dimen-
sion;

Propagation;
end

Receiving
/* For each node receiving the information on the failure of the
link r.*/

if r $ F then /*F = F, U Fl * /
begin

F, := F, U { r } ;
Propagation;

end
Propagation

begin
if N(0" \ r - , F) = H(O", r -) ! then

F, := F, - { r } ;
Fl := Fl U { r } ;
/* Propagate the information on the failure of r to

for i := 1 to n do send r e ei along the ith

/* Check if propagation of information on other

for all rxEFn and rESQ(O", r ;) do
if N(0" \ r ; , F) = H(O", r ;)! then

neighboring nodes. * /

dimension;

faulty links is necessary. * /

begin
/* Propagate the information on the failure

1414 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 12, DECEMBER 1990

Nodes
m
WO1
WIO
001 1
nim

TABLE 11

INJURED HYPERCUBE IN FIG. 4

hop of the message and its associated coordinate sequence. On

nate sequence of the remaining part of the path, it will check
I N F O R M A T I O N IN EACH NODE GENERATED BY ALGORITHM A, FOR T H E the other hand, when a node receives a message and the coordi-

Fo Fl
(@0l.1-01,100-] 0

0 0
1 0- 10, 1-10] 0

~nni . i -n i . i io - i 0

r l w (0-00.1 -00)

of r to neighboring nodes.*/

ith dimension;
for i := 1 to n do send rx o ei along the

F , := Fo - { r x] ;
F, := Fl U { r x } ;

end
end.

When a node receives the information on the failure of link r ,
it will update its Fo and F, accordingly, and check if any
further propagation of information on other link failures in F, is
required. For example, consider the Q4 in Fig. 4. By executing
A,, each node can determine F = F,, U Fl as well as the
information to be propagated to neighboring nodes, Fl . Table I1
shows the information to be kept in each node. Notice that the
faulty links are represented in each node by their relative
addresses with respect to the node. Then, we have the theorem
below.

Theorem 8: Under Algorithm A 2 , every node can obtain the
failure information essential for the shortest path routing as long
as the number of faulty components is less than n.

Proof: Notice that the necessary and sufficient condition
for all the optimal paths from node U to node w to be blocked is
that “for all z E SQ (U, w) reachable from U via an optimal
path, then there is no optimal path from z to w.” Since every
node propagates the corresonding failure information to its
neighboring nodes if all its optimal paths to a certain node are
blocked, the fact that every node will know if all its optimal
paths to a certain node are blocked can be proved by induction.

When node U finds all its optimal paths to w are blocked,
there are at least H(u,w) = k faulty components in SQ(u,w).
Note that there are still n - k disjoint paths of length k + 2 via
the neighboring nodes of U which are not within SQ (u,w), and
at least one of them is fault-free because there are at most n - 1
faulty components in the Q,. Since those neighboring nodes not
having any optimal path to w will propagate the corresponding
failure information to U to prevent U from choosing one of them
as a next hop, this theorem follows. Q.E.D.

Theorems 1 and 8 lead to the following corollary.
Corollary 8.1: Algorithm A can route a message from node

U to node w in H(u,w) + 2 hops as long as the number of
faulty components is less than n.

When a node needs to send a message to another node, it will
use its information on faulty components to determine the coor-
dinate sequence of a shortest fault-free path to the destinaton
node as if it had the information on every faulty component in
the entire network. Then, according to the first entry of the
coordinate sequence, the source node will determine the next

whether- the remaining path contains faulty links and permute the
order of entries in the coordinate sequence to bypass the faulty
components, if necessary.

For example, consider the injured Q,in Fig. 4. The source
node is not aware of any faulty link, and thus, routes a message
(3, [2,3,4], fm) to 01 11. However, the node 01 11 will find the
path [2,3,4] is faulty, since the path will encounter the faulty
link 0-01 whose- relative address is 0-01 /olll = 0-10. Thus, a
new nonfaulty path [3,2,4] is determined by 01 11. The message
will be routed to 0011, and then to the destination 1001 via
1011. The length of the resulting path is 4. Thus is far less than
the length of the path determined by A , , 8.

It is interesting to see that the information about an isolated
faulty link needs to be propagated only to its neighboring nodes,
whereas the information about clustered faulty links has to be
propagated a little farther to ensure each message to be routed
via a shortest path. For example, node 11 11 has to be informed
by node 1101 about the failure 0-01 (two hops away) and 1-01
(one hop away), since all the optimal paths from 1101 to OOO1
are blocked by the failure of 0-01 and 1-01. This agrees well
with our intuition, since clustered faulty components are likely
to block more optimal paths between a pair of nodes, and thus,
have to be kept by those nodes far away from them to achieve
the shortest path routing. Clearly, when the size of the hyper-
cube increases, faulty components will tend to spread out and the
size of the zone influenced by a faulty component will become
rather small relative to the size of the entire network.

Notice, however, when the number of faulty components is
more than n - 1 in a Q,, each node may not be able to gather
enough information required for the shortest path routing, since
too many faulty components may block the propagation of
failure information.

C. Routing with Delay Tables
In the presence of more than n - 1 faulty components in a

Q,,, the concept of using network delay tables,, which was
previously used in the ARPANET [22], can be applied to
accomplish the shortest path routing. Under the algorithms in
[22], every node maintains a network delay table to record the
shortest delay via each link of the node to every other node.
When a node is to send a message to another node, it will check
its network delay table and determine the next hop of the
message for the shortest path routing. A minimal delay vector
in a node, which contains the delays of the shortest paths from
that node to all the other nodes, is periodically passed to all of its
adjacent nodes as routing information. After receiving minimal
delay vectors from its adjacent nodes, every node will update its
network delay table accordingly. For example, the network
delay tables for nodes OOO, 100, and 101 in Fig. 6 are given in
Table III(a), (b), and (c), respectively. The routing information
generated by node 100 is also shown in Table III(d). As we
pointed out in [29], looping may occur in the presence of
component failures when this routing scheme is used. The
approach of using high-order routing strategies [30] can be
applied to eliminate the looping. Note that in Table I11 several
entries contain information that can be determined directly from
the regularity of the hypercube topology. It can be verified that
only those columns whose destination nodes are marked by *’s
are required to be kept in Table 111. The remaining network
information can still lead to the shortest path routing.

CHEN AND SHIN: FAULT-TOLERANT ROUTING IN HYPERCUBE MULTICOMPUTERS 1415

001 * 010 011 100 101 110’
e . , e . , w e . , w - w - 1 (001)

2 (010) 3 1 2 3 4 2 3
3 (100) 5 3 4 1 2 4 3

1 1 1

01 1

111

Fig. 6. An example Q3 for the routing scheme based on the minimal delay
tables.

ooo 001’ 010 011 101 110’ 111
1 (101) 3 4 4 3 1 3 2
2 (110) - w e . , w - - w

3 (m) 1 4 2 3 3 3 4 ,

TABLE 111
NETWORK DELAY TABLES FOR HYPERCUBE NODES I N FIG. 5 . (a) NETWORK
DELAY TABLE OF NODE OOO. (b) NETWORK DELAY TABLE OF NODE 100. (c)
NETWORK DELAY TABLE OF NODE 101. (d) ROUTING INFORMATION GENER-

ATED BY NODE 100

m
1 (100)
2 (111)
3 (110)

001 * 010 011 100 110’ 111
2 5 3 4 1 4 3
4 3 3 2 3 2 1
o o ~ ~ w o D o o ~

It is worth mentioning that when the number of faulty compo-
nents is less than n in a Q,, Algorithm A, is shown to be
capable of routing messages via shortest paths without using
network delay tables, and is thus preferred over the one based on
network delay tables. Note that it becomes very costly to main-
tain and update network delay tables as the size of a hypercube
gets large. It is therefore advantageous to use A,, whenever
possible.

V. CONCLUSION
In this paper, we have proposed and analyzed two distributed

routing schemes (A and A2), and introduced two more schemes
(using depth-first search and network delay tables), to route
messages in injured hypercube multicomputers. A , is very
simple and powerful. It requires each node to know only the
failure of its own links and uses the abundant connections in
hypercubes. Performance of this scheme has been rigorously
analyzed; we showed that this scheme is not only capable of
routing messages successfully in an injured Q, when the num-
ber of component failures is less than n, but also able to choose
a shortest path with a very high probability. To handle the case
when the total number of faults is greater than n - 1 in a Q,,
we introduced a routing scheme based on depth-first search.
However, due to the insufficient amount of information on faulty
components, these two schemes do not always guarantee the
shortest path routing.

To ensure the shortest path routing, we proposed A, which

requires each node to be equipped with more information than
that on its own links. We developed a method which determines
the failure information essential for each node to guarantee the
shortest path routing. It turns out that each node is required to
know only the condition of a relatively small number of compo-
nents in its vicinity. In case there are more than n - 1 faults in
a Q,, we can use a more expensive routing scheme based on
network delay tables.

Due to their simplicity and/or power, the fault-tolerant rout-
ing algorithms derived in this paper have high potential use for
the growing number of fault-tolerant applications on large hyper-
cube multicomputers.

REFERENCES
M.-S. Chen and K. G. Shin, “Processor allocation in an N-cube
multiprocessor using Gray codes,” IEEE Trans. Cornput., vol.
C-36, no. 12, pp. 1396-1407, Dec. 1987.
L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and
hyperbus structures for a computer network,” ZEEE Trans.
Comput., vol. C-33, no. 4, pp. 323-333, Apr. 1984.
T. F. Chan and Y. Saad, “Multigrid algorithms on the hypercube
multiprocessor,” IEEE Trans. Cornput., vol. C-35, no. 11, pp.

M . 4 . Chen and K. G. Shin, “On the relaxed squashed embed-
ding of graphs into a hypercube,” SIAM J . Cornput., vol. 18,
no. 6, pp. 1226-1244, Dec. 1989.
B. Becker and H. U. Simon, “How robust is the n-cube?,” in
Proc. 27th Annu. Syrnp. Foundations Cornput. Sci., Oct.

Y. Saad and M. H. Schultz, “Data communication in hyper-
cubes,” Dep. Comput. Sci., Yale Univ. Res. Rep. 428/85.,
1985.
C. L. Seitz, “The cosmic cube,” Cornrnun. A C M , vol. 28, no.
1, pp. 22-33, Jan. 1985.
NCUBE Corp., “NCUBE/ten: An overview,” Beaverton, OR,
Nov. 1985.
E. Chow, H. S. Madan, J . C . Peterson, D. Grunwald, and D.
Reed, “Hyperswitch network for the hypercube computer,” in
Proc. 15th Annu. Int. Syrnp. Cornput. Architecture, May
30-June 2, 1988, pp, 90-99.
D. K. Pradhan, “Fault-tolerant multiprocessor link and bus
network architectures,” IEEE Trans. Cornput., vol. C-34, no.
1, pp. 33-45, Jan. 1985.
J. G . Kuhl and S. M. Reddy, “Distributed fault tolerance for
large multiprocessor systems,” in Proc. 7th Annu. Int. Symp.
Comput. Architecture, May 1980, pp. 23-30.
A. H. Esfahanian and S. L. Hakimi, “Fault-tolerant routing in
DeBruijn communication networks,” ZEEE Trans. Cornput.,
vol. C-34, no. 9, pp. 777-788, Sept. 1985.
A. Ghafoor, T. R. Bashkow, and I. Ghafoor, “Fault-tolerance
and diagnosability of bisectional interconnection networks, ’’ in
Proc. 6th Int. Conf. Distributed Cornput. Syst., 1986, pp.

D. K. Pradhan and S. M. Reddy, “A fault-tolerant communica-
tion architecture for distributed systems,” IEEE Trans. Com-
put . , vol. C-31, no. 9 , pp. 863-870, Sept. 1982.
M.-S. Chen and K. G. Shin, “Message routing in an injured
hypercube,” in Proc. Third Conf. Hypercube Concurrent
Comput. Appl . , Jan. 1988, pp. 312-317.
-, “On hypercube fault-tolerant routing using global informa-
tion,” in Proc. Fourth Conf. Hypercube Concurrent Corn-
put . Appl., Mar. 1989, pp. 83-86.
C. K. Kim and D. A. Reed, “Adaptive packet routing in a
hypercube,” in Proc. Third Conf. Hypercube Concurrent
Comput. Appl . , Jan. 1988, pp. 625-630.
S. L. Johnsson and C . T. Ho, “Optimum broadcasting and
personalized communication in hypercubes,” ZEEE Trans.
Cornput., vol. C-38, no. 9, pp. 1249-1268, Sept. 1989.
H. Katseff, “Incomplete hypercube,” IEEE Trans. Cornput.,
vol. C-37, no. 5 , pp. 604-608, May 1988.
J. R. Armstrong and F. G. Gray, “Fault diagnosis in a Boolean
n-cube array of microprocessors,” ZEEE Trans. Cornput., vol.
C-30, no. 8, pp. 587-590, Aug. 1981.

969-977, NOV. 1986.

1986, pp. 283-291.

62-69.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 12, DECEMBER 1990 1416

M.-S. Chen and K. G. Shin, “Depth-first search approach for
fault-tolerant routing in hypercube multicomputers, ” IEEE
Trans. Parallel Distributed Syst., vol. 1, no. 2, pp. 152-159,
Apr. 1990.
J. M. McQuillan and D. C. Walden, “The ARPA network design
decisions,” Comput. Networks, vol. 1, no. 5, pp. 243-289,
Aug. 1977.
F. Harary, Graph Theory. Reading, MA: Addison-Wesley,
1969.
E. N. Gilbert, “Gray codes and paths on the N-cube,” Bell Syst.
Tech. J . , vol. 37, pp. 263-267, 1973.
Y. Saad and M. H. Schultz, “Topological properties of hyper-
cubes,” ZEEE Trans. Comput., vol. C-37, no. I , pp. 867-872,
July 1988.
A. V. Aho, J. E. Hopcroft, and J . D. Ullman, The Design and
Analysis of Computer Algorithms. Reading, MA: Addison-
Wesley, 1974.
K. A. Ross and R. B. Wright, Discrete Mathematics. Engle-
wood Cliffs, NJ.: Prentice-Hall, 1985.

[28] C. L. Liu, Introduction to Combinatorial Mathematics. New
York: McGraw Hill, 1968.

[29] K. G. Shin and M . 4 . Chen, “Performance analysis of dis-
tributed routing strategies free of ping-pong-type looping, ” IEEE
Trans. Cornput., vol. C-36, no. 2, pp. 129-137, Feb. 1987.
-, “Minimal order loop-free routing strategy,” ZEEE Trans.
Comput., vol. 39, no. 7, pp. 870-881, July 1990.

[30]

Ming-Syan Chen (S’87-M’88), for a photograph and biography, see
the January 1990 issues of this TRANSACTIONS, p. 18.

Kang G . Shin (S’75-M’78-SM’83), for a photograph and biography,
see the January 1900 issue of this TRANSACTIONS, p. 18.

