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Summary & Conclusions - Despite the increasing need for 
ultra-reliable computers for use in distributed environments, 
there has been no significant advances to reduce the time 
overhead of combining replicated data in conjunction with pro- 
viding instantaneous error masking. 

We propose two techniques that provide a compromise bet- 
ween the high time overhead in maintaining synchronous voting 
and the difficulty of combining results in asynchronous voting. 
These techniques are specifically suited for real-time applications 
with a single-source/single-sink structure that need instantaneous 
error masking. A description of the techniques, their underlying 
system requirements, and possible time bounds are presented. 

Two techniques provide a compromise between a tightly syn- 
chronized system in which the synchronization overhead can be 
quite high, and an asynchronous system which lacks suitable 
algorithms for combining the output data. Both QMV and CMV 
are most applicable to distributed real-time systems with single- 
source/single-sink tasks. All real-time systems eventually have to 
resolve their outputs into a single action at some stage. The 
development of the Advanced Information Processing System 
(AIPS) and other similar systems serve to emphasize the impor- 
tance of this class of real-time systems and the possible applica- 
tions of these techniques. Time bounds suggest that it is possible 
to reduce the overhead for quorum-majority voting to below that 
for synchronous voting. All the bounds assume that the computa- 
tion phase is non-preemptive and that there is no multi-tasking. 

1. INTRODUCTION 

The need for ultra-reliable computers in support of 
real-time control applications has greatly increased in the 
past few years and is anticipated to continue growing at an 
even faster pace. Traditionally, errors in computing 
systems have been masked by replicating the application 
and system tasks, distributing these tasks on independent 
hardware, and combining the replicated results. Two 
notable methods used to combine the replicated results are: 

A synchronous vote applied to the replicated output 
Systems which combine the output in an asynchronous 

Both of these methods have their advantages and disad- 
vantages. The former lends itself to simpler implementa- 
tion but requires synchronization overhead, whereas the 
latter takes full advantage of the truly asynchronous 
nature of distributed environments but lacks application 
independence. 

The Fault Tolerant Multi-Processor (FTMP) [ 11 and 
Fault Tolerant Processor (FTP) [2] along with the Soft- 
ware Implemented Fault Tolerance (SIFT) computer [3] 
are examples of implemented architectures that combined 
replicated results using a synchronous vote. The major dif- 
ferences in these architectures were the choice of where to 
place and how often to perform the synchronous vote. The 
designers of FTMP and FTP choose to vote on informa- 
tion entering the processors from replicated buses, thus 
allowing the vote to be performed in hardware transparent 
to the applications software. This required the processors 
to be in tight synchronism and, thus, cannot be extended to 
a distributed environment. For SIFT a time-frame struc- 
ture was used in which messages were exchanged and a 
vote performed. This time-frame placed restrictions on the 
structure of the application software and, thus, greatly 
hampers application independence. In all of these architec- 
tures there is a rendezvous point: the bus cycle for FTMP 
and FTP, and the task frame for SIFT, in which the 
replicated data are combined by performing a bit-for-bit 
majority vote on the output data stream. 

Another approach [4, 51 is to have the replicated tasks 
run asynchronously and vote on the results. This approach, 
though conceptually similar to the earlier analog control cir- 
cuits, suffers from the problem of specifying and implemen- 
ting suitable algorithms to derive a single output request from 
the multiple output requests produced by the replicated tasks. 
These requests can differ since the processors run asyn- 
chronously with respect to one another and sample the input 
independently. Once an algorithm is developed, the resulting 
systems usually require great care for even minor modifica- 
tions and, thus, are highly application dependent. 

We propose two techniques, quorum-majority voting 
(QMV) and compare-majority voting (CMV) that incor- 
porate some of the advantages of both asynchronous and 
synchronous voting. These techniques are intended for the 
class of problems whose error containment and timing re- 
quirements dictate distributed system solutions with 
replicated tasks. 

Section 2 presents the problem along with our initial 
assumptions. Section 3 presents the required architecture and 

fashion. 
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an assumed software structure present in the real-time ap- 
plications. Section 4 presents QMV and CMV. Section 5 
focuses on the derivation of the time bounds that are possi- 
ble using these methods. 

Future work should concentrate on relaxing the 
assumptions concerning: the computation phase being 
non-preemptive, no multi-tasking, and the single- 
source/single-sink I/O structure. 

2. PROBLEM STATEMENT AND APPROACH 

Our primary goal is to provide an environment in 
which real-time applications interfaced to life critical func- 
tions can be executed correctly in the presence of malfunc- 
tioning hardware. Correct operation not only involves 
masking up to a given number of faults but satisfying the 
real-time constraints (deadlines) of the applications. Thus, 
the worst case time bounds of any technique must be 
known a priori and be less than the application’s deadlines. 
A secondary goal is to provide application independence-- 
allowing a broader class of problems to be handled. 

We provide the necessary error masking using an ex- 
act bit-for-bit majority vote applied to the output stream. 
The choice of a majority vote not only provides a highly 
application-independent means of combining the output 
data but can be further justified by the difficulty in speci- 
fying the “acceptance” tests for the recovery block ap- 
proach and the voting filters used in N-version programm- 
ing [6-81. 

The choice of a majority vote on the output data 
stream does have implications on the input structure. For 
deterministic tasks the input to each of the replicated tasks 
must be identical. Deterministic tasks always produce the 
same output sequence for a given input sequence. 

In a tightly synchronous system it is known when the 
tasks will need and produce data. If the tight synchroniza- 
tion requirement is relaxed, which is desirable because of 
the high overhead for software synchronization [lo], one is 
faced with the following questions: 

When and how does the system sample the input sensors 
to provide a single input datum to each of the replicated 
tasks? 
What action should be taken if a task is not ready when 
the input is sampled? 
When and how does the system resolve the replicated 
output data and issue a single output action honoring 
the individual output requests? 

We answer these questions by proposing QMV and 
CMV 

3. ARCHITECTURE AND SOFTWARE STRUCTURE 

Figure 1 presents a block diagram of the distributed 
real-time architecture assumed in the development of 

Y i J  “ “ V  

Replicated senaors 
are controlled by 

dllteient 110 Controllers 

Fig. 1 .  Assumed Target Architecture 
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QMV and CMV. Each processor in the system has its own 
clock but the system is neither completely asynchronous 
nor tightly synchronized. This can be achieved by infre- 
quent clock synchronization in software [3], which is 
relatively inexpensive. The clocks in any two processors 
may differ by at most some maximum skew. Although this 
assumption is not necessary for the operation of our 
techniques, it allows their timing behavior to be 
characterized as a function of the maximum skew. There 
must be a fault-tolerant software clock synchronization 
algorithm (Interactive Convergence Algorithm [3]; this 
algorithm entails a large time overhead [lo]) allowing the 
entire system or subsets of the system to be resynchronized 
as necessary. All timing behavior of a processor depends 
only on its internal clock and the availability of data as 
provided by QMV. 

The most important addition is the presence of semi- 
intelligent I/O controllers. These controllers must know 
which tasks will request service for devices under their con- 
trol. This poses no major burden since the allocation of 
1/0 devices is usually done either off-line or at the time of 
task creation to support deadlock prevention. This ap- 
proach of preallocation of the devices is often necessary to 
meet the application deadlines and avoid the overhead of 
other deadlock resolution methods commonly found in 
operating system environments. The controllers must also 
maintain lists of requests and resolve the requests into a 
single action. The addition of these I/O controllers serves 
to insulate the I/O devices from the actions of a single pro- 
cessor. The ability of a single processor controlling the I/O 
bus and, thus, the I/O devices connected to the bus is a 
weakness found in the SIFT architecture. Though these 
110 controllers proposed for QMV and CMV do have 
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complete control of the 110 devices connected to them, 
their limited functionality allows their complexity to be less 
than the requesting processors, thus achieving more 
reliable control of the 110 buses. 

Secure communication primitives must be available 
for use in processor-110 controller messages and must 
have the capability of detecting the origin and any 
modifications of the messages. Such a capability can be 
provided using a suitable encryption scheme. Secure com- 
munication allows the I/O controllers to detect multiple 
messages from faulty processors. This feature is necessary 
for the reliable operation of both QMV and CMV. 

The last architectural requirement is that sensors ob- 
taining replicated data be placed in different 110 con- 
trollers. This is needed to ensure that the failure of an 110 
controller does not affect the ability of an application task 
in obtaining data from sensors. Data from replicated sen- 
sors is not resolved by the I/O controllers but is handled in 
the applications. This preserves application independence 
and allows the applications flexibility in managing redun- 
dant sensors. 

We are primarily interested in real-time applications 
and thus will restrict the scope of the applications by 
assuming a structure present in real-time tasks. A block 
diagram of a representative real-time task is presented in 
figure 2. This structure hinges on the assumptions that 
real-time applications- 

* can be naturally decomposed into tasks with three 

have a single-source/single-sink 110 requirement. 

During the first phase, input operations collect the data 
from a single (but replicated) input source needed for the 
following computation phase. This operation is referenced 
to the processor’s clock in which the task is resident and, 
thus, periodic task invocations will drift as a function of 
their host processor’s clock drift. Once the data become 
available, a computation phase begins with the further 
assumption that this phase is non-preemptive. The task is 
concluded with an output phase to a single device. Due to 
the time constraints associated with real-time tasks, this 
assumption is reasonable and widely used. This 3-phase 
structure in which the computation phase is non- 
preemptive and the processors operate in a non- 
multitasking mode is not a requirement for QMV and 
CMV but provides a framework in which to discuss the 
time bounds. 

phases [9] 

4. QUORUM-MAJORITY VOTING AND 
COMPARE-MAJORITY VOTING 

4.1 Naming Requests 

The operating system and underlying architecture 
must support several naming conventions that are used in 
the implementation of QMV and CMV. Tasks have to be 

Fhase 

Fig. 2. Task Structure 

named uniquely throughout the entire system. This poses 
no problems in implementation since most systems use the 
task names for resource allocation. We refer to these 
names as task id‘s. For tasks requiring replication, each 
replicated copy has to be distinguishable by assigning new 
names called replication id’s. These names are easily con- 
structed at the time the task is replicated and distributed. 
The last name required is used to identify the actual section 
(line of code) of the application task requesting I/O ser- 
vice. We refer to this as the request origin and to the name 
used to distinguish different request origins as the request 
id. 

To construct the request id’s we consider a model 
slightly more general than the real-time task shown in 
figure 2. In general, requests for 110 can be functions of 
the input data and can be embodied within iterative loops. 
This implies that not only the location of the request but 
the progress through the loop has to be determined. This 
can be done by using the offset into the virtual address 
space of the request concatenated with the number of I/O 
requests received from the particular image of the task. 
Each properly functioning image of a task will follow the 
same path of execution, assuming each image receives the 
same input data; thus, the offset and I/O counts are iden- 
tical. Tasks at different iterations through a loop have 
identical offsets but can be distinguished by the I/O re- 
quest count. If a faulty image has its request count or off- 
set corrupted such that it matches a non-faulty image’s re- 
quest, the error is masked in the vote as discussed later. 

All requests in the system are then identified by the 
concatenation of the above three names. We refer to this as 
a request tag. The structure of the request tag is shown in 
figure 3. 
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Address O f f s e t  I/O C o u n t  

I I I 1 

Task-ID 

Request-Tag 

Replication-ID 
Request-ID 

Fig. 3. Request Tag Structure 

4.2 Description of Quorum-Majority Voting 

The basis for QMV, as the name suggests, is to ensure 
that I/O operations are triggered only on the behavior of a 
quorum of proper participants. For each request for ser- 
vice, as identified by the request tags, a quorum of the 
replicated images must issue the request before an action 
takes place. Once a quorum is established, the nature of 
the operation is decided: for input the sample is taken and 
sent, for output the received data values are voted upon 
and the resulting action taken. 

Prior to the execution of a task, the required I/O con- 
trollers must be informed of the task id’s and their 
associated replication id’s. Given this information the con- 
trollers can decide if a quorum of the requests has been 
established for a particular 110 request. The threshold 
defining a quorum is set such that the non-faulty tasks will 
always control the majority vote. 

I/O controllers must maintain a list of requests for 
each active request id. Upon receiving a request, the re- 
quest must first be checked for valid task and replication 
id’s. Once these are established, the controller checks the 
list corresponding to the request id for a duplicate request. 
Duplicate requests can be detected since the origin of the 
message is guaranteed by the assumption of secure com- 
munications. If the request was not a duplicate and a 
quorum of requests has been received, the controller per- 
forms a majority vote on the requests received thus far. 
For input, the value is sampled and sent to all participants, 
even those who have not yet issued that particular request. 
For output, the data values received are used as input to a 
bit-for-bit majority vote to derive a single output action. If 
a quorum has not been established, the request is saved 
and the requesting task must wait. 

In order to tolerate k faulty task-images, the non- 
faulty images must first be able to control the establish- 
ment of a quorum. Once a quorum is formed, the non- 
faulty images must also be able to dominate the majority 
vote for the selection of the operation and in the case of an 
output operation the output data as well. Input and output 
operations can be treated symmetrically by voting on both 
the data and the operation selection as a single entity. To 
obtain the number of images required to tolerate k faulty 
images, start working backwards from the final majority 
vote. Thus, we need k + 1 non-faulty images against the k 
faulty images in the final majority vote giving rise to hav- 
ing the quorum established on 2k + 1 requests. Since the 
quorum is established on 2k + 1 images and the non-faulty 

images must be able to establish a quorum independently 
of the faulty images, we need 2k + 1 non-faulty images. 
All 2k + 1 non-faulty images are needed in the case that all 
k faulty images chose to abstain from making a request. 
This requires that there be a total of 3k + 1 replicated im- 
ages. In summary, 3k + 1 replicated images are required in 
order to tolerate the behavior of k faulty images when 
QMV is used. Despite their fundamental differences, the 
minimum number of participants required for QMV is the 
same as that for the Byzantine Generals agreement [3]. 

If k is reasonably bounded, the I/O controllers can ef- 
ficiently support the majority vote in hardware by bit 
serially voting on the data of the quorum. 

4.3 Description of Compare-Majority Voting 

In contrast to QMV, CMV requires only 2k + 1 
replicated images but handles the requests for 110 opera- 
tions in a different manner. In performing CMV the 110 
controllers wait for k + 1 requests for 110 from different 
processors with the same data. If the operation is an input 
request, the data is sampled and sent to all 2k + 1 images. 
For an output operation the data is sent to the specified 
device. In either case, since k + 1 requests with the same 
data have to be received before any action can take place, 
110 operations cannot occur solely as the result of faulty 
task images. 

The disadvantages of CMV as compared to QMV is 
that the 110 controllers have to partition the incoming re- 
quests into equivalence classes as defined by the data of the 
requests. These operations are not trivial and could ap- 
preciably increase the hardware complexity as compared to 
the requirements for QMV. 

5 .  TIMING BOUNDS 

5.1 Notation 

We introduce notation that can formally describe 
QMV and CMV. The notation presented below describes 
one particular request as identified by the request id. 

Upon the the arrival of a request at the 110 controller, 
the request must first be validated. This involves ensuring 
that the task and replication id match known identities and 
are coded in such a manner that only the replicated process 
with that replication id could have issued the request. Once 
these are established, a check for duplicate requests con- 
cludes the validation phase. 

Notation 

Reqi valid request i received at the controller for a given 
request id; 1 Q i Q 3k + 1. These requests can be 
either an input or output operation on a particular 
device under the control of the 110 controller. 
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Q; set of i requests for a given request id 

QI {Reqil 
Q, = {Req,} U Q j - l ,  2 6 i 6 3k + 1. 

These sets represent the lists used to collect the re- 
quests. 

function that maps a set Q; to a single 
operation according to the standard majority 
function. 

time that the request Req; was received by the 
I/O controller, for QMV and CMV. This function 
maps requests to the time of their creation-to 
analyze the timing behavior. 

either the request i for input, output, or a ren- 
egade request, respectively. This notation is 
similar to Req, but allows differentiating faulty 
from non-faulty. We notationally discriminate 
faulty and non-faulty requests. Since the behavior 
of the faulty processors is unpredictable, it is 
useful to obtain the timing bounds in terms of the 
non-faulty processors behavior. This information 
is not used in the implementation of QMV. 
number of faulty tasks for this request 
maximum number of faulty tasks that can be 
tolerated. 

Majority(*) 

T(Req,) 

I;, O;, R, 

m 
k 

5.2 Timing Bounds for QMV 

Consider the timing behavior of QMV and use figure 
2 as an example real-time task. The task is replicated 3k + 
1 times and distributed on processors { p l ,  . . . ,p3k+l} in 
order to tolerate up to a total of k failures. QMV is im- 
plemented as follows: 

1. Wait for the set Q2k+ to become available. 
2. Perform operation dictated by Majority(Qu,+ 

These operations take place at T(Reqzk+J and the 
variation in this quantity is a function of non-faulty pro- 
cessors clock drift and faulty task’s behavior. The varia- 
tion (jitter) in T(Req2k+1) forms an operation window. If 
the application deadlines are to be met, the growth of this 
operation window must be limited. If the growth of the 
window were not limited, the faulty tasks could either 
prematurely trigger an operation or indefinitely delay an 
operation, resulting in a failure of the system. We now pre- 
sent the bounds on the operation window. 

Theorem 1. The operation window formed by T(Req2k+ 1) 

is bounded as follows: 

requests (images not making requests are considered to make 
their requests at + co) are dispersed among the non-faulty re- 
quests. This allows us to divide the time that the operation 
will be triggered into three cases. 

CaseZIT(Ri)dT(Iu,+l-m),  l d i d m , O d m d k ] : T h e m  
faulty tasks all make their requests before T(12 + - ,). The 2k 
+ 1 - m non-faulty tasks dominate the m faulty tasks in the 
decision for an input operation with this occuring at 

Case2[T(Ri)2T(12k+1), 1 d i d m , O d m d k ] : A l l o f t h e  
faulty tasks chose to either delay their requests until after 

or abstained from making requests. The quorum is 
then established at T(Iu+] )  and have only non-faulty re- 
quests present. Therefore, the operation is an input and oc- 
curs at TOu, + 

Case 3 [Otherwise]: The quorum is established some time be- 
tween T(Iu,+l-m) and T(Iu,+l). Thus, the time that the 
quorum is established is bounded between two non-faulty re- 
quests. Since there are at least k + 1 non-faulty tasks in the 
quorum, the non-faulty tasks can again dominate the majori- 
ty function. 

The above argument gives the time bound for an input 
operation and a symmetric argument is applicable to output 
operations. 0 

Since the operation takes place between non-faulty re- 
quests, the behavior of faulty task images cannot force a 
premature triggering or indefinite delay of the operation. 

Processors that have requested the input data prior to 
T ( R e w +  1) can start their computation phase upon receipt of 
the data but the other lagging processors cannot start until the 
attempt is made to request the data. This leads to the output 
operation window floating with respect to the input window 
and, thus, we need to bound on the growth of the output win- 
dow as a function of the input window. 

Before we can obtain a bound on the output window in 
terms of the input window, we have to define computation 
time and account for drift in the processor clocks. 

More Notation 

TUX+ I -m) .  

W amount of computational time between the input 
phase and the following output phase for an “ideal” 
processor without any drift in its clock. 
maximum clock drift rate for all the non-faulty 
processors. 6- > 0. It is dimensionless and is used 
as a proportionality constant giving either the max- 
imum time gained or lost when multiplied by a time 
interval. 

A bound on the outmt window growth is Dresented in 

S,, 

Proof. The 3k + 1 - m non-faultyrequests for servicearrive 
in an ordered sequence at the 110 controller for the device in 
question. These are shown in figure 4 for the case of an input 
operation. In the presence of the m faulty images, their 

the following theorem. 
Theorem 2. The maximum growth of an output operation 
window with respect to the preceding input window is 
26,,W. 
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b 

?'line a s  s e e n  b y  an Observer 

I I I 

Case 1 

I O p e r a t i o n  O c c u r s  

Case 2 

O p e r a t i o n  O c c u r s  t 
Case 3 

Operat ion OcaJrs L 
Fig. 4. Input Operation Case 

Proof. To arrive at the bound, we first obtain 
minT(02k+ -,) and maXT(02k+ 1) which represent the 
earliest and latest possible times that the output operation 
can occur. 

To obtain minT(02k+ -,), we present the following 
argument. Given that the input occurs at time T(IZk+ -,J, 
there are 2k + 1 - rn non-faulty processors starting their 
computation phase. Thus, the earliest that those non- 
faulty processors can finish the computation phase is in W 
- S,,W time units later. For this to occur, the rn faulty 
processors that requested early for the input phase have to 
do so again along with all 2k + 1 - rn non-faulty pro- 
cessor experiencing the maximum speedup drift, a highly 
unlikely event. 

minT(02k + -,) = T(I*k+ 1 - ,) + W - W S,,, 0 Q rn Q k.  

For maXT(02k+ 1) the argument is symmetric to 
minT(02k+ -,). The input has to occur at T(I2k+ 1) requir- 
ing all faulty processors to have requested their output 

after T(Izk+ At this time there will be 2k + 1 non-faulty 
processors in their computation phase. The latest these 2k 
+ 1 processors can finish their computation is in W + 
6,,W time units later. Again, requiring the faulty pro- 
cessors to delay their requests after the first 2k + 1 non- 
faulty requests, we get: 

maxT(02k+1) = T(12k+l) + W + W ti,,, 0 d m d k.  

Then it is easy to get: 

Maximum Output Window 6 "'=T(02k + I)  - mi"T(02k + 1 ~ ,J 
GT02k+1) - T02k+I-m) 

+ 2 W * S m , : O d m d k  

The window growth is then the difference between the 
maximum output window and the input window giving rise to 

0 a growth of 2 W6,,. 
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partition of Qi such that Req, = Reqk iff value 
(Req,) = value(Reqk), where value ( 0 )  extracts the 
data content of a request, and the symbol = 
represents an equivalence relation. 
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