
1188 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 10. OCTOBER 1989

Optimal Dynamic Control of Resources in a
Distributed System

Abstrad-The various advantages of distributed systems can be re-
allzed unly when their resources are ‘*optimally” (in some sense) con-
trdled and utilI7~d. For example, distributed systems must he recnn-
figured dynamically to rope with component failures and workload
changts. Owing to the inherent dilkulty in formulating and solving
re~iurce contrd problems, the resnurce control strategies currently
propoacdlused for distributed systems are largely ad hoc.

It is our purpose in this paper to I) quantitatively formulate the
problem of controlling resources in a distributed system so as tu opti-
mize a reward function, and 2) derive optimal control strategies using
Markov decision theory. The control variables treated here are quite
generak fnr example, they could be control decisions related to system
configuration, repair, diagnostics, files, or data. Two algnrithms for
resource contnfl In distributed systems are derived for time-invariant
Bnd periodic environments, respectively. A detailed example to dem-
onstrate the power and usefulness of our approach i s provided.

Index Terms-Markov decinhn process. optimization, performabil-
ity, recnnfigunrtiun, repair, resource control.

I . INTRODUCTION
ECAUSE distributed computer systems are usually B composed of a large number of resources to achieve

higl performance and reliability and can function (albeit
sometimes in a degraded condition) in a very wide variety
of configurations and environments, managing the re-
sources in such systems is much more difficult than man-
aging a conventional uniprocessor machine. Such difli-
culty has led to an undesirable trend: the resource control
strategies currently proposedlused are largely qualitative
and ad hoc. We counter this trend with the development
of a rigorous, systematic method for “optimally” (to be
defined below) controlling the resources that make up dis-
tributed systems. That is, we quantitatively formulate a
resource control problem, for which solution algorithms
are derived using Mar’:ov decision theory.

A resource control Jecision is needed whenever there
i s a significant change in either the operdting environment

Manuscript reccived November 9. 1987: revised April 3. 1989. Rec-
ommended by B. W. Wah. This work was supported in part by NASA
under Grant NAG- 1-296. by the National Science Foundation undcr Grant
NSFDMC-8504971. and by the Florida High Technology and Industry
Council under Gran1 YE07 I .

K . G. Shin is with the Rcnl-Time Computing Laboratory. Departmcnt
or Electricul Engineering and Computer Sciencc. University of‘ Michigan,
Ann Arbor. MI 48109.

C . M . Krishna is with Department of Electrical and Computer Engi-
neering. University of Maswchusctth. Amhcmt. MA 0 1003.
Y .-H. LCC i s with the Dcpnnmenr ol‘ Computer and Inl’ornution Sci-

ences. University of Floridr. Gaincsvillc. FL 3261 I .
IEEE Log Number 8930136.

or in the system, e.g., component failures and workload
changes.

Two parameters characterize the operating environ-
ment: the reward structure, and the imposed load. The
former needs some elaboration. The operating environ-
ment imposes a value on each of the many services it e-
ceives from the computer. Put more formally, there is a
reward (which could be negative) which accrues from
each job execution, and this reward is a function of the
needs of the application. When the operating environment
changes, such a change can be quantified by the change
in the reward structure or failure rates that this causes.
For example, the reward accruing from a transaction-han-
dling machine in a bank is different at peak banking hours
than it is at, say. midnight. Naturally, it would be useful
to be able to optimally configure or service the system as
a function of the prevailing application needs.

Resource control decisions also have to be made when
the computer changes due to component failures. When,
for instance, is it appropriate to summon a repairman?
Which (degraded) configuration should the system switch
to, prior to repair? Or, consider the problem of allocating
channel bandwidth optimally to members of a set of to-
ken-ring networks. Each network has a set of users each
of which pays a certain amount of money for a given qual-
ity of service (e.g.. waiting time). Additionally, the sys-
tem response time is a function of the load offered to the
system. How does one allocate bandwidth amongst the
various networks so as to maximize reward (i.e., cus-
tomer payment)? When systems are simple, such deci-
sions can be made on the basis of intuition alone. When
they get complex, unsupported intuition is insufficient,
and must be supplemented by rigorous methods enabling
a more precise control. This is especially true when the
performance of the system is an intricate function of pa-
rameters which may act at cross purposes to one another.

As we shall show in Section 11, resource control deci-
sions can be viewed as semi-Markovian decision pro-
cesses. The measure of performance used here is based
on Meyer’s performability [I]. It is one of the most pow-
erful application-sensitive metrics available today, and
incorporates both the traditional measures of performance
(e.g.. throughput) and of reliability. Performability for-
mally accounts for the requirements of the application by
defining accotnplishment levels. The vector of probabili-
ties of meeting the accomplishment levels is performabil-

0098-5589/89/ 10O0- 1 188$01 .oO O 1989 IEEE

SHIN et ut.: DYNAMIC CONTROL OF RESOURCES 1189

ity. Suppose we identify a reward with each accomplish-
ment level, Then, the expected reward rate can be
obtained from the performability of the system. This re-
ward rate is also defined as reward structure by Furcht-
gott 121, and as reward function by Donatiello and Iyer
131, [4]. It is this reward rate that we use to characterize
the performance of the system. The average reward re-
ceived over infinite time horizon is used as an optimiza-
tion criterion for resource control in a distributed com-
puter system.

The expected total reward accumulated during a mis-
sion lifetime, using reward rates as an optimization cri-
terion, has been studied in [5] for configuring degradable
and nonrepairable systems. The results suggest that the
system should perform not only passive reconjguration
to respond the occurrence of a failure, but also active re-
configuration during the course of operation to respond to
changes in the reward or loading structure with a change
in configuration. The problem is formulated as a dynamic
programming problem with a finite horizon. It can be sim-
plified by identifying the relationships between configu-
rations and switch times (the time instants that the system
performs active reconfiguration).

Algorithms from Markov decision theory are applied to
solve the above resource control problem. Note that, de-
spite the importance of the resource control problem and
a voluminous applied statistics literature on decision pro-
cesses, there is very little in the computing literature on
using the results of decision theory to control computing
resources optimally.

This paper is organized as follows. In Section 11, the
optimal resource control problem is stated formally. In
Section 111, we show how to use the strategy improvement
procedure from decision theory in taking optimal re-
source control decisions for the case in which the reward
rate is constant. In Section IV, we turn to the case in which
the reward rate is periodic: Sections 111 and IV between
them encompass the majority of fault-tolerant systems. In
Section V we provide a numerical example. We conclude
with Section VI.

11. PROBLEM FORMULATION

Consider a system which may exist in one of several
states. A state is a compact description of everything about
the system that it is relevant to know. At predefined in-
stants of time, an action or input is applied to it. The sys-
tem response to that action U is characterized by the ma-
trix of transition probabilities p i j (a), i.e., the probability
of a direct transition from state i to statej under action a.
Assume that there is a reward that the system generates
for its owners per unit time; a reward which is clearly a
function of the system state. Assume also that taking an
action costs something (zero is a permissible cost).

Maximizing the net reward per unit time by suitably
choosing the actions a is one of the most important prob-
lems of decision theory. We refer the reader to [6] , [7],
and [8] for an excellent introduction to the subject. In the

remainder of this section, we formalize and elaborate on
what we have said above.

Suppose our computer system has n units of some re-
source. A unit of resource is defined to be the smallest
part of the whole system which may fail to operate, and
which can be repaired, reloaded, or replaced. Examples
are processors, memory modules, I/O channels, shared
tables, file units, and data sets. A unit can provide useful
services when it is fault-free and may become unavailable
or invalid in the event of failure or loss of control.

The system state is the aggregation of all states, de-
noted by +, which is a finite set. The system state at time
t can be defined as a stochastic process S(1) .

For a state i E @, the system may be in one of various
operational modes or may take certain actions. For in-
stance, the system might choose to reconfigure itself. Let
Ai be the set of all available actions or operational modes
when S (t) = i , and let the system choose action a (i, t)
from Ai. It is easy to see that transitions between system
states depend upon the current state and the current action
or operational mode. When the availability/functionality
of units are uncorrelated and the failure process in each
unit are Markovian, state transitions will be independent
of the past states and actions. Thus, the system’s behavior
at time t can be fully specified by the pair (S (t) . a(S(r) ,
t)) , where S (r) E a, and a (S (r) , r) E Asl,,.

Let p (i, a (i)) be a reward rate associated with the sys-
tem state i and the action a (i) E A,. This reward rate
represents what the system can achieve, or may lose, per
unit time, with the pair (i . a (i)). In addition, we assume
that there exists a cost, c (i , a (i)) , with the action a (i)
taken when the system enters state i. The cost c (i , a (i))
represents the instantaneous cost (if any) of taking the ac-
tion a (i) .

A = Uie* Ai is defined to consist of all choices of ac-
tion or operational mode that the system will take during
its lifetime. When the choice of action at time t depends
only on the system’s state at time t , the strategy is called
stationary. In other words, if we take an action or enter a
particular operational mode when the system enters a new
state, that action or operational mode will be used until
the next state transition takes place. Thus the same action
or operational mode will be used continuously between
two successive state transitions. A stationary strategy can
be specified by a set of actions, { a (i) l a (i) E A,, i = 1,
2, * * - , n } . With a given stationary strategy r , the action
taken at time t is denoted by a,(S (2)) . Also, we assume
that, when the system has no units available, the only ac-
tion that can be chosen is to repair all or part of the sys-
tem. Thus, under a stationary strategy r, the reward ac-
cumulated during [0, t) can be expressed as

Wr.i(t) = jl P (s (~) , a r (~ (7))) d7

- /e* 4A a r m W) (2.

where S(0) = i is the initial state of the system, and kj(
the number of visits to statej during [0, t).

RaPrOduced with psrrrission of copyright arner. Further reproduction prohibited.

I190 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. IO. OCTOBER 1989

If, instead of being stationary, there is a periodicity to
the reward, failure, or cost structures, then the system is
periodic. If, as sometimes happens, cost and failure rates
have different periods, the least common multiple of these
determines the system period. If the period is T, then the
choice of action at time t of a periodic system will depend
only on the system state at time t and on r - [t / T] T,
where 1x1 is the maximum integer not exceeding x.
Clearly, any periodicity in the job arrival process can be
expressed through the reward function.

The period of reward. cost, etc., will depend on the
application in question. For example, the arrival process
might be diurnal, as in most computing centers.

The resource control problem arising from this model
is to determine a strategy ?r* such that the average ex-
pected reward lim,-.- Wr. . i (t) / t is maximized with re-
spect to all feasible strategies. This is a common problem:
for instance, if a two-dyad system were to suffer a pro-
cessor failure, does it reconfigure into a one-triad system,
or into a one-dyad, one-simplex system? Another exam-
ple is choosing the recovery action to be taken when a file
becomes inaccessible.

111. OPTIMAL STRATEGY FOR HOMOGENEOUS SYSTEMS
A system is homogeneous if transition characteristics

between states, the cost of actions, and the reward rate do
not change in time. The distribution of the time that the
system spends in state i before leaving it is independent
of the time at which the system entered state i. Thus, given
an arbitrary stationary strategy, the system can be mod-
eled by a semi-Markov process. Moreover, when + is fi-
nite, the optimal strategy of a homogeneous system must
be stationary as shown in [IO].

While few-if any-distributed systems exhibit exact
homogeneity, there are many which are approximately
homogeneous. Aging of components and a change in the
reward structure are the most frequent causes of a depar-
ture from homogeneity. However, in many instances.
components age, and the reward structure changes so
slowly that the system can, for all practical purposes, be
regarded as homogeneous.

Because we are interested in optimizing the asymptotic
reward rate, the transient states have no effect on our ob-
jective and are therefore not considered in this model.
Also, we limit ourselves to the case where there is only
one recurrent class in this semi-Markov process. (Recur-
rence follows from the fact that repair is allowed.) This
i s not a limiting factor: even if there are multiple classes,
each of them can be considered separately.

Since repair is allowed and the total number of states is
finite, the expected period between two consecutive visits
to state i, denoted by 7;, is finite. Under a stationary strat-
egy, S (r) is a regenerative process. Thus, W*. i (i) can be
regarded as a renewal reward process with regenerative
period T,. It follows that, under the strategy x , the aver-
age expected reward per unit time can be given as

This equality can be proved easily from the facts that
E l ‘I;.] I; and that the strategy is stationary. The opti-
mal resource control problem in which V , (i) is maxi-
mized then becomes a semi-Markov decision problem. Let
the optimal strategy be r* such that V + (i) = max,
Vz(i).

We denote the transition probability from state i to state
j under action a (i) by pij(a (i)), and the mean holding
time at state i by a (i, a (i)). Then, the mean reward ac-
crued from the moment the system enters state i until the
moment the next transition occurs can be’ represented by
y(i , a (i)) p (i , a (i)) a(i , a (i)) - c(i, a (i)) . Ac-
cording to Theorem 7.6 of (81, the optimal stationary
strategy can be obtained by the following theorem.

Theorem 1: If there exists a bounded function h (i) , i
= 1.2, * * . , n, and a constant g such that

f

(3.2)
then there exists a stationary strategy r* such that g =
V f (i) = max, V , (i).

Notice that the condition in the above theorem will be
met automatically when y(i , a (i)) is bounded for all i
and action a(i), and all stationary strategies give rise to
a finite and irreducible state space, despite the fact that
we do not know g in advance. The optimal strategy can
be determined by Howard’s strategy improvement pro-
cedure [6] . 171. In the discussion that follows, we shall
present an algorithm on the basis of the strategy improve-
ment procedure that is embedded in the solution of How-
ard’s equations:

g a (i , a (i)) + h (i) = y (i , a (i)) + ,x p g (a (i)) h (j)

(3-3)

n

J ‘ I

where a (i) e Ai. Equation (4) stems from Theorem 1 .
It is easy to see from (4) that the functions h () cannot

be uniquely determined, since [pi j (n (i))] is a transition
matrix: the set of equations is dependent. From Theorem
1, the absolute value of the h (0) ’ s does not matter in our
search for the optimal actions: only the relative value
does. So, we can set one of the h (0)’s to some value, and
solve for the rest. In the algorithm below, we set h (n) =
0 in step 3 as the most convenient value.

Algorithm I :
I) Select an arbitrary strategy ?r = { a (i) I a(i) E Ai ,

i = I , * *

2) Solve (4) to obtain h(i), i = 1, * - , n - 1 , and
g, under the strategy zr. To do this, set h (n) = 0.

3) Generate the strategy T‘ as follows. For each i, de-
termine an action a’(i) for which h (i) is maximized. That
is, find a’(i) to maximize:

, n } .

11

~ (i . a (i)) + .X p c (u ’ (i)) h (j) - ga(i , uf(i)) .
J = I

SHIN rt (11.: DYNAMIC CONTROL OF RESOURCES I191

If more than one action maximizes the function, choose
the one with the smaller label. ir' consists of these ac-
tions: (~ ' (l) ; . . , a ' (n) } . I f s = d , t h e n r = r*and
we can stop, having found an optimal strategy. Other-
wise, set T = r f and go to step 2.

A proof that policy improvement procedures of this kind
converge is presented, for example, in [SI. The worst-
case complexity of this algorithm is simply the total num-
ber of possible strategies: this is because the policy im-
provement procedure is essentially a contraction m a p
ping, and so the same nonoptimal strategy is never
encountered twice.

1V. SYSTEMS WITH PERIODIC REWARDS

In this section, we consider the case where the reward
rate is a periodic function. Suppose that, at time t , the
reward rate associated with state i and the action a (i) is
p (7 , i , a (i)) , where 7 = t - [t / T] T . The period T i s
obtained from practical considerations: it may be a day,
a week, or any other period natural to the application. Our
objective is to find a strategy

(4.1) z = { u (i , 7) l i = 1, 2, * - , n , 7 E [0, T)]

such that the average expected reward is maximized.
For tractability, we assume that the holding time at state

i under action U (i) is exponentially distributed with mean
a(i , a ([)) . Then, the system can be modeled by an
embedded Markov chain in which the system's state is
examined every period T. Let the system state at time mT
be s,. With a strategy r , the system will transfer into state
s,,~ at time (M + 1) T. The sequence { s,,, } is a Markov
process, and the state transition probability is defined as
qij(a) = Prob { s,,,+~ = j i s n 1 = i). Also, denote the re-
ward accumulated between mTand (m + 1) T by w(i, r)
when s,,, = i. Thus, as in Theorem 1, an optimal strategy
exists if there exists a bounded function h (i) for i = 1,
2, * . . , n, and a constant g such that

f I1 >
w (i , r) + ,x qu(?r) h (j) - 81 (4.2)

J = !

where g is the maximal reward.
It is easy to see that these conditions are satisfied in our

case. Although we do not know g a priori, it is clear from
the problem definition that it is finite. So is w.

The policy improvement procedure can also be applied
to find the optimal strategy, a* in this case. However, for
each possible r. we need to determine both qij(a) and
w (i , a). A modified algorithm is presented below, in
which dynamic programming is used to find qij(a), w (i .
T) , and the improved strategy, at each iteration.

The first step is to discretize the period to make the
algorithm suitable for digital implementation. Let K be a
large natural number, 6 = T / K , and let a (i , k) be the
action applied at the system state i when t E [mT + k6,
mT + (k + 1)6). We are concerned with the optimal

strategy

r * (K) = {a& k) (i = 1,2, * * , n,

k = O , l ; * * . K - l } . '

Also, it is convenient here to regard pu(a(i , k)) as the
probability that the state transition i -+ j occurs in one
time period of duration 6.

Algorithm 2;
1) Select an arbitrary strategy

T(K) = {a(i, k) l i = 1,2, - - 9 n,
k = 0, 1, . - - , K - 1, a (& k) E Ai}.

2) For each i = 1, 2, - * * , n, calculate q o (x) and
w(i, r) by the following equations:

S i j b) = 4ij(r, K), (4.3)

(4.4 1

where
I1

q i j (. ~ , k + 1) = C ~ / j (a (l , k)) 4i/(.R, k)
/ = 0

K - l R

w (i , r) = C C qij(rR, k) p (k s , j , ~ (j , k)) 6
k = O j = l

- c (4 k)) (4.5 1
with qii(r, 0) = 1 and qij(r, 0) = 0 (j f 0). C (a (j ,
k)) is the cost of taking action a(j , k).

3) Calculate h (i) as follows:
fl

h (i) = w (i , r) + ,E qu(a) h (j) . (4.6)

4) Foreachi= 1,2 , * - - . , n , d e f i n e 6 (i , K) = h (i) ,
&(i , K) = 0, and g i i (K) = 0 i f j $ i, g i i (K) = 1 oth-
erwise. Fork = K - 1 to 0, find actions 6(i , k) for i =
1,2, * . ' , n. which maximize

J = 1

6(i , k) = p (k 6 , i , ci(i, k))b
n

+ pU(6(i, k)) i(j , k + 1) (4.7)
j - I

where a (i , k) E Ai.
S) L e t a ' (K) = { a (i , k) l i = l , . . . , n , k = 0 , 1 ,

9 * - , K - 1 }. If rf(K) = a(K), then stop the algorithm
with r = r ' (K) . Otherwise, set r (K) = r ' (K) , w (i ,
t) = &(i , 0), and qij(+) = .&(i , 0), and go to step 2.

In (10). one can set h (n) equal to some positive con-
stant and solve for the rest of the h (i)'S.

For finite K, this algorithm produces nearly-optimal ac-
tions and not necessarily optimal ones, since the actions
take place at specific epochs in the operating interval
(namely at multiples of 6). It is easy to show, from the
fundamentals of dynamic programming, that the algo-
rithm tends to optimal as K --* 00 I IO]. It is trivial to show
(by contradiction) that if there are two numbers kl and k2.
with kt = mkl for some natural number tn > I , then the
algorithm with K = k2 produces a policy which is at least
as good as that with K = k l . This nearly optimal issue is

Raproducd rith permission of copyrlsht auwr. Further repduction prohibited.

1192 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. IO. OCTOBER 1989

10,000

EXp0Cl.d
?ewe14
PI how

300

100

less troublesome from a practical standpoint than it first
appears, since, for example, computers are not expected
to reconfigure themselves more than a certain number of
times an hour because of the overhead required for each
reconfiguration. b can then be chosen appropriately. For
instance, in the numerical example that follows, we use S
= 3 minutes. This means that reconfiguration can take
place up to 20 times an hour: something that should be
perfectly adequate for the example in question.

Theorem 2: Algorithm 2 converges.
Proofi We exploit the well-known fact that the strat-

egy-improvement procedure converges for homogeneous
systems. For every periodic system S,, with Jinite action
set A,,. transition functions qy ' (e), and a reward struc-
ture, we can construct a discrete-time (with time-period
T) homogeneous s stem Sh with finite action set Ah, tran-
sition functions q (e) , and a reward structure, such that

for every policy i, in the periodic system, there is a
corresponding action a, E Ah such that qy' (ra) =

(h)

the expected reward per time T of taking action a,
with S,, in state h is equal to that per period (of length T)
due to policy rm with S,, in the corresponding state p at
the beginning of the period.

Clearly, running the strategy-improvement procedure
for Sh is equivalent to running it for S,,. Convergence is
thus established. Q.E.D.

(x,

qlj (G I ,

.

......................... "
I

.................................. ...* - "
i l l 1

V. EXAMPLE
Let us consider a fault-tolerant multiprocessor system

which uses n-modular redundancy, where n = 2 or 3, i.e.,
it can operate either in dyads or in triads. When it operates
in dyads, it can detect one failure in any dyad, but not
mask it. As a result, the affected computation must be
rolled back'or restarted. The cost of this is expressed
through a penalty function, described in greater detail be-
low. When the system operates in triads, however, it can
mask up to one failure per triad by voting. Clearly, roll-
back or restart is not needed in this case. ' There is a trade-
off here: if the system is configured in triads, the system
can sustain failures without having to roll back or restart,
while if the system is configured in dyads, there will tend
to be more of them, and as a result, the throughput (when
there is no failure) can be expected to be greater.

There is a repairman on call. There is a cost associated
with summoning the repairman, and a nonzero time taken
by him to get there. There is also a cost per unit time of
keeping the repairman at the site. Handling the repairman
resource also consists of balancing tradeoffs: sending him
away too early might mean he will have to be called
back-thus incurring a cost-while keeping him too long
will also result in the incurral of some cost.

The state of the system expresses two things: whether
the repairman is present, absent, or summoned, and how
many processors are functional. In response to the states

'We assume that near-simultaneous failure of more than one processor
in the same triad is vanishingly unlikely.

i a 16 20 0 4 8

T h e 01 day

Fig. 1. Reward function.

300

Repairman
muIIIpllw

2

1

0 4 s 12 10 20 24

T lnr of day

I 4

Cost rate for keoplng repairman 8 rk (Rtpolrnun multlpller)

Fig. 2. Cost of keeping the repairman.

are a set of actions, which are decisions to do with the
repairman (keep him, send him away, or summon him)
and decisions to do with the configuration (configure in
triads or in dyads). Naturally, the actions that are avail-
able depend on the current system state. To take a trivial
example, the action of summoning the repairman is mean-
ingless when the repairman is already at hand.

The action depends on the system state and the reward
structure. The reward structure in this example is partic-
ularly simple. The system receives a reward per unit time
equal to the number of clusters (dyads or triads) function-
ing, minus any costs incurred due to the action at that
state. The penalty incurred when a processor in a dyad
fails is the product of a penalty multiplier and the reward
rate. Because a triad has the failure-masking capability,
there is no corresponding penalty for a processor failure
when processors are configured in triads.

Processors fail, and are repaired (if the repairman is
present), according to an exponential distribution with
mean ~ j - ' and p; ' , respectively. More specifically, the
following symbols will be used for this example.

p, repair rate.
p~ failure rate.
r k cost per hour of keeping the repairman.
r,vx cost per hour of summoning the repairman.

SHIN cf (11.: DYNAMIC CONTROL OF RESOURCES

000

6:OO

l ime
01 dcy

1200

lam

24:OO

I I93

0 1 2 J 4 5 6 7 8 9 4 0
I , , , , , I 1 1 1

- -

col1
npairmar -

-

don'l caU
wpriwnan

LOO

1 inu
d W

12:oo

I&W
8md 3

repairman
awav

-

-

-

..--

With repairman presevt

No of procraaota

0 1 2 3 4 5 6 7 0 9 1 1

h)
rmd I wpairrnan

away I
24:w -

With repairmon present

No of p r o c o w s
0 1 2 3 4 5 6 7 6 9 1 1

000 1 I , , , , , :db '

I

(11
24.w

With repoirmon obsent
(h)

Fig. 3. Effect of changing r,. r, = 30 000, p, = 0.01. p, = 1.0, penalty
multiplier = 300. (a) r, = 1O00. (b) r, = 5000.

If the repaiman is called at time nS, he arrives at time (n
+ 116.

The reward rates and the repairman costs are periodic
with a period of 24 hours. They are shown in Figs. 1 and
2, respectively. The reward rates per processor group
(dyad or triad) are low until about 7:OO in the morning,
and then rise to their peak value by 8;OO. This value is
maintained, with a break of an hour at noon, until 5:OO in
the evening, after which it declines. This reward rate is

directly proportional to the job amval rate, and is the
means by which changes in the arrival rate are accounted
for. Repairman costs are greatly magnified when he is
called in after normal business hours. We have set K =
480, i.e., the day is divided down into 480 3-minute seg-
ments.

Numerical results are contained in Figs. 3-7. Fig. 3
deals with the effect of rk , i.e., the cost of having the
repairman on-site on the optimal action. As expected, the

Reproduced with permission of copyright wner. Purthsr reproduction prohibited.

I I 9 4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS. NO. IO. OCTOBER 1989

With repairman present With repairman absent
fC)

Fig. 3. (Conhcted.) (c) r, = 25 m.

o I i a 4 a I 7 8 IO

no. of procesoors funclionol

Fig. 4. Effect of failure penalty on configuration r, = IOOO, r, = 30 OOO.
1,. = 0.01. j i , = 1.0.

system tends to use him less when he is more expensive.
As rk increases, it becomes better to send the repairman
away during particularly expensive periods (e.g., during
the lunch hour or in the evening), and to accept the ad-
ditional cost r,, of summoning him later. A sample trajec-
tory is plotted in Fig. 3(b). The system starts the day (030
hour) with eight processors functional, and the repair-
man away. At 4:OO AM, a processor fails (point b). Still,
the repairman is not called until 6:oO AM, when the cost
of keeping him is sufficiently low. With the repairman
present, the system is brought up to eight functional pro-
cessors by about 9:OO AM, (point e) , to nine processors
(pointf) by about 1O:OO AM, and fully functional (point
g) around 11:OO AM. At this point, the repairman is sent
away. The sample path for the second half of the day can
be interpreted in the same way: at night, for example,

with the reward rate down and the repairman expensive,
even a bad succession of failures does not prompt the
summoning of the repairman: not unless there are fewer
than two processors functional is the repairman sum-
moned.

Fig. 4 considers the effect of the penalty of dyadltriad
failure: as the penalty increases, it shows that the system
configures itself more and more into triads. When the pen-
alty is 200, the only triad formed is when there are only
three processors functional: this is obvious since with just
that many processors available, there will be as many
triads as there can be dyads. As the penalty for failure
increases, triads are preferred more and more, despite the
reduction in throughput that results. When the penalty is
300, the system now configures into triads for states 10
and 20 (nine functional processors) as well. As the pen-
alty rises to 400, this is the case for 6 and 7 functional
processors in addition to those mentioned above. Finally,
when the penalty is 600, the system is always configured
into triads except when there are not suficient processors
to make up even one triad.

The change in penalty of failure also affects how the
repairman is handled. In Fig. 5 , we plot the repairman
curves for two penalty multipliers: 200 and 500. As one
might expect, when the failure penalty is large, the re-
pairman is called sooner and retained longer.

In Fig. 6 . we consider the case when the penalty is con-
stant and not a function of time, and show how the chang-
ing reward rate affects the optimum configuration. Below
three functional processors, there is no decision to be
taken; the system has to work in a dyad. When, for in-
stance, there are nine processors functioning, the system

SHIN CI til.: DYNAMIC CONTROL OF RESOURCES 1195

No. of proscrlorr
0 1 2 3 4 5 6 7 0 9 i(

i 6.W

lirr
#*

1x00

lk00

24:OO

With r e p o h o n present
24:w

With repoirrnon obsent

Fig. 5. Effect of failure penally on repairman. r, = 1000. r, = 30 000, p, = 0.01. pr = 1.0.

I212 - time
of day

no. of processors
0 1 I J 4 s 6 7 8 9 10

Fig. 6. Effect o f time of day on configuration with a constant penalty of IO OOO.

is configured into triads from midnight to 7: 12 AM, when
it switches to dyads. It switches back to triads at 12:12
PM, and back again to dyads at 1:12 PM. Finally, at 5:OO
PM, when the reward rate begins to drop, the system goes
back to operating in triads.

Fig. 7 considers the effect of increasing the cost of sum-
moning the repainan. The repairman iii now kept for a
greater number of states when the cost of summoning him
becomes very great: it is better to pay the cost of keeping

the repairman under such circumstances. When rss = lo6,
the repairman is sent away only when all processors are
functioning, and it is eight o'clock in the evening (the
time when the reward rate is very small and the cost of
keeping the repairman is especially large).

While all these trends are intuitively clear and do not
need a sophisticated algorithm to determine, the exact ep-
ochs at which the repairman should be called or sent away,
and the system configured into triads or dyads, cannot be

Reprodud uith perniraion of eopyrisht oumr. Further reproduction prohibited.

11% IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. IS. NO. IO. OCTOBER 19R9

6:OO

T i
O f W

1200

lam.

No. of proccrsorr
0 1 2 3 4 5 6 7 8 s ~

-

.

-

L

6al-

rim -
1l:w -

1600 -

600

lima
ddor

24:oO

With repairman present

-

7
k8.p

npairman t 1200

1800

88nd
m a i m a n

away

24:W

k8.p
1200 - npairman

1800 -

88nd
m a i m a n

away

24:W

With repairman present

danv *.U
mpatwnan

With repairman absent

600.

line
of Cay -

1200 -

18:oo -

24:W '

With repairman absent

(bl
Fig. 7. Effect of summoning-cost on repairman. r, = 3000. p. = 0.01. F,

= 1.0. penalty multiplier = 300. (a) r, = 5000. (b) r, = 50 OOO.

obtained through intuition alone, and do require an algo-
rithm such as this one.

processor systems. In this paper, we have countered this
trend with the development of a rigorous, quantitative

VI. DISCUSSION
method for optimally controlling reiources i n a distrib-
uted system.

Because of its inherent difficulty, the problem of con-
trolling resources in distributed systems has usually been
treated in an ad hoc manner. Such a trend could remove
the various advantages of distributed systems over uni-

The-resource control problem is of great practical sig-
nificance because gracefully degrading systems are being
used increasingly in such commercial fields as banking
and travel. In such systems it is possible to estimate run-

SHIN et ut.: DYNAMIC CONTROL OF ReSOURCES

1 t W

24:w

I197

t

No. d proccrrws
0 1 2 f 4 5 6 7 6 9 1 0

000

wpatrmon
away

1 t W

24.00

t

dm'l roll
wpdnnon

-

L

dm'l roll
wpdnnon

600

T h M
ddor

12w
C w P - rrpnirman

18:OO

24:M)

With repoirmon present

0,p

t 1200

Ne. d pwerrcrr
1 2 3 4 s 6 7 1 9 t a

Im'l E.u
wPa- I

(C)
Fig. 7. (Continued.) (c) r, = 100 OOO.

ning costs, the benefits from having a certain throughput
at various times of the day, repair costs, etc., much more
accurately than for the computers used in, say, a univer-
sity computing center. Another application is in real-time
embedded systems, such as those which control airliners
or spacecraft, where the reward rates for various jobs may
vary with the phase of the mission. A third application is,
as was mentioned in the Introduction, in local-area net-
works such as token rings, where one has the problem of
allocating bandwidth to each of the rings, subject to a
constraint on the total bandwidth allowed.

REFERENCES

111 1. F. Meyer, "Closed-form solutions of performability." lEEE Truns.
Compui.. vol. (2-31. no. 7. pp. 648-657. July 1982.

121 D. G. Furchtgott and 1. F. Meyer, "A performability solution method
for degradable nonrepairable systems." IEEE Truns. Compur.. vol.
C-33. no. 6. pp. 550-554. June 1984.

(31 L. Donatiello and B. R. lyer. "Analysis of a composite performance
reliability measure for fault tolerant systems," IBM Thomas 1. Wat-
son Research Center. Yorktown Heights. NY. Res. Rep. RC-10325.
Jan. 1984; also in J. ACM, vol. 34. no. I. pp. 179-199. Jan. 1987.

141 B. R. lyer, L. Donatiello. and P. Heidelberger, "Analysis of per-
formability for stochastic models of fault-tolerant systems," IBM
Thomas J. Watson Research Center. Yorktown Heights, NY. Res.
Rep. RC-10719. Sept. 1984; also in IEEE Trms. C ~ n i p u r . . vol. C-
35. no. IO. pp. W2-907. Oct. 1986.

151 Y. H. Lee and K. G. Shin. "Optimal reconfiguration strategy for a
degradable multi-module computing system." Comput. Res. Lab.,
Univ. Michigan, Ann Arbor, MI, Tech. Rep. CRL-TR41-84. Sept.
1984; also in J. ACM. vol. 34. no. 2. pp. 326-348. Apr. 1987.

161 R. A. Howard, Dynumic Probabilisric Systems. vol. I!. Semi-Murkov
and Derisiott Processes.

I71 C. Derman. Finiie Siuie Murkoviun Decision Prwerses. New York:
Academic, 1970.

[Si S. M. Ross. Applied Prahuhility Models with Optimiwtim Applicu-
lions.

New York: Wiley. 1971.

San Francisco. CA: Holden-Day. 1970.

191 A. Federgmen and H. C. Tijms, "The optimality equation in average
cost denumerable state semi-Markov decision problcms. recurrency
conditions and algorithms." Appl. Prob.. v d . 15. pp. 356-373, 1978.

[lo] R. Bellman, "Functional equations in the theory of dynamic pro-
gramming-iv: A direct convergence proof." Ann. Murh., vol. 65. pp.
215-223. Mar. 1957.

Kang G. Shin (S'75-M'7&SM'83) received the
B.S. degree in electronics engineering from Seoul
National University. Seoul, Korea. in 1970. and
the M.S. and Ph.D. degrees in electrical engi-
neering from Come11 University. Ithaca, NY, in
1976 and 1978, respectively.
He is a Professor in the Depanment of Electri-

cal Engineering and Computer Science. Univer-
sity of Michigan, Ann Arbor, which he joined in
1982. He has been very active and authored/
coaulhod over 150 technical papers in the areas

of fault-tolerant computing, distributed rcal-timc computing, computer ar-
chitecture, and roboticsand automation. In 1987, he meived the Outstend-
ing Paper Award from the IEEE TRANSACTIONS ON AUTOMATIC CONTROL
for a paper on robot trajectory planning. In 1985. he founded the Real-
Time Computing Laboratoly, where he and his colleagues ace currenily
building a 19-node hexagonal mesh multicomputer, called HARTS, to val-
idate various architectures and analytic results in the area of distributed
real-time computing. From 1970 to 1972 he served io the Korean A m y as
an ROTC officer and from 1972 to 1974 hc was on the research staff of the
Korea Institute of Science and Technology, Scoul, Korea., working on the
design of VHFlUHF communication systems. From 1978 to 1982 he was
an Assistant Professor at Rensselaer Polytechnic Institute, Troy. NY. He
was also a visiting scientist at the U.S. Airiotce Flight Dynamics Labo-
ratory in Summer 1979 and at Bell Laboratories, Holmdel, NI. in Summer
1980. During thc 1988-1989 academic year, he was a Visiting Professor
in the CS Division, Electrical Engineering and Computer Science, UC
Berkeley.

Dr. Shin was the Program Chairman of the 1986 IEEE Real-Time Sys-
tems Symposium (RTSS), the General Chairman of the 1987 RTSS, and
the Guest Editor of t he 1987 August special issue of IEEE TRANSACTIONS
ON COMPUTERS on Real-Time Systems. He is a Distinguished Visitor of the
IEEE Computer Saciety. He is a member of ACM, Sigma Xi, and Phi
Kappa Phi.

h P d U C S a with p8Fai88iOn of copyright wner. Further reproduction prohibited.

1198 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL.. IS. NO. IO. OLTOl3ER IYWY

C. M. Krishna (S'78-M'79) receivcd thc B.Tech.
degree from the Indian Institute of Technology.
Delhi, the M.S. degree from Rensselaer Polytech-
nic Institute, Troy. NY. and thc Ph.D. degree
fmm the Univenily of Michigan. Ann Arbor, all
in electrical engineering.

Since September 1984. he has been on the fac-
ulty of the Depariment of Electrical and Computer
Engineering. University of Msusachusetts. Am-
herst. He was a Visiting Scientist at the IBM
Thorns J. Watson Research Center during the

Summer of 1986. His research interests include distributed systems archi-
tectures and operating systems, real-time systems. reliability mcwleling. and
queueing and scheduling theory.

Yann-Hung Lee (S'81-M'M) rcccived thc B.S.
degree in engineering science and the M.S. degree
in electrical engineering from National Chcng
Kung University in I973 and IY78. rcspcctivcly.
and the Ph.D. degree in computer. information.
and control engineering from thc Univcmity ol'
Michigan. Ann Arbor. in 1984.
From 1984 t o 1988. he was U Research StaR'

Member in the AKhitccturc Design and Analysis
Group at IBM Thomas J. Watson Research Ccn-
ler, Yorktown Heights, NY. Since August 1988,

he has been an Associate Professor in the Department of Computer and
Information Sciences, University of Florida, Gainesville. His research in-
terests include distributed computing. parallel processing, performance
modeling. database managemnt systems, fault-tolerant mmputing, and
VLSI testing.

Dr. Lee is a member of the IEEE Cornputer Society and the Association
for Computing Machinery.

,&.A&

Raprodud uith pamission of copyright 0y-r. Further reproduction prohibited.

