MESSAGE ROUTING IN HARTS WITH FAULTY COMPONENTS *

Alan Olson

Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122,

ABSTRACT

It is important to design a distributed system which is capable
of delivering messages even in the presence of faulty components
between their source and destination nodes. We develop a routing
scheme in two steps for a wrapped hexagonal mesh, called HARTS
(Hexagonal Architecture for Real-Time Systems), which assures the
delivery of every message as long as there is a path between its source
and destination.

The proposed scheme can also detect the non-existence of pathr
between a pair of nodes in a finite amount of time. Moreover, the
scheme requires each node in HARTS to know only the state (faulty
or not) of each of its own links. The performance of the simple
routing scheme is simulated for 3- and 5- dimensional H-meshes
while varying the physical distribution of faulty components. It is
shown that a shortest path between the source and destination of
cach message is taken with a high probability and a path, if exists, is
usually found very quickly.

1 Introduction

Recently, distributed computing systems have received a great deal of
attention, since not only do they provide a high degree of parallelism
but also are capable of greater fault-tolerance. However, because
distributed systems are more complex than uniprocessor systems, they
are more likely to suffer a component failure. Therefore, if the system
cannot reconfigure itself after a failure, its fault-tolerance will be
lower than a uniprocessor system. Thus, a distributed system must
be designed so that most operations can continue even in the presence
of component failures.

Message routing is one aspect of a distributed system which can
be severely affected by component failures. Any routing algorithm
must be able to handle the case where the intended path of a message
is blocked by link/node failures. Some work has already been done
on message routing in a hypercube in the presence of link and node
failures (1, 3, 6, 8, 10]. Also, some algorithms are proposed in [7]
to broadcast the information about faulty components to all the other
nodes in the system so that messages can be routed around the faulty
components. Clearly, if each node is equipped with the informa-
tion on all faulty components, then it can always determine a shortest
fault-free path to route messages as long as the source and destination
nodes are connected. However, it is usually too costly to equip every
node with the entire network information, especially when the size

*The work reported here is supported in part by the NASA under Grant NAG—1—
296 and by the Office of Naval Research under Contract N00014-85-K-0122. Any
opinions, findings, and conclusions or recommendations expressed in this paper are
those of the authors and do not necessarily reflect the views of the funding agencies.

0731-3071/89/0000/0331$01.00 © 1989 IEEE

331

of the system is large. Hence, it is important to develop routing
schemes which require each node to keep only the minimal informa-
tion essential for making correct routing decisions.

The goal of this paper is to develop such a routing scheme for
the Hexagonal Architecture for Real-Time Systems (HARTS), cur-
rently under development at the Real-Time Computing Laboratory,
The University of Michigan. (See [2, 9] for justifications of using
a hexagonal mesh topology and its comparison with other topolo-
gies.) We will require each node to know only the condition (faulty
or non-faulty) of its own links. Our routing scheme will deliver each
message successfully as long as there is a path between its source
and destination. Unlike others, it does not require any assumption
on the number of faults or fault patterns. If there does not exist any
path between the source and destination nodes, our routing scheme
will be able to detect the non-existence of path in a finite amount of
time. An addressing and routing scheme for HARTS in the absence
of faulty components has been developed [2], and a routing con-
troller chip has also been developed as the front-end communication
interface for each HARTS node [4].

This paper is organized as follows. In Section 2, HARTS is briefly
reviewed for completeness (see [2, 4] for a detailed account). Sec-
tion 3 outlines a method for routing on an unwrapped mesh. In
Section 4 the algorithm is extended to properly handle the wrapping
of the mesh. In Section 5, the performance of the algorithm is sim-
ulated for several different mesh sizes and fault types. Finally, the
paper concludes with Section 6.

2 Hexagonal Mesh Architecture

A simple hexagonal mesh (H-mesh) is a set of nodes laid out on a
hexagonal grid such that there is a central node inside a series of
nested hexagons. Each hexagon has one more node on each edge
than the one immediately inside of it. The dimension of the mesh
is defined to be the number of nodes on one side of the outermost
hexagon. It has been shown in [2] that the number of nodes in an
e—dimensional H-mesh is 3e2 — 3e + 1.

For a number of reasons, such as ease of task allocation and migra-
tion, it is advantageous for a processing surface to be homogeneous.
A simple H-mesh is not homogeneous since the nodes on the outer-
most hexagon will have only three or four connections while the rest
of the nodes will have six. To achieve homogeneity, the unused links
on the perimeter are “wrapped” as described below.

Any node in the simple mesh will have six oriented directions, one
corresponding to each of the six links. Without loss of generality,
the link pointing horizontally to the right can be thought of as the
x direction, the link 60 degrees counter-clockwise as the y direction,
and the link 120 degrees counter-clockwisc as the z direction. The

) Edgen in e 2dwaction

Figure 1: Wrapping for a mesh of dimension 3

Figure 2: Hexagonal mesh of dimension 3

remaining three links point in the —z, —y, and —z directions, re-
spectively. A simple H-mesh of dimension e can be partitioned into
2e — 1 rows with respect to each of the z, y, and z directions. Using
this, “C-type wrapping” is defined as follows [2, 9].

C-type wrapping: For each of the directions 2, y, and z, connect
the last processor in row i to the first processor in row (i+e—1)
mod (2e — 1), where the rows are numbered 0,...,2¢ — 2.

An illustration of the row partitions and wrap connections for each
direction on a mesh of dimension 3 is given in Fig, 1.

C-type wrapping leads to an elegant labeling scheme for the nodes.
Since the mesh is homogeneous, all nodes are topologically equiv-
alent. Therefore, any node can be viewed as being in the center of
the mesh. Choose one node to serve as the origin and label all other
nodes with their respective distance (number of hops) from the origin
in the x direction. An example of the labeling for an H-mesh of
dimension 3 is given in Fig. 2, where the greyed area of the mesh is
used to show more clearly how the links are wrapped.

Routing with the above labeling scheme is simple. An elegant
O(1) algorithm is presented in [2] to give the shortest path between
any two nodes. It retums three integers, m;, my, and m,, each of

332

which represents the distance to be traveled in the corresponding di-
rection (a negative offset indicates movement in the corresponding
negative direction). At least one of the offsets is guaranteed to be
zero, and |mz |+ |my| + |m.| < e —1 where e is the dimension of the
mesh. These offsets are included in the message header, and as each
node forwards the message, it updates the offsets appropriately. If
the message reaches a node with m, = m, = m, = 0, the message
has reached its destination. This routing scheme is a significant im-
provement over the one in [9] because it handles the mesh wrapping
transparently.

3 Simple Routing

The goal of this paper is to develop a routing algorithm which can
successfully deliver any message as long as the destination is reach-
able given that each node only has knowledge of the state of its own
links. And, if there is no path between the source and destination of
a message, this fact should be detected in a finite amount of time.

The structure of the H-mesh provides an obvious method for de-
touring around a single faulty link. Each link forms one side of a
triangle whose other two sides form a convenient detour should the
link fail. As an example, consider Fig. 2. If the link from 18 to 0
has failed, a message could detour around the failed link using the
path 18 to 7 to 0 or the path 18 to 11 to 0. This can be recursive; for
example, if the link from 18 to 7 has also failed, the detour could be
180610 71to0.

This algorithm is easy to implement. The message starts in a free
mode in which message routing is much the same as in a fault-free
mesh, until all links of a node on the shortest path to the destination
are found to be faulty. The message is then placed in detour mode.
In detour mode a message “rotates” counter-clockwise through the
node, checking each link in tum and sending the message on the
first non-faulty link found. The message starts checking with the
link counter-clockwise of the links on the shortest path if it has just
been placed in detour mode, or with the link counter-clockwise of the
link by which the message entered the node if the message entered
the node while in detour mode. A message exits detour mode when
it reaches a node closer to the destination than the node where the
message entered detour mode.

Accounting for this algorithm is simple. The message need only
keep track of the destination node, the current state (free or detour),
the offsets to the destination, and the distance to the destination when
the message entered detour mode. The offsets are adjusted each time
the message is sent to another node, but are never “recalculated” with
respect to the destination. That is, wrapping is ignored when the
offsets are updated so that the offsets may not represent the shortest
path to the destination. This simple-minded approach will, at times,
lead to poor routing decisions, but will be a great aid when it comes
to determining when a destination is unreachable.

Finally, there must be some way of recognizing when the routing
algorithm cannot deliver a message. This is done by showing that
any message which does not reach its destination must eventually
cycle.

Lemma 1 On any finite H-mesh, if a message never reaches its desti-
nation, it will eventually reach a point after which it will never return
to free mode.

The proof is trivial if one keeps in mind that the algorithm as de-
scribed above ignores the wrapping of the mesh.

Lemma 2 Given message m, for any non-faulty link o of node n there
will be a link i of node n such that if m enters n while in detour mode
and remains in detour mode while at n, m will leave n by link o if
and only if it entered by link i.

Proof: Let i be the first non-faulty link clockwise of o. The rest of
the proof then follows trivially from the description of the algorithm.
m]

Theorem 1 On any finite H-mesh, if a message does not reach its
destination, it will eventually be in a cycle.

Proof: By Lemma 1, a message that does not reach its destination
will eventually reach a point after which it will never retum to free
mode. Consider a message that will not reach its destination and
has entered detour mode permanently. From Lemma 2 it is clear
that knowing the current node and the outbound link is enough to
determine the future behavior of the message. The outbound link
not only determines the next node, but the inbound link for the next
node, and therefore the outbound link for the next node. This in turn
determines the outbound link for the next node, and so on. Call the
current node and the selected outbound link the state of the message.
From Lemma 2 it is clear that given the current state s, not only can
the sequence of future states be determined, but that it will always
be the same whenever the message is in state s. Since there are only
a finite number of nodes and at most six possible outbound links
per node, there are only a finite number of states. A message that
does not reach its destination will pass through an infinite number
of states. It must therefore pass through some state s twice within a
finite amount of time. This clearly constitutes a cycle as the message
has returned to s, and by the above observation not only will it return
to s, but will go through the same sequence of states in doing so.
Further, it will continue to retumn to s indefinitely since the sequence
of states following s will always be the same. u]

Now the algorithm needs some method for detecting the cycle. The
following theorem provides it.

Theorem 2 If amessage is in a cycle, the cycle must include the node
at which the message was last in free mode, and will exit that node
via the same link as it did when it first entered detour mode.

Proof: Assume message m has entered detour mode permanently
and is in a cycle. Any node could appear more than once in a tour of
the cycle, but if a node appears more than once, then each time the
message reaches the node it must exit the node via a different link
than it used before. Therefore, each step in the cycle may be specified
by the node and the outgoing link. Pick any such node-link pair in
the cycle. Find the first occurrence of this pair after the last free
node, call it (ng,£;). Since the message is in detour mode, Lemma 2
shows that the node-link pair (n2, £;) preceding (n,, ;) will precede
all subsequent occurrences of (n;,¢;). Therefore, (n,,¢;) is in the
cycle. The same argument applies to (n3, £3), (n4,€y), ..., (nk, £k),
where ny is the last free node. The last free node and the link by
which it was exited are therefore in the cycle. o

From Theorem 2, the above algorithm will be unable to deliver a
message if it returns to the last node where it was in free mode, and
exits via the same link it did previously.

333

4 Handling Mesh Wrapping

The algorithm described in the preceding section is fairly close to
what is desired. Its main problem is its inability to take into account
the wrapping of the mesh. One can better understand how the algo-
rithm functions if one imagines the mesh in Fig. 2 extended infinitely
far. Then each node would have infinitely many “copies” of itself.
Each copy of the destination node represents a distinct family of paths
to the destination. If the destination is reachable, then at least one of
these copies, not necessarily the closest one, must be reachable. The
algorithm as it has been described so far will only attempt to reach
the closest copy of the destination.

In this section we will show that using the above algorithm a mes-
sage will reach any copy of the destination it tries to reach, provided
that copy is reachable. And, will derive a “fix” for the above algo-
rithm so that it will always reach a reachable destination.

4.1 Cycles and Reachability

Since a message which fails to reach its destination will cycle, it is
important to detect cycles, and to note their characteristics. Cycles
are detected by checking the current node and outgoing link against
the last free node and its outgoing link. From this perspective, there
are only two types of cycles.

The first kind, called a circle is characterized by the message re-
tuming to the exact same node at which the cycle started. Fig. 3
shows an example set of failed links that would cause a circle. If, in
the case of Fig. 3, a message should be sent from node 0 to node 11,
it would travel along the perimeter of the isolated mesh component
and return to node 0. The existence of a circle indicates the H-mesh
has become disconnected.

The second kind of cycle, called an incision, is characterized by
the message reaching a copy of the node at which the cycle started.
Fig. 3 also contains an incision. If a message should be sent from
node 11 to node 8, it would head leftward through nodes 10, 17, 16,
4, and back to 11. The existence of an incision does not necessarily
indicate the H-mesh has become disconnected.

As was shown above, in the case of either cycle type the destination
may still be reachable. Throughout the rest of this paper, the terms
circle failure and incision failure will refer to messages going in to
the respective cycle type when the destination was reachable, and
circle fault and incision fault will refer to messages going into the
respective cycle type when the destination was not reachable.

We have to show that if the message is in a cycle, the copy of the
destination that it was attempting to reach was not reachable. The
following definitions are useful in the discussion to follow.

Definition 1 Given a failed link ¢, the block B containing £ is the set
S of failed links such that (i) £ € S, and (ii) for every £' € §3* € §
such that ¢ and £* connect to the same node and are neighboring links
on that node.

A block is simply a collection of failed links through which no
message may pass. Fig. 4 contains examples of blocks, each of
which is circled.

Definition 2 The perimeter nodes of a block B is the set of all nodes,
each of which has one or more links belonging to B.

| B

Figure 4: Examples of blocks.

Using these definitions, we prove the following lemma, which
states that if the message is in a cycle, there is only one block that
is responsible for the cycle.

Lemma 3 If a message is in a cycle, all failed links that the message
encountered will belong to the same block.

Proof: By induction. From the definition of a block it is clear that
all failed links encountered while the message is at the node where
it was forced into detour mode belong to the same block.

Given that all failed links encountered while at a node A are in
the block, there are two possible cases. The first case is shown in
Fig. 5a. The message exits node A via link 2 after finding link 1 has
failed. Upon reaching node B, it finds link 3 has failed. Link 3 will

334

b

Figure 5: Perimeter nodes.

be in the same block as link 1 because it is immediately adjacent to
link 1 on node C. (Note that link 1 is in the block by the inductive
assumption.) Further, any more failed links encountered while at
node B will be in the block because link 3 is in the block. The
other case is that shown in Fig. 5b. In this case the message reaches
node B via link 2 and immediately proceeds to node C via link 3. At
node C the first link examined will be link 1, which is in the block,
and therefore all other faulty links examined while at node C will be
in the block.

Since all failed links encountered at the first node are in the block,
and given all failed links encountered at the current node are in the
block, all failed links encountered at the next node where failed links
were encountered before will be in the block, the lemma follows by
induction.]

The following is a formal definition of the intuitive notion of what
it means to have two paths cross one another.

Definition 3 A path P, is said to cross another path P if 3 nodes
ny and ng in both Py and P, such that the paths use the same links
between ny and n,, at node ny Py has a link (either inbound or out-
bound) which is counter-clockwise of Py’s inbound link and clockwise
of Py’s outbound link, and at n, Py has a link clockwise of Py’s in-
bound link and counter-clockwise of Py’s outbound link.

It is worth noting that n; and n, may in fact be the same node
as that would trivially satisfy the condition that the paths overlap in
between. With the above definition, we can now prove the following.

Lemma 4 No fault-free path can cross the path of the message in
detour mode.

Proof: For a fault-free path to cross the path of a message there must
be a node with a non-faulty link counter-clockwise of the message’s
inbound link and clockwise of the message’s outbound link. This is
not possible if the message is in detour mode. =]

Up to now, we have shown that if a message is in a cycle there is
exactly one block that is responsible. Now we have to “confine” the
block by showing that it has a very definite location with respect to
the cycle.

Definition 4 A segment induced by a path P is the set of nodes not
on P such that all paths between any two nodes in the segment cross
P an even number of times.

Lemma 5 All perimeter nodes of the block which caused a circle will
be either in the cycle or in one of the segments induced by the cycle,
and none of the nodes in the segment containing the perimeter nodes
will be reachable.

Proof: Consider any two perimeter nodes. Since the perimeter nodes
and the links in the block will form a connected subgraph, there
should be a path between the two perimeter nodes that uses only
links in the block. From the definition of a block it is clear that
there will exist such a path where at each node the path will exit the
node either via the link by which it entered, or by one of the links
immediately clockwise or counter-clockwise of the entry link. Such
a path could not cross the cycle. If the two nodes were not in the
same segment, the path would have to cross the cycle. Therefore the
two nodes must be in the same segment.

Call the segment containing the perimeter nodes the block segment.
Assume all links not in block B have not failed and there is some
reachable node in the block segment. Then there must be a non-faulty
link ¢ from some node ¢ in the cycle to some other node 7 in the
block segment. Link ¢ must be clockwise of ¢’s inbound link and
counter-clockwise of ¢’s outbound link. From node ¢ follow along the
cycle until a faulty link ¢’ is found counter-clockwise of the inbound
link and clockwise of the outbound link. Such a link must exist or
the message would not be in a cycle. Link £’ will connect from some
node on the cycle to some perimeter node n’. Since the path just
constructed (starting at n and ending at ') crosses the cycle exactly
once, n’ must not be in the block segment. Since =’ is a perimeter
node, it cannot be in any other segment. Therefore, n’ must also be
on the cycle and is reachable. Since ¢’ connects two nodes which are
already reachable, ¢’ can be made non-faulty without affecting the
reachability of any nodes. Once ¢ has been made non-faulty a new,
smaller cycle can be formed by retumning the message to the last free

335

node and letting the routing algorithm start. This new cycle will still
contain ¢, so the same operation can be performed. In fact, it can be
repeated until there are no more faulty links along the cycle. This
is clearly impossible; if no faulty links are present, the cycle would
never exist. Therefore, link ¢ and node » cannot exist. m]

Now that the block that is responsible for the cycle has been con-
fined to a single segment, we show that the message will stick close
to the perimeter of the block.

Lemma 6 A message that is forced into a circle by block B will pass
through every reachable perimeter node of B.

Proof: This follows from Lemma 5. Any perimeter node must either
be in the block segment or on the cycle. If it is in the block segment,
by Lemma 5 it is not reachable. Therefore any reachable perimeter
node must be on the cycle. o

Finally, we can show that the algorithm will only fail to reach a
destination if the destination is in fact unreachable.

Theorem 3 If a message is in a cycle, the copy of the destination the
message is attempting to reach is not reachable.

Proof: This proof has two parts: the first for circle, and the second
for incisions.

Suppose the cycle is a circle. Consider the node on the cycle which
is closest to the destination. When the message first entered this node
it was placed in free mode. It was prevented from leaving free mode
by the presence of one or more failed links, which by Lemma 3 must
be in the block which caused the circle. At the other end of one
of these failed links must be a perimeter node which is closer to
the destination. This node must be in the block segment, and since
it is closer to the destination than any other node on the cycle, the
destination must be in the block segment. Therefore, by Lemma 5
the destination is not reachable.

Suppose the cycle is an incision. Call a copy of the last free
node and the copy of the destination node the message is attempting
to reach an arbitrary source—destination pair. Consider a source—
destination pair past which the message will travel after it has been
in the cycle for some time. No path can be longer than 3e? — 3e
hops, and if the message has been in the cycle for more than 3e2 — 3¢
hops, any path between this local source—destination pair must cross
the path of the cycle, which is not allowed. Since no path exists for
an arbitrary source—destination pair, the copy of the destination the
message is attempting to reach must not be reachable. a

4.2 Dealing with Cycles

Theorem 3 assures us that the simple algorithm will reach a reachable
copy of the destination. It does not, however, say that the destination
is not reachable. If the message is in a cycle, one of the other copies
of the destination might still be reachable. But, the type of cycle the
message is in gives a few clues as to where some reachable copies
may lie.

4.2.1 Circles

The only way the destination could still be reachable if a circle has
been encountered is when the situation is like that in Fig. 3. In
this case a message going from node 0 to node 13 will “circle” the

destination. This can be fixed without too much trouble at the expense
of a slightly more complicated algorithm.

A circle will create a family of finite, connected components in
the unwrapped mesh. For a destination to be reachable, there must
be copies of both the source and destination in the same connected
component. Further, since in an e-mesh no two nodes are more than
e — 1 hops away from one another [1], all nodes in any connected
component will be within e — 1 hops from some perimeter node of
the component (assuming no faults internal to the component force
a longer path). Therefore, if a message is in a circle and there is
a reachable copy of the destination, since by Lemma 6 the cycle
will include all perimeter nodes of the component, the copy must be
within e — 1 hops of some node on the cycle. The algorithm need
only make note of all such copies of the destination and attempt to
reach each of them.

This extension will require some extra storage space to be allocated
for the message, but it will rarely require much. In a 3-mesh, the
message will find no more than 4 copies of the destination, and finding
more than one or two is very unlikely.

4.2.2 Incisions

The following theorem provides an idea on how to handle incisions.

Theorem 4 In the presence of an incision, if a destination is reach-
able, then either the closest copy is reachable, or if a cycle occurs,
then a reachable copy of the destination must lie within 2e — 1 hops
of both the last free node and the node where the cycle was detected.

Proof: By Theorem 3, if the message is in a cycle, the copy of
the destination the message is attempting to reach is not reachable.
By Lemma 1 a message must either reach its destination or cycle.
Therefore, if the message does not cycle it must reach its destination
and the closest copy of the destination is reachable.

Otherwise, the message cycles. Consider the last free node. It is
a perimeter node of the incision, and there are reachable copies of it
2e — 1 hops away in either direction along the incision. Since two
copies of the perimeter node at the other end of any failed link tested
while at the last free node will be within 2e — 2 hops of the last free
node, another copy of the incision lies no more than 2e — 2 hops
away. Therefore, by moving 2e — 1 hops away from the last free
node, the message will still be within 2e — 1 hops of some reachable
copy of the last free node. So, nothing is to be gained by moving
more than 2e — 1 hops from the last free node, and a copy of any
reachable node must lie within 2e — 1 hops.

Call the last free node ¢. There are six copies of ¢ within 2e — 1
hops of ¢. If the destination is reachable, one of the copies of the
destination local to one of these six copies of ¢ must be reachable.
Let ¢’ be the copy of ¢ where the cycle is detected. Node ¢’ is one of
the six copies, but its local copy of the destination is not reachable
since it is in the same position as ¢. The same goes for ¢”, the copy
of ¢ in the opposite direction along the incision of ¢. It is simply
¢ seen from ¢’’s perspective. There are two copies of ¢ which are
2e — 1 hops away from both ¢ and ¢/. The last two copies of ¢ lie
2e — 1 hops away from both ¢ and ¢”. These two pairs are equivalent
since the copics between ¢ and ¢” are the copies between ¢ and ¢
as seen from ¢’’s perspective. Therefore, if any of the copies of the
destination are reachable, one of the copies must be within 2e — 1
hops of both the last free node and the node where the cycle was
detected. n]

336

The preceding theorem shows that if the destination is reachable,
there is a reachable copy within 2e~1 hops of wherever you happen to
be. It also provides a way of eliminating a number of the possibilities,
since it shows that a reachable copy will lie within 2e — 1 hops of
both the last free node and the node where the cycle was detected.
There can be at most 2 such nodes.

4.2.3 Final Algorithm

Using what has been said above, it is possible to specify the complete
algorithm which can properly handle circles and incisions, and to
therefore deliver a message whenever the destination is reachable.

We assume that there is a field on the message, message.offsets,
which contains the offsets along the z, y and z axes to the current
copy of the destination. We also need the array message.alt_offsets[]
which contains the offsets to alternate copies of the destination.
Lastly, we define message.circle which is TRUE if a circle has been
detected, and message.incision which is TRUE if an incision has been
detected.

ALGORITHM A
while current_node_address # message.destination

if message.mode = FREE
or message.distance < message.last_free_distance then
message.mode := FREE
outbound_links := all links on the shortest path
else
outbound_links := link 60° counter-clockwise of inbound link
if message.distance > n — 1
and not (m ge.circle or m ge.incision) then
save offsets to nearest copy of destination
in message.alt.offsets|]
endif
endif

if not (outbound_links subset failed_links) then
L := any element of (outbound_links — failed_links)
else
alternate := link 60° counter-clockwise of outbound_links
while L # alternate do
if not (alternate in failed_links) then
L := alternate
else
alternate := link 60° counter-clockwise of altemate
if alternate in outbound_links then
there is no way out of this node
exit
endif
endif
enddo
if message.mode = FREE then
message.mode := DETOUR
message.last_free_distance := message.distance
message.last_free_node := current_node_address
message.last_free_link := L
else
if message.last_free.node = current_node_address
and message.last_freelink = L then
if not (i ge.circle or m ge.incision) then
if message.last_free_distance = message.distance then

message.circle := TRUE
else
message.incision := TRUE
find all copies of the destination within
2e — 1 of the current node and the last free
node, put offsets to them in message.alt_offsets[]
endif
endif
if message.alt_offsets[} empty then
the destination is unreachable
else
Get a new destination from message.alt_offsets[]
endif
endif
endif
endif

update message fields to reflect traversing link L
send message on link L
enddo

5 Simulation

Simulation was used to evaluate the algorithms performance for sev-
eral different mesh sizes and fault types. Simulation was done using
a simplified version of the algorithm which halted when a cycle was
detected, instead of switching to an alternate destination. This was
done because it was felt that the most important result of the simula-
tion would be to determine how common incisions and circles were.
Also, proper handling of cycles adds a great deal of complexity to
the algorithm and a great deal of space to the message header, we
felt that circle and incision faults might not be common enough to
justify the extra expense.

5.1 Design of the Simulator

The simulator is designed to determine the average performance of
the algorithm for a fixed sized mesh with a fixed number of faults.
It could be set to simulate only link failures or only node failures.
For each run the simulator was recompiled for the desired mesh size,
number of faults, and number of fault configurations. For each fault
configuration the simulator selected at random the specified number
of links (or nodes) to be removed, ran Floyd’s algorithm [5] on the
resulting graph to determine the shortest path between any two nodes,
then simulated the sending of a message between each pair of nodes.
The number of hops each message took, whether or not it was de-
livered, and the types of cycles (if any) were noted. These results
were then compared with the results of the shortest path algorithm to
determine extra hops, whether the message was actually deliverable,
etc.

5.2 Simulation results

Simulations were run for both a 3-mesh and a 5-mesh with both
link failures and node failures. Space restrictions preclude including
all results, but the results from the 3-mesh with link failures are
plotted here. Fig. 6 shows the number of messages which were
deliverable, delivered, and undeliverable. Fig. 7 shows the percentage
of undelivered messages which were undeliverable, or which were
deliverable but failed to reach their destinations due to circle failures
or incision failures. Figs. 8 and 9 show the average difference and

——a— Delivered

—a— Undeliverable

Percentage of Messages

10 20 30 40

Number of Faults

50 60

Figure 6: Messages vs. number of faults.

~—&— Incision Failure
——e— Cirde Failure
~——@— Undeliverable

4 1
[10 20 30 40 50 60
Number of Fauits

Figure 7: Undelivered messages vs. number of faults.

Mean Extra Hops per Message

T T T —
20 30 40
Number of Fauits

10

Figure 8: Mean extra hops vs. number of faults.

T T T y 1
20 30 40 50 60
Number of Faults

Variance of Extra Hops per Message

[} 10

Figure 9: Variance of extra hops vs. number of faults.

337

the variance of the average difference between the length of the path
the message took and the shortest path.

Results for the 5-mesh with link failures are much the same. The
mean and variance of extra hops both increased (from maxima of 5
and 50 to 20 and 600), but the “bumps” in Fig. 7 are considerably
smaller. For node failures on both mesh sizes, both mean and variance
decrease drastically from the link failures case, as do the “bumps” in
Fig. 7.

The results indicate that while incisions are the most common of
the two, neither circles nor incisions are common, especially for small
number of faults or large meshes. In light of this it may be practical
to not implement the procedures for properly handling cycles. Care
must be taken however, the existence of a single incision can make
one quarter or more of the reachable nodes unreachable if incisions
are not properly handled. But, if the number of failures is small, say
less than one-fifth of the total number of components, the probability
of an incision or a circle is extremely small.

Most worrisome is the high variance in the extra number of hops a
message took in reaching its destination. This clearly violates the real-
time constraints of the applications for which HARTS was designed.
It is our feeling that any algorithm operating with the cons{aint that
only local information will be available will have a high variance in
path length when a large number of faults are present. When a large
number of faults are present, the mesh has deteriorated to the point
where little of its original structure remains. It is difficult to make
intelligent routing decisions under these conditions when one cannot
see beyond the borders of the current node.

6 Conclusion

In this paper a fault-tolerant routing algorithm for HARTS was de-
veloped and shown to deliver any message provided the destination
is reachable.

The algorithm could be simplified greatly at the expense of some
messages not being delivered to reachable destinations. Simulation
showed that such cases are rare, especially for small numbers of
faults. If a large number of faults may be present and the high vari-
ance can be tolerated, or it is imperative that all deliverable messages
be delivered, then the extra complexity of the full routing algorithm
may be justified.

It is worthwhile to investigate:
o How good is the non-fault-tolerant routing algorithm which just

gives up as soon as all links along the shortest path are found
to be faulty.

How much improvement will be seen if while in free mode and
the message has a choice of two links it picks one which will
not reduce any offsets to zero.

How much improvement can be gained from an algorithm which
can check links in both the clockwise and counter-clockwise
direction. The algorithm would only do one or the other while
in detour mode, but when it first enters detour mode it checks
both ways and takes the first free link it finds.

All of these questions are topics of further research and will be
considered to some degree as HARTS is implemented.

338

References

[1] M. S. Chen and K. G. Shin, “Message routing in an injured hy-
percube,” In Proc. Third Conf. on Hypercube Concurrent Com-
puters and Applications, pp. 312-317, Los Angeles, January
1988.

[2] M. S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing, rout-
ing and broadcasting in hexagonal mesh multiprocessors,” JEEE

Trans. on Comput., 1989. (in press).

[3] E. Chow, H. S. Madan, J. C. Peterson, D. Grunwald, and
D. Reed, “Hyperswitch network for the hypercube computer,”
In Proc. of 15th Annual Int | Symp. on Computer Architecture,

pp. 90-99, 1988.
4

=

J. W. Dolter, P. Ramanathan, and K. G. Shin, “A micropro-
grammable VLSI routing controller for HARTS,” Technical Re-
port Technical Report CSE-TR~12-89, Dept. of Electrical En-
gineering and Computer Science, University of Michigan, Ann
Arbor, 1989.

[51 R. W. Floyd, “Algorithm 97 : Shortest path,” Comm. ACM, vol.

5, pp. 345, 1962.

[6] C. K. Kim and D. A. Reed, “Adaptive packet routing in a hy-
percube,” In Proc. Third Conf. on Hypercube Concurrent Com-
puters and Applications, Los Angeles, January 1988.

[7] J. G. Kuhl and S. M. Reddy, “Distributed fault tolerance for
large multiprocessor systems,” In Proc. 7-th Annual Int’'| Symp.
on Computer Architecture, pp. 23-30, 1980.

[8] T. C. Lee and J. P. Hayes, “Routing and broadcasting in faulty
hypercube computers,” In Proc. of the Third Conf. on Hypercube
Concurrent Computers and Applications, pp. 625-630, Los An-
geles, January 1988.

[9] K. S. Stevens, “The communication framework for a distributed
ensemble architecture,” Technical Report Al Technical Report
47, Schlumberger Research Lab., February 1986.

[10] A. Varma and C. S. Raghavendra, “Fault-tolerant routing of
permutations in extra-stage networks,” In Proc. 6-th Int'l Conf.
on Distributed Computing Systems, pp. 54-61, 1986.

