
202 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 2, FEBRUARY 1989

Polynomial Testing of Packet Switching Networks
JYH-CHARN LIU, STUDENT MEMBER, IEEE, AND U N G G. SHIN, SENIOR MEMBER, IEEE

Abstract-A functional testing method called polynomial
testing is proposed to test packet switching networks (PSN’s)
used in multiprocessor systems. For the purpose of concreteness,
we focus on applying the method to packet switching multistage
interconnection networks (PMIN’s). A multiple stuck-at (MSA)
fault model is developed first, and then faults are diagnosed at
two different levels: network level and switch level. The former
uses each processor as a tester and can test part of the network
concurrently with the normal operations on the remaining part of
the network. On the other hand, the latter uses switches in the
network as testers and is inherently an autonomous testing
method. To facilitate the network level testing, the routing
dynamic in a PMIN is eliminated by synchronizing switch
operations. The network is then decomposed into routes, each of
which is tested after transforming it into a polynomial calculator.
For switch level testing, a built-in tester (BIT) is embedded into
each switch’s structure to provide self-testing capabilities. Net-
work level testing is distributed and suitable for concurrent
testing, whereas switch level testing is off-line with a small testing
time.

Index Terms-Built-in tester, concurrent testing, linear feed-
back shift register, multistage interconnection network, packet
switching, polynomial generator, polynomial testing, stuck-at
routing fault, switch self-testing.

I. INTRODUCTION

ESPITE the continuing improvement in semiconductor D device speed, use of multiple processors and memories is
an attractive alternative to meet ever-increasing needs of
computing speed and reliability. Interconnection networks are
one of the most important components of such multiprocessor
systems and are made feasible by the advancement in VLSI
technology. Since VLSI technology greatly degrades testabil-
ity, an interconnection network must have a structure that is
easily testable.

There are two well-known switching methods for intercon-
nection networks: circuit switching and packet switching. To
distinguish these two methods, a path and a route for a
source-destination pair are defined as follows. A path is a
physically-established communication medium between the
source and destination to transfer a requeddata. A route is a
logical path which can transfer a request from a source to its

Manuscript received August 31, 1986; revised February 28, 1987. This
work was supported in part by the Office of Naval Research under Contract
N00014-85-K-0122 and NASA under Grants NAG-1-296 and NAG-1492.
Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views of
the funding agencies.

The authors are with the Real Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, the University of Michigan,
Ann Arbor, MI 48109.

IEEE Log Number 8824535.

destination without total dedication to it; resources on a route
are time-shared among several packets. In a circuit switching
network (CSN), the path from a source to its destination is
physically set up a priori and dedicated to a request until the
request is completely serviced. By contrast, no complete
physical path is established a priori for a request in a packet
switching network (PSN). A packet switching multistage
interconnection network (PMIN) is composed of a large
number of links and switches with buffers. Each PMIN switch
is essentially an r x r crossbar, in which a queue is placed at
each input port to store packets. A request/message is
decomposed into several packets, each of which is indepen-
dently transferred through an available route.

Many PSN’s have an undesirable effect called the routing
dynamic: the order of arrival of packets at the destination may
be different from the order of their transmission from the
source. Although PMIN’s can be designed not to have the
routing dynamic, the routing dynamic will be considered in
our testing method to provide better versatility. Clearly, a
PMIN with the routing dynamic is an asynchronous sequential
machine. Although a sequential machine can be fully tested
with a checking sequence derived from its state-transition table
[l], no feasible checking sequence seems to be derivable for
large scale asynchronous sequential machines like PMIN’s.
Functional testing is an alternative to prove the correctness of
some of the machine’s functions within a finite time period.

Several researchers have proposed functional testing proce-
dures for specific networks. Error control codes are popular
for on-line fault detection [2], [3]. A comprehensive method
for diagnosing the baseline CSN’s with 2 x 2 switches was
introduced by Feng and Wu [4]. A simplified version of the
fault model in [4] and the corresponding testing strategy can be
found in [5]. Davis et al. proposed some fault location
techniques for distributed routing control networks [6]. Lee
and Shen modeled a CSN using 2 x 2 switches as an ILA [7].
Low-order switches, e.g., 2 x 2 switches, can be completely
tested with a constant number of patterns. Agrawal and Leu
used the dynamic full accessibility of MIN’s to test their
connectivity [8]. Several high-level testing strategies for
general PMIN’s have also been studied [9]-[15], most of
which are adaptive procedures requiring human assistance.

Most existing methods are centralized and off-line, i.e.. the
whole network is tested off-line by one tester. Since there are
N / r log,N switches in a PMIN, the complexity of the network
testing problem is O(N/r log,N). Centralized testing meth-
ods are usually very inefficient for large networks, because the
problem to be handled by the tester grows exponentially with
the size of the network. To improve testing efficiency, we

OOl8-9340/89/02OO-0202$01 .OO O 1989 IEEE

LIU AND SHIN: TESTING OF PACKET SWITCHING NETWORKS 203

propose a two-level testing strategy: network level and switch
level testing. In the network level, every processor can serve
as a tester to test part of the network; thus, there are N testers
for the network. Assuming that testers are homogeneous, the
complexity of the testing problem in each tester is reduced to
O (l / r log,N). In the switch level testing, switches are used as
testers and designed to have autonomous testing capability
[17]. In other words, the complexity of the testing problem in
each tester is independent of the network size and is fixed. The
characteristics of the network level testing are that it can test
the network concurrently, but may have a lower fault coverage
than the switch level testing. On the other hand, the switch
level testing is an off-line method with a small testing time but
has high fault coverage.

The network level testing is based on the topology and
functions of the network, because processors must cooperate
to test the network. To eliminate the routing dynamic, network
operations are first synchronized. Then, an N x N blocking
network is decomposed into W routes, N T = {RT,I 1 I i , j
I N } , where RTjj is the route from source i to destination j .
RUT, is the route RTjj under test, and the testing processors
are the processors connected to the route under test (RUT). In
the network level testing, faults in RUT, are tested without
stopping the normal operations on NT - {RUT,}, where
RUT, E NT and {RUT,} # NT. To test a route without
interrupting, or being interrupted by, normal operations, the
testing processors should be able to locWunlock the RUT. A
RUT can be locked by activating the busy signals of the
switches on the RUT. Locking a route prevents unexpected
packets from entering the route. As shown in Fig. 1 , a route
can be viewed as a cascaded shift register array. The register
array can then be easily modified into divisors, multipliers, or
other similar structures for polynomial testing.

In the switch level testing, each switch is a tester and
switches are assumed to be homogeneous. Thus, the logic
structure, instead of its topology, of the network is the main
concern. To obtain high fault coverage with a small testing
time, each switch is designed to have self-testing capabilities.
A switch is composed of buffers, a routing control unit (RCU),
and output ports consisting of multiplexers-demultiplexers
(MUDEX’s). Since thorough testing of the RCU may require
an intractable testing length, an on-line checker is proposed to
detect malfunctions in the RCU. For the rest of the network,
queues are first self-tested by polynomial generation and
comparison. If the queues are fault-free, they are then used to
generate test patterns for links and MUDEX’s. The testing
responses of switches at one stage are verified at the next
stage.

The rest of this paper consists of four sections. Section I1
gives a brief review of the polynomial operations necessary for
our testing method. Section I11 introduces the network fault
models which are to be tested with operations on polynomials.
Testable designs and the corresponding network and switch
level testing are presented in Section IV. The paper concludes
with Section V.

This term should not be confused with the switch-level fault model for
MOS circuits [16].

1

1
4.1

4.2

1

1
4.3

4.4

3.5 1

1L-L 4.7
1L-t n.) 4.8

’” 3.8 I Q2 +.+

(a)

0 0
0 0

1.2 4.5

0 0
0 0
0 0

4.8
1.8

(b)

Fig. 1 . A baseline PMIN with switch permutation Eo and the corresponding
cascaded shift register arrays. (a) A baseline PMIN with switch permutation
Eo. (b) The corresponding cascaded shift register array of the PMIN.

II. PRINCIPLES OF POLYNOMIAL TESTING
Basic polynomial operations and their implementations are

briefly discussed below. Use of the polynomial ring GF(2)[x]
is well-known for error control codes [18]. Only those
properties useful for testing PSN’s will be introduced below
for completeness.

Definition 1: A polynomial &(x) = b;x’ in
GF(2)[x] is said to be a bit polynomial if each of its
coefficients is a bit, i.e., b; E (0 , l } , VO I i 5 n. A word
polynomial is the one whose coefficients are words instead of
bits, i.e., P,(x) = w;xi, where for every i E I,, = (0,
1 , * a , n } , w; = ONE or ZERO, and ONE is a b-bit vector of
arbitrary pattern and ZERO = O x , i.e., ZERO is bitwise
complemented to ONE. Thus, any two words with maximum
Hamming distance can be used as ONE and ZERO, respec-
tively.

For notational convenience, let W,, (x) denote a polynomial
Cy==, cjxi, c; = 1 or ONE, vi E I,,. P (x) = Cy==, Cjxi = P (x)
e W n (x) is the complement of P (x) , and the symbol “ 8 ”

represents the addition in GF(2). Unless otherwise specified,
we will use the term “polynomial” to represent both bit and
word polynomials. The mechanisms to manipulate polynomi-
als are called their calculators. The contents of a calculator
before operating on its input are called the initial state, which

204

m

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 2, FEBRUARY 1989

m

will always be assumed, for clarity of presentation, to be all
zeros. A calculator with the zero initial state is called an inert
linear machine [19]. When a word polynomial operation is
applied to a faulty circuit, the closure property of GF(2)[x]
may not hold. However, when a word polynomial is applied to
a nonfaulty circuit, the resulting polynomial belongs to
GF(2)[x]. Calculators are more hardware efficient if ONE
and ZERO are composed of all 1's and O's, respectively,
because for each operation every bit will require an identical
circuit.

4 - m

A . Operations on Polynomials
A periodic polynomial with period p is the series C; c;xi

where c; = c ; + ~ , V i E I , and l i s the set of integers. It can be
generated by a linear (or nonlinear) feedback shift register
(LFSR) called a polynomial generator (PG). Registers in a
PG can be implemented by different types of flip-flops, and
apparently different test patterns are needed for different
implementations. However, as shown in Appendix A, at most
two inputs are needed to detect faults in a master-slave SR
flip-flop. Since the network level testing deals with the
network topology, we will consider only the input and output
stuck-at faults of registers, i.e., not the stuck-at faults inside
registers. However, the same test patterns can test all the faults
in those registers implemented with the master-slave flip-flops
shown in Appendix A.

Two polynomials P l (x) = Cy==, cl,;xi and P2(x) = Cy==,
are equal iff cl,i = c2,;, v i E I,,. Two polynomials can

be compared for equality by XOR gates. The following
operations are useful for our discussion.

Addition and Boolean: Let { Pj(x) = Cy==, cj,;x'}~= be k
polynomials in GF(2)[x]. P3(x) is the addition of P l (x) and
P2(x), denoted by P3(x) = Cy==, c3,;xi = P l (x) e P ~ (x) , if
for each i E I, c3,; = cl,i e cZ,;. Addition can be implemented
with XOR gates. If a Boolean operation A is applied to Pl(x) ,
P ~ (x) , * - P ~ (x) , the resulting polynomial P(x) = Cy==, c;xi
is calculated by ci = ci A c: A * A c f , v i E I,,, and A is a
bitwise operation when c; is a word. Only AND and OR, the two
most important operations, will be considered in this paper.

Division and Multiplication: Given P(x) = C;==,p;x' and
M(x) = Cy==, mixi in GF(2)[x], the multiplication of M(x)
(multiplier) to P(x) (multiplicand) is P3(x) = P(x)M(x) =
C;=,p3,;xi, wherevi E Z,,,p3,; = pimo e pi - lml e e
plmi- l e pomi. On the other hand, given two polynomials
P(x) (dividend) and D(x) = Cl,=, d;xi # 0 (divisor) in
GF(2)[x] there exist two polynomials Q(x) and R(x) in
GF(2)[x] such that P(x) = D(x)Q(x) + R(x) where R(x)
= 0 or deg R(x) c deg D(x). In this process, P (x) is said to
be divided by D(x) , yielding a quotient Q(x) and a remainder
R 0) .

A bit divisor (multiplier) divides (multiplies) an input
stream by a fixed bit polynomial. Similarly, a word divisor
(multiplier) performs divisions (multiplications) between two
word polynomials. In a word polynomial divisor/multiplier
(PDM), operands are ONE or ZERO instead of 1 or 0. It has
logic operations similar to those of a bit PDM, but special
mechanisms are necessary to preserve the properties of the
polynomial ring.

m m

mulupller

divlsor

t 1 1 J

S-A-0

m

S A - 1

m

(b)
The structure of faulty and nonfaulty multipliers and divisors. (a)

Normal multiplier and divisor. (b) Two faulty multipliers.
Fig. 2.

The final contents of a PDM will henceforth be represented
by R (x), the input stream will be represented by P(x) , and the
output stream by Q(x). The general structures of a bit divisor
and a bit multiplier are shown in Fig. 2(a). M(x) and D(x) in
Fig. 2(a)are 1 + x2 + x5 + x7 + x8andx8 + x6 + x3 + x
+ 1, respectively. The lowest order position is located in the
input (output) port of the divisor (multiplier). There is an XOR

gate, denoted by e , at the D-type flip-flop's (DFF's) output
of stage i only when mi or d; is 1. A block B; is the collection
of DFF's between the (i - 1)th and ith XOR gates, counting
from the lowest order position, in a PDM. Thus, a PDM is
composed of a set of blocks { B;} . Let the order (the number of
stages) of B; be r;. In the multiplier of Fig. 2(a), rl = 2, r2 =
3, r3 = 2, and r4 = 1.

Since a RUT is to be transformed into a polynomial
calculator for testing, the effects of DFF's multiple stuck-at
(MSA) faults on a PDM are discussed as follows. An MSA fault
fM in a block B; is composed of multiple single stuck-at (SSA)
faults, i.e., fM = { ft}, where f: is an SSA fault in B;. Let k
be the faulty position nearest to the output port of B;. Then, ft
E fM will block the effects of all the other SSA faults in J w .
Such an ff is called the leading SSA fault in B;. There are 2r,
possible leading faults in B;, and, thus, there are 2r,
distinguishable stuck-at faults in the block, where rj is the
number of stages in B;.

An s-a-0 FL changes the attached XOR gates into null
operators. Thus, for a multiplier, M'(x) = Cf= m(x', where
m(= 0 if the FL attached to the XOR gate at xi is stuck at 0,
and m; = mi otherwise. It is shown in Lemma 1 that multiple
s-a-0 at the FL-inputs of XOR gates can be tested by the impulse

LIU AND SHIN: TESTING OF PACKET SWITCHING NETWORKS 205

polynomial. On the other hand, when the FL is s-a-1, M ‘ (x)
becomes C;=I,;+,~ mixi + xmf W (x) , where mf is the
location of an XOR gate whose input from the FL is fixed at 1
due to an s-a-1 fault. Thus, when an all zero input stream, i.e.,

Ox’, is applied to the PDM, the locations of those XOR

gates affected by the FL s-a-1 faults can be uniquely
determined by the corresponding output stream.

Lemma I [19]: The impulse response of a multiplier is
moml . . -m,,O- . * O , where the impulse polynomial is P,(x) =
10. - e o .

Clearly, an unknown multiplier can be uniquely identified
by its impulse response, and the multiplication of P,(x) to
M (x) can be viewed as a discrete convolution between them.

Lemma 2: When a PDM is an inert machine and an s-a-0
fault occurs in Bk, the multiplier M (x) = Cy=o mixi is
changed to a new multiplier M ’ (x) = Cf:; mix’.

Lemma 3: Let l be the number of fault-free DFF’s between
Bi’s output and the leading faulty DFF. Then, when the
leading faulty DFF’ in Bk is s-a-1, Q (x) = M ’ (x) P (x) 8
x‘‘ w n (x) , where r‘ = f + C j < k rj and M ’ (x) is the new
multiplier whose highest order position is located at the
leading faulty DFF in Bk.

Pro08 Let the input (or output) of B; be Zi (or 0;). Then
we have Z j - l = 0; 8 P (x) and O j P l = x‘i-1 Z;-I. When

and 0,- I = x‘k- l (P (x) + x‘ Wn(x)) . By induction, we can

When xk of a divisor is s-a-1, the output Q (x) = P ’ (x) /
D ’ (x) , where P ’ (x) = {x‘ (C ; = k + l 8 W A X) } ,
Cj=,+, is the initial state of the divisor and 1 is the
polynomial length that is sufficient for testing, and D ’ (x) is
the new divisor with its lowest order position at the output of
Bk. Similarly, an s-a-0 fault at x k makes Q (x) periodic, i.e.,
Q (x) = x’ (C:=,+, nix i -k) /D’ (x) , where the degree of the
faulty divisor is rd = C j > k r j . Note that the output Q (x) is
independent of the input stream. The structures of s-a-0 and s-
a-1 multipliers are shown in Fig. 2(b). The resulting M i (x)
(for s-a-0) and M ; (for s-a-1) are 1 + x2 + x5 and M i 8 x‘
W (x) , respectively.

For testing purposes, it is assumed that every DFF on a
route can be simultaneously set to ZERO by an external signal.
Signature analysis examines R (x) after the testing polynomial
P (x) is applied to a circuit under test. The final contents of
each DFF must be directly read out for signature analysis.
Unfortunately, this will greatly increase the number of I/O
terminals of a network. Thus, signature analysis or other
similar methods requiring direct access to DFF’s are not
followed here and interested readers are referred to other
articles, such as [20].

The proposed network level testing is to diagnose the
network by appropriate operations on the output stream. After
the testing polynomial P (x) is applied to a RUT, a fault f,
changes Q (x) into Qi(x) , where Q (x) [or Q;(x)] is the
correct (or faulty) output polynomial of the RUT. The
procedure is then to find a testing polynomial P (x) and an
operation Oh such that Ofi (P(x) , Q (x)) = Q;(x) . The
combination of P (x) , its output Q (x) , and the operation Ofi is
called a testing routine for the fault fi .

DFF‘is s-a-1, O k = wn(X). Thus, 1 k - l = P(X) 8 X ‘ wn(X)

show that Q (x) = M ’ (x) P (x) 8 x” Wn(x) .

111. FAULT MODELS
A PSN is composed of links and switches. There are r!

possible interconnection patterns within an r x r switch.
There are then (r!)(”‘) different conflict-free intercon-
nection patterns in an N x N PMIN. Links’ stuck-at faults are
equivalent to stuck-at faults of the switches to which they are
attached. Thus, only switch faults are considered for the
network level testing. That is, link stuck-at faults are implicitly
included in the switch fault models.

Permanent multiple stuck-at, delay, partial setting,
blocking, merging, broadcasting, and misrouting faults are
all considered in this paper. An MSA fault occurs when one or
more signal lines are fixed at 0 or 1. A delay fault occurs when
the operation speed of some component(s) is slower than the
specified and, thus, erroneous operations result. A partial
setting fault occurs when some of the identical components in a
unit do not provide the same operation as the others. A
blocking fault occurs when an appropriate route within a
switch cannot be established for a request. A handshake signal
deadlock is an example of blocking fault. A switch has a
merging (broadcasting) fault when two or more input (output)
ports are connected to one output (input) port. A misrouting
fault represents the case when packets are misdirected to
incorrect output ports. Stuck-line faults at gate level are tested
at the switch level testing.

IV. PMIN DIAGNOSIS
As mentioned earlier, our testing strategy is divided into

two levels: network and switch levels. At each of these two
levels, we present testable designs and testing methods on the
basis of the polynomial operations and the fault models
introduced in Sections 11 and HI, respectively. The network is
designed such that all signal lines have only two states, i.e., 1
or 0, whether or not they are used to transfer data. The output
port of a switch is a combination of multiplexers and
demultiplexers (MUDEX’s). A MUDEX is basically com-
posed of AND and OR gates. When multiple requests are
assigned to an output port, a combination of OR/AND functions
among the requests will take place.

A . Network Level Diagnosis
Assume that the PMIN under test connects N sources and N

destinations and is built with r x r switches. The number of
stages in the PMIN is k = log,N. To describe the PMIN’s
topology and permutation, the input (output) ports of all
switches in each stage are vertically indexed. The number
assigned to an input (output) port is called its global index.
For each r X r switch, there is a one-to-one correspondence
between the global index and the input/output port number:
f i (j) = m, wherej is the port number of the ith switch at a
stage, and m is the port’s global index. A link permutation
T;, 1 I i I k , is a one-to-one mapping from the output ports
at stage i - 1 to the input ports at stage i . On the other hand, a
switch permutation EL:J;(j) -+ A((j + m) MOD r) is a
one-to-one mapping from input ports of a switch to its output
ports, 0 5 m 5 r - 1. For simplicity, all the switches on the
RUT are assumed to have an identical permutation, i.e., il =

206 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 2, FEBRUARY 1989

i2 for all E;, E; E RUT, and E, will henceforth be used to
denote EL. More general cases than this can be easily derived
by using the actual permutation at each stage. To allow for
simultaneous diagnosis and normal operation at the network
level, the testing processors should be equipped with complete
information of link and switch permutations.

I) Testable Design: Links are passive components and can
be treated as data paths of switches, whereas switches make all
switching decisions and also contain memory elements. To
make the network easily testable, switches are designed to
have two operational modes: normal and testing modes.

As mentioned in the Introduction, a RUT can be viewed as a
cascaded shift register array. FL and XOR gates rmst be added
to transform a 1-bit wide RUT into a bit PDM. Since links are
the predominating cost factor of a PMIN, the link overhead in
improving testability must be kept as small as possible. A
tracer in each switch is thus proposed to minimize the width of
FL. A tracer is composed of a testing pattern masker and
mapper, a feedbacwfeedforward selector (F-selector) and a
modulo TWO adder, where TWO = {ONE, ZERO}. The
masker examines if bits of the testing pattern are identical and
maps the testing pattern from ONE (ZERO) to l(0) for FL. The
mapper transforms l(0) to ONE (ZERO) to use the adder. The
F-selector determines the transmission direction of FL. An
adder is necessary for each switch to form a block on a route
for data path diagnosis.

Four possible operational states, S, A , X , and N, are
assigned to a switch when the network is being tested. Once a
switch in a RUT is in state S, the switch will not allow any
packets, except those from the same RUT, to enter the RUT,
and the operations of switches on the route are synchronized.
State S can be taken as a suboperation of the other states,
because the tracer in the other states is activated and switch
operations are synchronized. When the switch is in state N,
only FL and the F-selector are activated. When a switch at
stage i is in state A , the F-selector blocks the FL signals from
stage i + 1, and the current switch's output is led to FL. When
the switch is in state X, the data on FL are mapped, by the
mapper, from 1 (0) to ONE (ZERO), and the logic operation
BUo + Pi, FL is performed at the input of the queue, where
BUo is the input of the queue and Pi, is the input packet. Fig. 3
shows these switch operations in different states. The logic
diagram in Fig. 4 shows a switch design example of the
network level testing.

A switch can entedexit the testing mode by command
packets. Two formats, data packets and command packets,
are used to control the switch operations. A command packet
is composed of routing tags and a command array { C A (l) ,
* . * , CA(k) } , where k is the number of stages of the network
and CA(I') is a 2-bit command word associated with stage i . A
switch at stage i will enter states S, A , N, and X , when CA (i)
= 00, 11, 10, and 01, respectively. The type of packets can be
identified by a one-bit flag in each packet. As shown below,
this testing method can also identify a misinterpreted com-
mand array (by a faulty switch).

switch states

mapper masker -
Fig. 3. Switches on a RUT and the corresponding word divisor.

Theorem I : All misinterpreted command packets can be
tested in one testing routine.

Proof: Once a RUT is transformed into a multiplier, the
test pattern for misinterpreted command packets becomes an
impulse polynomial. From Lemma 1, M (x) of the RUT can

2) Data Path Stuck-at Faults: All switches are in state X
when data path stuck-at faults are being tested. An SSA fault at
the network level represents a stuck-at fault(s) in a single
switch. But an MSA fault at the network level implies stuck-at
faults in more than one switch. In a conventional approach,
upon detection of a fault on some route, test patterns must be
submitted from processors on different routes to locate the
fault. It is shown below that the fault location with the
polynomial testing is much easier than that with the conven-
tional approach.

SSA Faults: Every switch is set to an identical permutation.
When r x r switches are used, r different switch permutations
{E;(O I i I r - l} are necessary to test every data path
within a switch. For any input port of a switch, its data paths to
all the output ports are included in { E ; I 0 I i I r - 1 } . Thus,
in these r permutations every data path from each input
port to every output port is tested. The procedure can be gen-
eralized as follows: in testing routine m, the switch permuta-
tion E,, 0 I m I r - 1, is performed first. Then, the con-
nection of source i to destination j is specified by j =
TkE,Tk-IE,*.-T2E,T,(i) . The special case of r = 2
allows data path stuck-at faults to be detected in two
permutations, each of which is composed of two steps [4].

Theorem 2: When a locked RUT, is configured as a
multiplier, an SSA fault on the data path can be located by
processor j in one testing routine.

Proof: The testing polynomial for the data path SSA fault
is Wn(x) , where n is the total length of buffers on RUT;,. As
discussed earlier, RUT, can be expressed as M V (X) = Cy==,
mixi. The output at the destination j becomes Q (x) = C;=,
hlx'Wn(x) . Q (x) should then have the format of
1 * * 10. e01 * , where a 0 (1) -+ 1 (0) transition takes place

be uniquely identified.

* The F-selector can be eliminated if the RUT is to be. transformed into Only r permutations are needed to test a data path, although r!
either a multiplier or divisor, but not both. permutations are required to test the routing functions.

LIU AND SHIN: TESTING OF PACKET SWITCHING NETWORKS

A switch

207

queue 2

I r

I ! ',, n~
1

U
F-selector f

I --------- _____ ____ _______ ~ 1

Fig. 4. A testable design of switches for concurrent testing.

at each position of an XOR gate on RUT,J and the number of
consecutive 1's (0's) in the ith block is the size of B,. For
example, the output stream of the multiplier in Fig. 2(a) is
10011100. When MIJ changes to M i # M, due to an SSA
fault, there must be at least one i such that m, # m,' , 1 I i I
k, by Lemmas 2 and 3. When the number of 0 + 1 transitions
is mf, the faulty switch can be located by sf = (IIzo E-'
T,$,) (j), where T; is the inverse of permutation T, .

MSA Faults: An MSA fault on a data path cannot be
determined in one testing routine. However, the polynomial
testing can be applied to a sequential repairing procedure
which locates and then replaces leading faulty switches/links
in each testing routine.

Theorem 3: An MSA fault on a data path can be repaired in
k testing routines, where k is the number of stages of the
network.

Proof: An MSA fault is the collection of multiple SSA
faults. When the testing polynomial W n (x) is applied to a
PDM, Q (x) is uniquely determined by the type (s-a-0 or s-a-1)
and the location of the leading stuck-at fault. In other words,
the lowest order faulty switch can be located in each testing
routine, regardless of the cardinality of the multiple fault.
Since there are k switches on a route, at most k steps are

Delay Faults: A delay fault on a data path is detectable
when its operational speed is at least one clock cycle slower
than specified.

Theorem 4: A single delay fault of longer than one clock
cycle can be located in one testing routine.

Proof: The polynomial Pk(x) = xz l can detect all
delay faults. However, a polynomial P,"(x) = x (~ + I) ,

can be used to distinguish a 1 + 0 transition delay fault of m
clock cycles from delay faults of less than m cycles. When an
m unit delay fault occurs and Pg(x) is applied, the faulty
switch's output becomes W (x) . By forming a PDM on RUT,,
a delay fault can be located in one testing routine. A testing
polynomial for 0 + 1 delay transitions is complemented to

required to repair the network.

become P,"(x) and the output is w (x) .

Like MSA faults, a multiple delay fault composed of
different delay lengths can be repaired in k testing routines.

3) Routing Faults: Methods for locating routing faults are
studied in this subsection. Switches are set to state S when
routing functions are tested.

Merging and Broadcasting Faults: Depending on the
implementation details, a merging fault can be located in one
testing routine when appropriate polynomials are applied. A
A-merging fault occurs when a A (i.e., AND or OR) operation
results from the merging of two or more switch input/output
ports.

Consider the effect of the OR merging first. For two routes
RUT;, and RUT;,, they will topologically intersect in at most
one switch when the network is not redundant.

Theorem 5: For a given permutation, a multiple OR-

merging fault can be located in one testing routine for both
distributed and centralized routing control PMIN's.

Proof: The testing polynomial at processorj is P y (x) =
I;:' cixi, where cj = ONE and c; = ZERO, vi # j . First,
consider the case when two RUT'S are merged. The two routes
from il and iz under the given permutation intersect at most
once. When the intersecting switch has an oa-merging fault,
and the testing polynomials P { (x) and P t (x) are applied,
there will be an OR operation between these two polynomials.
Without loss of generality, P { (x) can be assumed to be

there is no overlap of the positions containing 1's in both
P t (x) and P t (x) , new information on the merging fault is
added to Ph(x) . Applying the XOR operation between Ph(x)
and P t (x) at the destination of Ph(x) , we get P;,(x) =
P ; (X) e ~ { (x) . A nonzero resulting polynomial implies that
some polynomial is merged into P t (x) . The switch with the
merging fault is determined by the topology. That is, P t (x)
merges with P t (x) at S(i f , j f) , where S(b, j j) is the jfth
switch located at stage 4, when (jf - 1)r = II?;=, EmTj(i l)
- EmTj(i1) MOD rand (j f - l) r = II?=, E m T (i 2)
- nyj= , E,,, Ti(i2) MOD r. It is easy to see that no information
will be lost when multiple mergings occur. Thus, all multiple
merging faults can be determined in one testing routine.

merged into P i l (x) , N i.e., Ph(x) = P ; , (x) N OR P:(x). Since

208 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 2, FEBRUARY 1989

If merging faults are assumed to be independent of the
interconnection pattern, they can be located in one testing
routine. Otherwise, we need r! tests to set each switch to every
interconnection pattern for fault location. The "merging
fault can be diagnosed by the same method with the testing
polynomial IsjN(x) .

A broadcasting fault at one input port of a switch implies a
merging fault at the output port of the broadcast data path.
Thus, broadcasting faults can be located by the same proce-
dure used for testing merging faults.

Misrouting Faults: There are r! possible permutations in an
r x r switch. To locate a misroniing fault, the testing
polynomial P;(x) for source i must be unique.

Theorem 6: One testing routine is sufficient to locate a
multiple misrouting fault for both distributed and centralized
routing control PMIN's.

Proo$ The testing polynomial for merging faults can
also be used for testing misrouting faults. kr! permutation
calculations are required in each testing routine. Given a
permutation j = TkETk-IE. * . E T l (i) , a misrouting fault
results when E becomes E ' , where E' # E is a faulty
permutation. The fault locating procedure is to find E' of a
faulty switch. For a given processor j which receives an
incorrect polynomial, all possible permutations have to be
calculated to find E' of the faulty switch. Since each switch
has r! permutations, we need kr! inverse permutations to

A misrouting fault may be caused by either the misdecoding
of a routing tag in the RCU of a faulty switch or a stuck-at
linldswitch which transmits the routing tag before the routing
tag is actually decoded.

Blocking Faults: As mentioned earlier, the network is
designed such that there are only two logic values, i.e., 0 and
1 , in all signal lines. When a blocking fault occurs, a data path
cannot be utilized, even though it is available.

Theorem 7: A blocked data path in a centralized routing
control PMIN can be located in one testing routine.

The proof of this theorem is straightforward. In a central-
ized routing control network, a locked route can be established
even when its data path is blocked. Since the output of a
blocked switch is fixed at 1 or 0, it has the same output as a
stuck-at data path. It is much more difficult to locate a
blocking fault in a distributed routing control network,
because routing tags and data are blocked at the same time. It
can be located by a binary search which requires log2 k testing
routines.

Partial Setting Faults: When a data path is partially stuck,
the testing procedures with multipliers can still be applied.
Test patterns, however, must be determined by the design
details of the masker and the mapper. In case of a partial fault,
unaffected data bits have correct outputs but the stuck-at bit
needs the same testing procedures as described above. In such
a case, we have to examine a faulty bit(s) instead of a faulty
word(s).

4) Pattern Generation: Test patterns are generated by
pattern generators { G i } which are processors or dedicated
hardware mechanisms. The cost of pattern generators is one of
the most important factors for evaluating the performance of a

locate the faulty switch.

testing method. Only two testing patterns Wn(x) and { PN(x)}
need to be generated for the network level testing. Both
patterns can be easily generated when G;'s are ringed through
a single bit control line. Denote the input and output of the ring
in Gj by Qin) and D;(out), respectively. is connected to

and D;(out) is connected to Di+I(in), V l I i I N - 1 .
To generate { P y (x) } , the ring is initialized as Dl(in) = 1 ,
D+) = 0, V i , i # 1. Operations of G; at the kth clock cycle
are given as

ONE when Di(in) = 1
ZERO when &,,) = 0 ' OP1. P;(k)=

Di(out) (k) +Di(in) (k)

where Pi(k) is that the pattern generated by G; at the kth clock
cycle. The other test pattern Wn(x) can be easily generated by
the initialization = ONE, V i I N , and applying OP1
and OP2 in each pattern generator. For a given permutation,
there are only rk possible mergings on a route and the above
testing polynomial is thus not optimal for testing OR-merging
faults. For testing OR-merging faults, the length of the testing
polynomial can be reduced to rk, when Pk(x) # P j (x) for any
pair of polynomials Pj(x) and Pk(x) intersecting in a switch
under a given permutation. However, the testing polynomial
allows merging and misrouting faults to be tested simultane-
ously, and, thus, simplifies testing procedures. Moreover, G;
has a very simple structure and can be easily applied to various
interconnection networks.

5) Testing Complexity: It is important to consider the
testing complexity of the network level testing. The length of
test patterns for data path stuck-at faults and misinterpreted
command packets is km, where m is the queue length in each
~ w i t c h . ~ The calculation of a misinterpreted command packet
is straightforward, because the coefficients of the multiplier
can be identified directly from the output stream. The stuck-at-
1 faults at the inputs of XOR gates, to which the FL are
connected to, can be tested by an all zero polynomial, and its
testing length is km. To test single data path stuck-at (delay)
faults, we need one testing routine which is composed of at
most k steps of inverse permutations. At most k testing
routines are thus necessary to repair all multiple data path
stuck-at faults, and each testing routine needs k inverse
permutations. Thus, a total of k2 + k + 2 inverse
permutations is needed for data path diagnosis.

For routing faults, the test pattern length is N. One testing
routine is sufficient to identify all merging and broadcasting
faults. To locate a merging (broadcasting) fault, two RUT'S
are needed at a time. Since there are k switches on a RUT and
each switch needs r! inverse permutations, k2r! inverse
permutations are required to locate a merging (broadcasting)
fault. Finally, kr! inverse permutations are required to locate
the misrouting faults.

The network level testing is quite general to handle various
circuit implementations and locate faults without completely
stopping the normal operations of the network. The testing
time varies with the size of the network. Note, however, that

The queue lengths need not be identical.

LIU AND SHIN: TESTING OF PACKET SWITCHING NETWORKS 209

data
uackets

routing tags -
a 2X 2 switch

I 1

a C-connected queue

Fig. 5 . The structure of a 2 x 2 switch and a C-connected queue

the network level testing may not detect all possible faults for
different circuit implementations. When the network level
testing fails to locate some faults, a fast off-line testing method
with high fault coverage needs to be called for. The switch
level testing described below meets this very need.

B. Switch Level Testing
A switch is composed of data paths and a RCU. Data paths

consist of links, queues, and MUDEX’s. A pool of buffers,
S u i , 1 I i I m, in a switch constitutes thejth queue of the
switch, where m is the number of buffers within the queue. A
buffer can store one w-bit packet. There are then at least Nwm
log,N memory bits in an N x N PMIN built with r X r
switches, and a CSN is the special case of m = 0. Let BUiand
BU&+l denote, respectively, the input and output ports of a
switch. It is shown in Fig. 5 that these buffers are cascaded, or
C-connected, and formally described by CNBUi + BUj+ 1 ,

where “+” denotes an interconnection within a queue, called
an interlink.

Different implementations of registers need different test
patterns. We use random testing to test the queues. However,
when specific test patterns like the one in Appendix A is
needed, they are also easy to generate. In each switch, queues
are tested by generation and comparison of polynomials. For
the generation of a polynomial we can use the natural structure
of a queue. The basic idea is to convert the queue into two
PG’s. A queue can be taken as a w x m matrix M in which
each column is a buffer of w DFF’s. Note that DFF’s in each
row j (collection of the j th DFF’s of m buffers), 1 I j I w,
of the matrix are cascaded by its natural structure. Assuming
w to be even, two PG’s, PG1 and PG2, are formed by properly
cascading the rows of M.

Two symmetric PG’s can be obtained by 1) horizontally
halving the buffers in the queue, 2) connecting M(i + 1, 1) to
M (i , m) V i < w/2forPG1,andM(i+ l , m) t o M (i , l) , v i
1 (w/2) + 1 for PG2, 3) identically connecting registers’
outputs to the feedback XOR gates in PG1 and PG2, and 4)
connecting the output of the XOR gate outputs of PGl and PG2
to M(1, 1) and M((w/2) + 1, I) , respectively. It is well-known

that the maximum period of the output stream of a PG can be
obtained when 2‘ - 1 is a prime number, where 1 is the PG’s
length, and the PG’s characteristic function is irreducible [181.
A fault is detectable when it yields different output sequences
in the two PG’s.

The PGs’ outputs form a 1-out-of-2 codeword when an
inverter is added to one XOR gate’s output. An XOR gate with n
inputs needs n + 1 test patterns when n is odd; on the other
hand, three test patterns are sufficient for an XOR gate with an
even number of inputs. The test patterns for the XOR gate with
an odd and an even number of inputs are (0- ‘0 , 10- - -0,
010..*0, - . e , O-.*Ol}, and {O*-.O, 1.e.1, I,}, respec-
tively, where I, is any input with an odd number of 1’s. The
test patterns for the XOR gate of a PG can be easily generated
by setting the PG’s initial state. Since every component in the
PG’s is tested, there is no hardcore in this design.

When two symmetric PG’s are used, unidirectional stuck-at
faults in a buffer cannot be detected. To solve this problem,
PGl can be modified such that the outputs M(i , m/2), v i I
w/2, are connected to the XOR gate whose output is then
connected to M(1, (m/2) + 1). Although the physical
interconnection of M(1, 1) to M(w/2, m) is different from
that of M((w/2) + 1, 1) to M(w, m), both PG, and PG2 still
have an identical structure. Such a modification can now
detect the unidirectional faults mentioned above. Symmetric
and asymmetric PG configurations are illustrated in Figs. 6(a)
and (b), respectively.

The optimal testing length of a PG and its fault coverage are
important performance parameters. Any DFF in the MSA
fault model can be s-a-1, s-a-0, or fault-free. To evaluate the
MSA fault coverage of the proposed method, we only need to
consider the type and position of leading faulty DFF’s in a
block. Consider a pair of leading faulty DFF’s, s1 and s2,
which are in xi and xi positions of PGl and PG2, respectively.
The effects of faults in s1 and s2 can be distinguished only
when they yield different outputs for at least one clock cycle.
We begin with the simplest special case of the MSA fault
model, i.e., the SSA fault model.

Theorem 8: All SSA faults are detectable, and the
maximum testing length is r + 1, where r is the order of the
PG .

Proof: An SSA fault in a PG is detectable when it
generates an output different from that of the other PG. Let the
initial state of the PG be E;= nixi, where nl = 1 and ni = 0,
v i # 1. When an s-a-0 is located at output of xi , nl is falsely
inverted at the ith shift. The fault cannot be revealed during
the first i - 1 clock cycles, because the s-a-0 is the same as the
preset value of a fault-free circuit. The worst case occurs when
the s-a-0 is located at the output of x‘, and, thus, r is the
maximum testing length.

When an s-a-1 is located at the output of x i , it will change
the parity of the output immediately when it propagates to a
feedback line. The worst case occurs when feedback lines
emanate from x1 and x‘, and the s-a-1 is present at the input of
xl. The output of the faulty PG is the same as the nonfaulty
one until the r + lth clock cycle. Thus, the maximum testing

W
To calculate the MSA fault coverage, the position and type

length for SSA faults is r + 1.

210

N

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 2, FEBRUARY 1989

w

J I

TABLE I
MSA FAULT COVERAGES OF PG's. (a) M S A FAULT COVERAGE (C) OF
DIFFERENT NUMBERS AND LOCATIONS OF FEEDBACK LINES. (b) k = 8
WITH THREE FEEDBACK LINES. (c) PG's TESTED TWICE BY TWO
FEEDBACK CONFIGURATIONS. (d) FEEDBACK LINES AT k , 0, AND THE

PG'S ARE TESTED TWICE WITH TWO DIFFERENT INITIAL STATES.

t t

I -ou t -of -2 -
E 2

% %

(a)

-out-of-2
odeword

I I

(d)
" - ": not computed because of excessive simulation time requirements. "*". . not applicable.

of leading faulty DFF's must be considered. Each DFF can be
s-a-1, s-a-0, or fault-free, and the number of MSA faults in a
queue is 3"" - 1. Due to the fault masking effect, the actual
computing time is K IIf=l (2ri + 1)*, where ri is the order of
block Bi and K is the computing time required for each
iteration. As shown in Table I, various testing strategies are
simulated to examine their MSA fault coverages. The initial
state of each simulation is nl = 1, ni = 0, vi # 1. From the
simulation results, the following three conjectures are made.

Conjecture I : The fault coverage is dominated by the
number of feedback lines. It monotonically increases with the
number of feedback lines. The length of a PG has little effect
on the fault coverage.

Conjecture 2: For a given PG of length r, and 1, feedback
lines, the MSA fault coverage attains a maximum when
feedback lines are located at x ' , xz ,

Conjecture 3: The MSA fault coverage increases with the
number of testing routines, each of which uses a different
initial state. The optimal testing length for MSA faults is r for
a given initial state and a feedback configuration.

x ' f - ' , and x'.

LIU AND SHIN: TESTING OF PACKET SWITCHING NETWORKS 21 1

4- l h n c f . a c k L i n c s

-0- four fccdback liner

-a- five feedback Ihcs

-0-

0.7

two d i f f e m initial nates with Gvce fedbad: Lina

0.2

0.1

1 2 3 4 5 6 7 8

Fig. 7 . Detected-faultsldetectable-faults versus number of shifts when r =
8.

For a given PG configuration and the initial state, theoreti-
cally, 2’ shifts are required to exercise all the states of the PG.
However, our simulation results show that testing lengths are
rarely required to be longer than the length of the PG.
Although the choice of an initial state affects the fault
coverage, the number and location of feedback lines are the
dominating factors in the fault coverage. It is shown in Fig. 7
that about 65 percent of detectable MSA faults are immedi-
ately detected for most cases. From Theorem 8 and the above
conjectures, each testing length is found to be r + 1.

Unlike the off-line testing of data paths, a faulty RCU can
be detected on-line. An RCU checker is proposed to detect
faults in the RCU using its output signals. An RCU has an r
log2 r-bit input and an r2-bit output. The RCU output signals
are denoted by EU, 1 I i , j I r, where Ejj = 1 if queue j is
connected to output port i , and Eii = 0 otherwise. For any
fixed k, {Ejk} or { E k j } , 1 I i I r, forms a 1-out-of-r
codeword. Thus, 2 r 1-out-of-r self-checking checkers, one for
each { Ejk} or { E k j } , are needed to detect all noncodeword
outputs.

The outputs of the RCU and queues are the inputs of the
MUDEX to which they are connected. The RCU and queues
can be tested first using the above procedures. If they are fault-
free, then the MUDEX and the links connected to the
MUDEX are tested by using the RCU and queues to generate
test patterns for the the MUDEX and its links. For output
verification, the streams from the MUDEX’s of stage i are
transmitted through the links and then verified at stage i + 1
with special mechanisms.

Before we develop the test method for MUDEX’s and links,
it is necessary to find the test patterns of the r x 1 multiplexer
shown in Fig. 8, where E; and Dj are the enable and data of the
ith input, respectively. The r x 1 multiplexer is implemented
by r two-input AND gates and an OR gate.

Lemma 4: All SSA faults in the multiplexer of Fig. 8 can be
detected in r + 2 steps.

Proof: After fault collapsing, the faults that need to be
tested are 1) s-a-0 and s-a-1 primary output, i.e., output of the
OR gate in Fig. 8, 2) s-a-0 A; , v i I r in Fig. 8, and 3) s-a-1
Dj(Ei), V i 5 r . Test patterns can be derived as follows.

PT(1): EjDi= 10, V i I r ,

PT(2): EjDj=Ol, v i s r ,

E2

4

4 = o

(b)
Fig. 8 . The logic and functional diagrams of a multiplexer with r data inputs

and r enable signals. (a) Logic diagram. (b) Functional diagram.

PT(3): EIDI= 11, and EjDj=eidj for i # 1

PT(4): E2Dz=11, and EjDj=ejdj for i#2

PT(r + 2): ErDr = 1 1, and EiDj = ejdj for i # r,

where dj=O or ej=O, v l s i s r .

An r x r MUDEX connects r queues’ outputs to r links.
The MUDEX can be implemented by two-level AND and OR

gates, where each MUDEX’s output port is basically a
multiplexer. An example design of MUDEX is shown in Fig.
9, where EU is the enable signal from the RCU to route the
packet at queue j to output port i. Ejj fans out to w branches to
simultaneously enable the w bits of queue j .

Theorem 9: Any SSA fault on links or MUDEX’s can be
tested in r + 2 clock cycles.

Proof: Since operations to be applied to each of the w
bits of a packet are identical, it is sufficient to discuss only one
bit of the packet. Each output port of the 1-bit MUDEX is an r
x 1 multiplexer, and there are a total of r multiplexers in a
MUDEX. Test patterns derived in Lemma 4 can be directly
applied to test the MUDEX. However, it is important to
minimize the test length when one selects test patterns. The
proposed testing procedures are as follows. At clock cycle 1,
all the RCU’s outputs are set to 1 and the queue outputs to 0.
Queue outputs are fixed at 1 for the rest of the procedures. At
cycle 2, all the RCU’s outputs are set to 0. During the
remaining r cycles, the RCU performs permutation i + (i + j
- 1) MOD r a t cycle j , 3 I j I r + 2. When the network
uses distributed routing control, the queues for storing routing
tags can be used to generate the desired routing requests to the
RCU. By this permutation and the data queue setting, the r
multiplexers in a MUDEX are tested simultaneously. The

The MUDEX’s output stream is two 0’s followed by r 1’s.
Since both 0 and 1 appear at each switch’s output, and thus, at
each link, the links can be tested without introducing any

testing procedures are shown in Fig. 10.

212 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 2, FEBRUARY 1989

I Rcu I
queue 1

l i n k s

port r b
queue I

Fig. 9. An example of the MUDEX in an r x r switch.

output

port 1 0

DZ 1 port 2 0 0

D3

D1l@ (1) port 3 0

(3) (4) (5)

Fig. 10. The testing procedures for a 3 x 3 MUDEX.

additional cost. For test verification, it should be noted that all fan-out-free XNOR tree. The outputs of the two fan-out-free
links in the network have identical outputs. Thus, the networks form a 1-out-of-2 codeword. A design example for
comparison method to verify the test results of queues can be this method is given in Fig. ll(a).
applied similarly. Without loss of generality, the number of It has been shown in [2 11 that a linear function implemented
links from each switch is assumed to be even. Half of the links by two-input XOR gates needs at most four test patterns. The
are connected to the primary inputs of a fan-out-free XOR tree, test patterns can be recursively derived from the primary
and the rest are connected to the primary inputs of the other output of the XOR (XNOR) tree to the primary inputs. Assume

LIU AND SHIN: TESTING OF PACKET SWITCHING NETWORKS 213

stage i switches
stage i+l switches

(a)

queues

MILFSR

queues

queues

I I I I

stage i+l switches links stage i switches

(b)

analysis.
Fig. 1 1 . Verification of testing response by comparison and signature

that a linear function P, of n variables is implemented by an
XOR tree as in Fig. 1 1 (a). Then P, can be recursively expressed
by P, = x, d P,-I, where x, is the nth primary input
(variable), and P,- is the linear function implemented by the
subnetwork excluding the primary output XOR gate and the
primary input x, . To test the primary output gate, it is
sufficient to have P n - l x n = 00, 01, 10, 11. The input stream
in x, is then 0101, and PnPl should be 0011. We want to
derive a test pattern which can be easily generated, e.g., all
inputs are identical, or, only one or two inputs are different
from others. Thus, for P , _ l = 0011 and P,-l = Pn-2 8

x,- we set x,- I = 0101 (as x,) , and thus, P,-2 = 01 10. It
can be shown by induction that xi = 0101, Vi # 1, and x1 =
01 10 (001 1) when the number of gates is even (odd).

It is now clear that we can eliminate the hardcore in the XOR

and XNOR trees when their test patterns are applied. Assume
that w / 2 links are connected to inputs x1 * x , / ~ of the XOR

tree. To test the XOR (XNOR) tree, we need to add one more
input xo to the tree, and xo is controlled by the BIT. Since the
output stream of MUDEX testing is composed of two 0’s and r
1 ’s, the XOR (XNOR) tree can be tested simultaneously with the
MUDEX’s and links when 001 1 (01 10. e) are simultane-

214 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 2, FEBRUARY 1989

ously applied to xo by the BIT. It requires wr XOR and XNOR

gates in each switch to verify the test response. When the
number of XOR (XNOR) gates is too high, the testing method can
be decomposed into two phases as follows. In phase one (two),
all the queues in even (odd) stage switches serve as pattern
generators and those in odd (even)-stage switches serve as
multiple input linear feedback shift registers (MILFSR’s). To
test MUDEX’s and links, the outputs of the MILFSR’s are
compared in a way similar to the case of testing queues. Thus,
the network can be tested in two phases, each phase requiring r
+ 2 clock cycles. An example design showing such a strategy
is given in Fig. 1 l(b).

V . CONCLUSION

A two-level testing strategy is developed in this paper. The
network level testing uses processors as testers, and the switch
level testing uses switches to test the network. The network
level testing is concurrent testing and the switch level testing is
off-line testing.

The first step to ease the network level testing is to
synchronize network operations. Then, the network is tested
with different polynomial operations. Although only a small
number of functional fault models and the corresponding
testing procedures are discussed, this method can be easily
extended to detect other faults at the cost of additional testing
times. For example, it can be used for conflict resolving
testing. When two or more requests in a switch requesting the
same output port to use, the RCU should grant only one. Using
the testing polynomials, PN(x) and conflicting routing re-
quests, testing an r x r switch can be done in r‘ - r! testing
routines. Obviously, conflict resolving testing is very expen-
sive, when r is large.

Since testing polynomials can be easily generated by
processors or a dedicated hardware, the proposed method can
be used for both SIMD and MIMD machines. Most of network
faults can be diagnosed in a decentralized manner by proces-
sors with the polynomial testing. A processor need not
communicate with others except for the simultaneous submis-
sion of polynomials. Thus, when the network becomes faulty,
the testing method can be used to identify, with different levels
of accuracy, fault-free components, i.e., a faulty system can
be reconfigured following the testing.

The costs of testable designs are measured by the extra
hardware required for links and logic components in switches.
When the packet width is more than one bit, one of the data
links can be used as a feedforward line (but not as a feedback
line). However, when a data line is to be transformed into a
feedforward line, a multiplexer should be used to bypass the
queue that the link is connected to. One masker, a mapper, and
an adder of w bits are required for each data queue. For an r x
r switch, at least r2 logic gates are needed to implement the

MUDEX, and the overhead, relative to the combinational
circuit of the switch to implement the tracer, is 2/r. It should
be noted that the overhead is an upper bound, because
hardware for the data buffers is not considered.

The goal of the switch level testing is to obtain high fault
coverage with a small testing time. Queues are self-tested first
by converting them into polynomial generators. Furthermore,
test patterns for the MUDEX can also be generated by the
PG’s. For a C-connected queue, it needs w extra interlinks to
convert a queue into PG’s. Testing the RCU by the conven-
tional method is very inefficient. It is proposed to use r l-out-
of-r codeword checkers to monitor the outputs of the RCU.
Finally, the MUDEX’s and links are tested simultaneously.
Testing responses are verified by using XOR and XNOR trees. It
is shown that the network testing time is independent of the
network size and the design method can be applied to various
types of switch. For the switch level testing, comparators in
the switches are the predominating overhead, which is wr/r2
= l / r for the combinational circuits of switches, and no extra
links are needed.

In this paper, we have focused only on the development of
testing strategies. To determine an optimal (in some sense)
testing period, the tradeoff between the performance penalty
and fault-detection time must be studied. This and modifica-
tions of the proposed testing method for CSN’s are the subject
of further inquiry.

APPENDIX A

FAULT COVERAGE OF POLYNOMIAL TESTING
Fault coverage of polynomial testing may vary with

different circuit implementations of the network. To obtain a
concrete figure on its fault coverage at the logic level, consider
an example LFSR design in Fig. 12. The basic structure of a
shift register is essentially a master-slave S / R flip-flop. The
ith gate in a flip-flop is denoted as Gi, and its output and j th
input (indexed from top to bottom) by GOi and GZj,
respectively. It should be noted that latches usually have two
outputs Q and 8. However, since the number of links is a
major concern in the network design, only the Q output of the
slave latch will be used, and is ignored. In other words, a
fault is detectable only when an erroneous response can be
observed at the Q output of the slave latch. During normal
operations, the S and R inputs are in the form of dd, 1 1 , dd,
1 1, * * , where d E (0, 1 } . It should be noted that the input 11
is inserted automatically when CLK = 0 (1) at the master
(slave) latch, and the outputs of a latch are read out when SR
= 1 1 . 01, 10, and 1 1 at the SR inputs are referred to as r , s,
and b, respectively.

To derive its test set, the slave latch composed of G7, G8 is
considered first. Using the D-algorithm, test patterns for faults
in the latch are summarized as follows.

faultshodes GI; GI; GO7 GI:, GI; GO8

s-a-0
s-a- 1

sb sb rb rb rb sb
sbrb sbrb sb sb rbsb rb

LIU AND SHIN: TESTING OF PACKET SWITCHING NETWORKS 215

multiplier

(X)

w-bit shift register

D -
h

An one-bit shift register implemented by a master-slave S I R fliplflop

Fig. 12. An example LFSR implemented with master-slave SR latches.

Testing the master latch is more complicated, because the
slave latch must be in an appropriate initial state, i.e., output,
to propagate the erroneous response of the master latch to the
Q output of the slave latch. For example, when (Q, s) = (0,
b) at the master latch, the initial state of the slave latch must
be (1, 0) to obtain D at the output of the slave latch.
Otherwise, the slave latch’s output is 01, meaning that the fault
is not tested. In our case, the master and slave latches have
identical test patterns.

Test patterns for G5 and G6 are summarized below:

register. Thus, the shift register fails to perform the delay
function. Occurrence of such faults in a queue implies that the
length of queue is reduced. Since the polynomial testing can
identify the configuration of an LFSR, all such faults can be
detected.

Although the polynomial testing is developed as a functional
level testing, it can clearly detect all the detectable stuck-at
faults at the logic level of registers. Since only two of the 56
faults are undetectable in a register, and all other faults, i.e.,
stuck-at faults on the XOR gates and feedforward lines, are

s-a4
s-a- 1

sbrb sbrb sb rbsb rbsb rb
rb rbsb sbrb sbrb sb rbsb.

It can be shown that the above pattern can test GI, GZ
simultaneously. GIlo s-a-1 and GOlo s-a-0 can be tested by
sbrb. The only undetectable faults are GIlo s-a-0 and GOlo s-a-
1, because the erroneous responses can only propagate to the
0 output of the slave latch. GZ9 s-a-1 and GO9 s-a-0 will block
the transmission of data, and thus, sbrb is sufficient to test
them. GZ9 s-a-0 and GO9 s-a-1 faults do not cause logic faults,
and thus, are not detectable by the D-algorithm. However, the
memory of the register is lost when the above two faults
occur, i.e., the latch fails to hold the data for a specific period.
Assume that the high (low) period tT of testing clock is three
times slower than the latch’s transition time t d . Then, such
faults can be tested by the polynomial testing method. For
example, when GO9 is stuck-at-1, the data at the input of the
register will be shifted to the slave latch’s output after 2 t d . At
the third t d , the data are erroneously shifted into the next

They are inverted to (1 , D) before they enter the slave latch.

detectable, the lower bound of the polynomial testing method
is 96 percent.

APPENDIX B

LIST OF SYMBOLS
A , N, S , X

4
BU;

Four states of a switch on the route under
test.
The ith block in a PDM.
The ith buffer in a queue.
The ring link input (output) of the ith pattern
generator G; .
A D-type flip-flop with a single input and a
single output.
Switch permutation, E: f (i r + j) + f (ir
+ j + m MOD r), where f (i r + j) and

f (i r + j + m MOD r) are the global
indexes of the j th input port and the (j + m
MOD r)th output port of the (i + 1)th

D;cout)

DFF

Em

216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 2. FEBRUARY 1969

E,’
Eij

M

ONE, ZERO

PDM
PG
PMIN

switch, respectively, where r is the switch
order, and -, is the interconection. EL is
denoted as E, when all switches have the
same permutation.
The inverse of the switch permutation E,.
An RCU output which enables queue j to be
connected to output port i .
The polynomial ring.
Z is the set of integers and I,, = (0, 1, 2,

- . a , n}.
An m x w matrix representing m buffers in
a queue of w bits each. The ith row of M is
the ith bits of all buffers and the j th column
of M is the j th buffer in the queue.
The multiplier formed by the route connect-
ing source i to destination j.
An r x r MUDEX is the combination of r
multiplexers and r demultiplexers. It is used
to direct packets in a PMIN switch.
Coefficients of a word polynomial, ONE =
ZERO.
A polynomial and its complement.
PN(x) = ZEo cixi, where cj = 1, ci = 0, i
z’ j , is a test pattern submitted by processor

P,“(x) = x (, + ~) ~ , the test polynomial
for m unit delay faults.
Polynomial multiplier or divisor.
Polynomial generator.
Packet switching multistage interconnection
network.
The product of P (x) and M (x) , or the
quotient of P (x) / D (x) , or the output of a
PDM .
The remainder of the operation that D (x)
divides P (x) or the final contents of a PDM.
Routing control unit.
Route under test.
The length or order of Bi.
Single stuck at fault.
The link permutation at stage i .

The initial state of a PDM or a PG.

j .

W k (X) = Zf=,x’. W (x) = Wm(x).

ACKNOWLEDGMENT

The authors are grateful to N. K. Jha for the valuable
comments on the material in Section IV-C. They also want to
thank M. H. Woodbury and referee A for numerous sugges-
tions on the initial draft of this paper.

REFERENCES
[I]

[2]

M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of
Digitar Systems.
W. K. Fuchs, J. A. Abraham, and K. H. Huang, “Concurrent error
detection in VLSI interconnection networks,” in Dig. Papers, FTCS-

131 J. E. Lilienkamp, D. H. Lawrie, and P. C. Yew, “A fault tolerant
interconnection network using error correcting codes,” in Dig.
Papers, FTCS-12, 1982, pp. 123-125.
T. Y. Feng and C. L. Wu, “Fault-diagnosis of a class of multistage

Rockville, MD: Computer Science, 1976.

13, 1983, pp. 309-315.

141

151

161

[71

[81

1141

1151

interconnection networks,” IEEE Trans. Comput., vol. C-30, pp.

D. P. Agrawal, “Testing and fault tolerance of multistage interconnec-
tion networks,” Computer, pp. 41-53, Apr. 1982.
N. J. Davis IV, W. T.-Y. Hsu, and H. J. Siegel, “Fault location
techniques for distributed control interconnection networks,” IEEE
Trans. Comput., Vol. C-34, pp. 902-910, Oct. 1985.
D. C. H. Lee and J. P. Shen, “Easily-testable (N, K) shuffle/exchange
networks,” in Proc. Int. Conf. Parallel Processing, 1983, pp. 65-70.
D. P. Agrawal and J . 4 . Leu, “Dynamic accessibility testing and path
length optimization of multistage interconnection networks,” IEEE
Trans. Comput., vol. C-34, pp. 255-266, Mar. 1985.
V. Cherkassky, E. Opper, and M. Malek, “Reliability and fault
diagnosis analysis of fault-tolerant multistage interconnection net-
works,” in Dig. Papers, FTCS-14, 1984, pp. 246-251.
M. Malek and E. Opper, “Multiple fault diagnosis of SW-banyan
networks,” in Proc. FTCS-13, 1983, pp. 446-449.
E. Opper and M. Malek, “Real-time diagnosis of banyan networks,”
in Proc. Real Time Syst. Symp., 1982, pp. 27-36.
W. Y.-P. Lim, “A test strategy for packet switching networks,” in
Proc. Int. Conf. Parallel Processing, 1982, pp. 96-98.
V. Cherkassky and E. Opper, “Fault diagnosis and permuting
properties of CC-banyan networks,” in Proc. Real-Time Syst. Symp.,

J. Y. Maeng, “Self-diagnosis of multistage network-based computer
systems,” in Dig. Papers, FTCS-13, 1983, pp. 324-331.
S. Thanawastien and V. P. Nelson, “Diagnosis of multiple faults in
shuffle/exchange networks,” in Proc. Real Time Syst. Symp., 1984,

R. E. Bryant, “A switch-level model and simulator for MOS digital
systems,” IEEE Trans. Comput., vol. C-33, pp. 160-177, Feb.
1984.
E. J. McCluskey and S. Bozorgui-Nesbat, “Design for autonomous
test,” IEEE Trans. Comput., vol. C-30, pp. 866-875, Nov. 1981.
S. W. Golomb, Shift Register Sequences. San Francisco, CA:
Holden-Day, 1967.
Z. Kohavi, Switching and Finite Automata Theory. New York:
McGraw-Hill, 1978.
J. E. Smith, “Measures of effectiveness of fault signature analysis,”
IEEE Trans. Comput., vol. C-29, pp. 510-514, June 1980.
J. P. Hayes, “On realizations of boolean functions requiring a minimal
or near-minimal numbers of tests,” IEEE Trans. Comput., Vol. C-

743-758, Oct. 1981.

1984, pp. 175-183.

pp. 184-192.

20, pp. 1506-1513, Dec. 1971.

Jyh-Cham Liu (S’84) was born in Kaohsiung,
Taiwan, on December 6, 1956. He received the
B.S. and M.S. degrees in electrical engineering
from the National Cheng Kung University, Tainan,
Taiwan, in 1979 and 1981, respectively.

He was a system engineer of Siantek Co. Taiwan
in 1983. Since 1984 he has been a Research
Assistant at the University of Michigan, where he is
currently pursuing the Ph.D. degree in electrical
and computer engineering. His research interests
include fault-tolerant computing and easily testable

architectures for real-time applications.
Mr. Liu is a student member of the IEEE Computer Society.

Kang G. Shin (S’74-M’78-SM’83) received the
B.S. degree in electronics engineenng from Seoul
National University, Seoul, Korea in 1970, and the
M.S. and Ph.D. degrees in electrical engineering
from Cornell University, Ithaca, NY, in 1976 and
1978, respectively.

From 1970 to 1972 he served in the Korean Army
as an ROTC officer and from 1972 to 1974 he was
on the research staff of the Korea Institute of
Science and Technology, Seoul, working on the
design of VHF/UHF communication systems. From

1978 to 1982 he was an Assistant Professor at Rensselaer Polytechnic

LIU AND SHIN: TESTING OF PACKET SWITCHING NETWORKS 217

Institute, Troy, NY. He was also a Visiting Scientist at the U.S. Airforce
Flight Dynamics Laboratory in Summer 1979 and at Bell Laboratories,
Holmdel, NJ in Summer 1980. Since September 1982, he has been with the
Department of Electrical Engineering and Computer Science at The Univer-
sity of Michigan, Ann Arbor, MI, where he is currently a Professor. He has
been very active and authored/coauthored over 140 technical papers in the
areas of distributed fault-tolerant real-time computing, computer architecture,
and robotics and automation. As an initial phase of validation of architectures
and analytic results, he and his students are currently building a 19-node

hexagonal mesh multiprocessor at the Real-Time Computing Laboratory
(RTCL), The University of Michigan.

Dr. Shin is a member of the Association for Computing Machinery, Sigma
Xi, and Phi Kappa Phi. He was the Program Chairman of the 1986 IEEE Real-
Time Systems Symposium and is the Guest Editor of the special issue of IEEE
TRANSACTIONS ON COMPUTERS on Real-Time Systems which appeared in
August 1987. In 1987, he also received an Outstanding Paper Award for a
paper on robot trajectory planning published in IEEE TRANSACTIONS ON
AUTOMATIC CONTROL.

