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ABSTRACT

A new mcthod is developed to coordinate the motion of dual robot
arms carrying a solid object, where the first robot (leader) grasps one
end of the object rigidly and the second robot (follower) is allowed
to change its grasping position at the other end of the object along
the object surface while supporting the object. It is shown that this
flexible grasping is equivalent to the addition of one more degree
of freedom (dof), giving the follower more maneuvering capabilities.
Especially, motion commands for the follower are generated by using
kinematic redundancy.

To show the utility and power of the method, an example system
with two PUMA 560 robots carrying a beam is analyzed in detail.

1 INTRODUCTION

Recently, several methods have been proposed to coordinate the con-
trol of two robot arms carrying a solid object [1] [2] {3] [4], where the
common solid object was assumed to be rigidly grasped by both arms.
The relative position and orientation of the two robot arms were fixed
during the entire exccution of the robots’ task. Under this setting,
however, some tasks such as carrying an object along a prespecified
path with two robots may not be accomplished due to the insufficient
number of degrees of freedom (dofs) available to them. Call one of
the two robots the leader and the other the follower. Consider the
motion planning for these two robots, where motion commands for
the follower are to be generated based on the leader’s motion. When
the [cader’s motion leads the follower to a singular region, or when

the motion command generated from the leader’s motion requires the

follower to violate its joint limits and/or to collide with obstacles,
the task cannot be accomplished with the invariant grasping position
unless the desired path is modified or the number of the follower’s
dof’s is increased.

In this paper, a new method to overcome the above difficulty is
proposed by relaxing the assumption of invariant grasping position of
the tollower. With this relaxation, the follower will first be shown to
be considered as a redundant manipulator without physically adding

joints to it. Then, the follower’s motion commands are generaied
by employing the kinematic control techniques commonly used for
redundant manipulators (5} [6] [7] [8]. The kinematic control of a
redundant manipulator is known to find joint angles and/or velocities
such that its end effector attains desired positions and orientations
while minimizing some cost function. The object surface is required
1o be smooth enough for the follower to change its grasping position
while keeping its (supporting) orientation and position in order not
to drop the object. This requirement may be satisfied by placing ball
bearings on the follower’s palm such that the sliding contact friction
between the follower and the object can be made sufficiently small
for the follower’s hand to move along the object surface smoothly. It
is remarked that our method may be considered as a generalization of
the Zheng and Luh’s method [1] in the sense that if the smoothness
assumption of the object does not hold, then our method reduces to
theirs.

The organization of the paper is as follows. In Section 2, a prob-
lem formulation is presented along with the definition of “supporting
orientation”. In Section 3, a solution approach is proposed by em-
ploying the control techniques for redundant manipulators. In Section
4, a numerical example is presented to show the utility and power of
our proposed method, where two PUMA 560 manipulators are con-
sidered. The paper concludes with Section 5.

2 PROBLEM FORMULATION

Consider two robots each with n joints carrying a rigid object as
shown in Fig. 1, which is too large and too long for a single robot
to handle. The task given to the two robots is to move the object
from one location to another along a prescribed path, while not ex-
ceeding joint limits and/or avoiding obstacles. Under the smoothness
assumption mentioned earlier, the problem is to determine the joint
trajectories of two robots as well as the trajectory of the follower’s
gripping position to accomplish the task.

Let (2°, y°, 2°), (2}, ¥4, 2%, and (zf, y, 27) be the coordinate
frames of object, end effectors of the leader and the follower, respec-
tively (see Fig. 1). Let ry and r be the position vectors of the origins
of (z°, y°, 2% and (2, yf, zf) with reference to (2}, 4, 2%) and
(z°, y°, 2°), respectively. Let H; and H; be the 4 x 4 homogeneous
matrices representing the coordinate frame of the object with reference
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to (z!,, ¥}, 2.) and that of the follower’s end effector with reference
to (z°, y°, z°), respectively. Also, let ¢ be an n-dimensional vec-
tor representing joint positions, and n(q), s(q), a(q) and p(q) be the
normal, sliding, approaching and position vectors of the leader with
reference to the base coordinate (zp, yp, zp). Define T(q) and
R3(q) as
4 | M@ s@ al@ p@
B@y = 6 o0 © 1 o))
and
@ 2 (0@ s@ a@] . @

Let D(t) be the 4 x 4 homogeneous matrix representing the desired
motion trajectory of the object with reference to the base coordinate.

To obtain the holonomic constraints for the two robots, define a
“supporting orientation” as a relative orientation between the two
robots or between the object and the follower in order not to drop
the object. Such a supporting orientation may vary with the type of
object. Two different cases are considered as follows.

Case 1 When the follower’s hand has to grasp the object in order to
support it (Fig. 2).

Case 2 When the follower’s hand needs to support the object without
grasping it (Fig. 3).

A supporting orientation for Case 1 may be obtained by the fol-
lowing steps (see Figs. 2 and 3).

Step 1 Suppose the equation of object surface represented in the ob-
ject coordinate (z°, y°, z°) is given by

¢r) =0, ™" <y <™
where ¢ R* — Rl is twice continuously differentiable
and r™" and r™* are the 3 x 1 vectors representing the posi-
tional limits within which the object must lie. Then, obtain the
two-dimensional surface equations of the object in the object
coordinate by projecting it onto the (z° — z°, y° - 2°) plane.

) 3)

Step 2 Obtain the center-line equation of the two-dimensional sur-

A -
faces, and let r~ = [r; r_ 7;]7 be the current position vector
of the follower’s hand with reference to the object coordinate.

. .. o A o
Then, find the derivatives % = a and %;Lv
0 -

2’ =]

4 .
= 3 at a position

Step 3 Calculate the sliding vector s™(r~) of the object at r*

sy = Laf 1T @
T liaaem
Step 4 Compute the unit vectors a*(r*) and n*(r~) with
ey A VI2)
a(r)y & ———— 5
T 6] I, = v ®
and
n'(r) 2 atr) x 5T 6)

Then, align z{ and x{ of the follower’s hand coordinate with
a"(r") and s"(r"), respectively.
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For Case 2, a supporting orientation can be obtained by a simplified
analysis of the static force equilibrium. Assume that (a) the leader’s
hand is capable of generating forces along the z, y, and z axes of the
object coordinate by grasping the one side of object firmly, (b) the
object’s mass is concentrated at its mass center, and (c) the follower’s
hand can exert force only to the normal direction of its contact point.
Also, let g be the gravitational acceleration vector and be represented
as [gt,gy,gz]T in the object coordinate, and let § £ [gI,O,O]T as
shown in Fig. 4. Further, let i, £/, M and r‘,) be force vectors of the
leader and the follower, the mass of object, and the position vector
representing the origin of (z%,y%, z,) with respect to the origin of
(o, Yo, 20), Tespectively. Then we can obtain the following static
force equilibrium eqatuion in the object coordinate:

Nxf+rxf =0, )

f+ff + Mg=0. @®)

Note that two other components M, and Mg, of Mg in the object
coordinate can be compensated by the corresponding counter-force
component of the leader’s hand force. By substituting Eq. (8) for
(7), we obtain

0 x Mg=(-rd+r) x . )

Since we assume that the follower’s hand can exert force only to
the normal direction of its contact point, the force vector ff of the
follower can be written as
/= ha'(r)), h > 0 10)
where h is a constant representing the magnitude of the force vactor.
It is nowed that after substituting Eq. (10) into Eq. (9), Eq. (9) becomes
a nonlinear equation with an unknown vector r, and an unknown
constant h. If solutions to Eq. (9) exist at r r-and h = h~,
and if the follower’s hand can be continuously positioned at such
an r*, then we can compute the sliding vector s*(r*). To see this,
consider an example shown in Fig. 4, where z¢ is aligned with zp,
making g, = g, = 0. The object surface equation is given as = = 0,
—¥Ymax < ¥ < Ymax, a0d —zmax < 2 < zmax. Then, a7(r7) = [I,O,OJT
It r‘l’ is given as [O,T?y, — zmax])T, then one can obtain

for any r-.
from Eqgs. (9) and (10):

0
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and, thus,
at
y

N (12)

o= —(
v Zmax

In this case, s*(r*) is given by

(13)

It is remarked that Steps 1 and 2 in Case 1 can be executed off-
line regardless of the movement of the object, since all the equations
related to the object are defined in the object coordinate.

Now, we can obtain the following holonomic constraints; for all
t € [to, 2],
D) =

BQHH () (149



and

BHHI)H ) = Thao')
where to and t; are the initial and final time of the desired trajec-
tory D(¢), and H;(r)) is a constant 4 x 4 matrix resulting from the
prespecified distance vector ry, and Ha(r;) is given by

(15)

s"(r2) n'(rz) a(rz) r

e T A (16)
In Egs. (14) and (15), q' and q/ are bounded as
Arin < @ < G an
and
al € @ < gl (18)

Now, the problem becomes: For given D(t), t, < t < t; and
Hi(r)), find q/(t), q7(1), and ra(t) such that Eqs. (14-18) and (3) are
satisfied for all t € [¢,,14].

It is here assumed that the leader has a sufficient number of dofs
such that Eqs. (14) and (17) can be completely solved for all
t € [to ty). Thus, we will concentrate on solving Eqs. (3), (15),
(16) and (18).

In Eq. (15), the maximum number of independent constraint equa-
tions is six as discussed in [9]. Thus, if ry is prespecified as in [1],
and each of the two robots has six dofs, then the follower’s position
g/ can be uniquely determined by the leader’s position g from the six
constraint equations. However, in our case, r; is a vector to be deter-
mined and, thus, the number of unknown variables could be greater
than that of constraint equations. This implies that the follower be
considered as a redundant manipulator with more than six dofs due
to the presence of the variable rj.

3 SOLUTION APPROACHES

A solution to the problem formulated in Section 2 will be developed
using the following steps:

o Derive the linear relationship among joint velocities and the time
derivative of the supporting position vector ry of the follower.
This relation is necessary to solve the holonomic constraint
Eqgs. (3) and (15). The supporting orientation is not updated
here to get a simple rotational velocity relationship between the
two robots.

Find the supporting position vector r; and joint vector qf of the
follower by integrating r» 2 % and q{ 2 id‘lti subject to the fol-
lower’s joint limits and the bounds of r,. The local optimization
technique developed for the control of redundant manipulators

{5] (61 {7] {8] is used for this.

Recalculate the follower's joint vector g/ 10 get the desired sup-
porting orientation with r» fixed.

Note that the above solution approach does not simultaneously cal-
culate the desired supporting orientation and r; in order to avoid the
computational complexity. Instead, we first find r; and then calcu-
late the supporting orientation. This is realistic if the object surface
is smooth and not severcly curved; otherwise, the grasping position
cannot be changed while two robots are carrying an object.
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3.1 Derivation of Linear Relationships Among Joint Ve-

locities

Consider the holonomic constraint Eq. (15) which can be rewritten as

R (@R (r1)R(r2) = RE(q) (19)

and

p@) + RE@Hr = —-RE(@Ri(ror2 + pl@).  (20)

Eqgs. (19) and (20) represent the holonomic constraints for orientation
and position, respectively.

To obtain a simple rotational velocity relationship between the two
robots, let

Ra(r2) = [s°(F) n°(r") a’(r) ] @2n

where r™ is the current supporting position vector. Then, from
Eq. (19), we know that there is no relative motion between the two
robots’ end effectors. Consequently, we can establish a linear rela-
tionship between the angular velocities of the leader and the follower
given by

Ji@hd' = J@ha! 22)
where J.(q") and J/(q/) are the 3 x n Jacobian matrices relating
the angular velocity of the leader’s and follower’s end effectors with
reference to base coordinate to ¢’ and g7, respectively.

To calculate the follower’s velocity, differentiate Eq. (20) with re-
spect to time. Then we can obtain

@) + L'@) | 4 = J@he! - Rp@) Rieo- LW, ¢

(23)
where J/(q') and J/(q”) are another 3 x n Jacobian matrices relating
the positional velocities of the leader’s and follower’s end effectors
with reference to base coordinate to ¢' and g7, respectively, and
L'(q') and L*(q',r") are respectively given by

AR (q)r]
Lid)y = B
@ a,

and )
SRE(qHR(ry)ra]

Lig',r) = oq

try=r*

To impose the constraints on ry as in Eq. (3) along with Egs. (22)
and (23), differentiate Eq. (3) with respect to time. Then, F, should

satisfy
pNT
(!9l'2> =0,

Let the moving velocity of the follower’s end effector £2 = ms™(r”),
where m is the magnitude of r; . Recall that s™(r*) has been cho-
sen to be tangential to the object surface that the follower’s hand
touches. Then, Eq. (24) becomes an inactive constraint, implying
that the magnitude of moving velocity m be a design variable.

9 _
ot -

forall ¢ € [to,t4] . (24)

By plugging Eq. (24) into Eq. (23) and combining Eq. (22) with
Eq. (23), we obtain the desired linear relationship between joint ve-
locities: )

Jra=Jd', @5)
where the 6 x (n+1) matrix J 4, 6 x n matrix J;, and (n+1) dimensional

vector q are respectively given by

@) —RE@H Rir)s™(r)

Tr=1 Jia) 0

) (26)



Jl 5y 4+ Ll ! + LZ ’,l"
5 = [ ) + LY+ L) ] o
and ) r
4= [@)7,m| @9

Note from Eq. (25) that the number of dofs is increased by one.
Thus, if the follower, like most industrial robots, has six joints,
Eq. (25) plays a role of the Jacobian equation for a redundant manip-
ulator with seven dofs. It is also noted that if r; is prespecified, then
m = 0 and, thus, Eq. (25) reduces to the Jacobian equation developed
by Zheng and Luh [1].

3.2 Use of Kinematic Redundancy

In this section, the number of the follower’s dofs is assumed to be
six. By employing the local optimization techniques commonly used
for the contro! of redundant manipulators, we will derive a solution
for the linear Eq. (25) subject to the inequality constraints on r, and

q/ in Egs. (3) and (18), respectively. Define J; as the generalized

inverse of Jy, ie., J; 4 J?(J,«J}‘)". Then a general solution of
" Eq. (25) can be given by [5]

a= g+ a - sl 29)
where 2 is an arbitrary vector lying in the null space of J;. Note that
Eq. (29) implies the relationship among joint velocities, but Eqs. (3)
and (18) are expressed in terms of position vectors. Thus, it is nec-
essary to change Egs. (3) and (18) to the inequalities imposed on
velocities.

To do so, let AT be the sampling interval and the subscript 7 denote
the ith component of the corresponding vector. Also let

in = max P = min r:nini,,,: it
Proin = 10 P b= s;(F)AT ° sy (r)AT
(30
@) F0, i = 1,2,3}
and
A N
poan = M PO AE M ATEVAT 0 s @AT
31

i) # 0, i = 1,2,3}

Here, if s;(r") = 0, then no more motion along the ith axis is gener-
ated. Noting that ry can be approximated as

[~—4

r "+ mATs(r7) , (32)

Eq. (3) is modified to
Pmin < M < Pmax - (33)

Similarly, using the first order approximation of §f, the inequality
constraints on q/ can be modified to

6qmin < Q" < 5qmax, (34)
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where 8quin and 6qmax are given by

gt
Samin & Jmin (35)

and ' ;
max 2 “"'—“Z;—q. 36)

To find Z such that the inequality constraints (33) and (34) are

satisfied, let the cost function I(é) be chosen as

1@ =4 - sac} . @37

S is a 7 x 7 positive definite weighting matrix and 6§ is a 7 x 1
vector defined by

4. £ [6q1 bqe -+ basc pe ] s (38
where 8g;., i=1, 2,...,6 and p. are given by
6gic = M‘Inﬂ i=1,2,-,6 (39)
and + )
_ Pmax Pmin (40)

pe = 5

Such a Z can be found by minimizing I(d) in Eq. (37) subject to

Eq. (29), since minimization of /(§) implies that all the joint variables
and r; be located at the centers of their motion ranges. The solution

vector Z to the minimization of I(fi) subject to Eq. (29) is given by

1
2= [a - afipsa - afip] @ i sea - s
@D

3.3 Resolved Motion for Desired Supporting Orientation

1t may be necessary to resolve the follower’s joint vector q/ into the
desired supporting orientation when the supporting position vector
ry is updated. This can be done easily by solving the follower’s
Jacobian equation as follows: first, obtain the required differential
change §w,, fw, and Sw, of the hand orientation by employiug two
rotation matrices R7(g")R(r{)Rx(r3) and R(gHR;(r)Ra(rp) as in
[9]. Then, find the corresponding differential change of the joint
vector §q7 by
sq/ = { Jp@)

-1
T
Joay) ] [0 00 bw, bw, éw,]" .

Finally, obtain the desired q/ by adding §q/ to the old ¢”.

It is remarked that the updated q/ may not satisfy the constraints
(18). In such a case, the weighting matrix S in Eq. (37) may have
to be adjusted such that heavier weights are placed on those joints
violating the limits in this updating procedure.

4 A Numerical Example

Two PUMA 560 manipulators, each of which has six rotational joints
are employed to demonstrate the utility and power of the proposed
coordination method. The task given to the two arms is to transfer
an 850 mm long rigid bar shown in Fig. 4 along a straight line path.
Numerical values used in our simulation are:



1. Link parameters and joint ranges of the PUMA 560 manipulator
are listed in Table 1.

o

. Initial joint values and initial grasping position of the follower
are tabulated in Table 2.

3. Fmin and Fma are chosen to be [0,0,017 and (0 0 400)7,
respectively.

4. The sampling interval A7 is chosen to be 31 msec.

5. The destred trajectory D(¢) with reference to the Otk coordinate
frame of the leader is given by

01 0 d)
0 0 1 690
DO =1 1 0 0 204 |
000 1
where d.(t) = 5 - 03,

6. The 7 x 7 weighting matrix S is chosen to be a diagonal matrix
given by
S = diag(1,1,1,1,1,1,s7) ,

where s7 is a constant representing the weighting for the grasping
position.

Note that these numerical values are chosen arbitrarily and the
capability of our method is independent of the choice of these values.

It is remarked that the sliding vector s™(r’) in Eq. (4) is easily
obtained as [0 O 1]7 and fixed during the entire motion for the task.
Thus, the supporting orientation in this example does not change with
time during the entire task.

Fig. 5 shows position trajectories of joint 3 of the follower for the
following three cases.

Case (a): When the grasping position vector r» of the follower is
fixed as in [1] and chosen as {0 0 450}7,

Case (b): When the proposed method is applied with s7 equal to
100,

Casc (c): When the proposed method is applied with s7 equal to
1000.

From Fig. 5, it is observed that in case (a), a portion of joint trajectory
violated the joint limit, while in cases (b) and (¢), joint trajectories lie
within the specified joint ranges as a result of moving the follower’s
hand toward the 3/4 position of the bar. Changes in the grasping
position ot cascs (b) and (c) are shown in Fig. 6. It is noted from
Figs. S and 6 that the initial joint motion in case (c) is smaller than
that in case (b). Thus, we may expect that if the initial movement
of the follower’s hand is large enough to cause the violation of the
limits of joint velocity q,{m and qxfnax, then such violations can be
avoided by adjusting the weighting matrix § together with i, and
Imax and/or by modifying Eq. (34) as

Max (Smin, G1) < 47 < mMin (Bmar, dmar) -

This example has shown that our coordination method is more
powerful and flexible than those methods in [1, 2, 3, 4].
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5 Concluding Remarks

A new method for coordinating dual robot arms was proposed, where
allowing the follower to change its grasping position was equivalent
to adding one dof to the follower without actual installation of an
additional joint motor. The method was then mathematically and nu-
merically shown to be effective for the task of carrying a solid object
along a prespecified path while avoiding the joint limits. It is worth
mentioning that our method can be considered as a generalization of
Zheng and Luh’s work [1] and can be further generalized by allow-
ing not only the follower but also the leader to change their grasping
position and orientation.

As a future work, dynamics of dual arms holding and/or supporting
a common object need to be investigated to deal with the constraints
of joint torques.
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Figure 1: Two robots handling a rigid body object.
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Figure 3: Supporting orientation when the follower
does not have to grasp the object.
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Figure 4: A 850 mm long rigid bar and hand orientations

of the leader and the follower.
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Figure 5: Position trajectories of Joint 3 of the follower.
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Figure 6: Change in the gripping position.

Joint 7 ; a; d; Joint range
(degree) | (mm) | (mm) (degree)

1 -90 0 0 -160 to +160
2 0 431.8 | 149.09 | -225t045
3 90 -20.32 0 -45 to 225
4 -90 0 43307 | -110to 170
5 90 0 0 -100 to 100
6 0 0 56.25 | -266 to 266

Table 1. Link parameters and joint range of PUMA robot.

Q @ I @] g g a2,

-164.1774 | 32.065 | -30.9446 | 0 [‘1.1204 -105.8256 | 450

Table 2. Initial joint values and gripping position of the follower.




