MESSAGE COMMUNICATIONS IN A DISTRIBUTED REAL-TIME SYSTEM
WITH A POLLED BUS*

Kang G. Shin

Yogesh Muthuswamy

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, MI 48109-2122.

ABSTRACT

This paper addresses high-speed message communications in a dis-
tributed real-time system. Each node in the system consists of multi-
ple processors interconnected by a broadcast bus, but the individual
nodes are interconnected by an arbitrary network.

The concept of a poll number is proposed to control the access to
an intra-node bus. The bus access mechanism with the poll number
is intended to minimize the probability of real-time messages missing
their deadlines. When a task generates a time-constrained message,
a poll number associated with the message is computed based on the
message’s deadline and the task’s priority. When the bus is free, the
various tasks at a node which desire to use the bus write the poll
number onto the bus and read it back, one bit at a time, starting
from the most significant bit. If at any time the bit read back is
different from the bit written, then that particular task drops out of
the competition for the bus.

The above access mechanism provides for not only decentralized
control of the intra-node bus, but also a high degree of flexibility in
scheduling messages via different ways of generating poll numbers.
The performance of the polled bus is analyzed and then compared
with that of a token bus, which is widely used in computer-controlled
systems, e.g., computer-integrated manufacturing systems. The prob-
ability of a message missing its deadline in a token bus is found to
be much higher than that of the polled bus.

1 Introduction

The most important requirement of a real-time system is to complete
time-critical tasks before their deadlines. The probability of a task
missing its deadline, called the probability of dynamic failure in [1],
is thus an important performance parameter of any real-time system.
This probability is strongly dependent on the mechanisms used to
implement inter-task communication. The work described in this
paper is primarily targeted at minimizing the probability of a task
missing its deadline by speeding up the inter-task communication.

Due to its potential for high performance and reliability with mul-
tiplicity of processors, a distributed system is a natural candidate for
implementing real-time applications. Each node in the system is as-
sumed to consist of several processors connected via a simple, but
high-speed, communication medium, called the polled bus. Each

*The work reported in this paper was supported in part by the National Science
Foundation under grant No. DMC-8721492. Any opinions, findings, and conclu-
sions or recommeidations expressed in this publication are those of the authors and
do not necessarily reflect the view of the NSF.

0073-1129/89/0000/0703$01.00 © 1989 IEEE

703

@@@Eﬂ
= e

L |

Polled Bus
/

P - a processor in a node of the distibued sysiem

Figure 1: A model of a distributed system

processor at a node executes one or more tasks, realizing some useful,
probably time-constrained, function, e.g., controlling a robot in a
workcell node. It is often necessary that the tasks, within a node as

well on different nodes, exchange information to realize the overall
functions of the system.

The system model is depicted in Fig. 1. The model is similar
to the one described in [2], where the processors within a node are
connected by a token bus [3]. The main difference between a token
bus and the polled bus lies in their access protocols. Our system may
be used for real-time industrial control applications such as control
of a totally automated manufacturing shop, where all the functions
are done by machines with little or no human supervision. The shop
floor may consist of several workcells that have many devices which
coordinate to perform a useful industrial function. Each workcell may
be controlled by a node computer system, and the devices within a
workcell are controlled by the processors in the node. The tasks
which control the devices within a workcell typically have stringent
time constraints. All the processors which control the devices within
a workcell are placed on a single board along with a communication
processor (CP). The CP enables inter-task communication within a
node as well as across node boundaries. One such board represents

a node of the distributed real-time system.

Token bus and the polled bus may be categorized as broadcast
buses'. We do not restrict the type of interconnection between the
various processors as long as it has the broadcasting capability. Com-
munication across node boundaries does not usually have any real-
time constraints. Typically, the nodes may be connected by a token
ring local area network. The tasks communicate with each other by
message passing [4]. A protocol such as the GM’s MAP [5] may be
used for communication across node boundaries. One of the CP's
functions is to provide the protocol support for implementing com-
munications between any two tasks, which may either be in the same
node or in different nodes.

The tasks within a workcell node are responsible for real-time
devices such as robots and sensors. The tasks for controlling and
sensing these devices are inherently periodic; e.g., the task for closing
a digital servo control loop may be executed once every 100 ms and
the task for sensing and analyzing parts on a conveyor belt may have
to be executed once every 0.5 second for visual servoing. Aperiodic
tasks, albeit infrequent, also exist within a workeell, ¢.g., operator’s
commands in response to abnormal circumstances. Periodic tasks are
“base load”, whereas aperiodic tasks are “random disturbances”. The
main intent of this paper is to deal with the “base load” or periodic
tasks; treatment of aperiodic tasks is usually formulated as a dynamic
load sharing problem, which is the subject of a future paper.

The bus access mechanism used in the token bus of [6] is the to-
ken ring protocol, where a single token goes around the ring. Any
processor on the ring desirous of using the bus should capture the
ring and release it upon completion of its service. This mechanism
distributes access in a round robin manner, wherein higher priority
tasks (processors) might be forced to wait longer than necessary to
procure the bus while the lower priority tasks are accessing the bus.
This problem may partially be solved by providing multiple priori-
ties within the token passing bus scheme. In the token passing bus
method, the class of service mechanism can be used to provide prior-
itized (4 levels) access [7]. The token bus access mechanism belongs
to a class of Controlled Demand-Adaptive Multiple Access Protocols
[8]. Priority access schemes using CSMA-CD for multiple priority
message classes have also been proposed and analyzed [9). Accord-
ing to [8], these schemes belong to the class of Contention-based
Multiple Access Protocols.

The Controlled Demand-Adaptive Multiple Access Protocols can
be broadly divided into token-passing and reservation schemes 8].
The token bus is an example of a token-passing scheme. The reser-
vation scheme involves a reservation period which is divided into
slots, wherein all stations (processors) which have messages to trans-
mit post their reservation by transmitting a burst of noise during
their assigned slot. After the completion of the reservation period,
a station is selected based on a predetermined scheme known to all
stations. The reservation scheduling protocol (RSP) proposed in [10]
falls into this reservation scheme category. The RSP scheme requires
a reservation period, during which the the highest priority message
is selected (irrespective of the station it originated from), followed
by a scheduling period, during which the station is selected based on
some scheme (e.g., round robin). However, there are two drawbacks
associated with the RSP protocol. First, it requires two sequential
steps for reservation and scheduling, which induce a longer delay

! Any bus structure wherein the participants need not be aware of the other users
of the bus.

704

in message delivery than using only one short combined step. Sec-
ond, the scheduling period and the selection schemes of the RSP are
senstive to the number of stations using the channel.

To remedy the drawbacks of the RSP and a token ring bus, and
thus, to minimize the probability of a task missing its deadline, we
propose a new bus access mechanism, which is somewhat similar
to the one used in FTMP [11}. Unlike the RSP protocol [10], our
scheme combines the reservation and scheduling periods into a single
polling round. It ensures that at the end of the polling round, only
one station (processor) will have control of the bus.

In our scheme, each processor computes a poll number which is de-
termined by various factors, including the deadline and user-assigned
priorities. When a task gencrates a message service request, it waits
for the bus to complete the present request and enters a polling round
together with the other processors wanting to use the bus. After a
fixed amount of time (polling time), the processor with the highest
poll number is guaranteed to get control of the bus. This proves to
be superior to the token bus since it gives greater priority to tasks
with closer deadlines, amongst other factors. This scheme is better
than the RSP, since the polling round is not dependent on the number
of processors. In our scheme, each processor need not be aware of
the other processors’ priorities, nor of the number of such processors
contending for the bus.

Because of the nature of the bus, we refer to the intra-node bus as a
polled bus in contrast to the token bus of [6). The proposed bus access
mechanism also provides a decentralized bus control mechanism with
predictable and optimum performance parameters.

This paper is organized as follows. The polled bus access mech-
anism and the poll number design, along with the benefits of using
the poll number, are discussed in Section 2. In Section 3, the perfor-
mance of the polled bus and the token bus approaches are analyzed
and compared. The paper concludes with Section 4.

2 The Polled Bus Access Mechanism

Intra-node communications are constrained by the real-time require-
ments of the various tasks at the node. The design of the intercon-
nection mechanism for processors within the same node has to satisfy
the real-time constraints imposed by the various tasks. The intercon-
nection mechanism (bus) may be controlled by a dedicated processor
which is central to the node. This processor could then decide on the
allocation of the bus to the various tasks so that the probability of
missing deadlines is minimized. However, the failure of the central
control processor would paralyze the communications within a node
leading to a potentially disastrous situation. Hence, we propose a
bus access mechanism which provides for decentralized control of
the bus.

As mentioned ecarlier, the processors in a node are interconnected
by a broadcast bus, which enables the processors to read from and
write into the bus without being aware of the presence of other pro-
cessors. Typical examples are time-shared unibus, token ring, token
bus, etc. The general structure of a node is shown in Fig. 2. The
software executing on each processor may be partitioned into device
control and interface software. Among the important functions of the
interface software is bus access. The software implements the de-
centralized bus access algorithm which we will describe in the next
section.

In [6], a token bus interconnects the various processors within

DEVICE
CONTROL
COMPUTER

DEVICE
CONTROL
COMPUTER

Tter face

interface . e .

e
COMMONICATION
PROCESSOR

Figure 2: The structure of a single node.

a workcell node. In a token bus interconnection scheme, a token
circulates around the ring. The processor which needs to send a
message using the bus should capture the token to control the bus
and release the token for circulation as soon as it sends the message.
The token travels to the logically adjacent processor on the bus, as
in the case of a token ring.

Consider the four processors Py, P, P3 and P4 connected to the
token bus. Assume that the priorities of the tasks are such that Pr; <
Pry < Prz < Pry, where Pr; represents the priority of the task
executing on processor i. This means that P; executes the most
critical task(s). If P, sends a message and then relinquishes the bus
(token) to the next processor downstream, i.c., P, then it has to wait
the whole round before sending the next message (if any). The best
case scenario is that none of P, P;, and P; have any message to send.
The worst case occurs when all the other three of them have messages
to send. In this case, the task executing on P; may get delayed and
may even miss the deadline, which might prove catastrophic if it has
to execute a very critical task. From the above discussion, it is €asy 10
sec that the task with the highest priority among the tasks competing
for the bus should be given control of the bus. These priorities may
be user specified, or in the absence of any user specification may
be assumed to be the time left for the lapse of the deadline. In our
proposed mechanism the above scenario will not occur since the task
whose message has the closest deadline and/or the highest priority
will get the bus before any other task.

2.1 Bus Acquisition Algorithm

A high speed bus interconnects the various processors of a node. It is
assumed that the processors can detect if the bus is busy. This may be
accomplished by the use of a bus busy line. The logical structure of
the bus is circular. Whenever the bus is in use (for sending messages}
a line (busy line) is set high. All the processors connected to the bus
can sample this line.

When a processor needs to use the bus, it first samples the busy
line. If the bus is busy, the processor busy-waits for the bus. As
soon as the bus is free, the processor attempts to acquire the bus by
initiating the acquisition process. Any number of processors might try
to acquire the bus simultaneously. Each processor computes a number
(which should be unique) called the poll number, which consists of
a finite number of bits (say m bits). The number is divided into
several fields, with each field having a special significance. The
determination of the exact structure of the poll number and its design
will be discussed in the next subsection. This number is guaranteed to

705

t . present Sme (bus needed).

@ execution time (estimated).

§ : slack tme (ime teh for deadiine).
1

d : deatine
Figure 3: Defining the “slack time”.

be unique, i.e., no two processors can produce the same poll number.
This poll number is so designed that the task whose message has the
closest deadline will have the largest poll number. The bus performs
a wired-OR operation on all the signals impinging on it from the
various processors. A processor competing for the bus writes the
poll number to the bus, one bit at a time, starting with the most
significant bit. After writing each bit, it waits for a finite interval?
and samples the bus. If the value read by the processor is different
from the value it wrote into the bus, it drops out of contention for
the bus. This situation will arise only when a processor with a larger
poll number is contending for the bus. After m such rounds, the
processor with the highest poll number has sole control of the bus.

2.2 Design of the Poll Number

The poll number is computed by every task that needs to use the
bus. The design of the poll number acutely affects the performance
of the system. The algorithm does not require any state exchange
between processors thereby obviating the need for maintaining the
global system state at each node.

The main issues in the design of the poll number are :

1. The number of bits, m, used to encode the poll number and how
to ensure its uniqueness without sacrificing other information.

2. The significance and the ordering of the various fields of the poll
number so as to minimize the number of messages missing their
deadlines.

First, we shall determine the various fields of the poll number and
their relative ordering. A field is a contiguous collection of bits which
has a special significance. A field, called the uniqueness field, assigns
a unique identification number to each of the processors in a node so
that no two poll numbers will be identical in any situation. Another
field, called the deadline field, is necessary to represent the slack time
(the time left until the deadline) or some encoding of it. (See Fig. 3
for the definition of the slack time.) The user defined priorities of
the tasks is defined in the priority field. It is easily seen that the
uniqueness field design depends on the number of processors and the
priority field is related to the tasks which resides in these processors.

The ordering of these fields depends on the system design ob-
jectives. In our design we would like to minimize the number of
messages missing their deadlines. Hence, the most significant field
is the deadline field in which each message’s deadline is encoded

2To propagate and stablize the bit written on the bus. This is a function of the
physical length of the bus.

deadline priority uniqueness

' N
A 4

m bits

Figure 4:-Field structure of the poll number.

poll bit time (m Dbits)
<>

Bus Bus
busy acquired
— | —»
! tbf ! poll

Figure 5: A typical bus access cycle in a polled bus.

10 be inversely proportional to its actual deadline. The next signif-
icant field is the priority field. In a situation where two competing
tasks have the same deadline, the task with the greater user/system
assigned priority gets the bus. The least significant is the uniquenes<
field, which comes into play only when competing processors have
identical deadline and priority fields. In order to avoid biasing the
bus access towards any one processor on account of the uniqueness
numbser, the processor identification numbers which form the unique
ness field component can be assigned in a round robin fashion. The
ordering of the three fields of the poll number is shown in Fig. 4.

The number of bits in the poll number, m, will now be determined
We shall first do a simple analysis and obtain an expression for m.
Then we shall show with the help of typical numerical values that
the value obtained for m is far in excess of what is actually required.
A simple encoding® is used to obtain the poll number, in particul:
the deadline field.

Let Np,o. be the number of processors at a node, and N, ,,;, be the
number of tasks resident at the node. (If only a single task resid -«
at a single processor, then Np.oc = Nigsks.) The number of bits
needed in the uniqueness field is logy Npyo and the number of bits
needed for the priority field is loga N¢asks. Unlike the uniqueness and
priority fields, determination of the maximum number of bits needed
to represent the deadline field is not so straightforward.

Consider Fig. 5 which shows a bus access cycle. At time ¢, the
processor (or task executing on that processor) generates a messag”
and thus requires the bus to send it. The time interval between the
generation of messages is assumed to be exponentially distributed.
The processor waits for a time t; ¢ for the bus to become free. Then, it
enters the polling round, irrespective of whether it has any competitor

3Other encodings, which might result in a better performance, are possible.

706

ornot. The polling round consists of m poll bit times, where each poll
bit time consists of a write, an interval 10 stablize the bit written on the
bus, and a read by the processors involved. Let the time taken for each
polling round be #,,y;, which is a linear function of m. It is necessary
that all the processors in the same node be tightly synchronized, which
can be accomplished via hardware clock synchronization similar to
the one in [12]. After a processor gains control of the bus it sets the
bus busy line high.

A polling round is necessary before every message is serviced. It
will be shown later that the overhead caused by polling is insignif-
icant. Recall that the tasks executing in the various processors at a
node are assumed to be periodic. Let P, denote the maximum
period of all the periodic tasks* resident at that node. The deadline
field will have to be large enough to represent this, since this is the
largest possible deadline, though actual message deadlines are usually
much smaller than P,,,,,.

The resolution of the deadline field has to be determined. If all
system time is counted in number of clock cycles, then the minimum
resolution necessary is t,o; cycles (the time taken for the polling
round in clock cycles). A finer resolution than this will not serve
any purpose, since it takes at least t,,; cycles for the processor to
get the bus. At least one bit of the poll number should change every
tpout Cycles. For example, in the Fault-Tolerant Multiprocessor [11],
the polling round takes 9 bit cycles. In this case, the LSB of the
poll number’s deadline field would represent the time period of 9 bit
cycles or more.

The maximum number of bits needed in the deadline field is given
by logs (Pmaz/tpon). The polling time is a linear function of the
number of poll bit times in the polling round, which is the same as
the number of bits m in the poll number. Thus t,,; = cm, where
c is some constant. The number of bits (m) in the poll number is
given by

m 10!]2 Nproc + 1092 Ntask.s + 1092 (Pmaz/tpall)

IOQZ(NprocNtasks Pmaz/cm)~

1l

(0]

The above expression reduces to the form m = K2™, which can then
be solved to obtain the number of bits in the poll number.

As an example, again, consider the Fault-tolerant Multiprocessor
FTMP [11]. It has a clock rate of 8 MHz (125 ns). The real-time task
workload on FTMP consists of three task classes of periods 40 ms (25
Hz), 80 ms (12.5 Hz) and 320 ms (3.125 Hz). The poll bit time for
FTMP is 1 microsecond. If we use Eq. (2.1) to compute the number
of bits m in the poll number, we have t,,; = 15 microseconds and
P,z = 320 ms. An approximate computation reveals that we need
16 bits in the deadline field.

The number obtained by using the above expression for m is ex-
tremely conservative in nature. The design of a poll number with a
3 bit deadline field, 3 bit priority field, and 3 bit uniqueness field is
shown in Fig. 6. The resolution in this case is the minimum task
period, which is 40 ms.

2.3 Estimation of Message Deadlines

Estimation of the deadline for a message generated by a task is es-
sential for determining the deadline field of the poll number. We
propose a method to determine the deadline for a message generated

*If some of the tasks are aperiodic, this would represent the maximum inter-
actuation delay.

d2 dl do p2 p1 po u2 u1l uo
DEADLINE CoONG 2 a1 o
(ms)
0-20 o o} o 1 1 1
20 - 40 o} o 1 1 1 o)
40 - 60 o 1 o} 1 o 1
60 - 80 o} 1 1 1 (o] o
80 - 100 1 (o] [} (¢} 1 1
100-200 1 o 1 o} 1 (o]
200-300 1 1 o o (o] 1
300-- 1 1 1 o o} (o]
Figure 6: Possible design of a poll number.
r ’ t P
t t d 0
i 1
t 1 te—r 1
r
AC = E t
! 1
v
d . tepP - RC

Figure 7: Estimating the deadline of a message.

by a real-tme task. It is assumed that all the tasks are initiated at the
beginning of their periods. Further, each task executes on a single
Pprocessor.

The period of a task i is depicted in Fig. 7. Since task ¢ has been
initiated at time ¢, the next initiation of the task will be at ¢ + F;,
where P; is the period of task i. During the course of its execution
the task generates messages. The task then blocks at least until the
message is put on the bus. It may or may not wait for the reply, before
it resumes execution, depending on whether it executed a blocking
send or a non-blocking send. The estimated time for completion of
execution of task i (not including the delay while waiting for the
bus) is given by E;, which includes the time spent in blocking while
waiting for a reply. The r-th message of this task is generated at
t7, when it has completed ¢ units of execution time. In addition to
the local clock, each processor keeps track (using a simple counter)
of the execution time of its task which does not include the time
spent by the task while waiting for the bus. At ¢, the task has
generated its r-th message, and still needs the residual computation
time RC = E; — ¢ to complete execution. The deadline for the r-th
message is df = (t+P;) — RC, as the task has to send its message
by d7, if it is to complete the task by t + P;.

707

E; and P; are known in advance and as soon as the processor
starts executing an invocation of the task at time ¢, ¢ + P; can be
determined, and at any instant of time RC can be determined by
subtracting the reading of the execution time from E;. The value of
deadline computed for the r-th message (d}) is then complemented®,
resolved into coarser units, and loaded into the deadline field of the
poll number. The priority and the uniqueness fields may be loaded
at the same time.

24 Benefits of the Poll Number Approach

The bus access mechanism with the poll number makes the scheduling
of messages flexible. A number of schemes can be implemented by
varying the order and significance of the various fields making up
the poll number. For example, we can implement closest deadline
scheduling by loading the task deadline into the priority field. Priority
driven scheduling can be implemented by making the priority field
the most significant field. Likewise, deadline driven scheduling may
be implemented by making the deadline field the most significant
field.

We shall discuss the modifications needed to make the poll num-
ber based access mechanism compatible with the closest deadline
scheduling scheme. The deadline ficld, as before, represents the mes-
sage deadline. The priority field has been modified to hold the particu-
lar task invocation’s deadline®. Let TD; = t;+ P, and TD; = t;+ P;
denote the deadlines of task i and task j, respectively’. Let the
uniqueness field of the poll number for task i be U;, and that for task
j be Uj. (By definition of the uniqueness field of the poll number,
U; # U; Vi # j.) With the above design, if a message from a task 1,
with a deadline d;, competed for the bus with a message from another
task j, with a deadline d;, then task i would get the bus if and only
if

1. d; < djor
2. di=djand TD; <TDj or
3. d,‘ = dj and TD; = TDJ' and U; < UJ'.

It is easy to see that the above scheme is compatible with closest
deadline scheduling which will schedule the message with the closest
deadline, and in case of a tie will give preference to the task with the
closer deadline.

It is also possible to make the polled bus access mechanism com-
patible with a priority driven scheme, where the various tasks have
dynamically assigned priorities. In this scheme, the priorities of the
tasks are assigned so as to satisfy some criterion, such as enabling a
task to dispatch its message before its deadline. The proposed scheme
is outlined in Fig. 8. When a task needs to use the bus, it generates a
poll number based upon its priority at the moment, and the deadline
of its message. The poll number is designed such that the priority
field is more significant than the deadline field. Based upon this poll
number, the task estimates the probability of the message missing
its deadline. The probability of a message missing its deadline may
be computed using Egs. (3.4) and (3.5) in Section 3. In order to
accomplish this, the task has to be aware of the service rates and the
message generation rates of the other tasks at the node. A task has
to be updated whenever the configuration of the node is changed.

°Since the processor with the highest poll number wins the polling round.
S1f task 1 had been invoked at time ¢, then this field would hold ¢; + P;.
"These numbers are loaded into the priority fields of their respective poll numbers.

I Generate a message and ts deadiine. |
w
L Compute the POLL NUMBER I

l

I Estimate Prob. of missing deadiine |

tncrcmom priority fieid.

'

is prob less than threshoid ?

Enter the polling round.

Figure 8: Dynamic priority-based scheme using the poll number.

After generating a message, the task computes a poll number, and
estimates the probability of the message missing its deadline. If the
probability is higher than a predetermined threshold, the task recom-
putes its poll number after incrementing the priority field #The priority
field is incremented until the probability of the message missing its
deadline falls below the threshold. As soon as the probability falls
below a threshold, the task then enters the polling round for the bus.

If all the tasks at the node increase their priorities to minimize
their probabilities of missing deadlines, then it is highly likely that
all tasks might end up having the same probability. In this case the
scheme reduces to deadline driven scheduling. If the priority fields of
the poll number are all equal, then the deadline fields will determine
the task which will get the bus, as we have made the priority ficld
the most significant field. This situation may be avoided by allowing
only selected tasks to modify their priorities.

3 Performance Analysis

We have proposed an algorithm for bus access in the previous section.
We shall compare the performance of the token bus with that of our
polled bus. As stated before, our main objective is to minimize the
number of messages missing their deadlines, and to honor a request
as quickly as possible. The probability of missing a deadline will be
computed for each processor in the node.

3.1 The Token Bus

A token bus is a single bus to which many processors are connected,
and its access protocol is very similar to that of a token ring. A
token is passed between processors on the bus and any processor
which desires to use the bus has to capture the token. After using
the bus, the processor releases the token to the logically adjacent
processor on the bus.

708

We shall assume that only a single token is allowed to exist on the
bus at any time if the bus is not being used by any processor. The
token is regenerated when all the bits of the packet sent out by the
processor is received by the processor again. This is possible as the
data on the bus is accessible to all the processors on the token bus,
which is an example of a broadcast bus. This acts as an acknowl-
edgement for the sending processor. We shall assume a bit serial bus
with a typical bit rate of 10 MB/s. There is a bus busy line which
the processors can sample in order to check whether the bus is in use.
We also assume that only a single task executes on each processor.

The three main events occurring in sending a message are:

1. The task generates a message.
2. The processor waits to get control of the bus.

3. The message is transmitted via the bus.

The generation of a message by a task executing on a processor
is independent of the bus access mechanism used. We shall assume
that the task generates a message (which has a deadline), waits for
the bus and resumes execution only after the message is transmitted.
The inter-message generation time is assumed to be exponentially
distributed random variable with a mean time depending on the pe-
riod of the task invocation. Thus, tasks with different periods have
different mean inter-message generation times.

The time and mechanism involved in putting a message on the
bus is also assumed to be independent of the bus access mechanisms
used. The travel time of a message from one node to another depends
on the bit rate of the bus and the physical distance separating these
two nodes. We shall not analyze this since it is not affected by the
bus access mechanism and hence does not help in contrasting the
performance of the token bus with that of the polled bus. For similar
reasons, the first event, generation of the message by the task, will
not be analyzed further.

The time required to service a request is independent of the bus
access mechanism used. It is assumed to be a random variable, which
is identically distributed for all the processors in the node. The service
time distribution directly affects the number of deadlines missed at a
node. Hence any assumptions about this distribution shall be put off
until all the parameters are analyzed. For the time being it suffices
to say service time is identically distributed for all the processors of
a node.

The chief parameter that we are interested in is the bus access time.
The time taken to access the bus directly determines the number of
deadlines missed due to unavailability of the bus. For a task i, the
bus access time or wait time is denoted by W;. We shall derive
an expression for the wait time for the message generated by a task
(processor).

The events occurring at a single node are depicted in Fig. 9. We
are analyzing the system from the viewpoint of a single processor.
At time t = 0, the processor had last successful possession of the
bus. The processor may have used the bus or just passed the token
along in a token bus case. The random variable 7, or the cycle time
is defined as the next time the processor gets control of the bus. This
cycle time depends on whether or not the other processors in the node
use the bus during the cycle time.

A message is generated by task i at time ¢]. Let S; be the time

request generated by processor i

t
r

service completion
<ot ¢ |
t=0 Tc
bus access (cycle time) bus access
by processor i by processor i

Figure 9: The cycle time at a processor in the node.

required to service the message®. The service time distribution is
assumed to be identical for all the tasks of a node. Let M be the
number of tasks at at the node under consideration —which is the
same as that of processors at the node— and let A; be the rate at
which messages are generated by task i.

If there are no requests generated by any of the tasks on the token
bus, the cycle time® is given by T. = Tying + Tioken» Where Tring
is the time taken for the token to travel on the bus once around the
logical ring of processors and Ty, is the time taken for a processor
to recognize the token and put it back on the bus if it does not need
to use the bus. The maximum value of 7, possible occurs when all
the tasks at a node have messages to send. Thus, the value of T,
ms“ﬁ“nTrinp"'TtakenmTtoken"‘Triny"'ZiAil Si-

First, we shall determine the cycle time 7, in terms of the service
times. To compare the performance of the polled bus with that of the
token bus, the cycle time T, perceived by all the nodes is assumed to
be the same, since a mean cycle time as opposed to an instantaneous
cycle time at each processor is considered. Assuming that T, < P,
the probability that task ¢ will generate a message during 7. is given
by [T Ne~Ntdt.

The cycle time T, can be expressed as

T:

M Te
s f | NEN). 4 Tring + Tien
=1

T. M
/0 (Z SiAie_)it)dt + Trinp + Tioken-

=0

2

The above equation can be simplified to the following expression:

M M
Yo Sieh 4T =38 +C, (©)
i=1 =1

where C is some constant. The above expression can be solved for
T. if the service time distributions are known.

The probability of a message generated by a task i missing its
deadline can now be ascertained. Let d] be the deadline of the current

’Thisislhetimeukmwdelivuthzmessagetomzdeslinndon.onceﬂwbus
has been acquired by the sending task.

*The time taken for the token to reappear at a p after ing all the
other p inap mined fashion. It is to be noted that we are talking of
a mean cycle time here.

709

o t te [} 'I;
1t t 1
LI message generation time.
te q for the

Cyole time for the token bus.

Figure 10: Events occurring during a token cycle.

message generated by task i at time 7. Denote the relative deadline
(df —t7) of the current message of task i by D;. The events occurring
in a token cycle are shown in Fig. 10. The processor last had access
to the bus at ¢ = 0. The next access will occur at t = T, where T,
is the cycle time computed above. A message is generated by task i
at time t < T, whose relative deadline is D;.

The current message of task ¢ will miss its deadline if and only if
t+D; < T.. Because of the memoryless property of the inter-message
generation times, the probability of a message being generated by a
task in time t is given by A\;e~**. The probability of the current
message of task ¢ missing its deadline can be expressed as
“)

Pig=3 MeP(D; < T. - t).

gty

32 The Polled Bus

In this section we shall analyze the performance of a polled bus,
access to which is determined based on the poll numbers generated
by the various competing processors. In particular, we shall analyze
the probability of a message missing its deadline. We assume that
each processor in a node has only one task executing on it. This task
is characterized by its repetition period and its user assigned priority
which shall comprise the second field of the poll number.

In order to facilitate analysis, we shall define the following
notation'®,

t7: time at which the current message of task i was generated.

t; : time at which the current message of task j was generated.
deadline for the current message of task .

deadline for the current message of task j.

time at which the bus was last acquired by task i.

S

o

The most recently generated message of a task whose deadline has
not yet expired is termed as the current message of the task. After the
expiration of the deadline the message loses its meaning in the case
of rcal-time tasks. The various events which are significant in the
analysis are depicted in Fig. 11. At £} the current message of task i
had the highest poll number, i.c., the closest deadline. In the absence
of any competing messages from other tasks, the current message of
task ¢ generated at t7 will be honored. If there are other competing
current messages from other tasks which have closer deadlines (larger
poll numbers) than the current message of task i, then the current

1% Any notation found in this section which has not been defined here will be the
same as the notation used in the previous sections.

Figure 11: Event times in the case of polled bus.

message of task ¢ will have to wait for the bus until all the other
messages with closer deadlines have been honored. The time by task
1 in waiting for the bus is termed as the bus access time or wait time
and is denoted by W;.

We shall derive an expression for the mean wait time experienced
by task i. The deadlines for the messages generated by the various
tasks are determined by the method outlined in Section 2.3. In Fig.
11 we consider the current message of task j, generated at 17, which
is in competition with the current message of task i for the bus.
The current message of task j shall be given the bus in preference
to the current message of task ¢ if and only if the deadline for the
current message of task j (d7) is less than the deadline for the current
message of task ¢ (df). It is now clear that the current message of
task ¢ will have to wait for the current messages of other tasks j
for which dj < df. Strictly speaking, the above condition should be
the poll number computed by task j and must be less than the poll
number computed by task i. Since we have assumed the deadline
field to be the most significant field, in most cases ! the condition
on the poll numbers is reduced to the requirements on the deadlines.

From Fig. 11, it is clear that any competing messages from other
tasks j must have been generated during the time span t4 to tg
in order to gain priority over the current message of task i. The
probability of the above event is easily determined as the tasks arc
assumed to generate messages in a memoryless fashion. Therefore,
the expression for the wait time W; for the current message generated
by task i is given by

r

(&7 —7)
wi = s / Ajetdt)
j st di<dr o
= Z 5;(1 — e~ M-y, o)

it d<d

The probability of the current message of task missing its deadline
can now be determined. Let the relative deadline of the current
message of task i be D; where D; = d] —t]. Therefore the probability
of the current message of task ¢ missing its deadline is given by

Pry=P(D; <W). ©®

The above expression may be used to arrive at the probability of a

message missing its deadline. Performances of the token bus and th

"IThis is not true when the deadlines are equal.

710

Fraction of messages with missed deadlines for token bus and polled bus.

. Otken bus Dpol tus
.
§ o
E 8]
L 45
:
£
-]
£
A
H
£
E oy
3
?
H
L
3 s
€
§ 1
= ol
0 & i J

4 6 3 1
kaction message service time

o
>

Figure 12: Effect of message service time on the fraction of messages
missing deadlines.

polled bus were simulated, and the probability of missing deadlines
using the token bus was compared with that using the polled bus.
It was assumed that all tasks had the same message generation rate
and service times. Then the effect of varying the number of tasks,
message service times and task execution times, for both the polled
bus and the token bus, was observed. The results are shown in Figs.
12-14. In these simulations the deadline field of the poll numbers
were assumed to have the actual deadline, not some quantized version
of the deadline. It is expected that the performance measures will be
less optimistic for the finite resolution case. Hence, these simulations
represent the maximum possible performance achievable by using the
poll number based bus access scheme (with the deadline field being
the most significant).

The fraction of messages missing their deadline for various mes-
sage service times (the time taken for the message to travel to the
destination on the bus) is shown in Fig, 12.

The number of tasks was fixed at 8, the tasks all had the same
period (40 ms), and the same execution time of 10 ms. The fraction of
messages missing their deadlines increased with increasing message
service times for both the token and polled buses. As expected, the
polled bus had a lower fraction of messages missing their deadlines
ior all message service times.

In Fig. 13, the fraction of messages missing for different node
configurations (number of tasks at the node) is shown. The fraction
of messages missing their deadlines increased with increase in number
of tasks for both token and polled bus. As expected, the polled bus
had a lower fraction of messages, which missed their deadline, for
all node configurations.

The fraction of messages missing their deadlines for different ex-
ecution times of the tasks is shown in Fig. 14. The message service
time, and the message generation rate were assumed to be the same
for all the tasks, and were fixed. There were 8 tasks at the node. As
before, all tasks were periodic with a period of 40 ms. The fraction

Fraction of messages with missed deadtines for token bus and polled bus

. Oon b Dpol bas
?
-
2
£

5

5
£
;L

K
L)

1

of

2 4 § N 0 12 4 16 18

Figure 13: Effect of number of tasks on the fraction of messages
missing deadlines.

of messages missing their deadlines increased with increase in the
execution time of the tasks. For all task execution times, the polled
bus had a lower fraction of messages missing their deadlines.

4 Conclusion

In any real-time system, the probability of a task missing its deadline
should be kept as small as possible. Tasks often communicate with
cach other in a distributed real-time system in order to collectively
perform some useful function. It is necessary that messages sent
by various tasks meet their deadlines in order for the task to meet
its deadline. We have proposed a polled bus access mechanism,
using the concept of a poll number, to minimize the probability of
messages missing their deadlines. The flexibility, decentralization and
the performance improvement offered by the poll number approach
make it particularly attractive for real-time distributed systems.

Acknowledgement

The authors are grateful to P. Ramanathan and B. J. Monaghan fc.
their assistance in preparing the final version of this paper.

References

[1) K. G. Shin, C. M. Krishna, and Y.-H. Lee, “A unified method
for evaluating real-time computer controllers and its applica-
tion”, IEEE Trans. on Automatic Control, vol. AC-30, no. 4,
pp. 357-366, April 1987.

{2] R. H. Douglas, “IEEE token bus LAN implementation consid-
erations”, Proc. [IEEE COMPCON, pp. 258-260, 1984.

[3] D. W. Jacobson, “High performance reliable token bus for the
MAP network architecture”, Proc. IEEE Conf. on Local Com-
puter Networks, pp. 26-33, 1986.

711

Fraction of messages with missed deadiines for token bus snd polied bus.
Otoken bus Olpol bus

fraction of messages with missed deadlines

T T T T T g 1

4 45 5 55 6 6 7 715 8
execution fme fraction

Figure 14: Effect of execution time on the fraction of messages miss-
ing deadlines.

[4] W. M. Gentleman, “Message passing between sequential pro-
cesses: the reply primitive and the administrator concept”, Soft-
ware Practice and Experience, vol. 11, pp. 435-466, 1981.

[5] Manufacturing Automation Protocol (MAP) specification
(Draft), February 1986.

[6] J. T. Quatse, “An architecture for real-time cell control”, Con-
trol Engineering, May 1987.

[7] ANSV/IEEE, IEEE Standards for Local Area Networks: Token-
Passing Bus Access Method and Physical Layer Specifications,
ANSI/IEEE Std 802 .4-1985, Institute of Electrical and Electron-
ics Engineers, Inc., 1985.

[8] J. F. Kurose, M. Schwartz, and Y. Yemini, “Multiple-Access
Protocols and Time-Constrained Communication”, ACM Com-
puting Surveys, vol. 16, no. 1, pp. 43~70, March 1984.

[9] G. L. Choudhury and S. S. Rappaport, “Priority Access
Schemes using CSMA-CD”, [EEE Transactions on Commu-
nications, vol. COM-33, no. 7, pp. 620-626, July 1985.

[10] I. Chlamtac, A. Ganz, and Z. Koren, “Prioritized Demand As-
signment Protocols and their Evaluation”, IEEE Transactions on

Communications, vol. 36, no. 2, pp. 133143, February 1988.

[11] T. B. Smith and J. H. Lala, “Development and measurement of
Fault-Tolerant Multiprocessor (FTMP)”, NASA Report, vol. 1,
, May 1985.

[12] K. G. Shin and P. Ramanathan, “Clock synchronization of a
large multiprocessor system in the presence of malicious fail-
ure”, IEEE Trans. on Computers, vol. C-36, no. 1, pp. 2-12,

January 1987.

Describing Real Time Systems Using PPA and XYZ/E

Jianbai Wang

Murat M. Tanik

Department of Computer Science and Engineering
Southern Methodist University
Dallas, Texas 75275

ABSTRACT

In current software development

environments, formal
approaches provide precise representation of design for
correct program generation while informal techniques facili-
tate software developers with flexibility and friendly inter-
faces. They are frequently combined to achieve effective sup-
porting for software development. Among the approaches,
PPA, a data-flow diagram system enhanced with process port
concept, and XYZ/E, a temporal logic based language sys-
tem[2], are proposed to be used in real-time system design.
By describing a cruise control system[1], a commonly shared
example, using PPA and XYZ/E, this paper investigates their
capabilities in describing real time systems.

Process Port Analysis (PPA) is a diagram system for informa-
tion system design. It expresses a system as a graph with
nodes representing processes or other kinds of entities of the
system, and edges among nodes representing control or com-

munication. Process nodes and information flow

are
represented by
Process
Icl message l
Process and

Task

The ”¢” is the channel name of the data-flow. Without any
information attached, the flow is a control signal. The follow-
ing figure shows refinement of the process nodes with
input/output analysis.

When a control flow is directed to a process as its input it is
used to trigger the process. The letter "T” in a process box is
used as a trigger mark. A control flow comes from a process
as its output has the function to terminate the process. Con-
ditional and repetitive output could not be control flow. In
conjunctive outputs, there must be at least one flow for con-

trol in each case, while all are control in disjunctive output.

The PPA description of the CCS is given in Figure 1. In the
diagram, All processes besides A5 are triggered by the

0073-1129/89/0000/0712$01.00 © 1989 IEEE

712

system-on/ofl signal meaning that these four processes will
keep on working until the system switch is turned off since
there are control flows directed to themselves. One of the out-
put from Process A4 is a control flow, and is conditional, to
trigger Process A5. In Figure 1, the sequence of program exe-
cution and the concurrency among processes are reflected by

INPUT
ey] R §:@
QUTPUT
""LZJL"&LZ"Z?“’@;_—; x 2 omnon o x
output X and Y output X end Y

4.1he non-exclusive,
disconjunction of]
output X and Y

T

3.the exclusive x
disconjunction of| v
output X and Y

@_' '

@‘ '

The Input / Output Analysis of Process

5. the conditional
output of X
or empty

6.the repstitive
output of X

L
1

7.tree output of
X, ie. Xis
transmitted
without delay

different combinations of control output. The control flow
and data flow can be distinguished even if they share the
same channel. Given such representation, one can clearly
deduce the data communications characteristics and control
dependencies among processes and other entities.

XYZ/E, as stated by its developer , "is a linear time tem-
poral logic system and is also a real programming language,
... It can be used to describe systems from abstract level to
effectively executable level”(2). In XYZ/E, a program is a
sequence of Conditional Elements (CEs) which have the fol-
lowing form :

o [Al; A2; ... An)

where Al, i =1, .., n are CEs. Each CE is a well formed for-
mula (wff) of

#b=y&P=>@ (Q&o#lb=12z)

which represents a state transition. @ is either o (next time),
or <> (eventuality). A name with a leading sharp sign "#” is
a temporal variable. Each CE denotes that if it is now at the
state that #1b — y and P true then it implies (”=>”) next
time it will be at state that #1b = z and Q true. In a more
conventional sense, it could be understood as that y and z are
two program labels before and after the state transition, P
and Q are conditional and statement respectively. Defined by

. Engine ccole
Clock
Driver [dinar rease, [T|Desirect an/ett
|
(AS
A3 setting
resumejon/ott Set 0] stored. [Thrat °
systamjon/ot Stored [Serira
Spesct
As
systemjon/oft s GH}
Brake | (oraxe) onioft F’j Brake
Swute
—

Figure 1. The Cruise-Control System in PPA

XYZ/E as a control variable, #1b always refers to the current
label of a program. XYZ/E also uses temporal operators o
(necessity) and the corresponding operators for past time of
0, <>, and o. Statement in XYZ/E is an equation o#v =
exp which assigns the value of expression exp to the variable
v. In case of concurrency, each process should have its own
control variable.

As an example, Process A4 and A5 of the CCS represented in
PPA is also represented in XYZ/E as follows: -

A4 { Set Broke State }
(1bd=startd = olbd=A4;
1b4 = A4 & (Breke =on)
= 0 (olbd = A4)
1b4 = Ad & (Breke =off)
- 0 (olbd = Ad)
& © (o5 = A5))

AS { Celculste Throttie Setting }
(15 =A5 & (Engine = on)
= (CTS)
& ©{SEND throttie_setting TO THE THROTTLE)
& ©1b5 =STOP ;
{165 =A5 & (Engine = off)
= o1b5=STOP)

713

From the XYZ/E description of Process A4, it is clear that
"Brake on” is the exact condition for triggering A5. Process
A4 will continuously perform its execution until the system is
off while Process A5 will stop as a result of executing formula
7olb5 = STOP” when its task is finished. The temporal
operator <> (eventually) indicates data and/or control out-
put. The assignment without the operator indicates state
transition within a process. XYZ/E provides better precision
at the same description level: the time dependent synchroni-
zation actions of the processes such as, start, stop, and con-
tinuous execution.

A scenario of the CCS demonstrates that the XYZ/E descrip-
tion does capture the system function correctly [4]. It is also
shown that the descriptive advantages of PPA, other than
intuitive graphical notatior, exist in XYZ/E, as well. From
the formal description of XYZ/E, executable codes can be
more readily derived. Further, both of the approaches (PPA
and XYZ/E) provide capability for task decomposition. In
addition, a verification theory of XYZ/E exists(2,3].

Acknowledgement

We are grateful to Prof. C. S. Tang for discussing his work
on XYZ/E system in his visit of our department and his sub-
sequent critique of this presentation.

References

Booch, G., ”"Object-Oriented Development” IEEE Tran-
saction On Software Engineering, Vol. SE-12, No. 2,
Feb. 1986

TFang, C. S., ”To Unify Programming With A Temporal
Logic Language System”
Mellon University, 1987
Tang, C. S., Personal Communication. (C. 8. Tang, Pro-
fessor, Division Five, Institute of Software, Academia
Sinica, P.O.Box 8718, Beijing, P.R. China)

Jianbai Wang, Murat M. Tanik, ”Describing Real-Time

Systems using PPA and XYZ/E”, TR-88-CSE-10, SMU,
1988

Working paper, Carnegie-

(3]

(4]

