
58 IEEE TRANSACTIONS ON RELIABILITY, VOL. 38, NO. 1,1989 APRIL

Alternative Majority-Voting Methods
for Real-Time Computing Systems

Kang G. Shin Senior Member IEEE

James W. Dolter
The University of Michigan, Ann Arbor

The University of Michigan, Ann Arbor

Key Words - Error masking, Synchronous voting, Asyn-
chronous voting, Quorum majority voting, Compare majority
voting, Real-time architecture

Reader Aids -
Purpose: Present an alternative to existing techniques.
Special math needed for explanations: None.
Special math needed to use results: None.
Results useful to: Computer architects and real-time system

designers.

Summary & Conclusions - Despite the increasing need for
ultra-reliable computers for use in distributed environments,
there has been no significant advances to reduce the time
overhead of combining replicated data in conjunction with pro-
viding instantaneous error masking.

We propose two techniques that provide a compromise bet-
ween the high time overhead in maintaining synchronous voting
and the difficulty of combining results in asynchronous voting.
These techniques are specifically suited for real-time applications
with a single-source/single-sink structure that need instantaneous
error masking. A description of the techniques, their underlying
system requirements, and possible time bounds are presented.

Two techniques provide a compromise between a tightly syn-
chronized system in which the synchronization overhead can be
quite high, and an asynchronous system which lacks suitable
algorithms for combining the output data. Both QMV and CMV
are most applicable to distributed real-time systems with single-
source/single-sink tasks. All real-time systems eventually have to
resolve their outputs into a single action at some stage. The
development of the Advanced Information Processing System
(AIPS) and other similar systems serve to emphasize the impor-
tance of this class of real-time systems and the possible applica-
tions of these techniques. Time bounds suggest that it is possible
to reduce the overhead for quorum-majority voting to below that
for synchronous voting. All the bounds assume that the computa-
tion phase is non-preemptive and that there is no multi-tasking.

1. INTRODUCTION

The need for ultra-reliable computers in support of
real-time control applications has greatly increased in the
past few years and is anticipated to continue growing at an
even faster pace. Traditionally, errors in computing
systems have been masked by replicating the application
and system tasks, distributing these tasks on independent
hardware, and combining the replicated results. Two
notable methods used to combine the replicated results are:

A synchronous vote applied to the replicated output
Systems which combine the output in an asynchronous

Both of these methods have their advantages and disad-
vantages. The former lends itself to simpler implementa-
tion but requires synchronization overhead, whereas the
latter takes full advantage of the truly asynchronous
nature of distributed environments but lacks application
independence.

The Fault Tolerant Multi-Processor (FTMP) [11 and
Fault Tolerant Processor (FTP) [2] along with the Soft-
ware Implemented Fault Tolerance (SIFT) computer [3]
are examples of implemented architectures that combined
replicated results using a synchronous vote. The major dif-
ferences in these architectures were the choice of where to
place and how often to perform the synchronous vote. The
designers of FTMP and FTP choose to vote on informa-
tion entering the processors from replicated buses, thus
allowing the vote to be performed in hardware transparent
to the applications software. This required the processors
to be in tight synchronism and, thus, cannot be extended to
a distributed environment. For SIFT a time-frame struc-
ture was used in which messages were exchanged and a
vote performed. This time-frame placed restrictions on the
structure of the application software and, thus, greatly
hampers application independence. In all of these architec-
tures there is a rendezvous point: the bus cycle for FTMP
and FTP, and the task frame for SIFT, in which the
replicated data are combined by performing a bit-for-bit
majority vote on the output data stream.

Another approach [4, 51 is to have the replicated tasks
run asynchronously and vote on the results. This approach,
though conceptually similar to the earlier analog control cir-
cuits, suffers from the problem of specifying and implemen-
ting suitable algorithms to derive a single output request from
the multiple output requests produced by the replicated tasks.
These requests can differ since the processors run asyn-
chronously with respect to one another and sample the input
independently. Once an algorithm is developed, the resulting
systems usually require great care for even minor modifica-
tions and, thus, are highly application dependent.

We propose two techniques, quorum-majority voting
(QMV) and compare-majority voting (CMV) that incor-
porate some of the advantages of both asynchronous and
synchronous voting. These techniques are intended for the
class of problems whose error containment and timing re-
quirements dictate distributed system solutions with
replicated tasks.

Section 2 presents the problem along with our initial
assumptions. Section 3 presents the required architecture and

fashion.

0018-9529/89/0400-0058$01.00O 1989 IEEE

SHIN/DOLTER: ALTERNATIVE MAJORITY-VOTING METHODS FOR REAL-TIME COMPUTING SYSTEMS

an assumed software structure present in the real-time ap-
plications. Section 4 presents QMV and CMV. Section 5
focuses on the derivation of the time bounds that are possi-
ble using these methods.

Future work should concentrate on relaxing the
assumptions concerning: the computation phase being
non-preemptive, no multi-tasking, and the single-
source/single-sink I/O structure.

2. PROBLEM STATEMENT AND APPROACH

Our primary goal is to provide an environment in
which real-time applications interfaced to life critical func-
tions can be executed correctly in the presence of malfunc-
tioning hardware. Correct operation not only involves
masking up to a given number of faults but satisfying the
real-time constraints (deadlines) of the applications. Thus,
the worst case time bounds of any technique must be
known a priori and be less than the application’s deadlines.
A secondary goal is to provide application independence--
allowing a broader class of problems to be handled.

We provide the necessary error masking using an ex-
act bit-for-bit majority vote applied to the output stream.
The choice of a majority vote not only provides a highly
application-independent means of combining the output
data but can be further justified by the difficulty in speci-
fying the “acceptance” tests for the recovery block ap-
proach and the voting filters used in N-version programm-
ing [6-81.

The choice of a majority vote on the output data
stream does have implications on the input structure. For
deterministic tasks the input to each of the replicated tasks
must be identical. Deterministic tasks always produce the
same output sequence for a given input sequence.

In a tightly synchronous system it is known when the
tasks will need and produce data. If the tight synchroniza-
tion requirement is relaxed, which is desirable because of
the high overhead for software synchronization [lo], one is
faced with the following questions:

When and how does the system sample the input sensors
to provide a single input datum to each of the replicated
tasks?
What action should be taken if a task is not ready when
the input is sampled?
When and how does the system resolve the replicated
output data and issue a single output action honoring
the individual output requests?

We answer these questions by proposing QMV and
CMV

3. ARCHITECTURE AND SOFTWARE STRUCTURE

Figure 1 presents a block diagram of the distributed
real-time architecture assumed in the development of

Y i J “ “ V

Replicated senaors
are controlled by

dllteient 110 Controllers

Fig. 1 . Assumed Target Architecture

59

QMV and CMV. Each processor in the system has its own
clock but the system is neither completely asynchronous
nor tightly synchronized. This can be achieved by infre-
quent clock synchronization in software [3], which is
relatively inexpensive. The clocks in any two processors
may differ by at most some maximum skew. Although this
assumption is not necessary for the operation of our
techniques, it allows their timing behavior to be
characterized as a function of the maximum skew. There
must be a fault-tolerant software clock synchronization
algorithm (Interactive Convergence Algorithm [3]; this
algorithm entails a large time overhead [lo]) allowing the
entire system or subsets of the system to be resynchronized
as necessary. All timing behavior of a processor depends
only on its internal clock and the availability of data as
provided by QMV.

The most important addition is the presence of semi-
intelligent I/O controllers. These controllers must know
which tasks will request service for devices under their con-
trol. This poses no major burden since the allocation of
1/0 devices is usually done either off-line or at the time of
task creation to support deadlock prevention. This ap-
proach of preallocation of the devices is often necessary to
meet the application deadlines and avoid the overhead of
other deadlock resolution methods commonly found in
operating system environments. The controllers must also
maintain lists of requests and resolve the requests into a
single action. The addition of these I/O controllers serves
to insulate the I/O devices from the actions of a single pro-
cessor. The ability of a single processor controlling the I/O
bus and, thus, the I/O devices connected to the bus is a
weakness found in the SIFT architecture. Though these
110 controllers proposed for QMV and CMV do have

60 IEEE TRANSACTIONS ON RELIABILITY, VOL. 38, NO. 1,1989 APRIL

complete control of the 110 devices connected to them,
their limited functionality allows their complexity to be less
than the requesting processors, thus achieving more
reliable control of the 110 buses.

Secure communication primitives must be available
for use in processor-110 controller messages and must
have the capability of detecting the origin and any
modifications of the messages. Such a capability can be
provided using a suitable encryption scheme. Secure com-
munication allows the I/O controllers to detect multiple
messages from faulty processors. This feature is necessary
for the reliable operation of both QMV and CMV.

The last architectural requirement is that sensors ob-
taining replicated data be placed in different 110 con-
trollers. This is needed to ensure that the failure of an 110
controller does not affect the ability of an application task
in obtaining data from sensors. Data from replicated sen-
sors is not resolved by the I/O controllers but is handled in
the applications. This preserves application independence
and allows the applications flexibility in managing redun-
dant sensors.

We are primarily interested in real-time applications
and thus will restrict the scope of the applications by
assuming a structure present in real-time tasks. A block
diagram of a representative real-time task is presented in
figure 2. This structure hinges on the assumptions that
real-time applications-

* can be naturally decomposed into tasks with three

have a single-source/single-sink 110 requirement.

During the first phase, input operations collect the data
from a single (but replicated) input source needed for the
following computation phase. This operation is referenced
to the processor’s clock in which the task is resident and,
thus, periodic task invocations will drift as a function of
their host processor’s clock drift. Once the data become
available, a computation phase begins with the further
assumption that this phase is non-preemptive. The task is
concluded with an output phase to a single device. Due to
the time constraints associated with real-time tasks, this
assumption is reasonable and widely used. This 3-phase
structure in which the computation phase is non-
preemptive and the processors operate in a non-
multitasking mode is not a requirement for QMV and
CMV but provides a framework in which to discuss the
time bounds.

phases [9]

4. QUORUM-MAJORITY VOTING AND
COMPARE-MAJORITY VOTING

4.1 Naming Requests

The operating system and underlying architecture
must support several naming conventions that are used in
the implementation of QMV and CMV. Tasks have to be

Fhase

Fig. 2. Task Structure

named uniquely throughout the entire system. This poses
no problems in implementation since most systems use the
task names for resource allocation. We refer to these
names as task id‘s. For tasks requiring replication, each
replicated copy has to be distinguishable by assigning new
names called replication id’s. These names are easily con-
structed at the time the task is replicated and distributed.
The last name required is used to identify the actual section
(line of code) of the application task requesting I/O ser-
vice. We refer to this as the request origin and to the name
used to distinguish different request origins as the request
id.

To construct the request id’s we consider a model
slightly more general than the real-time task shown in
figure 2. In general, requests for 110 can be functions of
the input data and can be embodied within iterative loops.
This implies that not only the location of the request but
the progress through the loop has to be determined. This
can be done by using the offset into the virtual address
space of the request concatenated with the number of I/O
requests received from the particular image of the task.
Each properly functioning image of a task will follow the
same path of execution, assuming each image receives the
same input data; thus, the offset and I/O counts are iden-
tical. Tasks at different iterations through a loop have
identical offsets but can be distinguished by the I/O re-
quest count. If a faulty image has its request count or off-
set corrupted such that it matches a non-faulty image’s re-
quest, the error is masked in the vote as discussed later.

All requests in the system are then identified by the
concatenation of the above three names. We refer to this as
a request tag. The structure of the request tag is shown in
figure 3.

SHIN/DOLTER: ALTERNATIVE MAJORITY-VOTING METHODS FOR REAL-TIME COMPUTING SYSTEMS

Address O f f s e t I/O C o u n t

I I I 1

Task-ID

Request-Tag

Replication-ID
Request-ID

Fig. 3. Request Tag Structure

4.2 Description of Quorum-Majority Voting

The basis for QMV, as the name suggests, is to ensure
that I/O operations are triggered only on the behavior of a
quorum of proper participants. For each request for ser-
vice, as identified by the request tags, a quorum of the
replicated images must issue the request before an action
takes place. Once a quorum is established, the nature of
the operation is decided: for input the sample is taken and
sent, for output the received data values are voted upon
and the resulting action taken.

Prior to the execution of a task, the required I/O con-
trollers must be informed of the task id’s and their
associated replication id’s. Given this information the con-
trollers can decide if a quorum of the requests has been
established for a particular 110 request. The threshold
defining a quorum is set such that the non-faulty tasks will
always control the majority vote.

I/O controllers must maintain a list of requests for
each active request id. Upon receiving a request, the re-
quest must first be checked for valid task and replication
id’s. Once these are established, the controller checks the
list corresponding to the request id for a duplicate request.
Duplicate requests can be detected since the origin of the
message is guaranteed by the assumption of secure com-
munications. If the request was not a duplicate and a
quorum of requests has been received, the controller per-
forms a majority vote on the requests received thus far.
For input, the value is sampled and sent to all participants,
even those who have not yet issued that particular request.
For output, the data values received are used as input to a
bit-for-bit majority vote to derive a single output action. If
a quorum has not been established, the request is saved
and the requesting task must wait.

In order to tolerate k faulty task-images, the non-
faulty images must first be able to control the establish-
ment of a quorum. Once a quorum is formed, the non-
faulty images must also be able to dominate the majority
vote for the selection of the operation and in the case of an
output operation the output data as well. Input and output
operations can be treated symmetrically by voting on both
the data and the operation selection as a single entity. To
obtain the number of images required to tolerate k faulty
images, start working backwards from the final majority
vote. Thus, we need k + 1 non-faulty images against the k
faulty images in the final majority vote giving rise to hav-
ing the quorum established on 2k + 1 requests. Since the
quorum is established on 2k + 1 images and the non-faulty

images must be able to establish a quorum independently
of the faulty images, we need 2k + 1 non-faulty images.
All 2k + 1 non-faulty images are needed in the case that all
k faulty images chose to abstain from making a request.
This requires that there be a total of 3k + 1 replicated im-
ages. In summary, 3k + 1 replicated images are required in
order to tolerate the behavior of k faulty images when
QMV is used. Despite their fundamental differences, the
minimum number of participants required for QMV is the
same as that for the Byzantine Generals agreement [3].

If k is reasonably bounded, the I/O controllers can ef-
ficiently support the majority vote in hardware by bit
serially voting on the data of the quorum.

4.3 Description of Compare-Majority Voting

In contrast to QMV, CMV requires only 2k + 1
replicated images but handles the requests for 110 opera-
tions in a different manner. In performing CMV the 110
controllers wait for k + 1 requests for 110 from different
processors with the same data. If the operation is an input
request, the data is sampled and sent to all 2k + 1 images.
For an output operation the data is sent to the specified
device. In either case, since k + 1 requests with the same
data have to be received before any action can take place,
110 operations cannot occur solely as the result of faulty
task images.

The disadvantages of CMV as compared to QMV is
that the 110 controllers have to partition the incoming re-
quests into equivalence classes as defined by the data of the
requests. These operations are not trivial and could ap-
preciably increase the hardware complexity as compared to
the requirements for QMV.

5 . TIMING BOUNDS

5.1 Notation

We introduce notation that can formally describe
QMV and CMV. The notation presented below describes
one particular request as identified by the request id.

Upon the the arrival of a request at the 110 controller,
the request must first be validated. This involves ensuring
that the task and replication id match known identities and
are coded in such a manner that only the replicated process
with that replication id could have issued the request. Once
these are established, a check for duplicate requests con-
cludes the validation phase.

Notation

Reqi valid request i received at the controller for a given
request id; 1 Q i Q 3k + 1. These requests can be
either an input or output operation on a particular
device under the control of the 110 controller.

62 IEEE TRANSACTIONS ON RELIABILITY, VOL. 38, NO. 1,1989 APRIL

Q; set of i requests for a given request id

QI {Reqil
Q, = {Req,} U Q j - l , 2 6 i 6 3k + 1.

These sets represent the lists used to collect the re-
quests.

function that maps a set Q; to a single
operation according to the standard majority
function.

time that the request Req; was received by the
I/O controller, for QMV and CMV. This function
maps requests to the time of their creation-to
analyze the timing behavior.

either the request i for input, output, or a ren-
egade request, respectively. This notation is
similar to Req, but allows differentiating faulty
from non-faulty. We notationally discriminate
faulty and non-faulty requests. Since the behavior
of the faulty processors is unpredictable, it is
useful to obtain the timing bounds in terms of the
non-faulty processors behavior. This information
is not used in the implementation of QMV.
number of faulty tasks for this request
maximum number of faulty tasks that can be
tolerated.

Majority(*)

T(Req,)

I;, O;, R,

m
k

5.2 Timing Bounds for QMV

Consider the timing behavior of QMV and use figure
2 as an example real-time task. The task is replicated 3k +
1 times and distributed on processors { p l , . . . ,p3k+l} in
order to tolerate up to a total of k failures. QMV is im-
plemented as follows:

1. Wait for the set Q2k+ to become available.
2. Perform operation dictated by Majority(Qu,+

These operations take place at T(Reqzk+J and the
variation in this quantity is a function of non-faulty pro-
cessors clock drift and faulty task’s behavior. The varia-
tion (jitter) in T(Req2k+1) forms an operation window. If
the application deadlines are to be met, the growth of this
operation window must be limited. If the growth of the
window were not limited, the faulty tasks could either
prematurely trigger an operation or indefinitely delay an
operation, resulting in a failure of the system. We now pre-
sent the bounds on the operation window.

Theorem 1. The operation window formed by T(Req2k+ 1)

is bounded as follows:

requests (images not making requests are considered to make
their requests at + co) are dispersed among the non-faulty re-
quests. This allows us to divide the time that the operation
will be triggered into three cases.

CaseZIT(Ri)dT(Iu,+l-m), l d i d m , O d m d k] : T h e m
faulty tasks all make their requests before T(12 + - ,). The 2k
+ 1 - m non-faulty tasks dominate the m faulty tasks in the
decision for an input operation with this occuring at

Case2[T(Ri)2T(12k+1), 1 d i d m , O d m d k] : A l l o f t h e
faulty tasks chose to either delay their requests until after

or abstained from making requests. The quorum is
then established at T(Iu+]) and have only non-faulty re-
quests present. Therefore, the operation is an input and oc-
curs at TOu, +

Case 3 [Otherwise]: The quorum is established some time be-
tween T(Iu,+l-m) and T(Iu,+l). Thus, the time that the
quorum is established is bounded between two non-faulty re-
quests. Since there are at least k + 1 non-faulty tasks in the
quorum, the non-faulty tasks can again dominate the majori-
ty function.

The above argument gives the time bound for an input
operation and a symmetric argument is applicable to output
operations. 0

Since the operation takes place between non-faulty re-
quests, the behavior of faulty task images cannot force a
premature triggering or indefinite delay of the operation.

Processors that have requested the input data prior to
T (R e w + 1) can start their computation phase upon receipt of
the data but the other lagging processors cannot start until the
attempt is made to request the data. This leads to the output
operation window floating with respect to the input window
and, thus, we need to bound on the growth of the output win-
dow as a function of the input window.

Before we can obtain a bound on the output window in
terms of the input window, we have to define computation
time and account for drift in the processor clocks.

More Notation

TUX+ I -m) .

W amount of computational time between the input
phase and the following output phase for an “ideal”
processor without any drift in its clock.
maximum clock drift rate for all the non-faulty
processors. 6- > 0. It is dimensionless and is used
as a proportionality constant giving either the max-
imum time gained or lost when multiplied by a time
interval.

A bound on the outmt window growth is Dresented in

S,,

Proof. The 3k + 1 - m non-faultyrequests for servicearrive
in an ordered sequence at the 110 controller for the device in
question. These are shown in figure 4 for the case of an input
operation. In the presence of the m faulty images, their

the following theorem.
Theorem 2. The maximum growth of an output operation
window with respect to the preceding input window is
26,,W.

SHIN/DOLTER: ALTERNATIVE MAJORITY-VOTING METHODS FOR REAL-TIME COMPUTING SYSTEMS

-

63

b

?'line a s s e e n b y an Observer

I I I

Case 1

I O p e r a t i o n O c c u r s

Case 2

O p e r a t i o n O c c u r s t
Case 3

Operat ion OcaJrs L
Fig. 4. Input Operation Case

Proof. To arrive at the bound, we first obtain
minT(02k+ -,) and maXT(02k+ 1) which represent the
earliest and latest possible times that the output operation
can occur.

To obtain minT(02k+ -,), we present the following
argument. Given that the input occurs at time T(IZk+ -,J,
there are 2k + 1 - rn non-faulty processors starting their
computation phase. Thus, the earliest that those non-
faulty processors can finish the computation phase is in W
- S,,W time units later. For this to occur, the rn faulty
processors that requested early for the input phase have to
do so again along with all 2k + 1 - rn non-faulty pro-
cessor experiencing the maximum speedup drift, a highly
unlikely event.

minT(02k + -,) = T(I*k+ 1 - ,) + W - W S,,, 0 Q rn Q k.

For maXT(02k+ 1) the argument is symmetric to
minT(02k+ -,). The input has to occur at T(I2k+ 1) requir-
ing all faulty processors to have requested their output

after T(Izk+ At this time there will be 2k + 1 non-faulty
processors in their computation phase. The latest these 2k
+ 1 processors can finish their computation is in W +
6,,W time units later. Again, requiring the faulty pro-
cessors to delay their requests after the first 2k + 1 non-
faulty requests, we get:

maxT(02k+1) = T(12k+l) + W + W ti,,, 0 d m d k.

Then it is easy to get:

Maximum Output Window 6 "'=T(02k + I) - mi"T(02k + 1 ~ ,J
GT02k+1) - T02k+I-m)

+ 2 W * S m , : O d m d k

The window growth is then the difference between the
maximum output window and the input window giving rise to

0 a growth of 2 W6,,.

IEEE TKANSACIIONS O N KL<I,IABILITY, VOL. 38, NO. 1,1989 APRIL 64

5.3 Timing Bounds for CMV ACKNOWLEDGMENT

More Notation

Pi

This work has been supported in part by the US Office
of Naval Research under contracts N00014-85-K-053 1 and
N00014-85-K-0122, and NASA under grant NAG-1-296.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this paper are those of the authors and
do not reflect the views of funding agencies.

partition of Qi such that Req, = Reqk iff value
(Req,) = value(Reqk), where value (0) extracts the
data content of a request, and the symbol =
represents an equivalence relation.

F(.) F(QJ 3 yEy{IsI}*
REFERENCES

The operation of CMV then occurs at T(Q,), where x
= min{j : F(QJ 2 k + l}.

then be derived. May.

[I] T. B. Smith, J . H. Lala, Development and Evaluation of a Fault-
Tolerant Multi-Processor (FTMP) Computer Volume I: FTMP
Principles of Operation, NASA Contractor Report 166071, 1985 The Operation window defined when using CMV can

Theorem 3. The operation window formed by T(Q~),
min{j : F(Q,) 2 k + l}, is bounded as follows:

~

[2] T. B. Smith, Fault Tolerant Processor Concepts and Operation,
Contractor Report CSPL-P-1727, Charles Stark Draper
Laboratory, 1983 May.

T(Il) 6 T(QJ Q T&+ 1) (Input Operation)
T(O1) 6 T(Q,) Q T(Ok+l) (Output Operation),

O Q m g k

Proof. Consider the case of an input operation. Assume
there exists an equivalent class with cardinality k + 1 or
greater prior to receiving the first non-faulty input request
(I1). This cannot be so since there can be at most k faulty
requests prior to the first non-faulty input request. This
shows that T(QJ 2 T(II). Since there will be at least k + 1
identical input requests by the k + 1 l h non-faulty input re-
quest, the inequality T(QJ d T(Ik+ 1) trivially holds.

The output case follows from a symmetric argument.
0

5.4 Bounds Interpretation

Two interesting properties of the operational windows
have been presented.

1. For QMV(CMV), the largest that these operational win-
dows become is the inner % (first %) of the non-faulty
processors with this condition occurring only when there is
a maximum number of faulty tasks in the system. The
maximum size of the windows for QMV improves
(shrinks) as the number of faulty tasks decreases with no
window occurring in a fault-free system.
2. These windows grow as a function of the maximum

[3] Goldberg, Green, Kautz, Levitt, Melliar-Smith, Schwartz,
Weinstock, Development and Analysis of the Software Irn-
plemented Fault- Tolerance (SIFT) Computer, NASA Contractor
Report 172146, 1984 February.
W. R. Dum, “Distributed asynchronous microprocessor architec-
tures in fault tolerant integrated flight systems”, AIAA Computers
in Aerospace IV Conf., 1983 October, pp 115-123.
K. N. Levitt, P. M. Melliar-Smith, R. L. Schwartz, Fault Tolerant
Architectures for Integrated Aircraft Electronics Systems, NASA
Contractor Report 172226, 1983 August.
T. Anderson, P. A. Lee, Fault Tolerance: Principles and Practice,
Prentice-Hall, 1981.
L. Chen, A. Avizienis, “N-version programming: a fault-tolerance
approach to reliability of software operation”, Digest of Papers, 8th
Ann. Intern. Symp. Fault-Tolerant Computing Systems, 1978, pp
3-9.
R. K. Scott, J. W. Gault, D. F. McAllister, “Fault-tolerant software
reliability modeling”, IEEE Trans. Software Engineering, vol
SE-13, 1987 May, pp 582-592.
K. G . Shin, C. M. Krishna, Y. H . Lee, “A unified method for
evaluating real-time computer controllers and its application”,
IEEE Trans. Automatic Control, vol AC-30, 1985 Apr. pp 157-366.

[IO] C. M. Krishna, K. G . Shin, R. W. Butler, “Synchronization and
fault-masking in redundant real-time systems”, Digest of Papers,
Idh Ann. Intern. Symp. Fault-Tolerant Computing Systems, 1984,

[4]

[SI

[6]

[7]

[8]

[9]

pp 152-157.

AUTHORS
Dr. Kang G . Shin, Professor; Real-Time Computing Laboratory; Depart-
ment of Electrical Engineering and Computer Science; The University of
Michigan; Ann Arbor, Michigan 48109-2122 USA.

Kang G . Shin [S’75, M’78, SM’831 is a Professor in the Department
of Electrical Engineering and Computer Science, The University of
Michigan, Ann Arbor, Michigan, which he joined in 1982. He has been

drift rate of the processors and the time that has elapsed active and authored/coauthored over 120 technical papers in the areas of
fault-tolerant real-time computing, computer architecture, and robotics
and automation. In 1987, he received the Outstanding Paper Award from since the processors were last resynchronized.

The exploitation of these properties provides an alter-
native to current real-time system implementations. The

the IEEE Transactions on Automatic Control for a paper on robot trajec-
tory planning. In 1985 he founded the Real-Time Computing Laboratory,
where he and his students are building a 19-node hexagonal mesh

parameter that system designers may vary is the resyn- multiprocessor, called HARTS, to validate various architectures and -
chronization interval. This allows the reduction of the
resynchronization overhead as a function of the aPPlica-

analytic results in the area of distributed real-time computing. He received
the BS degree in Electronics Engineering from Seoul National University,
Seoul. Korea in 1970. and both the MS and PhD degrees in Electrical

tions tolerance to the maximum jitter of the operational
windows provided by QMV and CMV.

Engineering from Cornel1 University, Ithaca in 1976 andi978, respectively.
(continued to page 67)

