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ABSTRACT 

This paper addresses the problem of planning minimum time 
collision-free trajectories for a dual robot system. It is shown that 
this problem can be solved by first planning the minimum time tra- 
jectory for each robot without considering the existence of the other 
and then combining the two individual trajectories. This combina- 
tion is accomplished by delaying one of the two trajectories in such 
a way that the time required for the coordinated motion of the two 
robots is minimized while avoiding collision between them. The opti- 
mality of the proposed method is rigorously proved and the practical 
aspects of its realization are discussed. An example is also presented 
to  demonstrate our main idea. - 

In a mult-robot system, robots’ motion planning is often di- 
vided into two hierarchical levels: task planning and spatial plan- 
ning. Given a specific task as input, the task planner divides each 
task into a series of actions which are then assigned to each robot. 
At the task-planning level, it is essential to ensure a correct sequence 
of robot actions so that the task will be completed successfully and 
efficiently. Many researchers addressed this problem [7,11,6], mainly 
based on the planning methods in artificial intelligence. Because of 
the lack of information about how long it will take to perform an 
action and how the action will be performed, the resulting plans are 
usually not optimal. 

Once the actions are assigned to  each robot, the spatial planner 
determines the movements of each robot to execute these actions. 
The key problem associated with a spatial planner is how collision- 
free, optimal (in some sense) paths and trajectories can be found. 
Note that robot-path planning is concerned with the determination 
of a geometric path in a three-dimensional workspace along which 
the robot will move, while robot-trajectory planning determines the 
robot’s position and velocity along the geometric path as functions of 
time. At the spatial planning level, an optimal solution is often de- 
sirable for various reasons, such as productivity increase and quality 
assurance. 

The minimum time path planning for a single robot subject to  
the constraints on accurator torques/forces has been a long-standing 
problem. The main difficulty of this problem is that the dynam- 
ics of a robot are highly nonlinear and coupled, and the classical 
optimal control theory cannot be applied directly. One way to over- 
come this difficulty is to decompose the problem into two sequential 
subproblems: geometric path planning first and then trajectory plan- 
ning [1,9,10]. This path-trajectory decomposition has made the path 
planning problem tractable, although the resulting solution may not 
be overall optimal. One such optimal trajectory planning method, 
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called the Perturbation Tmjectory Improvement Algorithm (PTIA), 
was developed by Shin and Mckay [IO] for robust trajectory planning, 
which will, due to its simplicity, be used in this paper for planning 
the trajectories of two robots working in the same workspace. It is 
worth noting that based on this path-trajectory decomposition, Sa- 
har and Hollerbach [8] developed an overall optimal path planning 
method using joint-space tessellation and a graph search. However, 
their method suffers the problem of computational explosion when 
the grid resolution is high. Use of coarser grids for this method will 
degrade the optimality of their solution. 

When more than one robot work in the same workspace, it is 
very difficult to use the path-trajectory decomposition (that applies 
to  the single robot case), since collision avoidance must be taken 
into consideration for trajectory planning. This difficulty can be 
seen by the fact that intersection of two robots’ paths may, or may 
not, lead to a collision, depending on when each robot passes through 
the intersecting point. (This difficulty does not exist for the single 
robot case). Various approaches to the problem of planning two 
robots’ paths and trajectories have been proposed. One method is 
to assign priorities to robots and give the right-of-way to  the robot 
with higher priority. There are several ways to realize this type of 
collision avoidance, including: 

Letting one robot move out of a common workspace before the 
other enters [7,11,6]. This idea is very simple, but may be 
inefficient and its applicability is limited (e.g. assembly tasks 
with two robots are not possible since the two robots must 
sometimes be in the same workspace). 

Searching for an optimal collision-free path of the second robot 
in the configuration space-time [5] .  The application of this 
method is limited due to its computational complexity. 

Real-time collision-free pathfinding [2]. Although this kind of 
collision avoidance is highly desirable, the algorithm proposed 
in [2] can hardly be realized in practice because it is based on 
the assumption that the second robot can move in any direction 
as fast as necessary for collision avoidance, which may require 
very large, unrealizable actuator torques/forces. 

Kant and Zucker [4] proposed an approach to solving the opti- 
mal collision-free trajectory planning problem by decomposing it into 
two subproblems: (1) planning a path to avoid collision with static 
obstacles, and (2) planning the velocity along the path to  avoid colli- 
sion with moving obstacles. Like in the single robot case, the results 
obtained may not be overall optimal, but this decomposition has 
reduced the computational complexity of the problem greatly. How- 
ever, there are two main limitations to the implementation of this 
approach: (i) there are jumps in velocity, implying an infinite accel- 
eration, and (ii) no general way of obtaining the forbidden regions in 
the position x time plane was given. Moreover, these regions were 
approximated as polygons, which may not be realistic. 
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Combining the PTIA [lo] with the idea of path-velocity de- 
composition, we develop in this paper a new algorithm to gener- 
ate optimal collision-free trajectories for two robots working in the 
same workspace. The algorithm takes the actuator torque/force con- 
straints into consideration and yields a very interesting result: two 
robots will reach their goal positions in minimum time if each moves 
along the minimum time trajectory determined by PTIA and one of 
them gets delayed by a certain amount of time, td, t o  avoid collision. 
The delay t d  can be easily determined without using the forbidden 
regions in the position x time plane, making the proposed algorithm 
very simple and useful. 

This paper is organized as follows. In Section 2 we formulate the 
two-robot minimum time trajectory planning problem for which a so- 
lution is derived. The optimality of the solution is stated and proved 
in Section 3. Section 4 discusses how to  determine the minimum 
delay td and detect a collision, and addresses some other relevant 
issues. A demonstrative example is given in Section 5, and the paper 
concludes with Section 6. 

2. PRORT,ERI FORh41JLATION AND SOLITTION 
Suppose there are two robots, RI and Rz, working in the same 

workspace. The path for each robot to follow is given in parametric 
form: q; = gt(si), 0 5 s; I 1, i = 1,2, where q; is the Ri’s joint 
position vector, and s, is the parameter representing the robot’s po- 
sition. For example, s, could be the normalized arc length along the 
path. As described in [9), the trajectory planning problem for robot 
R; is to determine a function f, that relates s, to  time t by optimiz- 
ing some given objective function. The beauty of using a parametric 
representation is the reduction of the dimension of state space from 
2n to  2 for an n-jointed robot. The interested readers are referred 

Our trajectory planning problem for a dual robot system is to  de- 
termine a pair of feasible collision-free trajectories r : s; = f , ( t ) ,  i = 
1,2  such that f;(O) = 0, f i ( t te)  = 1, 9 = = 0, and 
the maximum finish time of the two robots, J(a) = maz(tl,,tz,), 
is minimized, where ti, is the (unknown) time for R; t o  complete 
the motion. A trajectory is said to  be feasible if the above terminal 
conditions are satisfied and it does not require torques beyond the 
robots’ capabilities. Clearly, a necessary condition for si = f i ( t )  to 
be a feasible trajectory is that f;(t) is C’, or continuously differen- 
tiable. A pair of trajectories r : s; = f;(t), i = 1,2, is said to be 
collision-free if V(Sl(fl(t)) n Sz(f~(t))) = 0, 0 I t 5 maz(tl,, tze) ,  
where S;(f;(t)) denotes the physical space occupied by robot Ri at 
position si = f ; ( t )  and V(S) denotes the volume of space S. Note 
that by this definition, RI does not collide with Rz if Rl slides on 
the surface of Rz. This can be easily met by “growing” robots by an 
amount determined based on the required clearance for safety. 

We propose the following solution algorithm for the above tra- 
jectory planning problem for a dual robot system, providing a pair 
of optimal feasible collision-free trajectories K’. 

to  [O]. 

ALGORITHM 1: 

Step 1: Apply the PTIA in [IO] to  derive two minimal time trajec- 
tories s1 = f;(t) and s2 = f;(t) for RI and Rz ,  respectively. 
Let f;(t) = 0, V t < 0 and f,*(t) = 1, V t > t,,, i = 1,2. 

Step 2: Let T d 1  = {tdl : t d l  2 0, SI = f ; ( t - t d l )  and sz = f;(t) are 
collision-free trajectories} and Tdz = {tdz : tdz 2 O,sl = 
ff(t) and sz = f;(t - t d z )  are collision-free trajectories}. Let 
t:; be the infimum of Td,, i = 1,2 .  

: SI = &( t )  = f;(t-t&),sz = f;(t), and r2 : s1 = 
f;(t),sz = &(t )  = f ; ( t - t&).  Then, r* = ~1 ifJ(K1) 5 J ( r z ) ,  
and r* = “2 otherwise. 

Step 3: Let 

The ideas of the above algorithm are very simple. Two indi- 
vidual trajectories for R1 and Rz were first created by using PITA. 
Then, coordination of two robots to  prevent collision was achieved 
by simply delaying one robot a certain amount of time a t  its start- 
ing position. Obviously, there could be many other ways to  avoid 

collision. For example, one robot could first move to  the intersection 
point, wait there till the other robot passes by, and then move again. 
Or both robots’ velocities could be changed during their motion to  
avoid collision. So arises a natural question: what is the best way to  
avoid collision for Algorithm 17 In the next section, we shall show 
that under certain conditions, the trajectories obtained from Algo- 
rithm 1 are optimal among all feasible collision-free trajectories if the 
maximum finish time is used as the optimazation criterion. 

3 .  OPTTRIALITY OF ALGORITITRI 1 
The optimality of the trajectories K* obtained from Algorithm 1 

can be proved by investigating some graphs on s, x t planes. For the 
convenience of our discussion, several definitions and notations are 
introduced to  represent these graphs and their relations. 

Defini t ion 1: Let s; = f,(t), 0 5 t I t i ,  be a feasible trajectory 
of R;, then the locus of si = f , ( t )  on the s; x t plane is defined as 
L(ft) = { (st>t)  : si = fi( t) ,  0 I t I t i e } .  

Defini t ion 2: Let D be a set on the s x 1 plane. Define the 
projection of D on s axis as P,(D) = {U : 3 v  such that (u,v) E D}. 
The upper boundary of D is defined as 

bd,,,,,(D) = {(u,v) : U E P s ( D ) ,  v = sup{t : ( v , t )  E D } } ,  

and the lower boundary of D is defined as 

bdl,,,,,,(D) = {(U,.): U E Ps(D) ,  v = i n f { t :  ( u , t )  E D } } .  

Defini t ion 3: Let D1, Dz be two sets on s x t plane. D1 is said 
to lie above Dz, denoted by D1 2 Dz,  (or Dz lies under D1, denoted 
by DZ 5 D1 ) if 

VS E Ps(Di)  n P,(Dz), inf  {t : ( s , t )  E Di} 2 S U P  {t  : ( ~ , t )  E Dz}. 

D1 is said to  lie left to Dz  (or Dz lies right to 0 1 )  if 

Vt E Pt(D1) n Pt(Dz), inf {S : ( ~ , t )  E Dz} 2 S U P  {S : ( ~ , t )  E 0 1 ) .  

where Pt(D1) and Pt(Dz) are projections of D1 and D2 on t axis, 
respectively. 

Defini t ion 4: Let fi ( t O f O ) ( t )  denote a feasible trajectory of R; 
that passes through the point ( t o , s o ) ,  i.e., f; ( t o , s o ) ( t o )  = SO, and 
let f: ( ta ,so)( t )  denote the minimum time feasible trajectory of R; 
obtained by delaying a certain period of time such that f,?(t,,,,)(to) = 
so. 

Obviously, L(f,*(t,,,,)(t)) lies above and left to  L(f, ( to ,so)( t ) )  for 
0 5 s I SO and L(f,*(t,,,,,(t)) lies under and right t o  L(f, ( to ,so) ( t ) )  

for so i s I 1. Further, Te( f , ’ ( to ,SO) ( t ) )  5 Tdf; (t,,,,)(t)), where 
Te(f i )  = inf { t : f i ( t )  = 1). 

Definition 5 :  For a given Rz’s trajectory sz = fz(t), define a 
region an the s1 x t plane as: 

WZ) = {(sl , t )  : s l ( s l )  n sz(fz(t)) # 0, o I s1 I 1, t 2 01. 
Then, the collision region on the s1 x t plane corresponding to  fz(t) 
is defined as: 

D u i )  = W Z )  - q m z ) ) ,  
where bd(D) denotes the boundary of D. Note that b d ( D ( f 2 ) )  cor- 
responds to  the situations in which R1 and Rz slide on each other. 
The collision region on the sz x t plane corresponding to  s1 = f l ( t )  
can be defined similarly as: 

D(f1) = Wi) - b 4 W l ) )  

where DUI) = {(sz,~) : S d s z )  n &(fi(t)) # 0, 0 I sz i I ,  t 2 0). 

The collision-free trajectory planning problem can now be stated 
as: find trajectories s1 = f ~ ( t )  and s~ = fz(l) such that L(fl) n 
D(fz) = 0 (01. L(fz) n D(f i )  = 0). 

Defini t ion 6: Let 0, = ( ( ~ 1 , s ~ )  : Sl(s l )nSz(sz)  # 0, 0 5 si 5 
1, i = 1,2} .  Then, the collision region on the SI x sz plane is defined 
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as D,  = D, - bd(D,). It is important to note that D, is independent 

Definition 7: D, is said to be strvnglg connected if V 0 I si I 
S: I 1, 0 5 5 S I  5 s:, si 5 sz 5 
si} is either connected or an empty set. It is easy to see that this 
condition is stronger than that of connectedness, but weaker than 
that of convexity of D,. 

of f i ( t ) .  

5 8% 5 1, D, n { ( s I , s z )  : 

Definition 8: Let sTin = inf Ps . (Dc) ,  sYar = SUP Ps,(Dc) ,  i = 
1,2. Define the collision zone on s; x t plane as follows: D,, = 
{ ( s ; , t )  : s?" 5 si I sYaZ}. Note that if one robot is outside the 
collision zone, no collision will occur. 

Based on the above definitions and notations, we establish a set 
of lemmas which will be used to prove the optimality of Algorithm 
1. 

Lemma 1: 

(1) Let s1 = f l ( t )  be a feasible trajectory of R I .  Then, D ( f l )  
is connected if (i) D,  is strongly connected, and (ii) f l ( t )  is 
monotone outside the collision zone D,, . 

(2) Let s~ = f ~ ( t )  be a feasible trajectory of Rz. Then, D ( f 2 )  
is connected if (i) D,  is strongly connected, and (ii) fz(t) is 
monotone outside the collision zone D,, . 

Proof: We first prove part (1) of Lemma 1. To prove D ( f l )  is con- 
nected, we need to prove that for any two points p ,  = ( s3 , tS ) ,  p ,  = 
( s 5 , t e )  E D l ( f l ) ,  3 a continuous curve C connecting ps and p e  such 
that C c D(f1) .  Without loss of generality, we can assume t ,  I 1,. 

Since p,,p, E ,D( f l ) ,  the corresponding points on s1 x t plane 
p: = ( f l ( t s ) , t s ) ,  p ,  = ( f l ( t e ) , t e )  belong to D z l .  Further, since f l ( t )  
is monotone outside D,,, the trajectory s1 = f l ( t )  can enter and 
leave D,, at most once, implying that the trajectory connecting all 
points in C' =  SI,^) : s1 = f l ( t ) , t .  5 t I t,} lies in D,, . 

Since f l ( t )  is continuously differentiable over [ t J ,  t,], there exist 
t ,  = t o  < tl < ... < t,-l < 1, = t,, 5 03 such that f l ( t )  is either 
strictly monotone or a constant over [ t ; - l , t t ] ,  i = 1,2, ..., n. Let 

Clearly, these points lie in D,, since C' C D,, . This fact, together 
with the fact that  D,  is a connected region, implies that there exist 
si (si = s;,s; = 5;) such that qy = ( f l ( t j ) , s i )  E D,, i = 1, ..., n. 
Then, the corresponding points on s~ x t plane: qo = ( s i , t o )  = 
p a ,  q1 = ( s ; , t l ) ,  ... , qn = ( s a , t n )  = pe  lie in D ( f l ) .  IVe now prove 
that there exist continuous curves C; connecting q,-1, qi such that 
Ci E D(f1 ) .  

Without loss of generality, we can assume f l ( t ; -1)  5 f l ( t , ) .  Since 
D, is strongly connected, the region D: = D, n { ( s l , s z )  : f i ( t , - l )  5 
s1 5 f l ( t , ) }  is also connected. So, there exists a continuous curve 6, 
connecting qy-l, qy and belonging to  0:. 

If f l ( t )  is strictly monotone over [t ,- l , t;] ,  its inverse function 
fTl(s1) exists and is continuous over [ f l ( t , - ~ ) , f l ( t ; ) ] .  Thus, C, = 
{ ( t , s z )  : t = f ; ' ( s l ) ,  (s1,sZ) E C,} is a continuous curve connecting 
qi-1 and qi, and Ci C D(f1). 

If f l ( t )  is a constant over [ti-l,t;], then Ci = { ( t , s z )  : ti-i I t I 
ti,sz = si} is a continuous curve connecting q,-l,q, and C, C D(f1 ) .  

Thus, C = UEICi  is a continuous curve connecting p,,p,, imply- 
ing that D ( f 1 )  is connected. 

Part (2) of Lemma 1 can be proved similarly. 0 

Lemma 2: Let II be the set of all pairs of feasible collision-free 
trajectories, and let 11, be the set of all pairs of strictly monotone 
feasible collision-free trajectories. If the collision region D,  is strongly 
connected, then 3xm E 11, such that J(A") 5 J (A) ,  VA E n. 

Proof: Let A : 51 = f i ( t ) , s z  = fZ(t) be a pair of feasible collision- 
free trajectories. We first find a strictly monotone function f l ( t )  
and an f~(t) which is monotone outside the collision zone D,  such 
that ii : s i  = f i ( t ) ,  sz = fi(t) is a pair of feasible collision-free 
trajectories and J ( i i )  I J(A). 

Let tz = min{t : fz(t) = ST'"}, t l  = max{t : fz(t) = sy in , t  < 
t z} .  Apply the PTIA to derive two minimal time trajectories sz = 

= ( h ( t o ) , t o )  = d, q; = ( f l ( t l ) , t l ) ,  "' , L = ( f l ( t n ) , t n )  = d. 

h i ( t )  such that hl( t1)  = syIn, ylt=tl = q(t=tl, vlt=h;,(0) = 

0, and $2 = hz(t )  such that h z ( t z )  = syaz. Wltzt, = qlt=t,r 
df It==h;'(o) = 0. Let 

f~") = 

0 if 0 I t < h;'(O) 
h l ( t )  if hT'(0) 5 t < tl 
f z ( t )  if t l 5  t < tz 
hz( t )  if tz 5 t < h ~ ' ( 1 ) .  1 

Clearly, fz(t) is monotone outside D,,, A' : S I  = f i ( t ) , s z  = fz(t) 
is a pair of collision free trajectories, and J(A')  5 J (A) .  

Since s2 = fi(t) is monotone outside D,,, by Lemma 1 D(f2 )  is 
a connected region. Hence, the trajectory s1 = f l ( t )  lies either left 
to  D ( f 2 )  or right to  D(f2 ) .  Let 

f; ( T e ( f , ) , l ) ( t )  if 51 = f i ( t )  lies left to D ( f z )  
f l ( t )  = { f; (om(t )  if s1 = f l ( t )  lies right to D(f2) .  

Clearly, f i ( t )  is strictly monotone , ii : s1 = f i ( t ) , s z  = fz(t) is 
a pair of collision-free trajectories, and J ( i i )  5 J(A') ,  implying that 

F?llowing the above procedure, one can further find an fz(t) such 
that fz(t) is a strictly monotone function, sm : SI = fi(t),sz = fz(t) 
is a pair of feasible collision-free trajectories, and J(A'") I: J( i i ) .  
Clearly, E II, and J ( r m )  5 J ( i i )  5 J ( r ) .  0 

Lemma 2 plays a key role in solving our two-robot trajectory 
planning problem because it allows us to consider only strictly mono- 
tone trajectories. 

Lemma 3: 

J ( i i )  5 J(7r). 

(1) Let s1 = f l ( t )  and s1 = fz(t) be two strictly monotone feasi- 
ble trajectories of R1 such that L(f1) lies under L(fz), then 
bdupper ( D (  f i  )) lies under b&pper( B( fz)). 

(2) Let s~ = f l ( t )  and s~ = fz(t) be two strictly monotone feasi- 
ble trajectories of Rz such that L ( f 1 )  lies under L( fz ) ,  then 
bdupper ( D  ( f 1  1) lies under bdupper ( D  (fz 1). 

Proof: We first prove part (1) of Lemma 3. For i = 1,2, bdupper(D(f,)) 
are two curves on the s~ x t  plane, which are denoted by t = h,(sz), s~ E 
Pa(D(fi)). TO prove that bdupper(D(f1)) lies under adupper(p(fz)),  
we only need to  prove h l ( s z )  I hz(sz),Vsz E P d ( D ( f i ) ) n  P,(D(fz)) .  
For any given s~ E P, (D( f l ) )  n P , ( n ( f ~ ) ) ,  define s; = sup {SI : 
(s1,sz) E Dc} .  Since fi(t) is strictly monotone, h,(sz) = j ; ' ( s ; ) ,  i = 
1,2. Since L(f2) lies above L ( f 1 ) ,  f;'(s;) 5 fF1(s1) .  Thus, 
h ( s z )  I hz(sz ) .  

Part (2) of Lemma 3 can be proved similarly. 0 
Lemma 3 means that if a trajectory moves up along t axis on 

s1 x t plane, then its corresponding collision region also moves up 
along t axis on sz x t plane. 

Using the above results, we can now formally state and prove the 

Theorem: Let s1 = fi(t) and s2 = fi(t) be the minimum time 
trajectories obtained in Step 1 for R1 and Rz, respectively, and a* 
be the trajectories obtained in Step 3. If (1) no collision will occur 
when at  least one robot is at  its starting position (s=O) or ending 
position (s=l ) ,  and (2) D, is strongly connected, then J(A*) 5 J ( s )  
for any feasible collision-free trajectories A : s, = f , ( t ) ,  i = 1,2. 

optimality of Algorithm 1. 

Proof: We first prove that A* is well-defined. 
Let t d l  = Te( f i ) .  Assumption (1) of the theorem implies that 

S I  = fi(t - t d l ) , ~ ~  = &(t )  is a pair of collision-free trajectories. 
Thus, Tdl # 0 because at  least it contains t d l .  Further, Tdl is lower 
bounded (2  0), so t,& = inf Tdl always exists. This proves that 
is well-defined. Symmetrically to the above, one can prove that 7r2 
is well-defined, and thus, A* is well-defined. 

It is also clear that the s* constructed in Step 3 is a pair of feasible 
collision-free trajectories. Now, we want to  prove the optimality of 
A*, or J(A*) 5 J ( r ) .  



Based on Lemma 2, we can assume that both fi(t) and f z ( t )  are 
strictly monotone. Then, D ( f 2 )  is a connected region. Since A is 
collision-free (i.e., L(fl)nD(fz) = 0), fl(t)  is strictly monotone, and 
D ( f 2 )  is connected, it is easy to  see that either L(f1) 1 D ( f 2 )  or 
D ( f 2 )  2 L(f1). Let us first prove that J ( q )  5 J ( r )  when L(f1) 2 
D(f2 ) .  (Recall that  AI is defined as s1 = &(t) = f ; ( t  - til),  sz = 
f;(t) in Step 3 of Algorithm 1 and A : s1 = fl(t), sz = fz(t) is any 
pair of feasible strictly monotone collision-free trajectories.) 

If 221 = 0, then T.(f;d) = Te(f;) < Te(fi) and Te(f;) 5 Te(fz). 
Thus, J(x1) = mas(Te(f;d), Te(&)) < maz(Te(fi), Te(fi)) = J(a). 

If til > 0, define x’ : s1 = fl(t), sz = f ; ( t ) .  Since f; is the 
minimum time trajectory, L(f;) lies under L(f2) .  iFrom Lemma 3, 
we have bdupper(fi(fz)) 2 bduppr(b(f;)). Thus, 

L(f1) 2 bdupper(fi(f2)) L bdupper(fi(f;)) 2 ~ ( f ; ) ,  

or L( f1)  lies above D(f ; ) .  
Further, from Te(fz) 2 Te(f;) (i.e., f; is the Rz’s minimum time 

trajectory) and T,(fl) = Te(fl), we have J(A) 2 J(A’). 
Now we want to  prove J ( A ~ )  5 J(A’). iFrom the definition of x1 

and A’,  we only need to prove Te(f;d) 5 Te(fl) since the trajectories 
of Rz are the samein x1 and A’. Let (so, to )  E L(f~d)nbduppe,(fi(,f~)). 
From the definition of f;d and til > 0, such a point always exists. 
Since L ( f 1 )  lies above D ( f ; ) ,  61 = f;’(so) - t o  2 0. Let fl(t) = 
f l ( t  + h t ) .  Then, Te(fi) = Te(fi) --6t 5 Te(fl). Since f1 and f;d 

intersect at  (so,to), Te(f;d) < Te(f1). then, Te(f;d) 5 Te(fi) 5 
Te(fi), i.e., J(x1) < J(A’). Thus, it can be concluded that J(x1) 5 

If D ( f 2 )  1 L(f1), then L(f2) 2 D(f1). Similarly to the above, 
J(7r’) <_ J ( x ) .  

one can prove that J(Az) 5 J ( * ) ,  making J(r*) = min(J(*l), J ( x Z ) )  5 
J ( x ) .  0 

5l-uwmu 
3.1 Determination of Minimal Delays 

Existence of an effective method t o  determine the minimum de- 
lays ti; for i = 1,2 is crucial to  the applicability of Algorithm l .  
Theoretically, t& ( t i z )  can be obtained by moving L ( f ; )  (,C(f;)) 
upward along t -ax is  until it no longer intersects the collision region 
D ( f ; )  ( D ( f ; ) ) .  However, determination of the collision region D(f:)  
is difficult in practice. So, it is necessary to  develop an alternative 
way of determining the minimum delays. 

For practical applications, we do not need the exact values of t i t .  
Often the approximate minimum delays t i i  such that 0 5 ti; -ti,  5 T 

is good enough, where r is the desired tolerance. Let s1 = f;(t) and 
$2 = f;(t) be the minimum time trajectories of RI and Rz obtained 
in Step 1 of Algorithm 1, and let T = ma2(Te(ff), T,(f;)). Then 
the approximate delay ti1 can be obtained with the following algo- 
rithm (tiz can be obtained similarly). 

A- 
S t e p  1: Set 11 = 0, 12 = T + r ,  t& = 0 

S t e p  2: Let RI and Rz move dong the trajectories ql = g l ( f ; ( t  - 
til)), qz = g z ( f ; ( t ) ) ,  respectively. Check if a collision occurs. 

S t e p  3: If no collision occurs and ti1 = 0, STOP. 

Step 4: If no collision occurs, til # 0 and tLl - tl > r ,  then let 
tz = t i l ,  til = (t1 + t z ) / 2 .  Goto Step 2. 

S t e p  5: If no collision occurs, then ti1 # 0, t i 1  - t l  5 r ,  and STOP. 

Step 6: If collision occurs, then let tl = th ,  til = (tl + t 2 ) / 2 .  Goto 

Assumption 1 in the theorem implies that  til 5 T .  Thus, the 
above algorithm will terminate within at most 1 + log2 ( T / r )  itera- 
tions. Further, the connectivity of D ( f ; )  (since f; is strictly mono- 
tone and D, is strongly connected) ensures that 0 < ti l  - t& < r ,  
i.e., the tLl is an acceptable approximate minimum delay. 

Note that for Step 2 of the above algorithm, no one would per- 
form real experiments just to check if two robots collide with each 

Step 2. 

other, because it could result in collisions between them. SO, we 
need to  devise a means of collision detection, the subject of the next 
subsection. 

3.2 Collision Detection 
Suppose two robots, R1 and Rz, move along trajectories q1 = 

ql(t) and qz = qz(t), 0 5 t < T ,  respectively. Define a collision de- 
tection function C(q1,qZ) as follows: C(q1,qZ) = 1 if R1 at position 
q1 is to  collide with Rz at posiotion 9 2 .  Otherwise, C(q1,qZ) = 0. 
Then, the following algorithm can be used to  detect a collision, i.e., 
the.algorithm returns COLLISION=l if a collision is to occur and 
COLLISION=O if no collision is to occur. 
ALGORITHM: 

S t e p  1: Set t = -r, COLLISION=O. 

S t e p  2: Let t = t+r.  If C(ql(t),qz(t)) = 0 goto Step 3. Otherwise, 
set COLLISION=l. STOP. 

S t e p  3: If 1 < T ,  goto Step 2. Otherwise, STOP. 

In the above algorithm, we assume that q1 = ql(t) and q2 = 
qz(t) are smooth trajectories so checking the discrete points t = 
O,r,2r, ..., T is enough to  detect a collision. The determination of 
C(q1,qZ) depends on the geometric relation between the two robots. 
Here, we use a simple example to show how to determine C(q1,qZ). 

Consider the configurations of two robots shown in Fig. 1. Both 
robots move in the same plane with two degrees of freedom (dofs) 
which are aligned with a polar coordinate system: angle P and and 
length T .  Both robots are modeled as straight line segments, ignoring 
the thickness of their links. 

For this example, the collision detection function C(TI,P1, rz ,Pz)  
can be determined as follows. C ( T ~ , ~ ? ~ , T Z , P Z )  = 1 if one of the 
following three conditions occurs: (1) = PZ = 0 and T I + T Z  > a; (2) 
PI = 0,Pz # 0 and T~ > a (or PZ = 0, PI # 0 and TZ > a);  (3) PlPz > 
0 and TI  > a * sin(Pz)/sin(P1 + Pz),  T Z  > a * sin(Pl)/sin(Pl + 02). 

Otherwise, C(T I ,P~ ,TZ ,PZ)  = 0. 
The method described above can be generalized to  detect colli- 

sions of robots with more than 2 dofs. Suppose each robot has an 
arbitrary number of links. Then, the collision detection function can 
be derived by examining each pair of links, one from RI and the 
other from Rz, which are located in the same plane: C(ql,qz) = 1 
if at  least one pair of links collide with each other; C(q1,qZ) = 0 
otherwise. Note that two links in different planes will not collide 
with each other. 

A more general method of determining the collision detection 
function C(q1,qZ) is to model each link as a combination of several 
polytopes (or spherical extension of polytopes) and compute the dis- 
tance between each pair of polytopes, one from RI and the other 
from Rz as was done in [3]. 

3.3 Assumptions of Theorem 
Two assumptions have been used to  prove the optimality of Al- 

gorithm l :  (Al )  no collision will occur when at least one robot is a t  
its starting position (s=O) or ending position (s=l), and (A2) D, is 
strongly connected. More specifically, A1 consists of four conditions: 

1. no collision will occur when R1 is at  its starting position. 

2. no collision will occur when R1 is at  its ending position. 

3. no collision will occur when Rz is at  its starting position. 

4. no collision will occur when Rz is at  its ending position. 

From the proof of the theorem, it is easy to  see that satisfaction 
of all these four conditions will ensure the existence of A* in Algo- 
rithm l ,  satisfaction of Conditions l and 4 will ensure the existence 
of x l ,  and satisfaction of Conditions 2 and 3 will ensure the exis- 
tence of “2. Using Algorithm 3, these four conditions can be easily 
justified in practice according to  the robots’ geometric shapes and 
predetermined paths. 

Satisfaction of A2 ensures the solutions obtained from Algorithm 
1 to be optimal. A natural approximation is to tessellate the area 



((s1,sZ) : 0 5 s1 5 1,0 5 s2 5 I} into fine grids and compute 
the values of the collision detection function for all grids. Then, the 
strong connectivity of D, can be easily dctcrmined froin these values. 

In the rest of this subsection, we will discuss the conclusions to  
be drawn after checking the assumptions of the theorem. 

Case 1: Both assumptions are satisfied. 

Algorithm 1 will give a pair of optimal feasible collision-free 
trajectories among all feasible collision-free trajectories. 

Case 2: A2 and Conditions 1 and 4 of A1 are satisfied. 

Algorithm 1 will give a pair of feasible collision-free trajectories 
with a total finish time shorter than, or equal to, that of all 
feasible collision-free trajectories for which priority is given to  
Rz . 

Case 3: A2 and Conditions 2 and 3 of A1 are satisfied. 

Algorithm 1 will give a pair of feasible collision-free trajectories 
with a total finish time shorter than, or equal to, that of all 
feasible collision-free trajectories for which priority is given to  
RI .  

Case 4: A1 is satisfied, but A2 is not. 

Algorithm 1 will give a pair of feasible collision-free trajectories 
n*. n* may, or may not, be optimal. 

Case 5: A1 is not satisfied. 

Algorithm 1 may, or may not, give a pair of feasible collision- 
free trajectories. 

Since the spatial planner can usually guarantee the satisfaction 
of A l ,  Algorithm 1 can produce a pair of feasible collision-free tra- 
jectories. 

5 .  AN EXAMPLE 
A Fortran program, called the PLANNER, has been developed 

to  implement Algorithms 1-3 and the PTIA of [lo]. The program 
takes dynamic equations, torque constraints, preassumed paths and 
geometric relations of robots as input, and outputs a pair of optimal 
feasible collision-free trajectories. In what follows we describe an 
example of using this program. 

Consider the two robot configuration of Fig. 1. Let a = 2 m 
and suppose R1 is to  move from position r1 = 1 m, p1 = n/2 to  
position r1 = 2 m, p1 = -x/2 and Rz is t o  move from position 
rz = 1 m, pz = -n/2 to  position r 2  = 2 m, pz = n/2. Let the 
preassumed paths be: r1 = 1 + S I ,  p1 = (1  - 2sl)n/2 and r2 = 
l+sz, pz = (2s*-l)n/2, 0 5 s1 5 1, 0 5 sz 5 1. Clearly, two paths 
intersect and collisions may occur between the two robots moving 
along these two paths. For simplicity, the torque constraints are 
assumed to  be Idzrl/dtzl 5 l (mz/s) ,  IdZPl/dtZI 5 3,  ld2rz/dtZI 5 

The outputs of PLANNER are plotted in Figs. 2 and 3. RI was 
delayed by 0.81 sec. and the resulting total finish time was 2.86 
sec. To see how the two robots avoid collision more clearly, their 
movements along the optimal collision-free trajectories are plotted 
in Fig. 4 and their movements along the minimum time trajectories 
obtained in Step 1 of Algorithm 1 (i.e., without delaying RI)  are 
plotted in Fig. 5. Note that a collision occurred in the latter case. 

Clearly, both assumptions of the theorem are satisfied for this 
example. Thus, from the optimality of Algorithm 1, the trajecto- 
ries obtained will ensure that two robots reach their ending positions 
along the preassumed paths in minimum time. However, because of 
the path-velocity decomposition used in the algorithm, the trajecto- 
ries may not be overall optimal. For example, the total finish time 
was reduced to  2.77 seconds when we chose the preassumed paths 
to  be rl = 1 + SI,  PI = (1  - 2s1)*/2 and r2 = 1 + sz * sZ, pz = 
(2sz - 1)7r/2, 0 5 si 5 1 ,0  5 sz I 1. This fact reveals the need of an 
algorithm for combined path and trajectory planning. IIowever, it is 
very difficult to find such an algorithm because many other factors. 

l (m2/s) ,  IdzPz/dtZI 5 2. 

like collision avoidance with static obstacles and the limitation of 
robots' reachable spaces, should be considered all together. In most 
practical applications, this non-overall optimality can be reduced to  
some extent by inputing a set of feasible paths (instead of one) to  
the PLANNER and choosing the best among them. 

6. CONCLUSIONS 
\lie have proposed an optimal collision-free trajectory planning 

algorithm for dual robot systems. The optimality of the algorithm 
has been formally stated and rigorously proved. The most impor- 
tant property of the algorithm is that it includes the dynamics of the 
two robots and their actuator constraints in the collision-free trajec- 
tory planning. This feature, together with its simplicity, has made 
the algorithm very attractive for practical use. Using the results of 
this paper, it may be possible to  develop overall optimal algorithms 
(similar to  that in [SI) for systems with more than two robots. Our 
future research will address the problem of developing optimal trajec- 
tory planning algorithms for multi-robot systems with disconnected 
collision regions. 
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Fig. 1 Configurations of a Dual Robot System 
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Fig. 5 Trajectories With Cdllision 


