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Adaptive Fault-Tolerant Routing 
in Hypercube Multicomputers 

Ming-Syan Chen, Member, IEEE, and Kang G. Shin, Senior Member, IEEE 

Abstract-A connected hypercube with faulty links and/or nodes is 
called an injured hypercube. To enable any nonfaulty node to commu- 
nicate with any other nonfaulty node in an injured hypercube, the 
information on component failures has to be made available to non- 
faulty nodes so as to route messages around the faulty components. 

We propose first a distributed adaptive fault-tolerant routing scheme 
for an injured hypercube in which each node is required to know only 
the condition of its own links. Despite its simplicity, this scheme is 
shown to be capable of routing messages successfully in an injured 
n-dimensional hypercube as long as the number of faulty components is 
less than n. Moreover, it is proved that this scheme routes messages via 
shortest paths with a rather high probability and the expected length of 
a resulting path is very close to that of a shortest path. 

Due to the insufficient information on faulty components, however, 
the paths chosen by the above scheme may not always be the shortest. 
To guarantee all messages to be routed via shortest paths, we propose to 
equip every node with more information than that on its own links. The 
effects of this additional information on routing efficiency are analyzed, 
and the additional information to be kept at each node for the shortest 
path routing is determined. 

Index Terms-Depth-first search, distributed adaptive fault-tolerant 
routing, failure information, injured and regular hypercubes, looping 
effects, network delay tables. 

I. INTRODUCTION 

N RECENT years, advances of VLSI and computer network- I ing technologies have made it attracr,ve to build multicom- 
puter systems for numerous applications. Hypercube multicom- 
puters, among others, have been drawing considerable attention 
due mainly to their structural regularity for easy construction 
and high potential for the parallel execution of various algo- 
rithms. Numerous research projects related to hypercube archi- 
tectures, operating systems, and programming languages have 
been undertaken [ 11 - [6], and several research and commercial 
hypercube multicomputers have been built [7], [8]. 

Efficient routing of messages is a key to the performance of a 
multicomputer system. Especially, the increasing use of multi- 
computer systems for reliability-critical applications has made it 
essential to design fault-tolerant routing strategies for such sys- 
tems. By fault-tolerant routing, we mean the successful routing 

Manuscript received April 12, 1988; revised February 17, 1989. This 
work was supported in part by the Office of Naval Research under Contracts 
N00014-85-K-0122 and N00014-85-K-0531. and by NASA under Grant 

M . 4 .  Chen is with IBM Thomas J .  Watson Research Center, Yorktown 
Heights, NY 10598. 

K. G. Shin is with the Real-Time Computing Laboratory, Department of 
Electrical Engineering and Computer Science. The University of Michigan. 
Ann Arbor, MI 48109. 

NAG-1-296. 

IEEE Log Number 9040078. 

of messages between any pair of nonfaulty nodes in the presence 
of faulty components (links and/or nodes). Several important 
results on the fault-tolerant routing in various networks have 
been reported (91-[Ill. A few architectures are also proposed 
and shown to possess fault-tolerant routing capabilities [ 121 -[ 141. 
When hypercube multicomputers are to be used for reliable 
applications, they must be made to be able to route messages 
even in the presence of faulty links and nodes [9], [ 151 - [ 171. 

A connected hypercube with faulty components is called an 
injured hypercube, whereas a hypercube without faulty compo- 
nents is called a regular hypercube. It is well-known that 
routing in a regular hypercube can be handled by a systematic 
procedure [6]. Some results on improving the routing efficiency 
in regular hypercubes are reported in [18]. Routing in an 
incomplete hypercube is also shown to be straightforward [ 191. 
In a regular hypercube, each intermediate node can determine 
the next hop of a message by examining the message’s destina- 
tion address and choosing, from all its neighboring nodes, the 
one which is closest to the destination. Clearly, this can be 
accomplished by aligning the address of the source node with 
that of the destination node from right to left bit-by-bit. How- 
ever, this scheme becomes invalid in an injured hypercube, since 
the message may be routed to a faulty component. In order to 
enable nonfaulty nodes in an injured hypercube to communicate 
with one another, enough network information has to be incor- 
porated into either the message to be routed or each node in the 
network so as to route messages around the faulty components. 
Using additional hardware called a hyperswitch, a best-first 
search algorithm for routing messages in a hypercube is devel- 
oped in [9]. Several adaptive packet routing algorithms are also 
presented in [ 171, which are based on the routing strategies used 
for wide-area computer networks such as ARPANET. In addi- 
tion, various algorithms are proposed in [ 111 and [20] to broad- 
cast the information about faulty components to all the other 
nodes in a hypercube so that messages can be routed around the 
faulty components. Clearly, if each node is equipped with the 
information on all faulty components, then it can always deter- 
mine a fault-free path for every message to its destination. 
However, it is usually too costly (in space and time) to equip 
every node with the information on all faulty components, 
especially when the network is large. Hence, it is important to 
develop routing schemes which require each node to keep only 
the failure information essential for making correct routing 
decisions. 

For the reasons above, we shall develop first a routing scheme 
which requires each node to know only the condition of its own 
links. As will be seen later, this scheme attempts to route every 
message to its destination via an optimalpath which is defined 
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as a path of length equal to the Hamming distance' between the 
message's source and destination nodes. When the insufficient 
knowledge on faulty components causes a message to be sent to 
an intermediate node from which there is no optimal path to the 
destination node, an alternative path will be chosen in such a 
way that the connectivity of a hypercube is fully exploited, and 
those faulty components encountered before will not be encoun- 
tered again in future. This scheme is proven to be capable of 
routing messages between any pair of nonfaulty nodes as long as 
the total number of faulty components is less than n in an 
n-dimensional hypercube, Q,. More importantly, this scheme, 
despite its simplicity, is shown to be very powerful in that the 
probability of routing messages via shortest paths is very high 
and the expected length of a resulting path is very close to the 
optimal one. Note that the assumption that the number of faulty 
components is less than n in an injured Q, could limit the 
usefulness of the above algorithm. To remove this limitation, we 
introduce a second routing scheme based on depth-first search 
v nich requires more provisions but works in the presence of an 
arbitrary number of faulty components. The performance analy- 
sis of the routing scheme based on depth-first search can be 
found in [2  I]. 

Due to the absence of information on all faulty components in 
the network, the paths chosen by the above two schemes may 
not be shortest. The efficiency of routing (measured in terms of 
the length of a path chosen) can be improved if every nonfaulty 
node is equipped with more information than that on its own 
links, since in such a case the faulty components on the way of 
every message to its destination can be foreseen, and thus, 
bypassed. It can be observed that the abundant connections in a 
hypercube usually make routing decisions in a node unaffected 
by the failure of a component which is located far away from the 
node. Based on this observation, we shall develop a third routing 
scheme for which each node is required to keep only the 
information essential for the shortest path routing of messages. 
The information in each node required for the shortest path 
routing will be determined in light of some properties of the 
hypercube. Since the third method is again based on the assump- 
tion that the total number of faulty components is less than n in 
an injured Q,, we introduce a fourth routing scheme which uses 
network delay tables [22] and works in the presence of an 
arbitrary number of faulty components. However, this scheme 
requires each node to maintain and update a delay table, which 
could be costly for large hypercubes. 

The paper is organized as follows. Necessary notation and 
definitions are given in Section 11. We shall present in Section 111 
two adaptive fault-tolerant routing schemes whch require each 
node to know only the condition of its own links. Section IV 
presents two fault-tolerant routing schemes which require each 
node to include more information than that on its own links: one 
with propagation of failure information, and the other with 
network delay tables. Illustrative examples and some remarks 
are also given. The paper concludes with Section V. 

11. PRELIMINARIES 
An n-dimensional hypercube (or n-cube or Q,) is formally 

Definition 1: An n-cube, Q,, is defined recursively as fol- 

a) Qo is a trivial graph with one node, and 

defined as follows. 

lows. 

' TO be defined formally in the next section. 

1110 1111 

11 

1001 

Fig. 1. A Q2 with address O* 1 * in a Q4 

b) Q, = K2 X Q n - i  
where K ,  is the complete graph with two nodes, Qo is a trivial 
graph with one node, and x is the product operation of two 
graphs [23]. 

It follows from Definition 1 that a Q, contains 2" nodes and 
n2"-' links since the degree of each node in a Q, is n.  Let Z: 
be the ternary symbol set (0 ,  1, *}, where * is a don't  care 
symbol. Every subcube in a Q, can then be uniquely repre- 
sented by a string of symbols in C. Such a string of ternary 
symbols is called the address of the corresponding subcube. For 
example, the address of the subcube Q2 formed by nodes 0010, 
0011, 0110, and 0111 in a Q4 is 0*1*. Fig. 1 shows a Q2 with 
address 0*1* in a Q4. The rightmost coordinate of the address 
of a subcube will be referred to as dimension I ,  and the second 
rightmost coordinate as dimension 2, and so on. For each 
hypercube node, the communication link in dimension i is called 
the ith link of this node. For notational simplicity, each link is 
represented by a binary string with a "-" symbol in the corre- 
sponding dimension. For example, the link between nodes oo00 
and 0010 is represented by 00-0. Let r+  and r -  denote the two 
end nodes of a link r ,  where r+ ( r - )  represents the node whose 
address is obtained by changing the "-" symbol in the link's 
address to 0 (1). 

Definition 2: The Hamming distance between two hyper- 
cube nodes with addresses U = U,U,_, ... U, and w = 

w,w,- , . * . w,in a Q, is defined as 

1 ,  if U ,  # wi, 
0, if u i  = wi. 

i =  1 

where h(  ui, wi) = 

For the nature of distributed routing strategies to be pre- 
sented, it is necessary to introduce the exclusive operation 
between two binary strings, and the concept of relative address 
between two hypercube nodes. 

Definition 3: The exclusive operation of two binary strings 
q = qnqn-,  q,  and rn = m n m n - ,  . . .  m , ,  denoted by 
q Q m = r,,r,-, ... r , ,  is defined as r j  = 0 if qi = mi  and 
ri = 1 if q i  = Hi for 1 I i 5 n. 

Obviously, the exclusive operation is commutative, i.e., q Q 

m = m Q q. We use e:=, to denote k sequential exclusive 
operations. The relative address of a node U with respect to 
another node w, denoted by U,,,,, can then be determined by 
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1110 1111 

Fig. 2. An optimal path from OOO1 to 1010. 

ulw = U d w. The relative address of a subcube with respect to 
a node U can be determined by the relative addresses of all the 
nodes it contains. Let ek = enen- . . . e ,  where ek = 1 and 
ej  = 0 v j # k .  For example, 1001 e e* = 1011, 0011 = 
1010, and O*1TIool = 1*1*. 

Definition 4: The spanning subcube of two nodes U = 
U,U,-, . * U ,  and w = w,w,- , . . . w ,  in a Q,, denoted by 
SQ(u ,  w )  = S , S , - ~  . . .  s,, is defined as si = ui if ui = wi, 
and s, = * if ui # wi for 1 5 i 5 n. 

For example, when U = 0010 and w = 0111, we get 
H ( u ,  w )  = 2 and SQ (U, w) = 0*1*. It is easy to see that 
SQ(u ,  w) is the smallest subcube that contains both U and w ,  
and H ( u ,  w )  is the dimension of SQ (U, w ) .  

A path in a hypercube is represented by a sequence of nodes 
in which every two consecutive nodes are physically adjacent to 
each other in the hypercube. The number of links on a path is 
called the length of the path. An optimal path is a path whose 
length is identical to the Hamming distance between the source 
and destination nodes. A shortest path is a path of minimal 
length among all fault-free paths from the source to the destina- 
tion. Clearly, an optimal path is a shortest path, but a shortest 
path is not always an optimal path in an injured hypercube. 
Also, a link of node U is said to be toward any node w if this 
link is in an optimal path between U and w.  Note that due to the 
special structure of a hypercube, once the source node of a path 
is given, the path can be described by a coordinate sequence 
that represents the order of the dimensions in which every two 
consecutive nodes in a path differ [24]. As shown in Fig. 2, 
[OOOl, 0011,0010, 10101 is an optimal path from the source 
node OOO1 to the destination node 1010, and can also be 
represented by a coordinate sequence [ 2 ,  1,4]. In addition, we 
shall assume that the source and destination nodes are nonfaulty. 

111. ROUTING WITH INFORMATION ON LOCAL LINK 
FAILURES 

In this section, we first develop and analyze an adaptive 
routing algorithm, called Algorithm A which requires every 
node to know only the condition of its own links. This algorithm 
will be shown to successfully route messages between any pair 
of nonfaulty nodes as long as the number of faulty components is 
less than n in a Q,. As mentioned earlier, the assumption of the 
total number of faulty components to be less than n in a Q, may 
limit the usefulness of A , .  Thus, we shall introduce a secona 

U00 

1 

Fig. 3.  Four disjoint paths from oo00 to 01 11 

routing scheme based on depth-first search which works in the 
presence of an arbitrary number of faulty elements. 

A .  Description of Algorithm A ,  
Before describing Algorithm A , , it is necessary to introduce 

the following lemma which was derived in [21] to determine 
relative addresses of those nodes traversed by a given path. 

Lemma 1 [21]: Let [c , ,  c2,  * * ,  ck] be the coordinate se- 
quence of a given path in a Q, starting from node U, and 
w!,, = w,w,-, . . w ,  denote the relative address of node w 
with respect to U, where k = H ( u ,  w ) .  Then, the path specified 

For example, a path with the coordinate sequence [3,4,2] 
from 0110 will traverse nodes 0010, 1010, and then 1OOO. The 
following theorem, which was previously introduced in [25], is 
useful for our discussion that follows. 

Theorem I [25]: Let U and w be two arbitrary nodes in a Q, 
such that W ( u ,  w) = k .  Then, there are exactly n disjoint paths 
of length less than or equal to k + 2 from U to w. These paths 
are composed of k disjoint paths of length k ,  and ( n  - k )  
disjoint paths of length k + 2. 

Fig. 3 gives an example for four disjoint paths in a Q4 when 
H( U, w )  = H(0000,Olll)  = 3. Theorem 1 leads to the follow- 
ing corollary. 

Corollary 1.1: let f be the number of faulty links and g be 
the number of faulty nodes in an injured Q, such that f + g < n. 
Then, there always exists at least one path of length less than or 
equal to k + 2 between any two nonfaulty nodes U and w ,  
where H ( u ,  w )  = k .  

We can now describe Algorithm A ,  as follows. To indicate 
the destination of a message, the coordinate sequence of a path is 
sent along with the message. Additionally, each message is 
accompanied with an n-bit vector tag = d,d,-  , . . * d,  which 
keeps track of “spare dimensions” that are used to bypass faulty 
components. All bits in the tag are reset to zero when the source 
node begins the routing of a message. Therefore, such a message 
can be represented as ( k ,  [ c, , c 2 , .  . . , c k ] ,  message, tag), where 
k is the length of the remaining portion of the path and is 
updated as the message travels towards the destination. A mes- 
sage reaches its destination when k becomes zero. 

When a node receives a message, it will check the value of k 
to see if the node is the destination of the message. If not, the 
node will try to send the message along one of those dimensions 
specified in the remaining coordinate sequence. (Note that the 

by [c,, c 2 ; . . ,  ck]  ends at w if and only if ai:, e‘; = w / U ’  
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coordinate sequence will also be updated as the message travels 
through the hypercube.) Each node will attempt to route mes- 
sages via shortest paths first. However, if all the links in those 
dimensions leading to shortest paths are faulty, the node will use 
a spare dimension to route the message via an alternative path. 
(Recall that the spare dimensions are kept track of by a tag.) 
More formally, this routing scheme can be described in algorith- 
mic form as follows. 

Algorithm A,: Fault-tolerant routing algorithm to be used by 
each node only with the information on its own links. 
/* For each node receiving ( k ,  [ cI ,  c 2 , .  . a ,  c,], message, tag) 

if k = 0 then {the destination is reached!} 
*/ 

else begin 
/* Try to send the message along a dimension in the 

f o r j  := 1, k do 
remaining coordinate sequence. */ 

if (the c,th link is not faulty) then 
/* (t) is a conditional statement which will be 

----(t) 

modified later in Section IV-A. */ 
begin 

send ( k  - 1, [c,,  . . . c,-,, c,+~; ., 
c,], message, tag) along the cith link; 
stop; /* terminate Algorithm A ,  */ 

end- begin 
end-do 

/* If the algorithm is not terminated yet, all dimensions 
in the coordinate sequence are blocked because of faulty compo- 
nents and a spare dimension needs to be used. */ 

for j := 1, k do /* record all blocked dimensions in 
tag. */  

d ,  := 1 
end-60; 
h := min { i : d,  = 0, 1 5 i 5 n } ;  /* choose a spare 

d, := 1; /* update the tag * /  
send ( k  + 1, [ c,,  c2 . . . , ck, h], message, tag) along 

stop; /* terminate Algorithm A ,  */ 

dimension * /  

the hth link; 

end - begin. 
Consider the Q4 in Fig, 4, where links 0-01, 1-01, and 100- 

are faulty. Suppose a message, fm, is routed from U = 0110 
to w = 1001. The original message in U = 0110 is 
(4, [ l ,  2 ,3 ,4] ,  fm, oo00). Following the execution of A,,  node 
0110 sends (3,[2,3,4],fm,oooO) to node 0111 which then 
sends (2, [3,4], fm, oo00) to node 0101. Since the third dimen- 
sional link of 0101 is faulty, node 0101 will route 
(1,131, fm. oo00) to 1101. However, since the third dimensional 
link of 1101 is faulty, node 1101 will use the first dimension 
(tag = 0100 then), and send (2, 13, 11, fm, 0101) to 1100, which 
will, in turn, send (1, [I] ,  fm, 0101) to 10oO. Again, the first 
link of node IO00 is faulty. The second dimension (tag = 0101 
then) will be used and (2, [ I ,  21, fm, 0111) is routed to 1010. 
After this, the message will reach the destination 1001 via 101 1. 
The length of the resulting path is 8. 

B. Performance Analysis of Algorithm A ,  

The following theorem proves that Algorithm A , can route 
messages between any two nonfaulty nodes as long as the 
number of faulty components is less than n .  

Theorem 2: Algorithm A ,  can always route messages be- 
tween any two nonfaulty nodes successfully as long as the 
number of faulty components is less than n ,  i.e., f + g < n,  

1409 

1110 1111 

n 

Fig. 4. An injured Q4 where links 0-01, 1-01, and 100- are faulty 

1110 1111 

Fig. 5 .  An injured Q4 where links 0-1 1, -01 1, and 11 1 - are faulty 

where f and g are the numbers of faulty links and faulty nodes 
in a Qo, respectively. 

Proof: Note that each node will try to use a spare dimen- 
sion only when faulty components are encountered in all the 
dimensions specified by the coordinate sequence. Those faulty 
components which block the optimal paths from an intermediate 
node to the destination node and force the first use of a spare 
dimension are called type-A blocking components. On the other 
hand, a faulty component is said to be type-B if it is encoun- 
tered first after using a new spare dimension. For the example 
routing in Fig. 4, 1-01 is a type-A blocking component and 100- 
is a t y p e 4  blocking component, whereas the faulty link 0-01 is 
neither type-A nor type-B. For the example in Fig. 5 where 
U = oo00 and w = 11 11, 0-1 1 and -01 1 are type-A blocking 
components while 11 1- is a type-B blocking component. Notice 
that both the types of blocking components can be either faulty 
nodes or faulty links. Thus, it is easy to see that the number of 
both type-A and type-B blocking components in the route 
determined by A ,  usually increases as the message is routed 
towards its destination. 

Let bh be a type-B blocking component which is encountered 
first after using a new spare dimension h.  We claim that the 
blocking component b, does not belong to the set of those 
blocking components that had already been encountered before. 
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1 2 3 4 5 6 
0.916 0.818 0.700 0.557 0.386 0.182 
0.968 0.935 0.900 0.862 0.821 0.777 
0.987 0.974 0.961 0.948 0.934 0.920 

TABLE I 
LOWER BOUNDS OF THE PROBABILITIES OBTAINED FROM THEOREM 3 FOR THE 

OPTIMAL PATH ROUTING BETWEEN Two NODES OF DISTANCE n APART IN 

THE PRESENCE OF LINK FAILURES 

This claim is proved by considering two possible cases of b,: 1 )  
b, is a link of the destination node, and 2 )  b ,  is not a link of the 
destination node. In the case of l ) ,  b, is the hth link of the 
destination node. Since dh of the tag was 0 before the spare 
dimension h is used, this faulty link had definitely not been 
encountered before. In the case of 2). since b, is the blocking 
component encountered first after using the spare dimension h ,  
6 ,  and the set of previous blocking components must be located 
in the two different Q,-,'s separated by the dimension h. The 
claim is thus proved. Since a certain faulty component will not 
be encountered more than once as long as the number of faulty 
components is less than n ,  this theorem thus follows. Q.E.D. 

The corollary below follows from Theorem 2 and the fact that 
the number of hops is increased by two whenever a spare 
dimension is used. 

Corollary 2.1: Suppose k spare dimensions are used for 
routing a message from node u to node w by A , .  Then, the 
length of the resulting path is H ( u ,  w) + 2 k .  

It can be easily verified that the worst case of Algorithm A ,  
needs H ( u ,  w) + 2(n - 1) steps to send a message from U to 
w. To facilitate our presentation, the first node which is forced 
to use a spare dimension is called an obstructed node. For 
example, the obstructed nodes in the examples of Figs. 4 and 5 
are 1101 and 0011, respectively. Then we have the following 
lemma. 

Lemma 2: Suppose there are f faulty links in a Q,,, and a 
message is routed by A ,  from node u to node w, where 
H ( u ,  w) = k .  Let mA be the Hamming distance between the 
obstructed node and the destination node. Then P ( m A  = j )  5 
Cf"->J/Cf" if 1 I j 5 k ,  and P ( m ,  = j )  = 0 if j > k ,  where 
Cy" represents the combinations of choosing y out of x possibil- 
ities, Cy" = 0 when y < 0, and L = n2"-' is the number of 
links in a Q,. 

Proof: P ( m A  > k )  = 0,  since the inequality mA > k 
represents an impossible case in which a message is not directed 
towards its destination before encountering the obstructed node. 
Consider the case of 1 5 j I k and assume there are f faulty 
links in an injured Q,. Since these faults may occur at any f 
links in the Q,, there are Cf" different configurations (of faulty 
links) where L = n2"-'.  Without loss of generality, we can let 
U = 0" and w = O " - k l k .  The problem of obtaining P ( m A  = j )  
is then reduced to that of counting the number of configurations 
which lead to the case of m A  = j .  We claim that, the number of 
such configurations is less than or equal to Cj-;J. 

When mA = j ,  the obstructed node must be within the sub- 
cube O n - k * k ,  and all its j links towards w must be faulty (i.e., 
j type-A blocking components). Although there are many possi- 
ble locations of the obstructed node, according to the systematic 
procedure of A , ,  the location of the obstructed node is deter- 
mined by those nontype-A faulty links which are not within 
O n - k * k  . Suppose x = O n - k f J l k - J  is the obstructed node, then 
the j links of node x within SQ ( x ,  w) are faulty and there are 
Ck-;J different distributions of these nontype4 faulty links. 

When these nontype-A faulty links cause node y ,  instead of x ,  
to be the obstructed node, we switch the links (including faulty 
links) in SQ ( y ,  w) to those in SQ ( x ,  w), and obtain a configu- 
ration which leads to the case when the obstructed node is y and 
mA = j .  Notice that some of the Cf"->J different distributions of 
nontype-A faulty links may lead to mA > j ,  meaning that the 
number of configurations leading to mA = j is less than or equal 
to Ck-;J. This lemma thus follows. Q.E.D. 

From Lemma 2, we can obtain the following theorem, show- 
ing that Algorithm A , can route a message to the destination via 
an optimal path with a very high probability. 

Theorem 3: Suppose there are f faulty links in a Q,. 
Algorithm A ,  will route a message from a node U to another 
node w via an optimal path between U and w with a probability 

greater than 1 - E j = ,  - , where L = n2"-',  and 

H ( u ,  W )  = k .  

C&j 

cr" 
Proof: From Lemma 2, the probability that A ,  has to use 

spare dimensions is , P( mA = j )  I , - . Thus, 

the probability that A , will not use any spare dimension at all is 

1 - C j = , P ( m A  = j )  2 1 - E;=, - . Q.E.D. 

When there are n - 1 faulty links in a Q,, the lower bound 
of the probability that A ,  will result in the optimal path routing 
can be derived as follows. 

Corollary 3.  I :  Suppose there are n - 1 faulty links in a Q,. 
Algorithm A ,  will route a message from a node u to another 
node w via an optimal path between U and w with a probability 
greater than 1 - ( r , ( l  - r f ) / ( l  - r , ) ) ,  where H ( u ,  w )  = k 
and r ,  = (n - l ) /n2"- ' .  

Cf"->J 

cr" 
Cg;J 

cf" 

Proof: From Theorem 3, we have 

( n  - 1 ) ( n  - 2) ( n  - k )  
L ( L  - 1 )  e - .  ( L  - k + 1 )  

+ where L = n2"- ' .  ' 

n - 1  n - 2  n - k  
, we get Since r ,  = - > - > . .. 

L L - 1  L - k + l  

k c,Lr:'-j 1 7 < r ,  + r: + . . .  + r f l  
j = ~  cn-l 

This corollary thus follows. Q.E.D. 
From Theorem 3, we derive Table I which shows the lower 



1411 CHEN AND SHIN: FAULT-TOLERANT ROUTING IN HYPERCUBE MULTICOMPUTERS 

bound of the probability of A ,  routing messages via optimal 
paths (we shall henceforth call this optimal path routing) 
between two nodes of Hamming distance n apart in a Q, with f 
faulty links. It can be seen from Theorem 3 that A ,  will route a 
message to its destination via an optimal path with a rather high 
probability in the presence of faulty links. Notice that the 
expression in Theorem 3 can also be applied to the case that the 
number of faulty links is greater than n in a Q,. This is the very 
reason that we included such cases as n = 3 and f = 5 in Table 
I,  i.e., f > n. Similarly to the case of faulty links, the perfor- 
mance of A ,  can be analyzed in terms of node failures as 
follows. 

Lemma 3: Suppose there are g faulty nodes in a Q,, and 
messages are to be routed from an arbitrary node u to another 
node w, where H ( u ,  w) = k .  Let m B  be the Hamming distance 
between the obstructed node and the destination node w. Then, 

P ( m ,  = j )  I ~ if 2 5 j 5 k ,  and P(m,  = j )  = 0 if 

j = 1 or j > k ,  where N = 2" is the total number of nodes in a 

Proof: Following the same reasoning as in the proof of 
Lemma 2, we get P ( m ,  > k )  = 0. Besides, P(m,  = 1 )  = 0 
since the dsetination node is assumed to be nonfaulty. Next, let a 
configuration and the obstructed node be defined analogously to 
the case of faulty links. (Link failures are replaced by node 
failures.) There are CfP2 different configurations for a Q, with 
g faulty nodes since the source and destination nodes are 
assumed to be nonfaulty. In order to determine P(m, = j ) ,  we 
need to count the number of configurations which lead to the 
case of m B  = j .  By the same reasoning as the one used in the 
proof of Lemma 2, the number of such configurations is less 
than Cf-;'-J. Notice that we use C,"-;'-J instead of CF-;2-J 
because the obstructed node must be nonfaulty, and this lemma 
thus follows. Q.E.D. 

From Lemma 3 and the reasoning in the proof of Theorem 3 ,  
we can obtain Theorem 4 and its corollary, showing that A , can 
also route a message between any pair of nonfaulty nodes in an 
injured hypercube via an optimal path with a high probability. 

Theorem 4: Suppose there are g faulty nodes in a Q,. 
Algorithm A ,  will route a message from a node u to another 
node w via an optimal path between u and w with a probability 

greater than 1 - E:=2 g-/ , where H ( u ,  w) = k .  

e;-;' - j  

e,"-' 

Qn. 

c N - , 3  - j 

e;-2 

Corollary 4. I :  Suppose there are n - 1 faulty nodes in a Q,. 
Algorithm A ,  will route a message from a node u to another 
node w via an optimal path between u and w with a probability 
greater than 1 - ( ( n  - l )r2( l  - r2-')/(2" - 2)(1 - r2 ) ) ,  
where H ( u ,  w) = k ,  and r2 = ( n  - 2)/(2" - 3). 

Proof: Notice that 
N - 3 - j  Cn- 1 - j  

e:--: 
( n  - l ) ( n  - 2)  . . .  ( n  - j + l ) ( n  - j ) ( N -  n - 1 )  

( N  - 2 ) ( N  - 3)  . .  . ( N  - j - 2) 
- - 

( n  - l ) ( n  - 2) . . .  ( n  - j + l ) ( n  - j )  
I 

( N - 2 ) ( N - 3 ) . - ( N - j -  1) 

(Since N - n - 1 I N - j - 2 ) .  

n - 1  
- 1 - 

N - 2  

By letting g = n - 1 in Theorem 4 we get 

where N = 2". Q.E.D. 
Furthermore, as it will be shown below, the expected length 

of a path resulting from the use of A , is very close to that of an 
optimal path, i.e., the Hamming distance between the source and 
destination nodes. Before analyzing the quality of the paths 
selected by A ,, it is necessary to introduce the following propo- 
sition. 

Proposition I :  Let { pi}:= , and { qi}:= , be, respectively, two 
decreasing sequences with p ,  = qn = 0. Suppose pi  5 qi for 
1 I i I n - 1, then ~ y ~ , ' i ( p ,  - pi+, )  I xyi,'i(qi - q i+ , ) .  

Proof: Let di = qi - pi for 1 5 i I n. Then, we get 

, - I  n -  1 

i (q i  - q,+,) - C i ( p i  - pi+,)  
i =  1 i =  I 

(Since d i  2 0 for 1 I i I n - 1 ) .  Q.E.D. 

We can now derive the following important theorem. 
Theorem 5: Let u and U be a pair of nodes with H( U, w) = n 

in an injured Q, which contains n - 1 faulty links. Let H I  be 
the length of a path between u and w that is chosen by A , .  
Then, ,??(AH,) I ( n  - 1)/2" ', where E ( x )  denotes the ex- 
pected value of a random variable x ,  and A H ,  = H I  - n. 

Proof: Notice that P ( A H ,  L 2i )  I CI,;P(rn, = j ) .  
Then, 

n - 1  

E ( A H , )  = 1 2 i P ( A H ,  = 2 i )  
i =  1 

n -  1 

i =  1 
= 1 2 i [ P ( A H ,  2 2 i )  - P ( A H ,  L 2( i  + l ) ) ]  

(By Proposition 1) .  

n - l  

i =  1 
= 2 i ~ ( m , = n - i )  

(By Lemma 2 and L = n2"- ' . )  
n - l  

i =  1 
< 1 2 ( n  - i ) r ;  

n -  1 

= 2n 1 r ;  - 

= 2nr, + 2nr,(r ,  + r: + . . .  + r ; - ' )  

i =  1 

n - 1  
< 2nr, = -+-. (Since nr, < 1 ) .  Q.E.D. 
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Using the same reasoning in the proof of Theorem 5, we have 
the following corollary for an injured Q, with n - 1 faulty 
components. 

Corollary 5.1: Suppose messages are to be routed from an 
arbitrary node U to another node w in an injured Q, which 
contains n - 1 faulty nodes. Let H2 be the length of a path 
between U and w that is chosen by A , ,  and let A H 2  = H2 - n ,  
where H(u, w) = n. Then, E ( A H 2 )  I: 2n(n  - l ) ( n  - 2)/(2" 
- 2)(2" - 3 ) .  

C. Depth-First Search Routing and Other Remarks 
Note that in the presence of more than n - 1 faulty compo- 

nents in a Q,, Algorithm A ,, due to its simplicity, cannot 
ensure a faulty component not to be encountered more than 
once, and thus, cannot always lead to a successful message 
routing. Depth-first search can be applied to deal with the 
problem of routing messages between connected pairs of non- 
faulty nodes in a hypercube with an arbitrary number of faulty 
components [26]. In such a case, a set of faulty components 
encountered before has to be added to the message, and a more 
complicated procedure is required to guide the backtracking 
whenever it is forced to backtrack from a deadend. Instead of 
keeping track of the entire path traveled, the depth-first search 
routing can also be implemented by using a stack, in which case 
the operations required for backtracking are simplified, but 
additional provisions are needed to ensure that a node will not be 
visited more than once. Note that our results on the performance 
analysis of A ,  can be extended and applied to the analysis of the 
depth-first search routing. In order not to distract the readers 
from the main theme of this paper, we have not included here 
such an extended analysis. Interested readers are referred to 

Despite its limiting assumption on the number of faults, using 
the concept of spare dimensions, Algorithm A ,  only needs to 
keep an n-bit vector (tag), and is shown to be very simple and 
powerful. One cannot overemphasize two important aspects of 
this algorithm: the ability to route messages via optimal paths 
with a high probability, and the fact that the expected length of a 
resulting path is very close to the Hamming distance between the 
source and destination nodes. 

However, due to the absence of information at each node on 
components other than its own links, the presence of a certain 
faulty component is not known until a message gets to the faulty 
component. This may force an intermediate node to use a spare 
dimension for routing messages around the faulty component, 
thus increasing the length of the actual path taken. Conse- 
quently, in order to route messages more efficiently, each node 
needs to be equipped with more information than that on its own 
communication links such that the faulty components on a path 
to the destination can be bypassed. 

Iv. ROUTING WITH LIMITED GL.OBAL INFORMATION 

As mentioned before, routing efficiency can be improved by 
increasing each node's information on component failures. We 
shall examine the effects of failure information at each node on 
the efficiency of routing. First, we shall propose and analyze in 
Section IV-A a routing scheme in which the condition of each 
component is not only known to its adjacent nodes but also 
available to those nodes one hop away from that component. 
Although this scheme improves routing efficiency, the paths 
chosen are not guaranteed to be the shortest. Thus, we shall in 
Section IV-B investigate the information essential for the short- 
est path routing. The approach of using network delay tables 

[22] to the fault-tolerant routing in hypercubes with an arbitrary 
number of faults will be discussed in Section IV-C. 

A .  Propagation of Failure Information to Neighboring 
Nodes 

Consider a simple modified scheme of Algorithm A, .  In 
addition to keeping track of the condition of its own links, every 
node also makes this information available to all its neighboring 
nodes. Thus, every node will know not only the condition of its 
own links but also that of those links which are one hop away 
from it. To use this information, the conditional statement in A 
marked with (t) is modified in such a way that every intermedi- 
ate node checks one more hop in the coordinate sequence of each 
message, and uses a spare dimension to bypass faulty compo- 
nents if necessary. From a reasoning similar to the one in the 
proof of Theorem 2 ,  it can be verified that this modified routing 
scheme can also successfully route a message to any other node 
if the number of faulty components is less than n. More 
specifically, the performance of this modified routing scheme 
can be described by the following theorem. 

Theorem 6: Suppose a message is to be routed in an injured 
Q, with f faulty links from node U to node w where H (  U ,  w) 
= k .  Let m, be the Hamming distance between the obstructed 
node and the destination when each node is informed about the 
conditions of its own links as well as those links one hop away 
from the node. Then, P(  m, = j )  < xi= ,C/Cj-;~p;$~~l/ C j  if 

r 6 1  

2 5 j I: min ( 1  + I;I, k - l } ,  P ( m ,  = k )  I: 
I L I  

C ~ = , C k C f " _ ; . ~ k - p ~ ~ ~ i / C f " ,  and P(  m,  = j )  = 0 otherwise. 
Proof: Let x denote the obstructed node. First, consider 

the case when the obstructed node is the source node, i.e., 
mC = k .  Clearly, x has k links within S Q ( x ,  w). There will 
be no optimal path from x to w if and only if each of these k 
links is either faulty or connected to a neighboring node with 
k - 1 faulty links toward w. Suppose x has exactly i nonfaulty 
links toward w. Then, there are Cf ways to determine which of 
x's links are nonfaulty. For each case, there are ( k  - i) + i( k 
- 1 )  specific faulty links, thus resulting in Cj-;ik--F$2i differ- 
ent configurations of faulty links. The expression for the case of 
P ( m ,  = k )  thus follows. 

Since every node is informed about the condition of the links 
one hop away, a message will not be routed to any neighboring 
node whose every link toward w is faulty. Thus, every link of 
the obstructed node toward w can be faulty only when the 
obstructed node is the source node. This is the very reason that 
different expressions are needed for the cases of 2 5 m, I: k - 
1 and mc = k .  Note, however, that when m,  = j # k and the 
obstructed node x has i nonfaulty links toward w ,  these i links 
are connected to those nodes with j - 1 faulty links toward w. 
Therfore, from the fact that the total number of faulty links 

i( j - 1 )  + j - 1 is less than f, we get j 5 1 + , and thus, 

Q.E.D. this theorem follows. 
To illustrate the improvement of routing efficiency with the 

above additional information at each node, let h A ( j )  = 
Cj-;J/Cj and h,( j )  = 1:- ,C;Ct-;:J-;Jz2.i/C$. As shown in 
Lemma 2 and Theorem 6, P ( m ,  = j )  I: hA( j )  and P(m,  = 
j )  I: h,(j). It can be verified that h,(j) < h A ( j )  for j > 2, 
meaning that P(  mc = j )  has a smaller upper bound than P( mA 
= j ) .  Note, however, that h,(2) > hA(2). This is based on the 
fact that, under our modified routing scheme, an intermediate 
node located two hops away from the destination may foresee 

If1 
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the unreachability from itself to the destination and thus use 
spare dimensions to bypass those faulty components which could 
not be seen by the same intermediate node under A 1. The upper 
bound of P (  m ,  = 2 )  is thus greater than that of P(  mA = 2 ) .  
(Note, however, that hc(2) < h,(2) + hA(l).) Therefore, in 
light of the reasoning in Theorem 5, routing efficiency is im- 
proved with the additional information at each node. 

Note, however, that even the above routing scheme cannot 
guarantee the shortest path routing. When a pair of nodes 
communicate with each other frequently, it is desirable to have 
the shortest path routing, since extra hops will otherwise be 
traveled during each transmission. Although each node can 
always find a shortest fault-free path from itself to any other 
node if it contains the information on every faulty component, it 
is impractical to maintain and update such information, espe- 
cially when the size of the network is very large. Therefore, it is 
important to determine the information required for the shortest 
path routing. 

B. Routing via Shortest Paths 
To reduce the amount of information at each node required 

for the shortest path routing, the unnecessary propagation of 
information on faulty components should be avoided. Notice that 
a faulty node can be viewed as a node with its all links faulty. 
Therefore, the network information kept at each node can be 
represented by a set of addresses of faulty links. As will be 
proved later, when the number of faulty components is less than 
n in a Q,,, each node does not have to propagate the information 
on faulty links to its neighboring nodes unless these faulty links 
block all the optimal paths from itself to another node. In other 
words, only when node U finds that all its optimal paths to 
another node, say x ,  have been blocked by a set of faulty links 
F,  will node U propagate the information on F to its neighbor- 
ing nodes so as to prevent them from choosing node U as a next 
hop toward node x.  

Note that the coordinate sequence of an optimal path from U 
to w consists of H( U ,  w) different numbers representing those 
dimensions in which U and w differ, meaning that there are 
H(u ,w) !  different optimal paths from U to w. Then, we have 
the following proposition, describing the effect of a link failure 
on the optimal paths between the two nodes. 

Proposition 2: Let N( U \ w, r )  be the number of optimal 
paths from U to w which traverse a link r .  Then, 

a) For any link r E S Q ( u , w ) ,  N ( u  \ w, r )  = [ H ( u , w )  - 
H ( u , x )  - l ] !H(u,x)! ,  where x is the one of link r's two end 
nodes that is closer to U. 

b) For any link r # S Q ( u , w ) ,  N ( u  \ w, r )  = 0. 
For example, if U = 0100, w = 1001, and r = 0-01, then 

x = 0101 and N ( u  \ w, r )  = 2!1! = 2. On the other hand, if 
r = 0-11, then N ( u \  w, r )  = 0, since0-11 # S Q ( u , w )  = **O*. 
In light of Proposition 2, we can derive the condition for a set of 
faulty links to block all the optimal paths between any given pair 
of nodes as follows. Let rx and ry be the relative addresses of 
any two links with respect to node U .  Then, the link ry is called 
a downstream link of rx ,  written as rx < r y ,  if rx appears 
before ry in an optimal path from U to r ; .  Note that rx = 
x,x,- I . . . x1 < ry = y , y , - ,  . * * y ,  iff 1) x i  I y j  for 1 I i 
I n, where the symbol "-" is ordered such that 0 I -I 1, and 
2 )  rx and ry are the links placed in different dimensions. This 
fact results in a straightforward procedure for determining if a 
link is a downstream link of another. Each node can thus store 
the relative addresses of faulty links as a partially ordered set 
[27] .  A set of relative addresses of faulty links is called a linear 

set if for any two links rx and ry in the set, either rx < ry or 
ry < rx .  It can be verified that an optimal path from U to w will 
traverse all links in a set of links B only if B is a linear set. Let 
M ( u  \ w, F )  be the number of optimal paths from U to w which 
traverse every link in F.  Then, following the concept of exclu- 
sion and inclusion [28], we obtain the following theorem which 
can determine the number of optimal paths blocked by a set of 
faulty links. 

Theorem 7: Given a set of faulty links F ,  the number of 
the optimal paths from U to w blocked by the links in F 
is N ( u  \ w ,  F )  = ~ ~ = l ( - l ) i + l m i ,  where mi = 
C s j e F n S Q ( u , W ) M ( ~  \ w ,  Bi) and B j  denotes a linear set of i 
links. 

Clearly, the condition for a set of faulty links to block all the 
optimal paths between two nodes U and w is N ( u  \ w, F )  = 
H ( u , w ) ! .  The operations of Algorithm A, can be outlined as 
follows. Each node keeps the information about two types of 
faulty links in the form of relative addresses. The first type, 
denoted by F,, is the set of those faulty links whose status has 
not yet been propagated to neighboring nodes, whereas the 
second type, denoted by Fl , is the set of those faulty links whose 
status has already been propagated to neighboring nodes. 

Since relative addresses of faulty links of a node are kept in 
that node, the information on F, must be modified in accordance 
with the addresses of receiving nodes when it is propagated to 
neighboring nodes. A formal description of the algorithm for the 
determination and modification of link failure information is 
given below. 

Algorithm A : Collection of failure information for the short- 
est path routing 

Testing 
/* Each node tests all its communication links.*/ 

if (the kth link of the node is faulty) then 
begin 

Fl := Fl U { e k } ;  
for i := 1 to n do 

if i # k then send ek @ e' along the ith dimen- 
sion; 

Propagation; 
end 

Receiving 
/* For each node receiving the information on the failure of the 
link r.*/  

if r $ F  then /*F = F, U Fl * /  
begin 

F, := F, U { r } ;  
Propagation; 

end 
Propagation 

begin 
if N(0" \ r - ,  F )  = H(O", r - ) !  then 

F, := F, - { r } ;  
Fl := Fl U { r } ;  
/* Propagate the information on the failure of r to 

for i := 1 to n do send r e ei along the ith 

/* Check if propagation of information on other 

for all rxEFn and rESQ(O", r ; )  do 
if N(0" \ r ; ,  F )  = H(O", r ; )!  then 

neighboring nodes. * / 

dimension; 

faulty links is necessary. * / 

begin 
/* Propagate the information on the failure 
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Nodes 
m 
WO1 
WIO 
001 1 
nim 

TABLE 11 

INJURED HYPERCUBE IN FIG. 4 

hop of the message and its associated coordinate sequence. On 

nate sequence of the remaining part of the path, it will check 
I N F O R M A T I O N  IN EACH NODE GENERATED BY ALGORITHM A, FOR T H E  the other hand, when a node receives a message and the coordi- 

Fo Fl 
(@0l.1-01,100- ] 0 

0 0 
1 0- 10, 1-10] 0 

~nni . i -n i . i io - i  0 

r l w  (0-00.1 -00) 

of r to neighboring nodes.*/ 

ith dimension; 
for i := 1 to n do send rx o ei  along the 

F ,  := Fo - { r x ] ;  
F, := Fl U { r x } ;  

end 
end. 

When a node receives the information on the failure of link r ,  
it will update its Fo and F, accordingly, and check if any 
further propagation of information on other link failures in F, is 
required. For example, consider the Q4 in Fig. 4. By executing 
A,, each node can determine F = F,, U Fl as well as the 
information to be propagated to neighboring nodes, Fl .  Table I1 
shows the information to be kept in each node. Notice that the 
faulty links are represented in each node by their relative 
addresses with respect to the node. Then, we have the theorem 
below. 

Theorem 8: Under Algorithm A 2 ,  every node can obtain the 
failure information essential for the shortest path routing as long 
as the number of faulty components is less than n. 

Proof: Notice that the necessary and sufficient condition 
for all the optimal paths from node U to node w to be blocked is 
that “for all z E SQ (U, w )  reachable from U via an optimal 
path, then there is no optimal path from z to w.” Since every 
node propagates the corresonding failure information to its 
neighboring nodes if all its optimal paths to a certain node are 
blocked, the fact that every node will know if all its optimal 
paths to a certain node are blocked can be proved by induction. 

When node U finds all its optimal paths to w are blocked, 
there are at least H(u,w) = k faulty components in SQ(u,w).  
Note that there are still n - k disjoint paths of length k + 2 via 
the neighboring nodes of U which are not within SQ (u,w), and 
at least one of them is fault-free because there are at most n - 1 
faulty components in the Q,. Since those neighboring nodes not 
having any optimal path to w will propagate the corresponding 
failure information to U to prevent U from choosing one of them 
as a next hop, this theorem follows. Q.E.D. 

Theorems 1 and 8 lead to the following corollary. 
Corollary 8.1: Algorithm A can route a message from node 

U to node w in H(u,w) + 2 hops as long as the number of 
faulty components is less than n. 

When a node needs to send a message to another node, it will 
use its information on faulty components to determine the coor- 
dinate sequence of a shortest fault-free path to the destinaton 
node as if it had the information on every faulty component in 
the entire network. Then, according to the first entry of the 
coordinate sequence, the source node will determine the next 

whether- the remaining path contains faulty links and permute the 
order of entries in the coordinate sequence to bypass the faulty 
components, if necessary. 

For example, consider the injured Q,in Fig. 4. The source 
node is not aware of any faulty link, and thus, routes a message 
(3, [2,3,4],  fm) to 01 11. However, the node 01 11 will find the 
path [2,3,4]  is faulty, since the path will encounter the faulty 
link 0-01 whose- relative address is 0-01 /olll = 0-10. Thus, a 
new nonfaulty path [3,2,4]  is determined by 01 11. The message 
will be routed to 0011, and then to the destination 1001 via 
1011. The length of the resulting path is 4. Thus is far less than 
the length of the path determined by A , , 8. 

It is interesting to see that the information about an isolated 
faulty link needs to be propagated only to its neighboring nodes, 
whereas the information about clustered faulty links has to be 
propagated a little farther to ensure each message to be routed 
via a shortest path. For example, node 11 11 has to be informed 
by node 1101 about the failure 0-01 (two hops away) and 1-01 
(one hop away), since all the optimal paths from 1101 to OOO1 
are blocked by the failure of 0-01 and 1-01. This agrees well 
with our intuition, since clustered faulty components are likely 
to block more optimal paths between a pair of nodes, and thus, 
have to be kept by those nodes far away from them to achieve 
the shortest path routing. Clearly, when the size of the hyper- 
cube increases, faulty components will tend to spread out and the 
size of the zone influenced by a faulty component will become 
rather small relative to the size of the entire network. 

Notice, however, when the number of faulty components is 
more than n - 1 in a Q,, each node may not be able to gather 
enough information required for the shortest path routing, since 
too many faulty components may block the propagation of 
failure information. 

C. Routing with Delay Tables 
In the presence of more than n - 1 faulty components in a 

Q,,, the concept of using network delay tables,, which was 
previously used in the ARPANET [22], can be applied to 
accomplish the shortest path routing. Under the algorithms in 
[22], every node maintains a network delay table to record the 
shortest delay via each link of the node to every other node. 
When a node is to send a message to another node, it will check 
its network delay table and determine the next hop of the 
message for the shortest path routing. A minimal delay vector 
in a node, which contains the delays of the shortest paths from 
that node to all the other nodes, is periodically passed to all of its 
adjacent nodes as routing information. After receiving minimal 
delay vectors from its adjacent nodes, every node will update its 
network delay table accordingly. For example, the network 
delay tables for nodes OOO, 100, and 101 in Fig. 6 are given in 
Table III(a), (b), and (c), respectively. The routing information 
generated by node 100 is also shown in Table III(d). As we 
pointed out in [29], looping may occur in the presence of 
component failures when this routing scheme is used. The 
approach of using high-order routing strategies [30] can be 
applied to eliminate the looping. Note that in Table I11 several 
entries contain information that can be determined directly from 
the regularity of the hypercube topology. It can be verified that 
only those columns whose destination nodes are marked by *’s 
are required to be kept in Table 111. The remaining network 
information can still lead to the shortest path routing. 
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001 * 010 011 100 101 110’ 
e . , e . , w e . , w - w  - 1 (001) 

2 (010) 3 1 2 3 4 2 3  
3 (100) 5 3 4 1 2 4 3  

1 1 1  

01 1 

111 

Fig. 6. An example Q3 for the routing scheme based on the minimal delay 
tables. 

ooo 001’ 010 011 101 110’ 111 
1 (101) 3 4 4 3 1 3 2  
2 (110) - w e . , w - - w  

3 (m) 1 4  2 3 3 3 4 ,  

TABLE 111 
NETWORK DELAY TABLES FOR HYPERCUBE NODES I N  FIG. 5 .  (a) NETWORK 
DELAY TABLE OF NODE OOO. (b) NETWORK DELAY TABLE OF NODE 100. (c) 
NETWORK DELAY TABLE OF NODE 101. (d) ROUTING INFORMATION GENER- 

ATED BY NODE 100 

m 
1 (100) 
2 (111) 
3 (110) 

001 * 010 011 100 110’ 111 
2 5 3 4 1 4 3  
4 3 3 2 3 2 1  
o o ~ ~ w o D o o ~  

It is worth mentioning that when the number of faulty compo- 
nents is less than n in a Q,, Algorithm A, is shown to be 
capable of routing messages via shortest paths without using 
network delay tables, and is thus preferred over the one based on 
network delay tables. Note that it becomes very costly to main- 
tain and update network delay tables as the size of a hypercube 
gets large. It is therefore advantageous to use A,, whenever 
possible. 

V. CONCLUSION 
In this paper, we have proposed and analyzed two distributed 

routing schemes (A and A2),  and introduced two more schemes 
(using depth-first search and network delay tables), to route 
messages in injured hypercube multicomputers. A ,  is very 
simple and powerful. It requires each node to know only the 
failure of its own links and uses the abundant connections in 
hypercubes. Performance of this scheme has been rigorously 
analyzed; we showed that this scheme is not only capable of 
routing messages successfully in an injured Q, when the num- 
ber of component failures is less than n, but also able to choose 
a shortest path with a very high probability. To handle the case 
when the total number of faults is greater than n - 1 in a Q,, 
we introduced a routing scheme based on depth-first search. 
However, due to the insufficient amount of information on faulty 
components, these two schemes do not always guarantee the 
shortest path routing. 

To ensure the shortest path routing, we proposed A, which 

requires each node to be equipped with more information than 
that on its own links. We developed a method which determines 
the failure information essential for each node to guarantee the 
shortest path routing. It turns out that each node is required to 
know only the condition of a relatively small number of compo- 
nents in its vicinity. In case there are more than n - 1 faults in 
a Q,, we can use a more expensive routing scheme based on 
network delay tables. 

Due to their simplicity and/or power, the fault-tolerant rout- 
ing algorithms derived in this paper have high potential use for 
the growing number of fault-tolerant applications on large hyper- 
cube multicomputers. 
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