
1 I24 IEEE TRANSACTIONS O N COMPUTERS. VOL. 38. NO. 8. AUGUST 1989

Load Sharing in Distributed Real-Time Systems
with State-Change Broadcasts

KANG G. SHIN, SENIOR MEMBER, IEEE, AND YI-CHIEH CHANG, STUDENT MEMBER, IEEE

Abstract-If task arrivals are not uniformly distributed over
the nodes in a distributed real-time system, some nodes may
become overloaded while others are underloaded. Consequently,
some tasks cannot be completed before their deadlines, even if
the overall system has the capacity to meet all deadlines. Load
sharing (LS) is one way to alleviate this problem.

In this paper, we propose a decentralized, dynamic LS method
for a distributed real-time system. Whenever the state of a node
changes from underloaded to fully-loaded and vice versa, the
node broadcasts this change to a set of nodes, called a buddy set,
in the system. An overloaded node can select, without probing
other nodes, the first available node from its preferred list, an
ordered set of nodes in its buddy set. Preferred lists are so
constructed that the probability of more than one overloaded
node “dumping” their loads on a single underloaded node may
be made very small.

Performance of the proposed LS method is evaluated with
both analytic modeling and simulation. The LS method is
modeled first by an embedded Markov chain to which numerical
solutions are derived. The model solutions are then used to
calculate the distribution of queue length at each node and the
probability of meeting task deadlines. Our analytic results show
that buddy sets of ten nodes outperform those of less than ten
nodes, and the incremental benefit gained from increasing the
buddy set size beyond 15 nodes is insignificant. These and other
analytic results are verified with simulation. The proposed LS
method is shown to meet task deadlines with a very high
probability.

Index Terms-Buddy set, deadlines, distributed real-time
systems, load sharing, missing probability, preferred list, state-
change broadcasts.

I . INTRODUCTIO~

AILURE to complete a real-time task before its deadline F could cause a disaster [I] , [2] . Due to their potential for
high performance and reliability with the multiplicity of
processors, distributed systems are natural candidates to
implement real-time applications. However, if task arrivals
are unevenly distributed over the nodes in a distributed real-
time system, some nodes may become overloaded, and thus,
unable to complete all their tasks in time, while other nodes
are underloaded. In such a case, even if the total processing

Manuscript received September 25, 1988: revised May 17, 1989. This
work was supported in part by the Office of Naval Research under Contract
NOOO14-85-K-0122. by NASA under Grant NAG-1-887. and by the NSF
under Grant DMC-872 1492. Any opinions. findings. and recommendations
expressed in this publication are those of the author., and do not necessarily
reflect the view of the funding agencies.

The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science. The University of Michigan.
Ann Arbor, MI48108.

IEEE Log Number 8928530.

power of the system is sufficient to complete all incoming
tasks in time, some tasks arriving at overloaded nodes may not
complete in time. One way to alleviate this problem is load
sharing (LS); some of those tasks arriving at overloaded nodes
are transferred to underload nodes for execution.

LS in general-purpose distributed systems has been studied
extensively by numerous researchers 131-181. Decisions on
how to share loads among the nodes are either static or
dynamic. A static decision is independent of the current
system state, whereas a dynamic decision depends on the
system state at the time of decision. Static LS can also be
viewed as nondeterministic allocation of tasks in a system [8]-
[lo], where an overloaded node N, will transfer some of its
tasks to node NJ with probability P,J, which is independent of
the current system state. Although static LS is simple and easy
to analyze with queueing models, its potential benefit is
limited since it does not adapt itself to the time-varying system
state 141. For example, even when N, is overloaded, it still has
to accept tasks from other nodes with the same probability as if
it were underloaded. On the other hand, when dynamic LS is
used, an overloaded node can transfer its task(s) to other
node(s) using the information on the current system state [4],
161, 171, [ll]-[13]. Since any dynamic policy requires each
node to know states of the other nodes, i t is inherently more
complex than any static policy. The advantage of a dynamic
policy is that it adapts itself to the time-varying system state,
and thus, can ease the difficulty associated with static LS.

LS algorithms can be source-initiated or server-initiated,
depending on which node initiates task transfer. The node at
which external tasks arrive is the source (sender) node, and the
node that processes these tasks is the server (receiver) [3]. In
the source-initiated approach, an overloaded source node
initiates the transfer of a newly arriving external task based on
some strategies, while in the server-initiated approach, an
underloaded server will probe each of the potential source
nodes to share its load with. LS algorithms are further divided
into several levels according to the amount of information
required for them. After analyzing and comparing the per-
formance of these algorithms, Wang and Morris 131 concluded
that an algorithm that collects more information will generally
produce better results and that the server-initiated approach
will usually outperform the source-initiated approach if the
task transfer cost is not significant.

As was discussed by Eager et al. 141, LS is composed of a
transfer policy and a location policy. The transfer policy
determines when a node should transfer its task(s), i .e. , when
a node becomes overloaded. The location policy determines

0018-934018910800-1 124$01 .OO O 1989 IEEE

SHIN AND CHANG: LOAD SHARING IN DISTRIBUTED REAL-TIME SYSTEMS 1125

where to send task(s) to. Their objective was to minimize the
average system response time by moving tasks from over-
loaded nodes to underloaded ones. A simple threshold was
used in the transfer policy; that is, whenever the queue length
of a node exceeds this threshold, it will attempt to transfer its
incoming task to another node. Three different location
policies were simulated and compared: random, threshold,
and shortest. Their simulation results indicate that the random
policy improves system performance significantly, as com-
pared to the system without LS. The threshold policy can
further improve system performance, as compared to the
random policy. The improvement of the shortest policy is
about the same as that of the threshold policy, although it
requires more system state information than that of the
threshold policy.

LS in distributed real-time systems is addressed far less in
literature than that in general-purpose distributed systems.
Kurose and Chipalkatti proposed a quasi-dynamic LS al-
gorithm in a soft real-time system [5] . A job is considered lost
if it is not completed before its deadline. Their primary
objective was to reduce the probability of losing a job with LS.
A node will transfer some of its jobs to another node if the
unfinished workload exceeds its time constraints. The server
was selected on a probabilistic basis which is independent of
the current system state.

The location policy in most early work can be viewed as
sender-initiated, since an overloaded node (sender) selects
another node (a candidate receiver) and checks whether or not
this node can share its load. If it can, the sender will transfer
some of its tasks to that node; otherwise, the sender will probe
another node. This process will repeat until a receiver is found
or a prespecified limit is reached. There are two major
drawbacks associated with this approach. First, the sender
needs to probe other nodes before transferring any of its tasks.
This will introduce an additional delay in completing the tasks
to be transferred. Second, if only a few nodes in the system are
underloaded, the sender may not be able to locate a receiver by
probing only a limited number of nodes. In such a case,
overloaded nodes must execute all their tasks locally, missing
the deadlines of some of these tasks.

In a real-time system, the probability of missing a task must
be kept as low as possible because the loss of a task may lead
to a disastrous circumstance [l]. Note that almost all LS
methods known to date are concerned only with the average
system performance, rather than the performance of each
individual task. To alleviate this weakness, we propose a new
LS method in which each node needs to maintain state
information of only a small set of nodes, called a buddy set.
Three thresholds, denoted by TH,, THf, and TH,, are used to
define the (loading) state of a node. A node is said to be
underloaded if its queue length (QL) is less than or equal to
TH,, medium-loaded if TH,, < QL I THf, fully-loaded if
THJ < QL 5 TH,, and overloaded if QL > TH,. Whenever
a node becomes fully-loaded (underloaded) due to the arrival
and/or transfer (completion) of tasks, it will broadcast its
change of state to all the other nodes in its buddy set. Every
node that receives this information will update its state
information by eliminating the fully-loaded node from, or

adding the underloaded node to, its ordered list (called a
preferred list) of available receivers. An overloaded node can
select the first node in its preferred list and transfer a task to
that node. Notice that our LS method is completely different
from conventional receiver-initiated LS methods that are
characterized in [3]. An underloaded server in the conven-
tional receiver-initiated approach probes other nodes to share
their work with. By contrast, our method transfers tasks from
overloaded nodes to underloaded nodes using state-change
broadcasts within their respective buddy sets.

The proposed LS method is modeled with an embedded
Markov chain to which numerical solutions are obtained by a
two-step approximation approach. The numerical solutions are
then used to compute the distribution of QL at each node and
the probability of meeting deadlines. Use of a preferred list
results in transferring “surplus” tasks’ only to the first few
nodes in the list. More importantly, different buddy sets are
designed to overlap one another so that tasks may be
distributed evenly over the entire system, rather thari within
one buddy set. Thus, buddy sets each with 10-15 nodes are
usually sufficient for load sharing regardless of system size.

The rest of this paper is organized as follows. Section I1
discusses the problem of implementing the proposed LS
method. Collection of state information and construction of
preferred lists are detailed in Section 111. Section IV presents
one exact model, one approximate model, and an approximate
solution to the exact model for the proposed LS method. In
Section V, the performance of the proposed LS method is
evaluated with the models derived in Section IV and is also
simulated to verify the analytic results. Finally, the paper
concludes with Section VI.

11. PROBLEM STATEMENT

In the proposed LS method, each node must maintain and
update the state information of other nodes. An overloaded
node can transfer a task to another node based on state
information without any probing delay. To implement this
method, one must develop:

Efficient means of collecting and updating state informa-
tion; collection of state information must not hamper normal
communications, such as intertask communications and task
transfers.

An automatic method for selecting a server node in case
there is more than one underloaded node, and minimizing the
probability of more than one overloaded node simultaneously
transferring their surplus tasks to the same underloaded node.

These issues are addressed below in some detail.

A . State Information
To collect state information, one must decide from which

nodes the information should be collected and how often this
information should be updated. One straightforward method is
for each node to collect and update state information from all
other nodes in the system at a fixed time interval. However, i t
is very difficult to determine an appropriate collection and
update interval which ensures the accuracy of state informa-

’ Those tasks arriving at a node that cannot be completed by the node before
their deadlines.

1126 IEEE TRANSACTIONS ON COMPUTERS. VOL. 38. NO. 8. AUGUST 1989

tion while keeping below an acceptable level the additional
network traffic resulting from the collection of state informa-
tion. Although a short interval (i.e., frequent state update)
ensures the accuracy of state information, this will introduce
an O(n2) traffic overhead each time to collect state informa-
tion, where n is the number of nodes in the system. This may,
in turn, severely delay normal intertask communications and
task transfers, thus degrading (rather than improving) system
performance. On the other hand, the traffic overhead de-
creases as the frequency of state collection and update
decreases. But, this may cause the state information recorded
in a node to be obsolete. For example, if the state of a node has
changed from underloaded to fully-loaded before the next
update, other nodes may transfer their tasks to this already
fully-loaded node based on the obsolete state information.

Ideally, each node should keep state information as accurate
and as up-to-date as possible while keeping the traffic
overhead as low as possible. To achieve this goal, we propose
state-change broadcasts within the buddy set of each node to
collect and update the state information at the node. Thus,
each node needs to maintain only the state information of a
small set of nodes in the system, e.g. , neighbors of the node.
Each node will broadcast the change of state to all the other
nodes in its buddy set only if it switched from underloaded to
fully-loaded, and vice versa. Since a node will receive new
information only when the state of a node in its buddy set has
been changed, each node will have the exact state information
of all the other nodes in its buddy set, as long as there is no
significant delay in broadcasting state changes. Since the
buddy set of each node is formed by those nodes in its physical
proximity, the delay in broadcasting a state-change and/or
transferring a task should not, in general, be too long. (See
Section V-A7 for more on the broadcasting delay.) Moreover,
as we shall see, the additional network traffic resulting from
state-change broadcasts can be controlled by adjusting the two
thresholds, TH,, and THf.

B. Preferred List
In the sender-initiated location policy, an overloaded node

will transfer a task to the underloaded node found first during
the probing [3] - [5] . The problem in our proposed location
policy is that an overloaded node may find more than one
underloaded node in its buddy set and/or more than one
overloaded node could select the same node to transfer their
tasks to. One must therefore establish a rule for selecting a
receiver among possible multiply underloaded nodes while
minimizing the probability of more than one overloaded node
simultaneously transferring tasks to the same underloaded
node. A preferred list is proposed to counter the above
problem. Since each node maintains the state information of
the nodes in its buddy set, one can order these nodes in each
node’s preferred list. The first node in this list is the most
preferred and the second the second most preferred, and so
on. Note that order of preference changes with time, e .g . , if
the most preferred node becomes overloaded, then the second
most preferred node, if not overloaded, becomes the most
preferred. An overloaded node will transfer its task(s) to its
most preferred node available in the list.

Based on the system topology, the “static” order of nodes
in each node’s preferred list is so permuted that a node is the
most preferred of one and only one other node in the
corresponding buddy set. (This order does not change with
time, although some of nodes will drop out of the list of
available receivers when they become fully-loaded, and regain
their spots when they become underloaded again.) Since each
overloaded node is most likely to select the first node in its
preferred list, the problem of more than one overloaded node
“dumping” their loads on one node is unlikely to occur.
Nevertheless, dumping could occur since, for example, the
third most preferred node, say N,, of an overloaded node No
can become its most preferred while N, is also the most
preferred of another overloaded node. But the probability of
this happening is small, since it will occur only after
overloading all the nodes ahead of N, in No’s preferred list.

111. STATE INFORMATION AND PREFERRED LIST
The nodes in the system are connected by an arbitrary

network, and each node is equipped with a network processor
which handles the usual communications and task transfers
between nodes without burdening the node processor. A node
has two sources of task arrivals, external tasks and transferred-
in tasks, and one server (single node processor). The tasks
arriving at each node may be executed locally, or remotely, at
any other nodes in the system.

Every node is assumed to be stable, or its load density (i.e.,
the ratio of average external arrival rate to average service
rate) is less than one. Thus, the need of load sharing arises
when there are bursty arrivals of external tasks at one or more
nodes in the system.

A . Collection of State Information

As mentioned earlier, three thresholds, TH,, THf, and
TH,, are used to determine the state of a node. These
thresholds can be QL or cumulative execution time (CET),
depending on task characteristics. For example. if every task
has the same (identically distributed) execution time, one can
use the (average) QL to measure the workload of each node.
However, if task execution times are neither identical nor
identically distributed, one must use the CET to measure the
workload of each node. By comparing each node’s current
workload to these thresholds, the node is determined to be in
one of four possible states: under (U) , medium (M) , full
(F) , and over (V) . QL will be used to measure a node’s
workload throughout this paper. (Use of CET is much more
involved, as pointed out in Section VI, and will be treated in a
forthcoming paper.) A node is in U state if QL 5 TH,, M
state if TH, < QL I THf, F state if THf < QL I TH,,, and
I/ state if QL > TH, .

A U-state node can accept one or more tasks from other
nodes and complete them before their deadlines. A node in F
state cannot accept tasks from any other nodes but can
complete all of its own tasks in time. A node in I/ state cannot
complete all of its own tasks in time, and thus, must transfer. if
possible, some of its tasks to other node(s). Since a node in U
state can share other nodes’ work, it is said to be in share
mode. A node in F state will neither accept tasks from other

1127 SHIN A N D CHANG: LOAD SHARING IN DISTRIBUTED REAL-TIME SYSTEMS

nodes nor transfer its own tasks to others, and is said to be in
independent mode. A node in V state must transfer some of
its tasks, and is said to be in transfer mode. Note that V is
usually a transient state because, if arrival of a new task at a
node switches the node to V state, the node will transfer this
task to another underloaded node and then switch back to F
state. However, if a V-state node cannot find a U-state node
from its buddy set, it will be forced to remain in V state,
missing some deadlines.

According to our state-change broadcasts, each node will
broadcast the change of state to all the other nodes in its buddy
set only when it switches from U to F and/or U to F. Upon
receiving a state-change broadcast, every node in the corres-
ponding buddy set will update its state information accord-
ingly.

Two different thresholds, TH, and THf, are used in the
proposed LS method for the following reason. If only one
threshold were used instead, a node would be in U (F) state
when its QL is less (greater) than this threshold. In such a case,
a U-state node may switch to F state after receiving a task
from another node, and an F-state may switch back to U state
after completing a task. Since a U-state node will accept tasks
from other overloaded nodes, it is likely to switch to F state.
On the other hand, an F-state node only accepts its own
external tasks and is likely to switch back to U state, since
every node is assumed to be stable. Thus, every node in the
system will frequently switch between U and F , thereby
increasing the network traffic to broadcast these state changes.
Change of state occurs infrequently (frequently) when the
difference between TH, and THf is large (small).

The third threshold, TH,, is used to avoid unnecessary task
transfers. If we combine THfand TH, into one threshold, then
acceptance of one transferred task may make a node fully- as
well as overloaded. In this case, the fully- and overloaded
node must transfer its own newly arriving task to another
node. Had it not accepted the transferred task, the node would
not have to transfer the newly arriving task, and thus, one of
the two task transfers would not have been needed. By
introducing another threshold TH, , each node will broadcast
the change of state when it switches to F state, preventing
other nodes from transferring tasks to that node. Since TH, -
THf # 0 and every node is assumed to be stable, a node is
unlikely to become overloaded with its own arriving tasks.
Thus, this difference can be used to control unnecessary task
transfers.

The above three thresholds greatly influence system per-
formance, such as the average task execution time, the
probability of missing deadlines, and the traffic overhead of
broadcasting state changes. These thresholds must therefore
be determined to meet the system performance requirement.
For example, in a real-time system, TH, is a critical point
below which a node processor can complete all queued tasks
before their deadlines with a probability higher than required.
The difference between TH, and THf must be chosen to keep
the traffic overhead induced by state-change broadcasts below

B. List of Preferred Nodes

As mentioned in Section 11, the purpose of constructing a
preferred list for each node is to avoid the probing delay and
the dumping problem. The cost of task transfer is an
increasing function of the physical distance between the sender
and receiver nodes. To reduce this cost, the receiver node
should be located as closely to the source node as possible.
The preferred list of each node is thus structured based on the
number of hops between the source and receiver nodes. The
first entry of a node’s preferred list consists of its immediate
neighbors, and the second entry consists of those nodes two
hops away from the node, and so on. When there is more than
one node in each entry, these nodes must be ordered to
minimize the dumping problem.

To demonstrate how to order the nodes in each buddy set
based on system topology, consider a regular? system with n
nodes, NI, N2, * . . , N,,, where the degree of N j is k , V i . Link j
of NI is assigned a direction dj , 0 5 j I k - 1. NI’s “static”
preferred list3 is then constructed as follows. The set of NI’s
immediate neighbors, denoted by P f , is placed in the first
entry of N,’s preferred list. The N;’s second entry, denoted by
P i , consists of the nodes in the first entry of every node in P; ,
excluding the duplicated nodes. Generally, P; is the set of
nodes which are listed in the first entry of every node in Pi- I ,
excluding the duplicated nodes.

Among the nodes in Pf , the node in direction do is chosen to
be the NI’s most preferred node in this entry, denoted by N’,’ ,
and the node in direction dl is the NI’s second most preferred
node in this entry, denoted by N t , and so on. The nodes in P i
are ordered as follows. The nodes in the Ny ’s first entry are
checked according to their order in the entry. If a node in the
NY’s first entry did not appear at any N;’s previous entry, it
will be copied into the second entry of N; in the same order as
in the NY’s first entry. After all nodes in the first entry N;’ are
checked and copied, the nodes in the first entry of node NY
will be checked and copied by the same procedure. This
procedure will repeat until Pi is completed. The ordering of
nodes in P;, V I > 2, can be determined similarly.

As an example, consider how the preferred list of each node
in a four-cube system (Fig.1) is actually constructed. The
identity (ID) of each node is coded with a 4-bit number,
b3b2b1 bo. The direction d; of Nk is the link that connects Nk to
a node whose ID differs from Nk’s ID in bit position i , where
0 5 i I 3 . One can now apply the above procedure to
construct the preferred list for each node in the four-cube
system as shown in Fig. 2.

Once each node’s preferred list is constructed, an over-
loaded node N; can select an underloaded node as follows.
Check Nf’ first; if it is underloaded, NI will transfer a task to
NI’ ; otherwise, N: is checked, and so on. (This checking can
easily be implemented with a pointer which is made to point to
the first available node in the list.) If all the nodes in P; are
overloaded, N; will sequentially check the nodes in P; . If,
albeit rare, an overloaded node cannot find any underloaded

a specified value. These thresholds are also sensitive to system
load and have to be adjusted as system load varies. (More on

A system is said to be regular if a,l node degrees are identical,
This list is determined by the system topology and remalns unchanged,

this will be discussed in Section V.) but the availability of each node in this list changes with time .

1128 IEEE TRANSACTIONS ON COMPUTERS, VOL 38. NO 8. AUGUST 19x9

11

Fig. I . A four-cube system.

Order ofpreference 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

node 0

node 1

node 2

node 3

node 4

node 5

node 6

node 7

node 8

node 9

node 10

node 11

node 12

node 1 3

node 14

node 15

1 2 4 S 6 1 0 1 2 3 5 9 1 4 1 3 1 1 7 1 5

0 3 5 9 7 1 1 1 3 2 4 8 1 5 1 2 1 0 6 1 4

3 0 6 1 0 4 8 1 4 1 7 1 1 1 2 1 5 9 5 1 3

2 1 7 1 1 5 9 1 5 0 G 1 0 1 3 1 . 1 8 4 1 2

5 6 0 1 2 2 1 4 8 7 1 1 3 1 0 9 1 5 3 1 1

4 7 1 1 3 3 1 5 9 6 0 1 2 1 1 8 1 4 2 1 0

7 4 2 1 4 0 1 2 1 0 5 3 1 5 8 1 1 1 3 1 9

G 5 3 1 5 1 1 3 1 1 4 2 1 4 9 1 0 1 2 0 8

9 1 0 1 2 0 1 4 2 4 1 1 1 3 1 6 5 3 1 5 7

8 1 1 1 3 1 1 5 3 5 1 0 1 2 0 7 4 2 1 4 G

11 8 1 4 2 1 2 0 G 9 1 5 3 4 7 1 1 3 5

10 9 1 5 3 1 3 1 7 8 1 4 2 5 6 0 1 2 4

1 3 1 4 8 4 1 0 6 0 1 5 9 5 2 1 7 1 1 3

1 2 1 5 9 5 1 1 7 1 1 4 8 4 3 0 6 1 0 2

1 5 1 2 1 0 6 8 4 2 1 3 1 1 7 0 3 5 9 1

1 4 1 3 1 1 7 9 5 3 1 2 1 0 G 1 2 4 8 0

Fig 2 Preterred h\ta ot a four-cube sy\tem

node from its preferred list, all of its tasks will be forced to change broadcasts will result. Thus, there is a tradeoff
execute locally. between the capability of meeting deadlines and the traffic

The preferred list constructed above has the following overhead caused by state-change broadcasts. More on this will
advantages. First, since each node is the most preferred node be discussed in Section V.
of one and only one node in the “static” list, the probability of
an underloaded node being selected by more than one
overloaded node is very small. Second, the cost of task
transfer is minimal, since a receiver node is selected, with a
high probability, from the physical proximity of the source
node. Moreover, the time overhead for selecting an under-
loaded node is negligibly small, because the time-consuming
probing procedure used in most known methods [4], [5] , [7] is
not needed.

Since the size of preferred list or buddy set will affect the
probability of a task missing its deadline, it must be chosen to
ensure this probability is lower than the specified limit.
However, a buddy set must not be too large because the larger
the size of buddy set, the higher traffic overhead for state-

IV. MODELS FOR THE PROPOSED LS METHOD

An embedded Markov chain is used to model the perform-
ance of the proposed LS method. We begin with the
development of an exact model from which an approximate
solution and an approximate model, called the upper bound
model, will be derived. The exact solution will be shown to be
1) always upper bounded by the solution to the upper bound
model, called the upper bound solution, and 2) very close to
the approximate solution. Note that an embedded Markov
chain is commonly used to analyze arbitrary task arrivals.
Since (average) QL is used to measure workloads, without loss
of generality, one can assume (average) task execution time to
be one unit of time. Let k, and CY^, be the number of task

SHIN AND CHANG LOAD SHARING I N DISTRIBUTED REAL-TIME SYSTEMS 1129

Complete

External

P
Transferred tasks from
other nodes T1

0

0

0

Transfer tasks
to other nodes ’* .

External
Tasks r,
1” I P

Transferred tasks from
other nodes T

Inter .

Connection

S e t u o r k

Fig. 3. System model

arrivals and the probability of having k, arrivals during the
interval [t , t + l), respectively. For example, when the
interarrival time of external tasks is exponentially distributed
with rate h, a h , can be calculated as shown in [I41 by

Let x, and x,, I denote the QL at time t and t + 1, respectively.
Then,

if x, = 0 and k, I TH,,
x , + ~ = x , + k , - l i f x , > O a n d x , + k , r T H , , + l (4.2)

if x, + k, > TH,,.

The above relation represents the case of ideal LS, since
overloaded nodes are assumed to always find underloaded
nodes to transfer their surplus tasks to.

Using (4.2), one can derive the probability distribution of
QL. Two modifications must be made to include the effects of
transferring and accepting tasks among the nodes in a buddy
set. The first modification is to adjust the task arrival rate to
include transferred-in tasks when a node is in U state. As
shown in Fig. 3, the total arrival rate becomes w = h + 7,
where h and 7 are the arrival rates of external and transferred-
in tasks, respectively. A node’s state transition probability
depends on w when the node is in U state, and thus, cy’s must
be recalculated accordingly. Let a* ’s represent the transition
probability corresponding to w , whereas a’s represent that
corresponding to h only. The second modification ~~ is made to

[:HL,

~~ ~~~~ ~~ ~~
~~ ~

the maximum QL. Since a node will always transfer tasks to
other nodes when QL > TH,,, the QL of a node with ideal LS
is bounded by TH,,.

To illustrate these modifications, consider the threshold
pattern “ 1 2 3” (i.e., TH, = 1, THJ = 2, TH,. = 3) as an
example, and let 4, = P(QL = i) , V i . Then,

4 0 = a; 4 0 + a; 41

41 = :: 4 0 + a: : 41 + a0 42

T 4 0 + cl‘; 41 + cy1 4 2 + a043 4 2 =

43 = (1 -a ; -a?-cy;)q0+ (1 -ao*-cy:: - cy;)ql

+ (1 - a0 - cl’l 142 + (1 - cl’o)43

q k = O for all k > 3 . (4.3)
Note that the assumption that a task takes one unit of time to
complete is used in the above equation.

As mentioned earlier, (4.3) represents ideal LS, i.e.,
overloaded nodes can always locate underloaded nodes to
which their surplus tasks are transferred. In reality, however,
an overloaded node may not always be able to find an
underloaded node from its buddy set. An embedded Markov
chain is developed below to handle this realistic case. In our
LS method, the tasks in a node will be transferred to other
nodes if its QL exceeds TH, + 1 (TH,) upon (before)
completion of a task. A node can accept tasks from other nodes
only when QL < THJ. To transfer surplus tasks, the sharing
capacity of each buddy set must be greater than or equal to the
total number of surplus tasks in that buddy set. If this condition
does not hold, an overloaded node’s QL could grow larger
than TH, . To calculate the probability of a node’s QL growing
larger than TH,, , the following parameters are introduced. Let
E , (0,) be the probability of having exactly (at least) i nodes
available to share the surplus tasks within a buddy set. So, 8,

where n is the size of buddy set.
Assuming x, > 0 for the previous example with threshold

pattern “1 2 3,” the number of surplus tasks in a node is kc,[, =
x, + k, - T H , . When k,,,, = 1, x,, = T H , and the node will
not transfer any task. When k , , = 2, x,, I = TH,, if there is at
lease one node available for LS in its buddy set, and =

TH,, + 1 if none of the nodes in the buddy set are available for
LS. Similarly, when k,,, = I > 2, x,, I = T H , if there are at
least I - 1 nodes available in its buddy set, or x,, , = TH,, +
1 if there are exactly I - 2 nodes available, or, in general,
x,,~ = T H , + j when there are exactly I - (j + 1) nodes
available. Then, the state transition relation can be rewritten as

- - 1 - Cl-1 k = O ~ k for 1 5 i I n , and 8, = t , = 0 for i > n ,

if x, = 0 and k, 5 TH,.

T H , with prob. 0 k , - , , , , , or (T H , + 1) with prob.

~ k ~ - ~ ~ , - I , . ., or k, with prob. t0 if x, = 0 and k, > TH,,

if x,>O and x,+k,- 1 ITH,, x,+ k , - 1

TH, with prob. 8 s l + k , - ~ ~ , , - 1 , or (TH,,+ 1) with prob.

~ x l + h l - ~ ~ L , - 2 , . . . , or (x , + k , - 1) with prob. €0 if x,>O and x,+k,- 1 >TH,,. I X I , 1 = (4.4)

1130 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 8. AUGUST 1989

From the above relation, q k ’ s can be derived. For example,
when the threshold pattern “1 2 3” is used, one can derive

m / m \

available for LS,4 the exact probability of an overloaded node
being unable to transfer a task is always less than that derived
from this model. The beauty of this model is the extreme
simplicity in describing the state transition relation, as
compared to the exact model. If k,, = 1, then x f + I = TH, and
no task will be transferred. If k,, = 2 , then x,+ = TH, with
probability 01 = 1 - E O , or x,+ I = TH, + 1 with probability
eo. When k,,, = I , x,+ I = TH, + I - 2 with probability 0 1 , or
x,+l = TH, + I - 1 with probability E ~ . Summarizing the
above leads to

if x, = 0 and k, 5 TH,,

if xr = 0 and k, > TH,
k,

(k , - 1) with prob. 0 1 , or k , with prob. eo

x , + k , - 1 i fx ,>O a n d x , + k , - l I T H , i (x, + k, - 2) with prob. 0, , or (x, + k, - 1) with prob. eo if x, > 0 and x, + k, - 1 > TH,.

X r + I = (4.6)

n The distribution of QL can now be derived from this
equation as follows:

4 0 = a; 40 + ao* 41

q k = C Eia ,* ,4(40+41)+
i = O

Note that the q k ’ s for k < TH, = 3 are the same as shown in
(4.3), and q k ’ s for other threshold patterns can be derived
similarly.

Although the above equations can be used to calculate the
distribution of QL, E ~ ’ S and O k ’ s are in practice too complex to
compute. For example, ek is the probability of having k nodes
available for LS in an n-node buddy set, the calculation of
which requires us to consider n ! / (n - k) ! k ! different
possibilities. The total number of possibilities that need to be
considered for the calculation of ek for k = 1, . . ., n is 2 ” .
Our analysis shows this number to be over 1000 patterns
when each buddy set contains 10-15 nodes. Furthermore, each
of these patterns needs to be analyzed separately, since the
probability of a node being in U state depends on the state of
other nodes in the buddy set. Thus, it is extremely tedious to
compute these parameters. To alleviate this difficulty, we
develop the upper bound model and an approximate solution to
(4.4). The former is used to derive 6 k ’ s and a rough idea on the
performance of our LS method, while the latter is used to
obtain approximate q k ’ S from (4.4) using the parameters
derived from the upper bound model.

A . Upper Bound Model and Solution

I) Upper Bound Model: This model is derived under the
assumption that every node can always transfer only one
surplus task to another node and the rest of its surplus tasks are

+ (l - ~) a O q k + ~ for all k 2 4 , (4.7)

where E = eo. Equation (4.7) can be rewritten in vector form:
Q = A Q , where Q = [qo, e . . , qnlT, A is an n x n
coefficient matrix, and n is the size of buddy set. Using (4.7)
and C;=,qi = 1, one can solve for Q , the upper bound
solution.

The upper bound solution bounds the exact solution for the
following reason. The only difference between the exact
model (4.4) and the upper bound model (4.6) is that transitions
to queue lengths TH,, TH, + 1, * * , (x, + k, - 2) in (4.4)
are combined into a single transition to QL = x, + k, - 2 in

forced to queue at that ‘Ode. Since On the average 50 percent Otherwise, load sharing is usually infeasible, and thus, should not be
of the computation capacity in each buddy set has to be considered.

SHIN AND CHANG. LOAD SHARING IN DlSTRIBUTED REAL-TIME SYSTEMS 1131

(4.6). Since xr + k, - 2 2 TH,, the transition to a QL > TH,,
is exaggerated in (4.6). Thus, the solution to the exact model
will be bounded by the upper bound solution when k > TH, .
Note that the upper bound model is identical to the exact model
when k 5 TH,.

2) Solving the Upper Bound Model: The upper bound
model is analyzed first to get a rough idea of the performance
of our LS method. a ' s and E must be known before solving the
upper bound model for q k ' s . On the other hand, these
parameters depend on q k ' S , and thus, the model cannot be
solved for q k ' s without knowing a ' s and E . A two-step
approximation approach is taken to handle the difficulty
associated with this recursion problem. In the first step, the
model is solved for 7 and q h ' s with E = 0. The resulting q h ' s
are still an upper bound for the exact solution. The second step
is to compute E based on the qk's obtained in the first step.

By setting c : = 0, qk's for k 2 3 in the upper bound model
become

Proof: Since the probability of a system being idle (qo)
will decrease as the task arrival rate increases, the first
property holds. The second property holds because the sum of
all q k 's is equal to 1 , and thus, the sum of the variations of all
q k ' s must be equal to 0. The last property can be proved by
contradiction. Suppose I dqk/dw I 2 1. Then q k may become
negative or greater than 1 if the variation of w exceeds 1 , a
possible event when a U-state node is surrounded by more
than one V-state node. However, q k can be neither negative

0 nor greater than 1. Contradiction.
Lemma 2: 0 I dr/dw < 1.

Proof:

The above equation can be solved by using an iterative
method. Initially, 7 is set to 0. One can compute qk's and then
7 from

r , 1

/ = ?

m r m 1
(4.9)

Note that /3 is the rate of task transfer out of a node. If all
nodes' external task arrival rates are identical, then 7 = 0.
Otherwise, T must be calculated by (4.11). After calculating 7 ,

w is obtained by adding h to 7 , and then q k ' s are recalculated
with the new U , which will, in turn, change 7 . This procedure
will repeat until q k ' s and 7 converge to fixed values. (The
convergence will be proved later in Theorem 1.)

Lemma I : dqh/dw satisfies the following properties:

dqo
1) -<o

dw

dqk 2) e-=o
dw k = 0

According to the definitions of and a:, each summation in
the above equation is equal to, or less than, the average task
arrival rate which is less than 1 in a stable system. (Recall that
each node's service rate is assumed to be unity.) By the second
and third properties of Lemma 1, the sum of the last three
terms will be less than one. Furthermore, the first term will be
much less than one, because the first three a * ' s usually
dominate the determination of transition probabilities. Thus,
the lemma follows. 0

Theorem I : q k ' s and r derived from the above iterative
method converge to fixed values in a finite number of steps.

Proof: Let d o (') and d7(') be the variations of w and 7 at
the ith iteration, respectively. These parameters at the (i +
1)th iteration are related to those at the ith iteration by

dr
dw

& (I + 1) =- d w (')

dw(i+1)=7(~+1)-7(f)=d7('+I) .

Since I &/dw I < 1 by Lemma 4, dr at the (i + 1)th iteration
will be smaller than dw at the ith iteration. Since the variation
of w at the (i + I)th iteration is equal to that of 7 at the (i +
1)th iteration, we get dr('+ ') < d d) and d w (' + I) < dw(') .
Thus, the variation of 7 will decrease to zero after a finite
number of iterations, and so is w . Substituting the convergent

1132 IEEE TRANSACTIONS ON COMPUTERS. VOL. 38. NO. 8. AUGUST 1989

and w into (4.8), unique q k ' s can be determined, i.e., qk's also

Our numerical experiments show that 7 and w converge
after only two to three iterations, indicating that the derivatives
of 7 and q k with respect to w are much smaller than 1.

3) Derivation of E : The main difficulty in deriving t k ' s lies
in the fact that the queue lengths in a buddy set depend on one
another. Thus, the dependent LS environment is converted to
an independent environment by using the Bayes theorem. To
facilitate the description of our approach for an (n + 1)-node
buddy set, it is necessary to introduce the following variables.

converge. 0

N;: the j th preferred node of N; .
x,: the NI's queue length.
xy: N;'s queue length.
xi., : the queue length of the kth preferred node of N; .
(3,: the rate of task transfer out of N,.
0,: the rate of task transfer out of Ni .
y, : the rate of task transfer out of N, given that NI is not in

y,,: the rate of task transfer out of NS given that N: is not

7;: the rate of task transfer into N I .
It is easy to see that yi > p,, since tasks are not actually

transferred out of a node unless the node is in V' state and 6, is
the average transfer-out rate over the entire time period of
interest.

sharing mode.

in sharing mode.

Let No be the node under consideration, then

(4.10)

equated to P(xO2 I THf), while the w of N: must be adjusted
to reflect the effect of Ny's unavailability. As shown in (4.12),
such an adjustment will increase the rate of task transfer out of
N: given that it is not in sharing mode, which will, in turn,
increase N:'s task transfer-in rate. Moreover, No will select
N: as the most preferred node given that NY is not in sharing
mode, and thus, the task transfer-in rate of N; should be
recalculated. For notational convenience, let N2 represent the
node N: under consideration, then

7 2 = P 2 I P (X 2 I T H u) + P 2 2 P (X 2 I T H u)

+P23P(x25TH,, , xi, r T H f , x i2>THf)

+ . . . + P ~ , P (x ~ I TH,, xil 2 THf,

2 THf, . . . , x:, 2 THf). (4.14)

The first two terms of (4.14) represent the transferred-in tasks
from the N2's most preferred node and No(= N:). Since NY is
unavailable, N2 becomes the most preferred node of both N :
and No. Clearly, N2's w will be larger than those of No and
N:. Hence, it is likely to switch to no-sharing mode when A'?
is in no-sharing mode. Similarly, the probability of all NY,
N:, and NY not being in sharing mode can be calculated as

P(x0l I THf, ~ 0 2 2 THI, ~ 0 3 2 THf)

=P(xo] 2 THf, ~ 0 2 2 THf)

X P (X ~ , ~ T H / ~ X O I ZTHf , xo22THj)

= P (X O ~ ~ T H ~) P (X O I z T H f , xo22THf)

T O = poi P (x 0 5 TH,) + /302P(xo i TH,, x:] 2 THf) = P(~ 0 3 2 THj)P(xoI> THf)P(xoz 2 THf).

+&P(xOITH,, x:~ LTH,, X & Z T H ~)

+ . . . + / 3 0 n P (~ o i T H , , , x : ~ I T H , , x : ~ I T H ~ ,

. . ., x:,zTH/).

The w of N: and N: must be recalculated as described above.
The correctness of (4.11) can be verified as follows. When all
nodes in the system have the same distribution of QL and the
same P , (4.11) can be simplified as

(4.1 ~ = P ~ ~ P (x ~ ~ T H ,) + P ~ ~ P (x ~ L T H ,) P (x ~ , 2 T H f)
Note that 70 derived from (4.11) would be identical to that +

. P(xO,,I THj) . . . P(xO,, 2 THj)

. . + ponP(xoI TH,,)P(xO,, 2 THf)
derived from (4.9) if all nodes have the same external task
arrival rate. Using (4.9) in such a case, for j = 1, . . . , n

1
1 - P (x ~] LTHf)

1 pP(x0 5 TH,) where Pnsh = 1 - qo - q l . Using the Bayes formula, the
probability of both NY and N: not being in sharing mode can
be calculated by

P(xol I THj, X O ~ 2 TH/)

= p(xOl THI.)p(xo2 I THflxol I THf). (4.13)

Since the dependence between queue lengths is included in w,
its effect can be included by adjusting the rate of task transfer
into N : given that NY is not in sharing mode. So, the
conditional probability P(x02 I THf/xol 2 THf) can be

Consider a four-cube system as an example, in which,
without loss of generality, No can be viewed as the center node
for the derivation of E . From Fig. 2 , No's preferred list is
N l N , N , N ~ N ~ N l o N 1 2 N ~ N ~ N ~ N l ~ N l ~ N l I N , . Since the nodes
near the end of the list are unlikely to be selected for LS, the
adjusted task transfer-in rate of these four nodes can be

SHIN AND CHANG: LOAD SHARING IN DISTRIBUTED REAL-TIME SYSTEMS 1133

approximated by adding poP(xo 5 TH,) to the 7 of these
nodes. Since increasing task transfer-in rate will change QL,
the qk’s of these nodes need to be recalculated for

sharing mode can be calculated as

P (x ~ L THf, xz I THf, . . . , ~9 I THf)

= P (x I L T H ,) P (x ~ L T H ~) * * . P(xgLTHj-)
P (x ~ I THf, ~2 L TH,, ~4 2 THf, XR 2 THf)

= - e (I o) . (4.16)

Similarly, one can calculate the probability of all other nodes
in a four-cube system being unavailable as € (I 5) = t .

= P (x , L THf)P(~2 L T H ~ x P (x ~ I THj) P (X S 2 THf)

E € (4) . (4‘15)

Note that the states of these four nodes are different from that
of No, because their task transfer-in rates are higher than that
of No. Thus, these nodes are more likely to be in V-state than
No. Similarly, one can calculate the adjusted task transfer-in
rates for Ns-Nlo. As shown in Fig. 2 , each of these nodes
has two of the previous four nodes in its entry-1. Furthermore,
as the number of V-state nodes increases, tasks will be
transferred to a less preferred node of No. The adjusted task
transfer-in rates of these nodes are

B. Approximate Solution
Although q k ’ s and E (= eo) can be derived from the upper

bound model, it is still very tedious to calculate e h , V k > 0,
because there are too many possibilities to consider and each
of them is difficult to analyze due to the independence of LS
among the nodes in a buddy set. Moreover, the upper bound
model solution fails to include the effects of buddy set size and
threshold patterns on the capability of meeting deadlines,
while the simulation results in Section V did show significant

~ ~ = ~ + Y Z P (X ~ ~ T H ,) P (~ , ~ T H /) differences when these parameters were changed. So, it is
necessary to derive a solution which is simple but closer to the
exact solution to (4.4) than the upper bound solution. Since + Y4P(X6 5 TH[,)P(x7 THf) + p 0 P (x 6 TH~,)
there are n ! / (n - k) ! k ! possibilities in calculating Ek in an n-
node buddy set, these possibilities can be approximated with ’lo = + YxP(xlo THu)P(x’l THf) +

THu) _ _
+ Y ~ P (x ~ ~ ~ T H ~) P (x I I T H J) P (X I ~ L T H ~)

+ Y~P(XIO(TH,)P(XI I LTHf)

. P (X I ~ L T H J) P (X I ~ ~ T H ,)

only one possibility in which a node is in no-sharing mode with
the largest probability. This possibility occurs when all other
nodes in the buddy set are in no-sharing mode.

Consider the No’s preferred list in Fig. 2 again. The
probabilities of N2-N9 being in no-sharing mode are different
from one another due to the adjustment of task transfer-in rates 712 = 7 + yxP(xI2 5 TH,)P(Xi3 1 T H /) P (x I ~ 2 THf)
given that more preferred nodes are in no-sharing mode. As
the number of no-sharing nodes increases, the adjusted task + ~ ~ P (x I z 5 THu) + (74 + + Y I O) P (X I ~ 5 T H u)

. P (x ~ ~ L T H ~) P (x ~ ~ L T H ,) transfer-in rate of the next preferred node increases. Eventu-
ally, N 7 , the least preferred node of No, will receive the
largest number of transfer-in tasks, thus moving it in no-
sharing mode with the highest probability within No’s buddy
set. Let Pah and Pnah denote the probabilities of N7 being in
sharing and no-sharing mode, respectively. Then, E h ’ s can be

73 = 7 + yiP(X3 5 TH,) + YzP(X3 I T H I ,) + p o P (X 3 TH,)

+ (Y ~ + ~ ~) P (x ~ ~ T H ,) P (~ ~ ~ T H ~) P (X I I I T H /)

+ (Y 6 + t 1 0) P (X 3 5 T H ,) P (X 7 L T H /)

approximated by

(p n \ h) n ~ k (p \ h) l , . (4.17)
n !

(n - k) ! k !
e!, =

Plugging the e k ’ s derived from (4.17) into (4.5) and applying
the iterative method discussed in the previous subsection, we + ~ 3 P (x 5 5 T H ,) P (x ~ I T H ~) P (x I ~ LTHf)

+ (7 6 + yIZ)P(x5 5 THu)P(x7 I TH/) can easily obtain an approximate solution. The calculated
results are listed in Tables I and 111 in comparison with the
results derived from the upper bound model and simulations ‘ P(~9 L THf) P(X I 3 I THJ) P(XI 5 I THf)
(to be discussed in the next section).

Note that the e k ’ s derived from (4.8) are essentially the

. P(x , I I TH/)P(xl3 I THf) + &P(xs, 5 TH,)

+ (Y 3 + Y s + Y l o + Y l Z) P (X 9 ~ T H ,) probability calculation.

. P (x ~ , I T H ~) P (x ~ ~ ~ T H /)

. P(xI~LTH/) .

same as those derived from (4.7) since both have the same
queue state equations for QL < TH,, which are dominant in the

V. PERFORMANCE ANALYSIS

The performance of the proposed LS method is evaluated
with the upper bound model, the approximate solution, and
simulation. The first two are used to derive the distribution of
QL at each node and the probability of meeting deadlines, and

Once the task transfer-in rates of entry-2 nodes are adjusted,
the probability of having all entry-I and entry-2 nodes in no-

1134

Model

0

1

2

3

4

5

6

I

8

9

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38. NO 8. AUGUST 1Y8Y

Simulation Approximation Upper bound no load sharing

0.5037 0.4987 0.4992 0.5000

0.3316 0.3317 0.3321 0.3244

0.1254 0.1289 0.1278 0.1226

0.0387 0.0406 0.0398 0.0377

3.13 x 1.43 x 0.0010 0.0109

< IO-’ 1.21 x 0.0001 0.0031

< 9.09 1 0 - l ~ 1.3 0.0009

< 10-7 5.96 x 10-12 1.4 10-6 0.0003

< io-‘ 3.35 x 1 0 - l ~ 1.33 XIO-’ 7.16 10-5

< 1.46 x 1 0 - l ~ 1.28 X I O - ~ 2.04 1 0 - 5

(A = 0.8) Model

Queue Length

0

1

2

3

4

5

6

I

8

9

Simulation

0.2213

0.3317

0.2656

0.1810

0.0002

2.01 x 10-5

8.98 x

3.21 x

7.81 x I O V 7

3.90 x 1 0 - 7

Approximation I‘pper bound no load sharing

0.2264

0.3194

0.2675

0.1862

0.0003

5.94 x 10-5

8.99 x 10-6

1.18 x 10-6

1.36 x 1 0 - 7

1.11 x 10-8

0.2185

0.3136

0.2651

0.1853

0.0 1 35

0.0032

0.0007

0.0001

1.86 x 10-5

2.38 x10W6

0.2001

U.2156

0.1898

0.1278

0.0834

0.0512

0.0353

0.0229

0.0149

0.0097

analyze the effects of buddy set size, the frequency of state
change, and the average system sojourn time of each task. On
the other hand, simulation is used to verify the analytic results.

A . Analytic Results
The proposed model can be applied to any arrival process,

but the transition probability a!k, must be given prior to the
calculation of q k ’ s with (4.4) and (4.8). T o demonstrate the
main idea of our LS method, we present some numerical
results for the case when both arrivals of external and
transferred-in tasks follow exponential distributions. (Note,
however, that our LS method and models are not restricted to
exponential distributions.)

I) Distribution of Queue Length: The distributions of QL
for two different external task arrival rates in a 16-node system
are calculated with the upper bound model and the approxi-
mate solution, and compared to simulation results as well as
to the case of no LS (Table I). The q x ’ s calculated with the
upper bound solution and the approximate solution are very
close to each other when k i TH,. This was expected because
the two differ only when k > T H , . This fact also ensures the
accuracy in calculating E , since it was computed with the q k ’ s
derived from the upper bound model and then used to derive
approximate qk’s from (4.4). Moreover, the distribution of
QL obtained via simulation is shown to be very close to the
approximate solution for all k and is bounded by the upper

bound solution when k > TH,, . Since the approximate solution
is always very close to the exact solution, we will use it in the
following discussions unless stated otherwise.

2) Probability of Meeting Deadlines: A task is said to be
missed if its system sojourn time’ exceeds a given deadline.
According to our queueing model, the completion time of a
newly arriving task is equal to the current queue length plus
one unit of time. Since the probability of QL > T H , is quite
small, one can choose T H , to be one less than the given
deadline such that the probability of missing deadlines, or
simply called the missing probability, becomes the probabil-
ity of encountering QL > TH,, at the time of a task arrival.
Clearly, the missing probability depends on the given deadline
and system load. However, by selecting a proper threshold
pattern and a buddy set size, i t is possible to minimize the
missing probability. Figs. 4 and 5 are the plots of missing
probabilities versus task deadlines for different threshold
patterns.

Generally, the missing probability increases as system load
gets heavier (Fig. 6) andlor the deadline gets shorter. By
choosing an appropriate threshold pattern, e.g. , “ 1 2 3” in
Figs. 4-6, the missing probability can be reduced to a small
value even when system load fluctuates (except when the
system is overloaded, e .g . , X 2 0.9). The analytic results also

’ The system sojourn time of a task is composed of its execution time,
queueing time. and task transfer time.

1135 SHIN AND CHANG. LOAD SHARING IN DISTRIBUTED REAL-TIME SYSTEMS

t
1 6 ’ 1

Legend
A Threshold : 0 1 1

0 Threshold : 1 2 2

Threshold : 1 2 3

w Threshold : 2 3 3

L

lo-’ i

10-2 c
n -

.- 0 -

0 :

w -

f - lo-’

c -

1 6 ‘

2 : a -
g 1 0 - ~ :

.-
x :

. \ ‘I

\ ,‘\
9 ‘\

Legend
A Threshold : 0 1 1

0 Threshold : 1 2 2

0 Threshold : 1 2 3

)t Threshold : 2 3 3

t
t 1 I I I I 1 I I I t I I 1 I I I I I I

2 3 4 5 6 7 0 9 2 3 4 5 6 7 0 9
Deadline Deadline

Fig. 4. Upper bound missing probabilities versus deadlines for different Fig. 5. Approximate missing probabilities versus deadlines for different
thresholds when X = 0.8. thresholds when h = 0.8.

show that the choice of a threshold pattern is sensitive to
system load. For example, threshold pattern “0 1 1 ” results in
a small missing probability when the system is underloaded,
while resulting in a much higher missing probability as system
load increases. Threshold pattern “1 2 3” is found to yield a
reasonably small missing probability for a wide range of load
density (0 < X < 0.8). Fig. 4 shows an interesting result of
the upper bound model: missing probabilities for different
threshold patterns are quite close to each other, and thus,
difficult to tell which pattern is better over the others. This is
opposite to what has been shown by the approximate solution
in Figs. 5 and 6. That is, the upper bound model exaggerates
the probability of switching to a queue length greater than
TH,, and thus, the effect of threshold pattern becomes
insignificant. Since threshold pattern “ 1 2 3” exhibits the best
performance among the three patterns considered, the per-
formance with this pattern is further compared to simulation
results. As shown in Figs. 7 and 8, the missing probability
obtained from the simulation is always upper bounded by those
obtained from the upper bound model and is very close to the
approximate solution.

3) Average System Sojourn Time Versus Missing Prob-
abi/ity: The average system sojourn time can be obtained by
dividing the sum of all tasks’ system sojourn times by the total
number of tasks processed. Mathematically, the average

system sojourn time is equal to the expected task execution
time, C;=“=,(k + l) q k . The average system sojourn time is
calculated for several different threshold patterns and buddy
set sizes as presented in Table 11. One interesting result is that
the lower TH, and TH,, the smaller the average system
sojourn time results, and that buddy set size has only minor
effects on the average system sojourn time. This is in sharp
contrast with the results reported in [4], where the average
system sojourn time under the shortest queue policy was
shown to be only slightly smaller than that under the threshold
policy. In our LS method, the shortest queue (threshold)
policy is equivalent to selecting TH, = 0 and THf = 1 (TH,,
> 0). As shown in Table 11, the threshold pattern with TH,, =
0 and THf = 1 always results in a substantially smaller
average system sojourn time than the pattern with TH, > 0.
This is the advantage resulting from our state-change broad-
casts since the traffic overhead for collecting state information
in the case of TH,, = 0 is essentially the same as the case of
TH, > 0. However, the traffic overhead associated with the
shortest queue policy is higher than that of the threshold policy
due to its required probing of other nodes [4], offsetting the
potential gain to be made by transferring tasks to a node with
the shortest queue. Consequently, our LS method outperforms
other sender-initiated LS algorithms even when the average
system time is used to measure their performance.

1 6 ’

1 4 ’

1 6 ’

g10-’

5
n
e lo-’

-

a :
0 , -
C
VI
.-
.E 1 6 ’
I

1 6 ’

lo-’

1 6 ’

0

E
f

f

f

p

p

f

f

Legend
0 daodllnm 4. thro8hold : 0 1 1

daodllna;. 5

A deodllna - 4, thrashold-:(13

1 I I I I I 1 L I I I I I I I I 1

0.5 0.6 0.7 0.8 0.9 2 3 4 5 6 7 8 9

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 8, AUGUST 1989

lo-’ f

10-2 :

lo-’ :

g 1 6 ‘ p

z
n
g 10-5

f 1 6 ’ p

-
O

0,

VI
.-

lo-’

lo-#

Threshold : 1 2 3

A Upper bound

0 Approximation

Simulation

Another important result is that a threshold pattern that
results in a lower average system sojourn time does not always
yield a lower missing probability. For example, consider the
buddy sets of size 10 in Tables I1 and 111. Pattern “0 1 2”
results in a smaller average task system sojourn time than “1 2
2,” but a larger missing probability than “1 2 2” when the
deadline is greater than 2 . Moreover, some thresholds may
result in almost the same average task system sojourn time but
yield quite different missing probabilities, e.g., “0 2 3” and
“1 2 3” when the deadline is greater than 3 in Table 111.
Hence, those approaches based on minimizing the average task
system sojourn time alone may not be applicable to the
analysis of real-time systems.

4) System Utilization: The system utilization is defined as
the ratio of external task arrival rate (A) to the system service
rate, which is unity in our LS model. (Thus, the system
utilization is simply A.) Since the missing probability depends
on system workload (Fig. 8), we can solve (4.8) to derive X as
a function of q k ’ s and then the maximum system utilization
can be obtained by equating q T H , + I to the specified missing
probability. Some of the calculated results are plotted in Fig.
9. This is in sharp contrast to the common notion that real-time
systems have to be designed to sacrifice utilization for a lower
missing probability.

5) Buddy Set Size and Preferred List: The effect of

changing buddy set size on the missing probability can best be
explained by the approximate solution as shown in Fig. 10.
Buddy set size affects the missing probability significantly
when it grows from 4 to 10 and X > 0.7, but its incremental
effect becomes insignificant when buddy set size is greater
than 10. Actually, there is little notable decrease in the missing
probability when buddy set size grows beyond 15. Surpris-
ingly, the missing probability for a four-node buddy set is
about three orders of magnitude less than that without LS
when the system is underloaded (X I 0.5), and is about the
same as those for buddy sets of size larger than 10 when the
system is overloaded (A > 0.8). So, buddy set size can be
chosen to range from 10 to 15, regardless of the system size.
The most interesting result is found to be that the missing
probability in a large system (of 64 nodes in Table IV) is much
smaller than that of a small system (of 16 nodes in Table 111).
For example, consider threshold “1 2 3” with a ten-node
buddy set at h = 0.8. The missing probability of a 64-node
system is about 3 , 4 , and 20 times smaller than that of the 16-
node system when the deadline is 4 , 5, and 6, respectively.
This significant improvement was found for all other threshold
patterns, thus indicating that the larger the system size, the
better the performance of the proposed LS method will result.
(See the next paragraph for a reasoning about this.) Note that
the traffic overhead for broadcasting state changes remains

SHIN AND CHANG: LOAD SHARING I N DISTRIBUTED REAL-TIME SYSTEMS

0 1 2

0 2 2

0 2 3

1 2 2

1 2 3

1 3 3

2 3 3

No sharing

€

lo-' E

1 6 ' :

lo-' r

r

1.6119 1.6112 1.GO2

1.608 1.GOS 1.622

1.696 1.635 1.700

1.618 1.618 1.G25

1.63s 1.63s 1.701

1.700 1.700 1.703

1.7111 1.701 1.703

1.750 I . i 5 0 1.7511

to-' 1

0 1 1

0 1 2

0 2 2

0 2 3

1 2 2

1 2 3

1 3 3

2 3 3

N o sliaririg

1 6 '

1.318 1.632 1.651

2.236 2.IIG.5 1.033

2.120 2.075 2.071

2.426 2.382 2.331

2.123 2.103 2.110

2.423 2.407 2.405

2.427 2.422 2.421

2.175 2.47:? 2.473

3.370 3.370 3 370

1 6 ' 1 d
t

/ A Upper bound .

0 Approxjm*n

0 No .ShT!?S. - -.

0 Simulation

t I I I I
I I

0.6 0.7 0.8 0.9 0.5
External task arrival rate h

Fig. 8. Approximate, upper bound. and simulated missing probabilities
versus load density with threshold pattern " 1 2 3."

TABLE I1
AVER4GE TASK SYTTEM TIME W H E N h = 0.5 AND h = 0.8

1137

1138 IEEE TRANSACTIONS ON COMPUTERS. VOL. 38. NO. 8. AUGUST 1989

2 3 3

TABLE 111

TASK DEADLINES WHEN h = 0.5 AND h = 0.8, AND BUDDY SET SIZE =
MISSING PROBABILITIES FOR VARIOUS THRESHOLD PATTERNS AND

10

No S h a r i n g

T h r e s h o l d I

2

3

5

6

3

5

4

2

4

6

w D e a d 1 in e

0 1 1

0.0007

4 . 8 1 x

2.85 x

3.10 x

< 1 0 r 7

0 .0004

5 . 1 0 x

6 . 8 1 x

6 .25 x

7.61 x

(A = 0.5)

0 .1661

0.0392

6.59 x l o p 7

l o r 7
<

0 1 2

~

-

~

-

-

1 2 2

0 .1691

0.0406

1 .87 x IOp9

1 .44 x 1 0 - l ~

1 . 0 1 x

1 2 3

0 1756

0 0530

0 0152

n 0013

o 0012

0 .4541

0.1866

0 .0004

6 . 5 4 x l o p 5

1.2 x i n - 5

0 .1296

8 .82 x

5 .32 x

< io-'

< io- '

0 .5151

0 .2256

0.0 0 0 !I

0 .0002

2 . 5 8 x

0.1339

1 . 7 3 x 1 0 - ~

1 .45 x lo-'

<
<

0.1642

0.0388

3 .13 x

< 1 0 - ~

<

s i m u l a t i o n

~

0.1370

8 . 4 1 x

9 .73 x 10-6

9.51 x

8 . 8 x lo-'

0 .1446

7.46 x

7 .11 x

6 . 0 1 x l o p 9

9 .11 x lo-"

0 .1681

0.0398

1 .46 x lo-'

1 .31 x

1 .31 x lo-"

a n a l y t i c

(a p p r o x i m a t i o n)

7
D e a d l i n e

0 1 1 0 1 2 0 2 3 1 2 2 (A = 0.8)

0 .0745

0.0176

0 .0045

0 .0014

0.0006

0.3258

0 .0305

0.0067

0 .0015

0 .0004

0 .4414

0 .1805

0.012

0 .0003

0.0001

0 .3461

0 .0019

0 .0003

8 . 3 7 x 1 0 - ~

3 . 6 1 x

0.1812 0 .2007

0.0002 0.0002 s i m u l a t i o n

0 .0161

0 .0043

0 .0011

0 . 0 0 0 4

0.0002

0.3315

0 .0105

0 .0024

0 .0005

0.0002

0 .4342

0 .1772

0 .0013

0.0003

6 .95 x

0 .3723

0 .0032

0 .0007

0 .0001

2 . 6 4 x

0.5539

0 . 3 6 4 1

0.2363

0.1528

0.0 9 E 6

a n a l y t i c

(a p p r o x i m a t i o n)

SHIN AND CHANG LOAD SHARING IN DISTRIBUTED REAL-TIME SYSTEMS

to-'

to-'

to-'

to-'

5
U 1 6 ' n
2 a -
? l a o

2 . : c -

.-
VI VI .-
I

1 6 '

10-6

to-'

o-'O

1139

E

c

E

!

E

:

r

1

0.9

0.8

C
0
'0 0.7
N

3

.-

.- .- - +

E Oe6
-I- In
2 0 . 5

3 -6 0.4
0
I

E

0.3

0.2

0.1

Legend
Deadline = 4

o Deadline = 5

A Deadline_=6

I , 1 1 1 , 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1 1 " L ~ d ' # , ' ' , vJ ' (1 ' , , d ' , ' ' ' ' d 8 l (l ' ' # d 8 -
lo-e IO-' IO-* lo-' io-' io-'

Missing probability
Fig. 9. Maximum system utilization versus missing probability for different

deadlines.

unchanged and independent of system size because buddy set
size is fixed (to 10-15). Furthermore, the incremental de-
crease in missing probability becomes insignificant when
buddy set size is over 15 (Table IV).

Use of buddy sets and preferred lists in our LS method plays
a major role in lowering the missing probability for a large
system. As discussed in Section 111, the buddy set of a node
consists of those nodes in its physical proximity, and each
node in the buddy set is selected according to the order of its
preference. Moreover, preferred lists are constructed in such a
way that each node is the ith (i = 1, . . * , n) preferred node of
only one other node and the preferred lists of the nodes in the
same buddy set are completely different from each other. As a
result, the surplus tasks within each buddy set will be evenly
shared by all underloaded nodes in the entire system, rather
than overloading a few underloaded nodes within the same
buddy set. As the system size grows, the percentage of
common nodes in the preferred lists of a buddy set gets
smaller, and thus, the surplus tasks are more evenly distrib-
uted in the system, resulting in a better performance.

6) Frequency of State Change: In our LS method. each
node needs to broadcast change of state to all the other nodes
in its buddy set. Since a state change occurs when a node
switches from U state to F state and vice versa, the probability
of a state change becomes P(xk ,+ 5 TH,,(xk, L TH,,) +

/
o/

Legend
Deadline = 5

0 Buddy set = 4 -

0 Buddy set = 10

A Buddy set = 15

No.Shor!w--.-

0.5 0.6 0.7 0.8 0.9
External task arrival rate A

Fig. 10. Approximate missing probabilities versus load density with thresh-
old " I 2 3" and different buddy set sizes.

P (x k , + , 2 T H J ~ ~ ~ , I TH,). The computation results of
Table V showed that the frequency of state change can be
reduced to 10-15 percent of the total number of arrived tasks
by setting THf - TH, = 2. Note that this frequency becomes
about 100 percent of the number of external task arrivals when
TH,, = 0 and THf = 1. The resulting high frequency of state
change should rule out this type of threshold pattern.

The traffic overhead for collecting state information in our
LS method is determined by the frequency of state change and
buddy set size, while it was determined by the number of task
transfers and probing in [4]. Since the frequency of state
change can be controlled by adjusting the difference between
TH, and TH,, this frequency with threshold "1 3 3" and X >
0.7 is found to be about the same as the percentage of external
arrivals that are transferred out. Moreover, transferring one
task may require us to probe 5-6 other nodes [4] and each
probe generates two communication messages (one for request
and the other for response) in sender-initiated methods,
whereas each state-change broadcast in our LS method
generates n messages, where n is the buddy set size. The
traffic overhead for broadcasting state changes for threshold
"1 3 3" and a ten-node buddy set is about the same as that in a
sender-initiated approach. However, the time for selecting a
destination node in our method is much smaller than that in
any sender-initiated approach, because in our approach, a task

1140

Transferred Tasks

Simulation 1 Analytic

IEEE TRANSACTIONS ON COMPUTERS. VOL 38 . NO 8. AUGUST 1989

Frequency of S ta t e Change

Simulation 1 Analytic

TABLE IV
MISSING PROBABILITIES IN A SIX-CUBE FOR DIFFERENT THRESHOLDS

AND BUDDY SET SIZES

7 Deadline .,

(A = 0.8)

Buddy set

4

1 0

0 1 2 1 2 2 1 2 3

0.4506

0.1856

0 .0047

0 .0008

0.0002

0 .4463

0 . 1 8 ~

6 . 4 x

4.7 x

5.2 x l o p 6

1 3 3

0 .4555

0 .1885

0 .0041

0 .0006

0.0002

0.4526

0 .1860

0 .0004

1 .6 x 1 0 ~

2.9 x

2 3 3

0 .4873

0.2018

0.0011

0 .0002

5.8 x 1 0 - ~

0.4856

0.2008

0 .0002

6.6 x 10-6

5 .8 x

0 .3702

0.0950

0 .0320

0 .0107

0 . 0 0 3 4

0 .3181

0.0229

0 .0043

0.0008

0 .0001

0 .3073

0.0089

0 .0013

0.0002

2.0 x

0 .3491

0 .0071

0.0018

0 .0004

9 . 1 x

0.3448

0.0012

8 .9 x

6 . 4

8 . 1 x

0.3148

0 .0012

5 .7 x in-5

2 . 4 1 r 7

5 . 1 x l o e 6

0 .4463

0 .1806

3 . 9 x 10-5

3.2 x l o p 6

1 .6 x

0.4532

0 .1863

0 .0004

1 . 1 x

8 . 4 x io-’

0 .4856

0 .2006

0.0002

7 .6 x lo-‘

2.6 x lo-’

1 5

0 .3026

0 .0033

0 .0004

9 .2 x

1 . 1 x 10-5

0 .3 445

0.0012

6.0 x

1 . 7 x

4 . 1 x l o p 6

0.44 6 3

0.1806

3.7 x 10-5

2.2 x 10-6

< 10-7

0.4526

0.1860

0 .0004

1 . 1 x

7 .4 10-7

0 .4856

0 .2008

0.0002

4.6 x 10-6

2.9 x lo-‘

21

can be transferred upon its arrival without probing any other
nodes. Besides, each task transfer in our LS method will take
less time than other LS methods, because use of a preferred list
will usually locate a receiver in the sender’s physical proxim-
ity.

7) Delays in Task Transfer and State-Change Broad-
casts: When a node selects, and transfers a task to, a U-state
node, the (/-state node may receive an external task and
switch to V state before the transferred task arrives. In this
case, the transferred task will actually arrive at a V-state node.
Thus, the probability of transition to V state with nonzero task
arrivals (i.e., cy,$. for k > 0) is larger than that used in (4.5),
where transferred tasks are assumed to be accepted only when
a receiving node is in U state. One can estimate this
probability and adjust the corresponding ah ’s. The broadcast-
ing delay has the same effect as the task transfer delay.

Although these delays may affect the distribution of QL. the
missing probability can be made insensitive to them by
properly choosing a threshold pattern. For example, a task
which arrives when QL = THf will not be transferred again if
TH, > THJ, e.g. , threshold “ 1 2 3,” but it will be
retransferred if TH,, = THf , e.g. , threshold “ 1 2 2.” Since
task retransfers induce traffic overheads without improving the
capability of meeting deadlines, the threshold patterns that are
sensitive to those delays may result in a higher missing
probability than those that are not. The effect of these delays

TABLE V
NUMBER OF TASK TRANSFERS VERSUS FREQUENCY OF STATE CHANGE

(A = 0.5)

Threshold

0 1 1

0 1 2

0 2 2

1 2 2

1 2 3

1 3 3

2 3 3

0.1071

0.0304

0.0484

0.0332

0.0092

0.0097

0.0089

0.1300

0.0330

0.0501

0.0392

0.0098

0.0101

0.0100

1.0792

1.0203

0.1327

0.1574

0.1511

0.0407

0.0472

1.1128

1.0266

0.1471

0.1754

0.1552

0.0370

0.048 7
I

(A = 0.8)

Threshold

Transferred Tasks Frequency of S t a t e Change

Simulation

0.6277

0.5283

0.1613

0.2576

0.2182

0.1050

0.1G4G

Analytic

0.8118

0.5981

0.2531

0.3316

0.2404

0.1201

0.1782

Simulation

0.2241

0.1145

0.2274

0.1677

0.0877

0.1064

0.0875

Analytic

0.2230

0.1600

0.2015

0.1891

0.0811

0.0934

0.1050

0 1 1

0 1 2

0 2 2

1 2 2

1 2 3

1 3 3

2 3 3

SHIN AND CHANG: LOAD SHARING IN DISTRIBUTED REAL-TIME SYSTEMS

0.3227

0.0307

0.0067

0.0015

0.0004

0.3258

0.0305

0.0067

0.0015

0.0004

1141

0.3460 0.4473 0.4860

0.0013 0.1812 0.2007

0.0002 0.0003 0.0001

6.51 x lo-’ 4.26 x lo-’ 1.65 x lo-’

2.83 x 9.11 x 5.98 x

0.3461 0.4468 0.4858

0.0019 0.1812 0.2007

0.0003 0.0002 0.0002

9.37 x 10-5 2.11 x 10-5 2.28 x 10-5

3.61 x 1.11 x lo-’ 6.18 x

TABLE VI
MISSING PROBABILITIES VERSUS TASK TRANSFER COSTS FOR

DIFFERENT DEADLINES A N D THRESHOLDS

0.3300

0.0295

0.0065

0.0015

0.0004

0.3530 0.4504 0.4847

0.0046 0.1835 0.2017

0.0005 0.0004 0.0007

8.69 x lo-’ 5.58 x 5.31 x

3.8 x 1.29 x lo-‘ 6.33 x

0 3 4 8 8

0 0 3 2 0 ’ 0 0 0 7 2

’ o 0004

0 0 0 1 6

0 3 8 1 7 0 4681 0 4914

0 0 1 6 8 0 1956 0 2177

0 0 0 2 3 0 0016 0 0050

0 0 0 0 3 0 0002 0 0005

4 34 x 10-5 2 93 x 10-5 4 95 x 10-5

on the missing probability is investigated further in our
simulation.

B. Simulation Results

For our simulation, the average load density is varied from
0.5 to 0.9, and buddy sets of size 4, 10, and 15 are considered.
Ten threshold patterns are chosen out of all possible combina-
tions for the simulation of a four-cube system and the results
are given in all tables except for Table 11. A few selected
thresholds for a six-cube system are also simulated and given
in Table IV. The time for transferring a task between two
nodes within a buddy set is assumed to be I O percent of the
task execution time and the time for informing a state change
to one of the nodes in a buddy set is assumed to be 1 percent of
the task execution time.

In most cases, simulation results are consistent with, and
close to, the approximate solution. However, the analytically
derived qk’s for k > TH, are always less than those obtained
from simulation when the system is underloaded (A 5 0.5) or
overloaded (A L 0.9), especially in the threshold patterns with
TH, > 0. This discrepancy may have been caused by the
delays in transferring tasks and broadcasting state changes.
The effect of settting TH, to be larger than TH, is also
observed in the simulation. The percentage of task retransfers
for the case of THf = TH, is higher than that for the case of
THY < TH,,. Hence, the threshold pattern with THf < TH,, is
a better choice than the pattern with TH, = TH,.. This

observation also explains why the missing probability associ-
ated with threshold “1 2 3” is smaller than that of “1 2 2”
when X > 0.7, deadline > 3, and buddy set size > 10.

To study the effect of changing task transfer costs, we ran
simulations with task transfer costs 5 , IO , 20, and 30 percent
of the task execution time. As shown in Table VI. the missing
probability of threshold “1 2 3” remains almost unchanged.
Based on all the above results, i t is concluded that threshold “ 1
2 3” is good for a wide range of system load. Note that,
although the missing probability of threshold “1 2 2” is
usually close to that of threshold “ I 2 3,” the task transfer rate
associated with “ I 2 2” is much higher than that with “ I 2
3. ” Thus, considering cost-performance effectiveness,
threshold “1 2 3” is a better choice than “ 1 2 2.”

C. Advantages of Using Analytic Approaches

There are several advantages of using the upper bound
model and the approximate solution, as compared to simula-
tions. First, the result derived from the upper bound model can
be used to guarantee the specified system reliability, because
the actual missing probability is always less than that deriv-
ed from the upper bound model. Second, system utilization
can be analyzed by using the analytic models. Third, our
analytic models provide, at almost no cost, many pieces of
useful information with accuracy. For example. any meaning-
ful simulation of our LS method requires hundreds of CPU
hours (in a computer as powerful as VAX-I 11780) to get an

1142 IEEE TRANSACTIONS ON COMPUTERS. VOL. 38. NO. 8. AUGUST 1989

accuracy of in the calculation of q k ’ s for a system of
moderate size. Moreover, simulation may be able to provide
information only for a particular system workload; it is too
costly to generate q k ’s with simulation as a function of system
workload.

VI. CONCLUSION

We have proposed and analyzed a new LS method based on
state-change broadcasts. By selecting an appropriate threshold
pattern and a buddy set, one can reduce the missing probability
to a small number, and thus, the proposed LS method has high
potential use for various real-time applications. The traffic
overhead for broadcasting state changes can be controlled to
an acceptable level by selecting an appropriate threshold
pattern.

There are several issues which warrant further investiga-
tion. First, it is necessary, but difficult, to derive an exact
analytic formula for the probability of a task missing its
deadline. Second, if each task has a different execution time,
QL is not sufficient to determine the workload of each node. In
such a case, one must consider the actual task execution times
and use the cumulative execution time to determine the load of
each node. Furthermore, if a node thinks itself to be
underloaded and broadcasts its availability to other nodes, it
may receive a task whose computation is too involved for the
node to complete in time. Thus, the state of a node must
contain a sufficient amount of information to ensure that the
underloaded node can process all transferred-in tasks in time.
Third, if the task execution time is a random variable, a
continuous-time Markov model must be used to simulate and
analyze system performance.

Optimization of the tradeoffs existing in the proposed LS
method is an interesting design problem of its own. For
example, there is a tradeoff between the buddy set size and LS
capability. The traffic overhead of state-change broadcasts can
be reduced by shrinking the buddy set size, but this will limit
the LS cpability. All of these issues are matters of our future
inquiry.

REFERENCES
[I] K. G. Shin, C . M. Krishna, and Y. -H. Lee. “A unified method for

evaluating real-time computer controllers and its application.” IEEE
Trans. Automat. Contr.. vol. AC-30, pp. 357-366. Apr. 1985.
D. W. Leinbaugh, ”Guaranteed response times in a hard-real-time
environment,” IEEE Trans. Software Eng., vol. SE-6, pp. 85-93.
Jan. 1980.
Y . -T. Wang and R. J . T . Morris, “Load sharing in distributed
systems.” IEEE Trans. Comput.. vol. C-34, pp. 204-217, Mar.
1985.
D. L. Eager. E.D. Lazowska, and J . Zahorjan, “Adaptive load sharing
in homogeneous distributed systems,” IEEE Trans. Software Eng..
vol. SE-12, pp. 662-675, May 1986.
J . F. Kurose and R. Chipalkatti, “Load sharing in soft real-time
distributed computer systems.” I€€€ Trans. Comput., vol. C-36. pp.
993-999, Aug. 1987.
P. S. Yu, S. Balsamo. and Y. -H. Lee, ”Dynamic transaction routing
in distributed database systems.” IEEE Trans. Software Eng.. vol.
SE-14, pp. 1307-1318, Sept. 1988.

[2]

[3]

141

[5]

161

P. Krueger and R. Finkel, “An adaptive load balancing algorithm for a
multicomputer,” Comput. Sci. Tech. Rep. 539. Univ. of Wisconsin-
Madison, 1987.
A. Kratzer and D. Hammerstorm. ”A \tudy of load levelling.“ in
Proc. IEEE Real-Time Syst. Symp.. 1980. pp. 6.17-652.
A. N . Tantawi and D. Towsley. “Optimal static load balancing in

distributed computer systems.” J . A C M . pp. 445-465. Apr. 1985.
L. M. Ni and K. Hwang. “Optimal load balancing in a multiple
processor system with many job systems,“ IEEE Trans. Software

Y. -C. Chow and W. H. Kohler. “Model for dynamic load balancing in
a heterogeneous multiple processor system.” IE€E Trans. Comput.,
vol. C-28, pp. 354-361. May 1979.
H. S . Stone. “Multiprocessor scheduling with the aid of network tlow
algorithms.” I€EE Trans. Software Eng., vol. SE-3. pp. 85-93. Jan.
1977.

. “Critical load factors in two-processor distributed systems.“
IEEE Trans. Software Eng.. vol. SE-4. pp. 254-258. May 1978.
L. Kleinrock, Queueing Systems Vol. I: Theory. New, York: Wiley.
1975.

Eng.. vol. SE-II . pp. 491-496. May 1985.

Kang G. Shin (S’75-M‘78-SM’81) receibed the
B S degree in electronics engineering from Seoul
Ndtiondl Uni\ersity. Seoul, Korea in 1970. and the
M S and Ph D degrees in electrical engineering
from Cornell Unilersit) IthdLd. h Y . in 1976 and
1978. respectively

He is d Professor in the Department ot Electricdl
Engineering dnd Computer Science The Uni\ersit)
of Michigan Ann Arbor which he loined in 1982
He has been \er) dcti\e and duthoredicoauthored
over 140 technical paperg in the areas ot tault-

tolerant computing, distributed real-time computing. computer drchitecture.
and robotics and automation In 1985. he tounded the Real-Time Computing
Laboratory where he and his colledgues dre currentlj building d 19-node
hexdgonal mesh multicomputer. cdlkd HARTS. to \&date \arious architec-
tures dnd analytic results in the area ot distributed real time computing Froni
1970 to 1972 he served in the Koredn Arm) ds dn ROTC officer dnd trom
1972 to 1974 he was on the research staft of the Korea Institute of Science dnd
Technology. Seoul, Kored working on the design of VHFiUHF communica-
tion sqstems From 1978 to 1982 he was dn Assistdnt Protessor d t Rensseldcr
Polytechnic Institute, Troq , NY He wds dlso d \ i\iting scientist at the U S
Airtorce Flight Dyndmics Ldboratory in Summer I979 dnd dt Bell Labordto
ries. Holmdel NJ. in Summer 1980 During the 1988-1989 academic year. he
was a Visiting Professor in the CS Division. Electricdl Engineering dnd
Computer Science. Uni\ersity ot Californid. Berkele)

Dr Shin was the Program Chairman of the 1986 IEEE Redl-Time Systems
Symposiuim (RTSS). the General Chdirmdn of the 1987 RTSS and the Guest
Editor of the 1987 August cpecial i,sue of IEEE TRANSACTIOhS Oh!
COMPUTERS on Real-Time Systems He is a member of the Association for
Computing Machinery Sigma Xi. and Phi Kappa Phi In 1987 he recened
the Outstanding Paper Awdrd from the IEEE TRANSACTIONS Oh ALTO
MATIC CONTROL tor a paper on robot trajectory planning

Yi-Chieh Chang (S‘84) wds born in Shienchou.
Talwdn. Republic of China. on September 14
1957 He recei\ed the B S dnd h.1 S degree\ in

electrical engineering from Ndtiondl Taiwan Uni-
versity. Taipei. Republic ol China, in 1979 and
1984, respectively

men1 of Electrical Engineering dnd Computer Sci-
ence. The University of Michigan. Ann Arbor His
research interests include computer drchitccture.
parallel processing. and distributed and real-time
system\

He is currently a Ph D candidate in the Depart

	node

