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Abstract-If task arrivals are not uniformly distributed over 
the nodes in a distributed real-time system, some nodes may 
become overloaded while others are underloaded. Consequently, 
some tasks cannot be completed before their deadlines, even if 
the overall system has the capacity to meet all deadlines. Load 
sharing (LS) is one way to alleviate this problem. 

In this paper, we propose a decentralized, dynamic LS method 
for a distributed real-time system. Whenever the state of a node 
changes from underloaded to fully-loaded and vice versa, the 
node broadcasts this change to a set of nodes, called a buddy set, 
in the system. An overloaded node can select, without probing 
other nodes, the first available node from its preferred list, an 
ordered set of nodes in its buddy set. Preferred lists are so 
constructed that the probability of more than one overloaded 
node “dumping” their loads on a single underloaded node may 
be made very small. 

Performance of the proposed LS method is evaluated with 
both analytic modeling and simulation. The LS method is 
modeled first by an embedded Markov chain to which numerical 
solutions are derived. The model solutions are then used to 
calculate the distribution of queue length at each node and the 
probability of meeting task deadlines. Our analytic results show 
that buddy sets of ten nodes outperform those of less than ten 
nodes, and the incremental benefit gained from increasing the 
buddy set size beyond 15 nodes is insignificant. These and other 
analytic results are verified with simulation. The proposed LS 
method is shown to meet task deadlines with a very high 
probability. 

Index Terms-Buddy set, deadlines, distributed real-time 
systems, load sharing, missing probability, preferred list, state- 
change broadcasts. 

I .  INTRODUCTIO~ 

AILURE to complete a real-time task before its deadline F could cause a disaster [ I ] ,  [2] .  Due to their potential for 
high performance and reliability with the multiplicity of 
processors, distributed systems are natural candidates to 
implement real-time applications. However, if task arrivals 
are unevenly distributed over the nodes in a distributed real- 
time system, some nodes may become overloaded, and thus, 
unable to complete all their tasks in time, while other nodes 
are underloaded. In such a case, even if the total processing 
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power of the system is sufficient to complete all incoming 
tasks in time, some tasks arriving at overloaded nodes may not 
complete in time. One way to alleviate this problem is load 
sharing (LS); some of those tasks arriving at overloaded nodes 
are transferred to underload nodes for execution. 

LS in general-purpose distributed systems has been studied 
extensively by numerous researchers 131-181. Decisions on 
how to share loads among the nodes are either static or 
dynamic. A static decision is independent of the current 
system state, whereas a dynamic decision depends on the 
system state at the time of decision. Static LS can also be 
viewed as nondeterministic allocation of tasks in a system [8]- 
[lo],  where an overloaded node N, will transfer some of its 
tasks to node NJ with probability P,J, which is independent of 
the current system state. Although static LS is simple and easy 
to analyze with queueing models, its potential benefit is 
limited since it does not adapt itself to the time-varying system 
state 141. For example, even when N, is overloaded, it still has 
to accept tasks from other nodes with the same probability as if 
it were underloaded. On the other hand, when dynamic LS is 
used, an overloaded node can transfer its task(s) to other 
node(s) using the information on the current system state [4], 
161, 171, [ll]-[13]. Since any dynamic policy requires each 
node to know states of the other nodes, i t  is inherently more 
complex than any static policy. The advantage of a dynamic 
policy is that it adapts itself to the time-varying system state, 
and thus, can ease the difficulty associated with static LS. 

LS algorithms can be source-initiated or server-initiated, 
depending on which node initiates task transfer. The node at 
which external tasks arrive is the source (sender) node, and the 
node that processes these tasks is the server (receiver) [3]. In 
the source-initiated approach, an overloaded source node 
initiates the transfer of a newly arriving external task based on 
some strategies, while in the server-initiated approach, an 
underloaded server will probe each of the potential source 
nodes to share its load with. LS algorithms are further divided 
into several levels according to the amount of information 
required for them. After analyzing and comparing the per- 
formance of these algorithms, Wang and Morris 131 concluded 
that an algorithm that collects more information will generally 
produce better results and that the server-initiated approach 
will usually outperform the source-initiated approach if the 
task transfer cost is not significant. 

As was discussed by Eager et al. 141, LS is composed of a 
transfer policy and a location policy. The transfer policy 
determines when a node should transfer its task(s), i .e. ,  when 
a node becomes overloaded. The location policy determines 
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where to send task(s) to. Their objective was to minimize the 
average system response time by moving tasks from over- 
loaded nodes to underloaded ones. A simple threshold was 
used in the transfer policy; that is, whenever the queue length 
of a node exceeds this threshold, it will attempt to transfer its 
incoming task to another node. Three different location 
policies were simulated and compared: random, threshold, 
and shortest. Their simulation results indicate that the random 
policy improves system performance significantly, as com- 
pared to the system without LS. The threshold policy can 
further improve system performance, as compared to the 
random policy. The improvement of the shortest policy is 
about the same as that of the threshold policy, although it 
requires more system state information than that of the 
threshold policy. 

LS in distributed real-time systems is addressed far less in 
literature than that in general-purpose distributed systems. 
Kurose and Chipalkatti proposed a quasi-dynamic LS al- 
gorithm in a soft real-time system [5] .  A job is considered lost 
if it is not completed before its deadline. Their primary 
objective was to reduce the probability of losing a job with LS. 
A node will transfer some of its jobs to another node if the 
unfinished workload exceeds its time constraints. The server 
was selected on a probabilistic basis which is independent of 
the current system state. 

The location policy in most early work can be viewed as 
sender-initiated, since an overloaded node (sender) selects 
another node (a candidate receiver) and checks whether or not 
this node can share its load. If it can, the sender will transfer 
some of its tasks to that node; otherwise, the sender will probe 
another node. This process will repeat until a receiver is found 
or a prespecified limit is reached. There are two major 
drawbacks associated with this approach. First, the sender 
needs to probe other nodes before transferring any of its tasks. 
This will introduce an additional delay in completing the tasks 
to be transferred. Second, if only a few nodes in the system are 
underloaded, the sender may not be able to locate a receiver by 
probing only a limited number of nodes. In such a case, 
overloaded nodes must execute all their tasks locally, missing 
the deadlines of some of these tasks. 

In a real-time system, the probability of missing a task must 
be kept as low as possible because the loss of a task may lead 
to a disastrous circumstance [l]. Note that almost all LS 
methods known to date are concerned only with the average 
system performance, rather than the performance of each 
individual task. To alleviate this weakness, we propose a new 
LS method in which each node needs to maintain state 
information of only a small set of nodes, called a buddy set. 
Three thresholds, denoted by TH,, THf, and TH,, are used to 
define the (loading) state of a node. A node is said to be 
underloaded if its queue length (QL) is less than or equal to 
TH,, medium-loaded if TH,, < QL I THf, fully-loaded if 
THJ < QL 5 TH,, and overloaded if QL > TH,. Whenever 
a node becomes fully-loaded (underloaded) due to the arrival 
and/or transfer (completion) of tasks, it will broadcast its 
change of state to all the other nodes in its buddy set. Every 
node that receives this information will update its state 
information by eliminating the fully-loaded node from, or 

adding the underloaded node to, its ordered list (called a 
preferred list) of available receivers. An overloaded node can 
select the first node in its preferred list and transfer a task to 
that node. Notice that our LS method is completely different 
from conventional receiver-initiated LS methods that are 
characterized in [3]. An underloaded server in the conven- 
tional receiver-initiated approach probes other nodes to share 
their work with. By contrast, our method transfers tasks from 
overloaded nodes to underloaded nodes using state-change 
broadcasts within their respective buddy sets. 

The proposed LS method is modeled with an embedded 
Markov chain to which numerical solutions are obtained by a 
two-step approximation approach. The numerical solutions are 
then used to compute the distribution of QL at each node and 
the probability of meeting deadlines. Use of a preferred list 
results in transferring “surplus” tasks’ only to the first few 
nodes in the list. More importantly, different buddy sets are 
designed to overlap one another so that tasks may be 
distributed evenly over the entire system, rather thari within 
one buddy set. Thus, buddy sets each with 10-15 nodes are 
usually sufficient for load sharing regardless of system size. 

The rest of this paper is organized as follows. Section I1 
discusses the problem of implementing the proposed LS 
method. Collection of state information and construction of 
preferred lists are detailed in Section 111. Section IV presents 
one exact model, one approximate model, and an approximate 
solution to the exact model for the proposed LS method. In 
Section V,  the performance of the proposed LS method is 
evaluated with the models derived in Section IV and is also 
simulated to verify the analytic results. Finally, the paper 
concludes with Section VI. 

11. PROBLEM STATEMENT 

In the proposed LS method, each node must maintain and 
update the state information of other nodes. An overloaded 
node can transfer a task to another node based on state 
information without any probing delay. To implement this 
method, one must develop: 

Efficient means of collecting and updating state informa- 
tion; collection of state information must not hamper normal 
communications, such as intertask communications and task 
transfers. 

An automatic method for selecting a server node in case 
there is more than one underloaded node, and minimizing the 
probability of more than one overloaded node simultaneously 
transferring their surplus tasks to the same underloaded node. 

These issues are addressed below in some detail. 

A .  State Information 
To collect state information, one must decide from which 

nodes the information should be collected and how often this 
information should be updated. One straightforward method is 
for each node to collect and update state information from all 
other nodes in the system at a fixed time interval. However, i t  
is very difficult to determine an appropriate collection and 
update interval which ensures the accuracy of state informa- 

’ Those tasks arriving at a node that cannot be completed by the node before 
their deadlines. 
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tion while keeping below an acceptable level the additional 
network traffic resulting from the collection of state informa- 
tion. Although a short interval (i.e., frequent state update) 
ensures the accuracy of state information, this will introduce 
an O(n2)  traffic overhead each time to collect state informa- 
tion, where n is the number of nodes in the system. This may, 
in turn, severely delay normal intertask communications and 
task transfers, thus degrading (rather than improving) system 
performance. On the other hand, the traffic overhead de- 
creases as the frequency of state collection and update 
decreases. But, this may cause the state information recorded 
in a node to be obsolete. For example, if the state of a node has 
changed from underloaded to fully-loaded before the next 
update, other nodes may transfer their tasks to this already 
fully-loaded node based on the obsolete state information. 

Ideally, each node should keep state information as accurate 
and as up-to-date as possible while keeping the traffic 
overhead as low as possible. To achieve this goal, we propose 
state-change broadcasts within the buddy set of each node to 
collect and update the state information at the node. Thus, 
each node needs to maintain only the state information of a 
small set of nodes in the system, e.g. ,  neighbors of the node. 
Each node will broadcast the change of state to all the other 
nodes in its buddy set only if it switched from underloaded to 
fully-loaded, and vice versa. Since a node will receive new 
information only when the state of a node in its buddy set has 
been changed, each node will have the exact state information 
of all the other nodes in its buddy set, as long as there is no 
significant delay in broadcasting state changes. Since the 
buddy set of each node is formed by those nodes in its physical 
proximity, the delay in broadcasting a state-change and/or 
transferring a task should not, in general, be too long. (See 
Section V-A7 for more on the broadcasting delay.) Moreover, 
as we shall see, the additional network traffic resulting from 
state-change broadcasts can be controlled by adjusting the two 
thresholds, TH,, and THf. 

B. Preferred List 
In the sender-initiated location policy, an overloaded node 

will transfer a task to the underloaded node found first during 
the probing [ 3 ] - [ 5 ] .  The problem in our proposed location 
policy is that an overloaded node may find more than one 
underloaded node in its buddy set and/or more than one 
overloaded node could select the same node to transfer their 
tasks to. One must therefore establish a rule for selecting a 
receiver among possible multiply underloaded nodes while 
minimizing the probability of more than one overloaded node 
simultaneously transferring tasks to the same underloaded 
node. A preferred list is proposed to counter the above 
problem. Since each node maintains the state information of 
the nodes in its buddy set, one can order these nodes in each 
node’s preferred list. The first node in this list is the most 
preferred and the second the second most preferred, and so 
on. Note that order of preference changes with time, e .g . ,  if 
the most preferred node becomes overloaded, then the second 
most preferred node, if not overloaded, becomes the most 
preferred. An overloaded node will transfer its task(s) to its 
most preferred node available in the list. 

Based on the system topology, the “static” order of nodes 
in each node’s preferred list is so permuted that a node is the 
most preferred of one and only one other node in the 
corresponding buddy set. (This order does not change with 
time, although some of nodes will drop out of the list of 
available receivers when they become fully-loaded, and regain 
their spots when they become underloaded again.) Since each 
overloaded node is most likely to select the first node in its 
preferred list, the problem of more than one overloaded node 
“dumping” their loads on one node is unlikely to occur. 
Nevertheless, dumping could occur since, for example, the 
third most preferred node, say N,, of an overloaded node No 
can become its most preferred while N, is also the most 
preferred of another overloaded node. But the probability of 
this happening is small, since it will occur only after 
overloading all the nodes ahead of N, in No’s preferred list. 

111. STATE INFORMATION AND PREFERRED LIST 
The nodes in the system are connected by an arbitrary 

network, and each node is equipped with a network processor 
which handles the usual communications and task transfers 
between nodes without burdening the node processor. A node 
has two sources of task arrivals, external tasks and transferred- 
in tasks, and one server (single node processor). The tasks 
arriving at each node may be executed locally, or remotely, at 
any other nodes in the system. 

Every node is assumed to be stable, or its load density (i.e., 
the ratio of average external arrival rate to average service 
rate) is less than one. Thus, the need of load sharing arises 
when there are bursty arrivals of external tasks at one or more 
nodes in the system. 

A .  Collection of State Information 

As mentioned earlier, three thresholds, TH,, THf, and 
TH,, are used to determine the state of a node. These 
thresholds can be QL or cumulative execution time (CET), 
depending on task characteristics. For example. if every task 
has the same (identically distributed) execution time, one can 
use the (average) QL to measure the workload of each node. 
However, if task execution times are neither identical nor 
identically distributed, one must use the CET to measure the 
workload of each node. By comparing each node’s current 
workload to these thresholds, the node is determined to be in 
one of four possible states: under ( U ) ,  medium ( M ) ,  full 
( F ) ,  and over ( V ) .  QL will be used to measure a node’s 
workload throughout this paper. (Use of CET is much more 
involved, as pointed out in Section VI, and will be treated in a 
forthcoming paper.) A node is in U state if QL 5 TH,, M 
state if TH, < QL I THf, F state if THf < QL I TH,,, and 
I/ state if QL > TH, .  

A U-state node can accept one or more tasks from other 
nodes and complete them before their deadlines. A node in F 
state cannot accept tasks from any other nodes but can 
complete all of its own tasks in time. A node in I/ state cannot 
complete all of its own tasks in time, and thus, must transfer. if 
possible, some of its tasks to other node(s). Since a node in U 
state can share other nodes’ work, it is said to be in share 
mode. A node in F state will neither accept tasks from other 
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nodes nor transfer its own tasks to others, and is said to be in 
independent mode. A node in V state must transfer some of 
its tasks, and is said to be in transfer mode. Note that V is 
usually a transient state because, if arrival of a new task at a 
node switches the node to V state, the node will transfer this 
task to another underloaded node and then switch back to F 
state. However, if a V-state node cannot find a U-state node 
from its buddy set, it will be forced to remain in V state, 
missing some deadlines. 

According to our state-change broadcasts, each node will 
broadcast the change of state to all the other nodes in its buddy 
set only when it switches from U to F and/or U to F. Upon 
receiving a state-change broadcast, every node in the corres- 
ponding buddy set will update its state information accord- 
ingly. 

Two different thresholds, TH, and THf, are used in the 
proposed LS method for the following reason. If only one 
threshold were used instead, a node would be in U ( F  ) state 
when its QL is less (greater) than this threshold. In such a case, 
a U-state node may switch to F state after receiving a task 
from another node, and an F-state may switch back to U state 
after completing a task. Since a U-state node will accept tasks 
from other overloaded nodes, it is likely to switch to F state. 
On the other hand, an F-state node only accepts its own 
external tasks and is likely to switch back to U state, since 
every node is assumed to be stable. Thus, every node in the 
system will frequently switch between U and F ,  thereby 
increasing the network traffic to broadcast these state changes. 
Change of state occurs infrequently (frequently) when the 
difference between TH, and THf is large (small). 

The third threshold, TH,, is used to avoid unnecessary task 
transfers. If we combine THfand TH, into one threshold, then 
acceptance of one transferred task may make a node fully- as 
well as overloaded. In this case, the fully- and overloaded 
node must transfer its own newly arriving task to another 
node. Had it not accepted the transferred task, the node would 
not have to transfer the newly arriving task, and thus, one of 
the two task transfers would not have been needed. By 
introducing another threshold TH, , each node will broadcast 
the change of state when it switches to F state, preventing 
other nodes from transferring tasks to that node. Since TH, - 
THf # 0 and every node is assumed to be stable, a node is 
unlikely to become overloaded with its own arriving tasks. 
Thus, this difference can be used to control unnecessary task 
transfers. 

The above three thresholds greatly influence system per- 
formance, such as the average task execution time, the 
probability of missing deadlines, and the traffic overhead of 
broadcasting state changes. These thresholds must therefore 
be determined to meet the system performance requirement. 
For example, in a real-time system, TH, is a critical point 
below which a node processor can complete all queued tasks 
before their deadlines with a probability higher than required. 
The difference between TH, and THf must be chosen to keep 
the traffic overhead induced by state-change broadcasts below 

B. List of Preferred Nodes 

As mentioned in Section 11, the purpose of constructing a 
preferred list for each node is to avoid the probing delay and 
the dumping problem. The cost of task transfer is an 
increasing function of the physical distance between the sender 
and receiver nodes. To reduce this cost, the receiver node 
should be located as closely to the source node as possible. 
The preferred list of each node is thus structured based on the 
number of hops between the source and receiver nodes. The 
first entry of a node’s preferred list consists of its immediate 
neighbors, and the second entry consists of those nodes two 
hops away from the node, and so on. When there is more than 
one node in each entry, these nodes must be ordered to 
minimize the dumping problem. 

To demonstrate how to order the nodes in each buddy set 
based on system topology, consider a regular? system with n 
nodes, NI, N2, * . . , N,,, where the degree of N j  is k ,  V i .  Link j 
of NI is assigned a direction dj ,  0 5 j I k - 1. NI’s “static” 
preferred list3 is then constructed as follows. The set of NI’s 
immediate neighbors, denoted by P f ,  is placed in the first 
entry of N,’s preferred list. The N;’s second entry, denoted by 
P i ,  consists of the nodes in the first entry of every node in P; , 
excluding the duplicated nodes. Generally, P; is the set of 
nodes which are listed in the first entry of every node in Pi- I ,  
excluding the duplicated nodes. 

Among the nodes in Pf , the node in direction do is chosen to 
be the NI’s most preferred node in this entry, denoted by N’,’ , 
and the node in direction dl is the NI’s second most preferred 
node in this entry, denoted by N t  , and so on. The nodes in P i  
are ordered as follows. The nodes in the Ny ’s first entry are 
checked according to their order in the entry. If a node in the 
NY’s first entry did not appear at any N;’s previous entry, it 
will be copied into the second entry of N; in the same order as 
in the NY’s first entry. After all nodes in the first entry N;’ are 
checked and copied, the nodes in the first entry of node NY 
will be checked and copied by the same procedure. This 
procedure will repeat until Pi is completed. The ordering of 
nodes in P;,  V I  > 2, can be determined similarly. 

As an example, consider how the preferred list of each node 
in a four-cube system (Fig.1) is actually constructed. The 
identity (ID) of each node is coded with a 4-bit number, 
b3b2b1 bo. The direction d; of Nk is the link that connects Nk to 
a node whose ID differs from Nk’s ID in bit position i ,  where 
0 5 i I 3 .  One can now apply the above procedure to 
construct the preferred list for each node in the four-cube 
system as shown in Fig. 2. 

Once each node’s preferred list is constructed, an over- 
loaded node N; can select an underloaded node as follows. 
Check Nf’ first; if it is underloaded, NI will transfer a task to 
NI’ ; otherwise, N: is checked, and so on. (This checking can 
easily be implemented with a pointer which is made to point to 
the first available node in the list.) If all the nodes in P; are 
overloaded, N; will sequentially check the nodes in P; .  If, 
albeit rare, an overloaded node cannot find any underloaded 

a specified value. These thresholds are also sensitive to system 
load and have to be adjusted as system load varies. (More on 

A system is said to be regular if a,l node degrees are identical, 
This list is determined by the system topology and remalns unchanged, 

this will be discussed in Section V.) but the availability of each node in this list changes with time . 
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Fig. I .  A four-cube system. 

Order ofpreference 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

node 0 

node 1 

node 2 

node 3 

node 4 

node 5 

node 6 

node 7 

node 8 

node 9 

node 10  

node 11 

node 12 

node 1 3  

node 14 

node 15  

1 2  4 S 6 1 0 1 2  3 5 9 1 4 1 3 1 1  7 1 5  

0 3 5 9 7 1 1 1 3  2 4 8 1 5 1 2 1 0  6 1 4  

3 0 6 1 0  4 8 1 4  1 7 1 1 1 2 1 5  9 5 1 3  

2 1 7 1 1  5 9 1 5  0 G 1 0 1 3 1 . 1  8 4 1 2  

5 6 0 1 2  2 1 4  8 7 1 1 3 1 0  9 1 5  3 1 1  

4 7 1 1 3  3 1 5  9 6 0 1 2 1 1  8 1 4  2 1 0  

7 4 2 1 4  0 1 2 1 0  5 3 1 5  8 1 1 1 3  1 9  

G 5 3 1 5  1 1 3 1 1  4 2 1 4  9 1 0 1 2  0 8 

9 1 0 1 2  0 1 4  2 4 1 1 1 3  1 6  5 3 1 5  7 

8 1 1 1 3  1 1 5  3 5 1 0 1 2  0 7 4 2 1 4  G 

11 8 1 4  2 1 2  0 G 9 1 5  3 4 7 1 1 3  5 

10 9 1 5  3 1 3  1 7  8 1 4  2 5 6 0 1 2  4 

1 3 1 4  8 4 1 0  6 0 1 5  9 5 2 1 7 1 1  3 

1 2 1 5  9 5 1 1  7 1 1 4  8 4 3 0 6 1 0  2 

1 5 1 2 1 0  6 8 4 2 1 3 1 1  7 0 3 5 9 1 

1 4 1 3 1 1  7 9 5 3 1 2 1 0  G 1 2  4 8  0 

Fig 2 Preterred h\ta ot a four-cube sy\tem 

node from its preferred list, all of its tasks will be forced to change broadcasts will result. Thus, there is a tradeoff 
execute locally. between the capability of meeting deadlines and the traffic 

The preferred list constructed above has the following overhead caused by state-change broadcasts. More on this will 
advantages. First, since each node is the most preferred node be discussed in Section V. 
of one and only one node in the “static” list, the probability of 
an underloaded node being selected by more than one 
overloaded node is very small. Second, the cost of task 
transfer is minimal, since a receiver node is selected, with a 
high probability, from the physical proximity of the source 
node. Moreover, the time overhead for selecting an under- 
loaded node is negligibly small, because the time-consuming 
probing procedure used in most known methods [4], [ 5 ] ,  [7] is 
not needed. 

Since the size of preferred list or buddy set will affect the 
probability of a task missing its deadline, it must be chosen to 
ensure this probability is lower than the specified limit. 
However, a buddy set must not be too large because the larger 
the size of buddy set, the higher traffic overhead for state- 

IV. MODELS FOR THE PROPOSED LS METHOD 

An embedded Markov chain is used to model the perform- 
ance of the proposed LS method. We begin with the 
development of an exact model from which an approximate 
solution and an approximate model, called the upper bound 
model, will be derived. The exact solution will be shown to be 
1) always upper bounded by the solution to the upper bound 
model, called the upper bound solution, and 2 )  very close to 
the approximate solution. Note that an embedded Markov 
chain is commonly used to analyze arbitrary task arrivals. 
Since (average) QL is used to measure workloads, without loss 
of generality, one can assume (average) task execution time to 
be one unit of time. Let k, and  CY^, be the number of task 
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S e t u o r k  

Fig. 3. System model 

arrivals and the probability of having k, arrivals during the 
interval [ t ,  t + l), respectively. For example, when the 
interarrival time of external tasks is exponentially distributed 
with rate h, a h ,  can be calculated as shown in [I41 by 

Let x, and x,, I denote the QL at time t and t + 1, respectively. 
Then, 

if x, = 0 and k, I TH,, 
x , + ~ =  x , + k , - l  i f x , > O a n d x , + k , r T H , , + l  (4.2) 

if x, + k, > TH,,. 

The above relation represents the case of ideal LS, since 
overloaded nodes are assumed to always find underloaded 
nodes to transfer their surplus tasks to. 

Using (4.2), one can derive the probability distribution of 
QL. Two modifications must be made to include the effects of 
transferring and accepting tasks among the nodes in a buddy 
set. The first modification is to adjust the task arrival rate to 
include transferred-in tasks when a node is in U state. As 
shown in Fig. 3,  the total arrival rate becomes w = h + 7, 
where h and 7 are the arrival rates of external and transferred- 
in tasks, respectively. A node’s state transition probability 
depends on w when the node is in U state, and thus, cy’s must 
be recalculated accordingly. Let a* ’s represent the transition 
probability corresponding to w ,  whereas a’s represent that 
corresponding to h only. The second modification ~~ is made to 

[:HL, 

~~ ~~~~ ~~ ~~ 
~~ ~ 

the maximum QL. Since a node will always transfer tasks to 
other nodes when QL > TH,,, the QL of a node with ideal LS 
is bounded by TH,,. 

To illustrate these modifications, consider the threshold 
pattern “ 1  2 3” (i.e., TH, = 1, THJ = 2, TH,. = 3) as an 
example, and let 4, = P(QL = i ) ,  V i .  Then, 

4 0  = a; 4 0  + a;  41 

41 = :: 4 0  + a: : 41 + a0 42 

T 4 0  + cl‘; 41 + cy1 4 2  + a043 4 2  = 

43 = (1 -a ;  -a?-cy;)q0+ (1  -ao*-cy:: - cy;)ql 

+ (1 - a0 - cl’l 142 + (1  - cl’o)43 

q k = O  for all k > 3 .  (4.3) 
Note that the assumption that a task takes one unit of time to 
complete is used in the above equation. 

As mentioned earlier, (4.3) represents ideal LS, i.e., 
overloaded nodes can always locate underloaded nodes to 
which their surplus tasks are transferred. In reality, however, 
an overloaded node may not always be able to find an 
underloaded node from its buddy set. An embedded Markov 
chain is developed below to handle this realistic case. In our 
LS method, the tasks in a node will be transferred to other 
nodes if its QL exceeds TH, + 1 (TH,) upon (before) 
completion of a task. A node can accept tasks from other nodes 
only when QL < THJ. To transfer surplus tasks, the sharing 
capacity of each buddy set must be greater than or equal to the 
total number of surplus tasks in that buddy set. If this condition 
does not hold, an overloaded node’s QL could grow larger 
than TH, . To calculate the probability of a node’s QL growing 
larger than TH,, , the following parameters are introduced. Let 
E ,  (0,) be the probability of having exactly (at least) i nodes 
available to share the surplus tasks within a buddy set. So, 8, 

where n is the size of buddy set. 
Assuming x, > 0 for the previous example with threshold 

pattern “1 2 3,” the number of surplus tasks in a node is kc,[, = 
x, + k, - T H , .  When k,,,, = 1, x,, = T H ,  and the node will 
not transfer any task. When k , ,  = 2, x,, I = TH,, if there is at 
lease one node available for LS in its buddy set, and = 

TH,, + 1 if none of the nodes in the buddy set are available for 
LS. Similarly, when k,,, = I > 2, x,, I = T H ,  if there are at 
least I - 1 nodes available in its buddy set, or x,, , = TH,, + 
1 if there are exactly I - 2 nodes available, or, in  general, 
x,,~ = T H ,  + j when there are exactly I - ( j  + 1) nodes 
available. Then, the state transition relation can be rewritten as 

- - 1 - Cl-1  k = O ~ k  for 1 5 i I n ,  and 8, = t ,  = 0 for i > n ,  

if x, = 0 and k, 5 TH,. 

T H ,  with prob. 0 k , - , , , , ,  or ( T H , +  1) with prob. 

~ k ~ - ~ ~ , -  I ,  . ., or k, with prob. t0  if x, = 0 and k, > TH,, 

if x,>O and x,+k,-  1 ITH,, x,+ k , -  1 

TH, with prob. 8 s l + k , - ~ ~ , , -  1 ,  or (TH,,+ 1) with prob. 

~ x l + h l - ~ ~ L , - 2 ,  . . . ,  or ( x , + k , -  1) with prob. €0 if x,>O and x,+k,- 1 >TH,,.  I X I ,  1 = (4.4) 
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From the above relation, q k ’ s  can be derived. For example, 
when the threshold pattern “1 2 3” is used, one can derive 

m / m  \ 

available for LS,4 the exact probability of an overloaded node 
being unable to transfer a task is always less than that derived 
from this model. The beauty of this model is the extreme 
simplicity in describing the state transition relation, as 
compared to the exact model. If k,, = 1, then x f +  I = TH, and 
no task will be transferred. If k,, = 2 ,  then x,+ = TH, with 
probability 01 = 1 - E O ,  or x,+ I = TH, + 1 with probability 
eo. When k,,, = I ,  x,+ I = TH, + I - 2 with probability 0 1 ,  or 
x,+l = TH, + I - 1 with probability E ~ .  Summarizing the 
above leads to 

if x, = 0 and k, 5 TH,, 

if xr = 0 and k,  > TH, 
k, 

(k , -  1) with prob. 0 1 ,  or k ,  with prob. eo 

x , + k , - 1  i fx ,>O a n d x , + k , - l I T H ,  i (x, + k, - 2) with prob. 0,  , or (x, + k, - 1) with prob. eo if x, > 0 and x, + k, - 1 > TH,. 

X r + I =  (4.6) 

n The distribution of QL can now be derived from this 
equation as follows: 

4 0  = a;  40 + ao* 41 

q k = C  Eia ,* ,4(40+41)+ 
i = O  

Note that the q k ’ s  for k < TH, = 3 are the same as shown in 
(4.3), and q k ’ s  for other threshold patterns can be derived 
similarly. 

Although the above equations can be used to calculate the 
distribution of QL, E ~ ’ S  and O k ’ s  are in practice too complex to 
compute. For example, ek is the probability of having k nodes 
available for LS in an n-node buddy set, the calculation of 
which requires us to consider n ! / ( n  - k ) ! k !  different 
possibilities. The total number of possibilities that need to be 
considered for the calculation of ek for k = 1, . . ., n is 2 ” .  
Our analysis shows this number to be over 1000 patterns 
when each buddy set contains 10-15 nodes. Furthermore, each 
of these patterns needs to be analyzed separately, since the 
probability of a node being in U state depends on the state of 
other nodes in the buddy set. Thus, it is extremely tedious to 
compute these parameters. To alleviate this difficulty, we 
develop the upper bound model and an approximate solution to 
(4.4). The former is used to derive 6 k ’ s  and a rough idea on the 
performance of our LS method, while the latter is used to 
obtain approximate q k ’ S  from (4.4) using the parameters 
derived from the upper bound model. 

A .  Upper Bound Model and Solution 

I )  Upper Bound Model: This model is derived under the 
assumption that every node can always transfer only one 
surplus task to another node and the rest of its surplus tasks are 

+ ( l - ~ ) a O q k + ~  for all k 2 4 ,  (4.7) 

where E = eo. Equation (4.7) can be rewritten in vector form: 
Q = A Q ,  where Q = [qo, e . . ,  qnlT, A is an n x n 
coefficient matrix, and n is the size of buddy set. Using (4.7) 
and C;=,qi = 1, one can solve for Q ,  the upper bound 
solution. 

The upper bound solution bounds the exact solution for the 
following reason. The only difference between the exact 
model (4.4) and the upper bound model (4.6) is that transitions 
to queue lengths TH,, TH, + 1, * * ,  (x, + k,  - 2 )  in (4.4) 
are combined into a single transition to QL = x, + k, - 2 in 

forced to queue at that ‘Ode. Since On the average 50 percent Otherwise, load sharing is usually infeasible, and thus, should not be 
of the computation capacity in each buddy set has to be considered. 
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(4.6). Since xr + k, - 2 2 TH,, the transition to a QL > TH,, 
is exaggerated in (4.6). Thus, the solution to the exact model 
will be bounded by the upper bound solution when k > TH, . 
Note that the upper bound model is identical to the exact model 
when k 5 TH,. 

2) Solving the Upper Bound Model: The upper bound 
model is analyzed first to get a rough idea of the performance 
of our LS method. a ' s  and E must be known before solving the 
upper bound model for q k ' s .  On the other hand, these 
parameters depend on q k ' S ,  and thus, the model cannot be 
solved for q k ' s  without knowing a ' s  and E .  A two-step 
approximation approach is taken to handle the difficulty 
associated with this recursion problem. In the first step, the 
model is solved for 7 and q h ' s  with E = 0. The resulting q h ' s  
are still an upper bound for the exact solution. The second step 
is to compute E based on the qk's obtained in the first step. 

By setting c : = 0, qk's for k 2 3 in the upper bound model 
become 

Proof: Since the probability of a system being idle (qo)  
will decrease as the task arrival rate increases, the first 
property holds. The second property holds because the sum of 
all q k  's is equal to 1 ,  and thus, the sum of the variations of all 
q k ' s  must be equal to 0. The last property can be proved by 
contradiction. Suppose I dqk/dw I 2 1. Then q k  may become 
negative or greater than 1 if the variation of w exceeds 1 ,  a 
possible event when a U-state node is surrounded by more 
than one V-state node. However, q k  can be neither negative 

0 nor greater than 1.  Contradiction. 
Lemma 2: 0 I dr/dw < 1. 

Proof: 

The above equation can be solved by using an iterative 
method. Initially, 7 is set to 0. One can compute qk's and then 
7 from 

r ,  1 

/ = ?  

m r m  1 
(4.9) 

Note that /3 is the rate of task transfer out of a node. If all 
nodes' external task arrival rates are identical, then 7 = 0. 
Otherwise, T must be calculated by (4.11). After calculating 7 ,  

w is obtained by adding h to 7 ,  and then q k ' s  are recalculated 
with the new U ,  which will, in turn, change 7 .  This procedure 
will repeat until q k ' s  and 7 converge to fixed values. (The 
convergence will be proved later in Theorem 1. )  

Lemma I :  dqh/dw satisfies the following properties: 

dqo 
1) -<o 

dw 

dqk 2) e-=o 
dw k = 0 

According to the definitions of and a:, each summation in 
the above equation is equal to, or less than, the average task 
arrival rate which is less than 1 in a stable system. (Recall that 
each node's service rate is assumed to be unity.) By the second 
and third properties of Lemma 1, the sum of the last three 
terms will be less than one. Furthermore, the first term will be 
much less than one, because the first three a * ' s  usually 
dominate the determination of transition probabilities. Thus, 
the lemma follows. 0 

Theorem I :  q k ' s  and r derived from the above iterative 
method converge to fixed values in a finite number of steps. 

Proof: Let d o ( ' )  and d7( ' )  be the variations of w and 7 at 
the ith iteration, respectively. These parameters at the ( i  + 
1)th iteration are related to those at the ith iteration by 

dr 
dw 

& ( I +  1) =- d w ( ' )  

dw(i+1)=7(~+1)-7(f)=d7('+I) .  

Since I &/dw I < 1 by Lemma 4, dr at the (i + 1)th iteration 
will be smaller than dw at the ith iteration. Since the variation 
of w at the ( i  + I)th iteration is equal to that of 7 at the ( i  + 
1)th iteration, we get dr( '+ ' )  < d d )  and d w ( ' + I )  < dw(') .  
Thus, the variation of 7 will decrease to zero after a finite 
number of iterations, and so is w .  Substituting the convergent 
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and w into (4.8), unique q k ' s  can be determined, i.e., qk's also 

Our numerical experiments show that 7 and w converge 
after only two to three iterations, indicating that the derivatives 
of 7 and q k  with respect to w are much smaller than 1. 

3) Derivation of E :  The main difficulty in deriving t k ' s  lies 
in the fact that the queue lengths in a buddy set depend on one 
another. Thus, the dependent LS environment is converted to 
an independent environment by using the Bayes theorem. To 
facilitate the description of our approach for an ( n  + 1)-node 
buddy set, it is necessary to introduce the following variables. 

converge. 0 

N;: the j th preferred node of N; . 
x,: the NI's queue length. 
xy: N;'s queue length. 
xi., : the queue length of the kth preferred node of N; . 
(3,: the rate of task transfer out of N,. 
0,: the rate of task transfer out of Ni . 
y, : the rate of task transfer out of N, given that NI is not in 

y,,: the rate of task transfer out of NS given that N: is not 

7;: the rate of task transfer into N I .  
It is easy to see that yi > p,, since tasks are not actually 

transferred out of a node unless the node is in V' state and 6, is 
the average transfer-out rate over the entire time period of 
interest. 

sharing mode. 

in sharing mode. 

Let No be the node under consideration, then 

(4.10) 

equated to P(xO2 I THf), while the w of N: must be adjusted 
to reflect the effect of Ny's unavailability. As shown in (4.12), 
such an adjustment will increase the rate of task transfer out of 
N: given that it is not in sharing mode, which will, in turn, 
increase N:'s task transfer-in rate. Moreover, No will select 
N: as the most preferred node given that NY is not in sharing 
mode, and thus, the task transfer-in rate of N; should be 
recalculated. For notational convenience, let N2 represent the 
node N: under consideration, then 

7 2 = P 2 I P ( X 2 I T H u ) + P 2 2 P ( X 2 I T H u )  

+P23P(x25TH,, ,  xi, r T H f ,  x i2>THf)  

+ . . .  + P ~ , P ( x ~  I TH,, xil 2 THf, 

2 THf, . . . , x:, 2 THf). (4.14) 

The first two terms of (4.14) represent the transferred-in tasks 
from the N2's most preferred node and No( = N:). Since NY is 
unavailable, N2 becomes the most preferred node of both N :  
and No. Clearly, N2's w will be larger than those of No and 
N:. Hence, it is likely to switch to no-sharing mode when A'? 
is in no-sharing mode. Similarly, the probability of all NY, 
N:, and NY not being in sharing mode can be calculated as 

P(x0l I THf, ~ 0 2  2 THI, ~ 0 3  2 THf) 

=P(xo]  2 THf, ~ 0 2  2 THf) 

X P ( X ~ , ~ T H / ~ X O I  ZTHf ,  xo22THj) 

= P ( X O ~ ~ T H ~ ) P ( X O I  z T H f ,  xo22THf) 

T O =  poi P ( x 0 5  TH,) + /302P(xo i TH,, x:] 2 THf) = P(  ~ 0 3  2 THj)P(xoI> THf)P(xoz 2 THf). 

+&P(xOITH,, x:~ LTH,, X & Z T H ~ )  

+ . . .  + / 3 0 n P ( ~ o i T H , , ,  x : ~  I T H , ,  x : ~ I T H ~ ,  

. . ., x:,zTH/). 

The w of N: and N:  must be recalculated as described above. 
The correctness of (4.11) can be verified as follows. When all 
nodes in the system have the same distribution of QL and the 
same P ,  (4.11) can be simplified as 

(4.1 ~ = P ~ ~ P ( x ~ ~ T H , ) + P ~ ~ P ( x ~ L T H , ) P ( x ~ ,  2 T H f )  
Note that 70 derived from (4.11) would be identical to that + 

. P(xO,,I THj) . . . P(xO,, 2 THj) 

. . + ponP(xoI TH,,)P(xO,, 2 THf) 
derived from (4.9) if all nodes have the same external task 
arrival rate. Using (4.9) in such a case, for j = 1, . . . , n 

1 
1 - P ( x ~ ]  LTHf)  

1 pP(x0 5 TH,) where Pnsh = 1 - qo - q l .  Using the Bayes formula, the 
probability of both NY and N: not being in sharing mode can 
be calculated by 

P(xol I THj, X O ~  2 TH/) 

= p(xOl THI.)p(xo2 I THflxol I THf). (4.13) 

Since the dependence between queue lengths is included in w, 
its effect can be included by adjusting the rate of task transfer 
into N :  given that NY is not in sharing mode. So, the 
conditional probability P(x02 I THf/xol 2 THf) can be 

Consider a four-cube system as an example, in which, 
without loss of generality, No can be viewed as the center node 
for the derivation of E .  From Fig. 2 ,  No's preferred list is 
N l N , N , N ~ N ~ N l o N 1 2 N ~ N ~ N ~ N l ~ N l ~ N l I N , .  Since the nodes 
near the end of the list are unlikely to be selected for LS, the 
adjusted task transfer-in rate of these four nodes can be 
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approximated by adding poP(xo 5 TH,) to the 7 of these 
nodes. Since increasing task transfer-in rate will change QL, 
the qk’s of these nodes need to be recalculated for 

sharing mode can be calculated as 

P ( x ~  L THf, xz I THf, . . . , ~9 I THf) 

= P ( x I L T H , ) P ( x ~ L T H ~ )  * * .  P(xgLTHj-) 
P ( x ~  I THf, ~2 L TH,, ~4 2 THf, XR 2 THf) 

= - e ( I o ) .  (4.16) 

Similarly, one can calculate the probability of all other nodes 
in a four-cube system being unavailable as € ( I 5 )  = t .  

= P ( x ,  L THf)P(  ~2 L T H ~ x  P ( x ~  I THj) P ( X S  2 THf) 

E € ( 4 ) .  (4‘15) 

Note that the states of these four nodes are different from that 
of No,  because their task transfer-in rates are higher than that 
of No. Thus, these nodes are more likely to be in V-state than 
No. Similarly, one can calculate the adjusted task transfer-in 
rates for Ns-Nlo.  As shown in Fig. 2 ,  each of these nodes 
has two of the previous four nodes in its entry-1. Furthermore, 
as the number of V-state nodes increases, tasks will be 
transferred to a less preferred node of No.  The adjusted task 
transfer-in rates of these nodes are 

B. Approximate Solution 
Although q k ’ s  and E (  = eo) can be derived from the upper 

bound model, it is still very tedious to calculate e h ,  V k  > 0, 
because there are too many possibilities to consider and each 
of them is difficult to analyze due to the independence of LS 
among the nodes in a buddy set. Moreover, the upper bound 
model solution fails to include the effects of buddy set size and 
threshold patterns on the capability of meeting deadlines, 
while the simulation results in Section V did show significant 

~ ~ = ~ + Y Z P ( X ~ ~ T H , ) P ( ~ , ~ T H / )  differences when these parameters were changed. So, it is 
necessary to derive a solution which is simple but closer to the 
exact solution to (4.4) than the upper bound solution. Since + Y4P(X6 5 TH[,)P(x7 THf) + p 0 P ( x 6  TH~,)  
there are n ! / ( n  - k ) !  k !  possibilities in calculating Ek in an n- 
node buddy set, these possibilities can be approximated with ’lo = + YxP(xlo THu)P(x’l  THf) + 

THu) _ _  
+ Y ~ P ( x ~ ~ ~ T H ~ ) P ( x I I  T H J ) P ( X I ~ L T H ~ )  

+ Y~P(XIO(TH, )P(XI I  LTHf)  

. P ( X I ~ L T H J ) P ( X I ~ ~ T H , )  

only one possibility in which a node is in no-sharing mode with 
the largest probability. This possibility occurs when all other 
nodes in the buddy set are in no-sharing mode. 

Consider the No’s preferred list in Fig. 2 again. The 
probabilities of N2-N9 being in no-sharing mode are different 
from one another due to the adjustment of task transfer-in rates 712 = 7 + yxP(xI2 5 TH,)P(Xi3 1 T H / ) P ( x I ~  2 THf) 
given that more preferred nodes are in no-sharing mode. As 
the number of no-sharing nodes increases, the adjusted task + ~ ~ P ( x I z  5 THu) + (74 + + Y I O ) P ( X I ~  5 T H u )  

. P ( x ~ ~ L T H ~ ) P ( x ~ ~ L T H , )  transfer-in rate of the next preferred node increases. Eventu- 
ally, N 7 ,  the least preferred node of No,  will receive the 
largest number of transfer-in tasks, thus moving it in no- 
sharing mode with the highest probability within No’s buddy 
set. Let Pah and Pnah denote the probabilities of N7 being in 
sharing and no-sharing mode, respectively. Then, E h ’ s  can be 

73 = 7 + yiP(X3 5 TH,) + YzP(X3 I T H I , )  + p o P ( X 3  TH,) 

+ ( Y ~ + ~ ~ ) P ( x ~ ~ T H , ) P ( ~ ~ ~ T H ~ ) P ( X I I  I T H / )  

+ ( Y 6 + t 1 0 ) P ( X 3 5 T H , ) P ( X 7 L T H / )  

approximated by 

( p n \ h ) n  ~ k ( p \ h ) l , .  (4.17) 
n !  

( n - k ) ! k !  
e!, = 

Plugging the e k ’ s  derived from (4.17) into (4.5) and applying 
the iterative method discussed in the previous subsection, we + ~ 3 P ( x 5  5 T H , ) P ( x ~ I T H ~ ) P ( x I ~  LTHf)  

+ ( 7 6  + yIZ)P(x5 5 THu)P(x7 I TH/) can easily obtain an approximate solution. The calculated 
results are listed in Tables I and 111 in comparison with the 
results derived from the upper bound model and simulations ‘ P( ~9 L THf) P( X I  3 I THJ) P( XI 5 I THf) 
(to be discussed in the next section). 

Note that the e k ’ s  derived from (4.8) are essentially the 

. P(x ,  I I TH/)P(xl3 I THf) + &P(xs, 5 TH,) 

+ ( Y 3 + Y s + Y l o + Y l Z ) P ( X 9 ~ T H , )  probability calculation. 

. P ( x ~ ,  I T H ~ ) P ( x ~ ~ ~ T H / )  

. P(xI~LTH/ ) .  

same as those derived from (4.7) since both have the same 
queue state equations for QL < TH,, which are dominant in the 

V. PERFORMANCE ANALYSIS 

The performance of the proposed LS method is evaluated 
with the upper bound model, the approximate solution, and 
simulation. The first two are used to derive the distribution of 
QL at each node and the probability of meeting deadlines, and 

Once the task transfer-in rates of entry-2 nodes are adjusted, 
the probability of having all entry-I and entry-2 nodes in no- 



1134 

Model 
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Simulation Approximation Upper bound no load sharing 

0.5037 0.4987 0.4992 0.5000 

0.3316 0.3317 0.3321 0.3244 

0.1254 0.1289 0.1278 0.1226 

0.0387 0.0406 0.0398 0.0377 

3.13 x 1.43 x 0.0010 0.0109 

< IO-’ 1.21 x 0.0001 0.0031 

< 9.09 1 0 - l ~  1.3 0.0009 

< 10-7 5.96 x 10-12 1.4 10-6 0.0003 

< io-‘ 3.35 x 1 0 - l ~  1.33 XIO-’ 7.16 10-5 

< 1.46 x 1 0 - l ~  1.28 X I O - ~  2.04 1 0 - 5  

( A  = 0.8) Model 

Queue Length 

0 

1 

2 

3 

4 

5 

6 

I 

8 

9 

Simulation 

____ 
0.2213 

0.3317 

0.2656 

0.1810 

0.0002 

2.01 x 10-5 

8.98 x 

3.21 x 

7.81 x I O V 7  

3.90 x 1 0 - 7  

Approximation I‘pper bound no load sharing 

0.2264 

0.3194 

0.2675 

0.1862 

0.0003 

5.94 x 10-5 

8.99 x 10-6 

1.18 x 10-6 

1.36 x 1 0 - 7  

1.11 x 10-8 

0.2185 

0.3136 

0.2651 

0.1853 

0.0 1 35 

0.0032 

0.0007 

0.0001 

1.86 x 10-5 

2.38 x10W6 

0.2001 

U.2156 

0.1898 

0.1278 

0.0834 

0.0512 

0.0353 

0.0229 

0.0149 

0.0097 

analyze the effects of buddy set size, the frequency of state 
change, and the average system sojourn time of each task. On 
the other hand, simulation is used to verify the analytic results. 

A .  Analytic Results 
The proposed model can be applied to any arrival process, 

but the transition probability a!k, must be given prior to the 
calculation of q k ’ s  with (4.4) and (4.8). T o  demonstrate the 
main idea of our LS method, we present some numerical 
results for the case when both arrivals of external and 
transferred-in tasks follow exponential distributions. (Note, 
however, that our LS method and models are not restricted to 
exponential distributions.) 

I )  Distribution of Queue Length: The distributions of QL 
for two different external task arrival rates in a 16-node system 
are calculated with the upper bound model and the approxi- 
mate solution, and compared to simulation results as well as 
to the case of no LS (Table I). The q x ’ s  calculated with the 
upper bound solution and the approximate solution are very 
close to each other when k i TH,. This was expected because 
the two differ only when k > T H , .  This fact also ensures the 
accuracy in calculating E ,  since it was computed with the q k ’ s  
derived from the upper bound model and then used to derive 
approximate qk’s from (4.4). Moreover, the distribution of 
QL obtained via simulation is shown to be very close to the 
approximate solution for all k and is bounded by the upper 

bound solution when k > TH,, . Since the approximate solution 
is always very close to the exact solution, we will use it in the 
following discussions unless stated otherwise. 

2) Probability of Meeting Deadlines: A task is said to be 
missed if its system sojourn time’ exceeds a given deadline. 
According to our queueing model, the completion time of a 
newly arriving task is equal to the current queue length plus 
one unit of time. Since the probability of QL > T H ,  is quite 
small, one can choose T H ,  to be one less than the given 
deadline such that the probability of missing deadlines, or 
simply called the missing probability, becomes the probabil- 
ity of encountering QL > TH,, at the time of a task arrival. 
Clearly, the missing probability depends on the given deadline 
and system load. However, by selecting a proper threshold 
pattern and a buddy set size, i t  is possible to minimize the 
missing probability. Figs. 4 and 5 are the plots of missing 
probabilities versus task deadlines for different threshold 
patterns. 

Generally, the missing probability increases as system load 
gets heavier (Fig. 6) andlor the deadline gets shorter. By 
choosing an appropriate threshold pattern, e.g. ,  “ 1  2 3” in 
Figs. 4-6, the missing probability can be reduced to a small 
value even when system load fluctuates (except when the 
system is overloaded, e .g . ,  X 2 0.9). The analytic results also 

’ The system sojourn time of a task is composed of its execution time, 
queueing time. and task transfer time. 
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show that the choice of a threshold pattern is sensitive to 
system load. For example, threshold pattern “0 1 1 ” results in 
a small missing probability when the system is underloaded, 
while resulting in a much higher missing probability as system 
load increases. Threshold pattern “1  2 3” is found to yield a 
reasonably small missing probability for a wide range of load 
density (0 < X < 0.8). Fig. 4 shows an interesting result of 
the upper bound model: missing probabilities for different 
threshold patterns are quite close to each other, and thus, 
difficult to tell which pattern is better over the others. This is 
opposite to what has been shown by the approximate solution 
in Figs. 5 and 6. That is, the upper bound model exaggerates 
the probability of switching to a queue length greater than 
TH,, and thus, the effect of threshold pattern becomes 
insignificant. Since threshold pattern “ 1 2 3” exhibits the best 
performance among the three patterns considered, the per- 
formance with this pattern is further compared to simulation 
results. As shown in Figs. 7 and 8, the missing probability 
obtained from the simulation is always upper bounded by those 
obtained from the upper bound model and is very close to the 
approximate solution. 

3) Average System Sojourn Time Versus Missing Prob- 
abi/ity: The average system sojourn time can be obtained by 
dividing the sum of all tasks’ system sojourn times by the total 
number of tasks processed. Mathematically, the average 

system sojourn time is equal to the expected task execution 
time, C;=“=,(k + l ) q k .  The average system sojourn time is 
calculated for several different threshold patterns and buddy 
set sizes as presented in Table 11. One interesting result is that 
the lower TH, and TH,, the smaller the average system 
sojourn time results, and that buddy set size has only minor 
effects on the average system sojourn time. This is in sharp 
contrast with the results reported in [4], where the average 
system sojourn time under the shortest queue policy was 
shown to be only slightly smaller than that under the threshold 
policy. In our LS method, the shortest queue (threshold) 
policy is equivalent to selecting TH, = 0 and THf = 1 (TH,, 
> 0). As shown in Table 11, the threshold pattern with TH,, = 
0 and THf = 1 always results in a substantially smaller 
average system sojourn time than the pattern with TH, > 0. 
This is the advantage resulting from our state-change broad- 
casts since the traffic overhead for collecting state information 
in the case of TH,, = 0 is essentially the same as the case of 
TH, > 0. However, the traffic overhead associated with the 
shortest queue policy is higher than that of the threshold policy 
due to its required probing of other nodes [4], offsetting the 
potential gain to be made by transferring tasks to a node with 
the shortest queue. Consequently, our LS method outperforms 
other sender-initiated LS algorithms even when the average 
system time is used to measure their performance. 
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Another important result is that a threshold pattern that 
results in a lower average system sojourn time does not always 
yield a lower missing probability. For example, consider the 
buddy sets of size 10 in Tables I1 and 111. Pattern “0 1 2” 
results in a smaller average task system sojourn time than “1 2 
2,” but a larger missing probability than “1 2 2” when the 
deadline is greater than 2 .  Moreover, some thresholds may 
result in almost the same average task system sojourn time but 
yield quite different missing probabilities, e.g., “0 2 3” and 
“1 2 3” when the deadline is greater than 3 in Table 111. 
Hence, those approaches based on minimizing the average task 
system sojourn time alone may not be applicable to the 
analysis of real-time systems. 

4) System Utilization: The system utilization is defined as 
the ratio of external task arrival rate (A) to the system service 
rate, which is unity in our LS model. (Thus, the system 
utilization is simply A.) Since the missing probability depends 
on system workload (Fig. 8), we can solve (4.8) to derive X as 
a function of q k ’ s  and then the maximum system utilization 
can be obtained by equating q T H , + I  to the specified missing 
probability. Some of the calculated results are plotted in Fig. 
9. This is in sharp contrast to the common notion that real-time 
systems have to be designed to sacrifice utilization for a lower 
missing probability. 

5) Buddy Set Size and Preferred List: The effect of 

changing buddy set size on the missing probability can best be 
explained by the approximate solution as shown in Fig. 10. 
Buddy set size affects the missing probability significantly 
when it grows from 4 to 10 and X > 0.7, but its incremental 
effect becomes insignificant when buddy set size is greater 
than 10. Actually, there is little notable decrease in the missing 
probability when buddy set size grows beyond 15. Surpris- 
ingly, the missing probability for a four-node buddy set is 
about three orders of magnitude less than that without LS 
when the system is underloaded (X I 0.5), and is about the 
same as those for buddy sets of size larger than 10 when the 
system is overloaded (A > 0.8). So, buddy set size can be 
chosen to range from 10 to 15, regardless of the system size. 
The most interesting result is found to be that the missing 
probability in a large system (of 64 nodes in Table IV) is much 
smaller than that of a small system (of 16 nodes in Table 111). 
For example, consider threshold “1 2 3” with a ten-node 
buddy set at h = 0.8. The missing probability of a 64-node 
system is about 3 , 4 ,  and 20 times smaller than that of the 16- 
node system when the deadline is 4 ,  5, and 6, respectively. 
This significant improvement was found for all other threshold 
patterns, thus indicating that the larger the system size, the 
better the performance of the proposed LS method will result. 
(See the next paragraph for a reasoning about this.) Note that 
the traffic overhead for broadcasting state changes remains 
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TABLE I1 
AVER4GE TASK SYTTEM TIME W H E N  h = 0.5 AND h = 0.8 
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unchanged and independent of system size because buddy set 
size is fixed (to 10-15). Furthermore, the incremental de- 
crease in missing probability becomes insignificant when 
buddy set size is over 15 (Table IV). 

Use of buddy sets and preferred lists in our LS method plays 
a major role in lowering the missing probability for a large 
system. As discussed in Section 111, the buddy set of a node 
consists of those nodes in its physical proximity, and each 
node in the buddy set is selected according to the order of its 
preference. Moreover, preferred lists are constructed in such a 
way that each node is the ith (i = 1, . . * , n )  preferred node of 
only one other node and the preferred lists of the nodes in the 
same buddy set are completely different from each other. As a 
result, the surplus tasks within each buddy set will be evenly 
shared by all underloaded nodes in the entire system, rather 
than overloading a few underloaded nodes within the same 
buddy set. As the system size grows, the percentage of 
common nodes in the preferred lists of a buddy set gets 
smaller, and thus, the surplus tasks are more evenly distrib- 
uted in the system, resulting in a better performance. 

6) Frequency of State Change: In our LS method. each 
node needs to broadcast change of state to all the other nodes 
in its buddy set. Since a state change occurs when a node 
switches from U state to F state and vice versa, the probability 
of a state change becomes P(xk ,+  5 TH,,(xk, L TH,,) + 

/ 
o/ 
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Fig. 10. Approximate missing probabilities versus load density with thresh- 
old " I  2 3" and different buddy set sizes. 

P ( x k , + ,  2 T H J ~ ~ ~ ,  I TH,). The computation results of 
Table V showed that the frequency of state change can be 
reduced to 10-15 percent of the total number of arrived tasks 
by setting THf - TH, = 2. Note that this frequency becomes 
about 100 percent of the number of external task arrivals when 
TH,, = 0 and THf = 1. The resulting high frequency of state 
change should rule out this type of threshold pattern. 

The traffic overhead for collecting state information in our 
LS method is determined by the frequency of state change and 
buddy set size, while it was determined by the number of task 
transfers and probing in [4]. Since the frequency of state 
change can be controlled by adjusting the difference between 
TH, and TH,, this frequency with threshold "1 3 3" and X > 
0.7 is found to be about the same as the percentage of external 
arrivals that are transferred out. Moreover, transferring one 
task may require us to probe 5-6 other nodes [4] and each 
probe generates two communication messages (one for request 
and the other for response) in sender-initiated methods, 
whereas each state-change broadcast in our LS method 
generates n messages, where n is the buddy set size. The 
traffic overhead for broadcasting state changes for threshold 
"1 3 3" and a ten-node buddy set is about the same as that in a 
sender-initiated approach. However, the time for selecting a 
destination node in our method is much smaller than that in 
any sender-initiated approach, because in our approach, a task 
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TABLE IV 
MISSING PROBABILITIES IN A SIX-CUBE FOR DIFFERENT THRESHOLDS 

AND BUDDY SET SIZES 
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can be transferred upon its arrival without probing any other 
nodes. Besides, each task transfer in our LS method will take 
less time than other LS methods, because use of a preferred list 
will usually locate a receiver in the sender’s physical proxim- 
ity. 

7) Delays in Task Transfer and State-Change Broad- 
casts: When a node selects, and transfers a task to, a U-state 
node, the (/-state node may receive an external task and 
switch to V state before the transferred task arrives. In this 
case, the transferred task will actually arrive at a V-state node. 
Thus, the probability of transition to V state with nonzero task 
arrivals (i.e., cy,$. for k > 0) is larger than that used in (4.5), 
where transferred tasks are assumed to be accepted only when 
a receiving node is in U state. One can estimate this 
probability and adjust the corresponding ah ’s. The broadcast- 
ing delay has the same effect as the task transfer delay. 

Although these delays may affect the distribution of QL. the 
missing probability can be made insensitive to them by 
properly choosing a threshold pattern. For example, a task 
which arrives when QL = THf will not be transferred again if 
TH, > THJ, e.g. ,  threshold “ 1  2 3,” but it will be 
retransferred if TH,, = THf ,  e.g. ,  threshold “ 1  2 2.” Since 
task retransfers induce traffic overheads without improving the 
capability of meeting deadlines, the threshold patterns that are 
sensitive to those delays may result in a higher missing 
probability than those that are not. The effect of these delays 

TABLE V 
NUMBER OF TASK TRANSFERS VERSUS FREQUENCY OF STATE CHANGE 

( A  = 0.5) 

Threshold 

0 1 1  

0 1 2  

0 2 2  

1 2 2  

1 2 3  

1 3 3  

2 3 3  

0.1071 
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0.0484 
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0.1300 
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0.0101 

0.0100 

1.0792 

1.0203 
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0.1754 

0.1552 
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I 

( A  = 0.8) 

Threshold 

Transferred Tasks Frequency of S t a t e  Change 

Simulation 

0.6277 

0.5283 

0.1613 

0.2576 

0.2182 

0.1050 

0.1G4G 

Analytic 

0.8118 

0.5981 

0.2531 

0.3316 

0.2404 

0.1201 

0.1782 

Simulation 

0.2241 

0.1145 

0.2274 

0.1677 

0.0877 

0.1064 

0.0875 

Analytic 

0.2230 

0.1600 

0.2015 

0.1891 

0.0811 

0.0934 

0.1050 

0 1 1  

0 1 2  

0 2 2  

1 2 2  

1 2 3  

1 3 3  

2 3 3  
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0.3460 0.4473 0.4860 

0.0013 0.1812 0.2007 
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6.51 x lo-’ 4.26 x lo-’ 1.65 x lo-’ 
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9.37 x 10-5 2.11 x 10-5 2.28 x 10-5 
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TABLE VI  
MISSING PROBABILITIES VERSUS TASK TRANSFER COSTS FOR 

DIFFERENT DEADLINES A N D  THRESHOLDS 

0.3300 

0.0295 

0.0065 

0.0015 

0.0004 

0.3530 0.4504 0.4847 

0.0046 0.1835 0.2017 

0.0005 0.0004 0.0007 

8.69 x lo-’ 5.58 x 5.31 x 

3.8 x 1.29 x lo-‘ 6.33 x 

0 3 4 8 8  
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0 3 8 1 7  0 4681 0 4914 

0 0 1 6 8  0 1956 0 2177 

0 0 0 2 3  0 0016 0 0050 

0 0 0 0 3  0 0002 0 0005 

4 34 x 10-5 2 93 x 10-5 4 95 x 10-5 

on the missing probability is investigated further in our 
simulation. 

B. Simulation Results 

For our simulation, the average load density is varied from 
0.5 to 0.9, and buddy sets of size 4, 10, and 15 are considered. 
Ten threshold patterns are chosen out of all possible combina- 
tions for the simulation of a four-cube system and the results 
are given in all tables except for Table 11. A few selected 
thresholds for a six-cube system are also simulated and given 
in Table IV. The time for transferring a task between two 
nodes within a buddy set is assumed to be I O  percent of the 
task execution time and the time for informing a state change 
to one of the nodes in a buddy set is assumed to be 1 percent of 
the task execution time. 

In most cases, simulation results are consistent with, and 
close to, the approximate solution. However, the analytically 
derived qk’s for k > TH, are always less than those obtained 
from simulation when the system is underloaded (A 5 0.5) or 
overloaded (A L 0.9), especially in the threshold patterns with 
TH, > 0. This discrepancy may have been caused by the 
delays in transferring tasks and broadcasting state changes. 
The effect of settting TH, to be larger than TH, is also 
observed in the simulation. The percentage of task retransfers 
for the case of THf = TH, is higher than that for the case of 
THY < TH,,. Hence, the threshold pattern with THf < TH,, is 
a better choice than the pattern with TH, = TH,.. This 

observation also explains why the missing probability associ- 
ated with threshold “1 2 3” is smaller than that of “1 2 2” 
when X > 0.7, deadline > 3, and buddy set size > 10. 

To study the effect of changing task transfer costs, we ran 
simulations with task transfer costs 5 ,  IO ,  20, and 30 percent 
of the task execution time. As shown in Table VI. the missing 
probability of threshold “1  2 3” remains almost unchanged. 
Based on all the above results, i t  is concluded that threshold “ 1 
2 3” is good for a wide range of system load. Note that, 
although the missing probability of threshold “1  2 2” is 
usually close to that of threshold “ I  2 3,” the task transfer rate 
associated with “ I  2 2” is much higher than that with “ I  2 
3. ” Thus, considering cost-performance effectiveness, 
threshold “1  2 3” is a better choice than “ 1  2 2.” 

C. Advantages of Using Analytic Approaches 

There are several advantages of using the upper bound 
model and the approximate solution, as compared to simula- 
tions. First, the result derived from the upper bound model can 
be used to guarantee the specified system reliability, because 
the actual missing probability is always less than that deriv- 
ed from the upper bound model. Second, system utilization 
can be analyzed by using the analytic models. Third,  our 
analytic models provide, at almost no cost, many pieces of 
useful information with accuracy. For example. any meaning- 
ful simulation of our LS method requires hundreds of CPU 
hours (in a computer as powerful as VAX-I 11780) to get an 
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accuracy of in the calculation of q k ’ s  for a system of 
moderate size. Moreover, simulation may be able to provide 
information only for a particular system workload; it is too 
costly to generate q k  ’s with simulation as a function of system 
workload. 

VI.  CONCLUSION 

We have proposed and analyzed a new LS method based on 
state-change broadcasts. By selecting an appropriate threshold 
pattern and a buddy set, one can reduce the missing probability 
to a small number, and thus, the proposed LS method has high 
potential use for various real-time applications. The traffic 
overhead for broadcasting state changes can be controlled to 
an acceptable level by selecting an appropriate threshold 
pattern. 

There are several issues which warrant further investiga- 
tion. First, it is necessary, but difficult, to derive an exact 
analytic formula for the probability of a task missing its 
deadline. Second, if each task has a different execution time, 
QL is not sufficient to determine the workload of each node. In 
such a case, one must consider the actual task execution times 
and use the cumulative execution time to determine the load of 
each node. Furthermore, if a node thinks itself to be 
underloaded and broadcasts its availability to other nodes, it 
may receive a task whose computation is too involved for the 
node to complete in time. Thus, the state of a node must 
contain a sufficient amount of information to ensure that the 
underloaded node can process all transferred-in tasks in time. 
Third, if the task execution time is a random variable, a 
continuous-time Markov model must be used to simulate and 
analyze system performance. 

Optimization of the tradeoffs existing in the proposed LS 
method is an interesting design problem of its own. For 
example, there is a tradeoff between the buddy set size and LS 
capability. The traffic overhead of state-change broadcasts can 
be reduced by shrinking the buddy set size, but this will limit 
the LS cpability. All of these issues are matters of our future 
inquiry. 
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