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Optimal Dynamic Control of Resources in a 
Distributed System 

Abstrad-The various advantages of distributed systems can be re- 
allzed unly when their resources are ‘*optimally” (in some sense) con- 
trdled and utilI7~d. For example, distributed systems must he recnn- 
figured dynamically to rope with component failures and workload 
changts. Owing to the inherent dilkulty in formulating and solving 
re~iurce contrd problems, the resnurce control strategies currently 
propoacdlused for distributed systems are largely ad hoc. 

It is  our purpose in this paper to I )  quantitatively formulate the 
problem of controlling resources in a distributed system so as tu opti- 
mize a reward function, and 2) derive optimal control strategies using 
Markov decision theory. The control variables treated here are quite 
generak fnr example, they could be control decisions related to system 
configuration, repair, diagnostics, files, or data. Two algnrithms for 
resource contnfl In distributed systems are derived for time-invariant 
Bnd periodic environments, respectively. A detailed example to dem- 
onstrate the power and usefulness of our approach i s  provided. 

Index Terms-Markov decinhn process. optimization, performabil- 
ity, recnnfigunrtiun, repair, resource control. 

I .  INTRODUCTION 
ECAUSE distributed computer systems are usually B composed of a large number of resources to achieve 

higl performance and reliability and can function (albeit 
sometimes in a degraded condition) in a very wide variety 
of configurations and environments, managing the re- 
sources in such systems is much more difficult than man- 
aging a conventional uniprocessor machine. Such difli- 
culty has led to an undesirable trend: the resource control 
strategies currently proposedlused are largely qualitative 
and ad hoc. We counter this trend with the development 
of a rigorous, systematic method for “optimally” (to be 
defined below) controlling the resources that make up dis- 
tributed systems. That is, we quantitatively formulate a 
resource control problem, for which solution algorithms 
are derived using Mar’:ov decision theory. 

A resource control Jecision is needed whenever there 
i s  a significant change in either the operdting environment 
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or in the system, e.g., component failures and workload 
changes. 

Two parameters characterize the operating environ- 
ment: the reward structure, and the imposed load. The 
former needs some elaboration. The operating environ- 
ment imposes a value on each of the many services it e- 
ceives from the computer. Put more formally, there is a 
reward (which could be negative) which accrues from 
each job execution, and this reward is a function of the 
needs of the application. When the operating environment 
changes, such a change can be quantified by the change 
in the reward structure or failure rates that this causes. 
For example, the reward accruing from a transaction-han- 
dling machine in a bank is different at peak banking hours 
than it is at, say. midnight. Naturally, it would be useful 
to be able to optimally configure or service the system as 
a function of the prevailing application needs. 

Resource control decisions also have to be made when 
the computer changes due to component failures. When, 
for instance, is it appropriate to summon a repairman? 
Which (degraded) configuration should the system switch 
to, prior to repair? Or, consider the problem of allocating 
channel bandwidth optimally to members of a set of to- 
ken-ring networks. Each network has a set of users each 
of which pays a certain amount of money for a given qual- 
ity of service (e.g.. waiting time). Additionally, the sys- 
tem response time is a function of the load offered to the 
system. How does one allocate bandwidth amongst the 
various networks so as to maximize reward (i.e., cus- 
tomer payment)? When systems are simple, such deci- 
sions can be made on the basis of intuition alone. When 
they get complex, unsupported intuition is insufficient, 
and must be supplemented by rigorous methods enabling 
a more precise control. This is especially true when the 
performance of the system is an intricate function of pa- 
rameters which may act at cross purposes to one another. 

As we shall show in Section 11, resource control deci- 
sions can be viewed as semi-Markovian decision pro- 
cesses. The measure of performance used here is based 
on Meyer’s performability [I]. It is one of the most pow- 
erful application-sensitive metrics available today, and 
incorporates both the traditional measures of performance 
(e.g.. throughput) and of reliability. Performability for- 
mally accounts for the requirements of the application by 
defining accotnplishment levels. The vector of probabili- 
ties of meeting the accomplishment levels is performabil- 
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ity. Suppose we identify a reward with each accomplish- 
ment level, Then, the expected reward rate can be 
obtained from the performability of the system. This re- 
ward rate is also defined as reward structure by Furcht- 
gott 121, and as reward function by Donatiello and Iyer 
131, [4]. It is this reward rate that we use to characterize 
the performance of the system. The average reward re- 
ceived over infinite time horizon is used as an optimiza- 
tion criterion for resource control in a distributed com- 
puter system. 

The expected total reward accumulated during a mis- 
sion lifetime, using reward rates as an optimization cri- 
terion, has been studied in [5 ]  for configuring degradable 
and nonrepairable systems. The results suggest that the 
system should perform not only passive reconjguration 
to respond the occurrence of a failure, but also active re- 
configuration during the course of operation to respond to 
changes in the reward or loading structure with a change 
in configuration. The problem is formulated as a dynamic 
programming problem with a finite horizon. It can be sim- 
plified by identifying the relationships between configu- 
rations and switch times (the time instants that the system 
performs active reconfiguration). 

Algorithms from Markov decision theory are applied to 
solve the above resource control problem. Note that, de- 
spite the importance of the resource control problem and 
a voluminous applied statistics literature on decision pro- 
cesses, there is very little in the computing literature on 
using the results of decision theory to control computing 
resources optimally. 

This paper is organized as follows. In Section 11, the 
optimal resource control problem is stated formally. In 
Section 111, we show how to use the strategy improvement 
procedure from decision theory in taking optimal re- 
source control decisions for the case in which the reward 
rate is constant. In Section IV, we turn to the case in which 
the reward rate is periodic: Sections 111 and IV between 
them encompass the majority of fault-tolerant systems. In 
Section V we provide a numerical example. We conclude 
with Section VI. 

11. PROBLEM FORMULATION 

Consider a system which may exist in one of several 
states. A state is a compact description of everything about 
the system that it is relevant to know. At predefined in- 
stants of time, an action or input is applied to it. The sys- 
tem response to that action U is characterized by the ma- 
trix of transition probabilities p i j (  a), i.e., the probability 
of a direct transition from state i to statej under action a. 
Assume that there is a reward that the system generates 
for its owners per unit time; a reward which is clearly a 
function of the system state. Assume also that taking an 
action costs something (zero is a permissible cost). 

Maximizing the net reward per unit time by suitably 
choosing the actions a is one of the most important prob- 
lems of decision theory. We refer the reader to [ 6 ] ,  [7], 
and [8] for an excellent introduction to the subject. In the 

remainder of this section, we formalize and elaborate on 
what we have said above. 

Suppose our computer system has n units of some re- 
source. A unit of resource is defined to be the smallest 
part of the whole system which may fail to operate, and 
which can be repaired, reloaded, or replaced. Examples 
are processors, memory modules, I/O channels, shared 
tables, file units, and data sets. A unit can provide useful 
services when it is fault-free and may become unavailable 
or invalid in the event of failure or loss of control. 

The system state is the aggregation of all states, de- 
noted by +, which is a finite set. The system state at time 
t can be defined as a stochastic process S( 1 ) .  

For a state i E @, the system may be in one of various 
operational modes or may take certain actions. For in- 
stance, the system might choose to reconfigure itself. Let 
Ai be the set of all available actions or operational modes 
when S (  t )  = i ,  and let the system choose action a (  i, t )  
from Ai.  It is easy to see that transitions between system 
states depend upon the current state and the current action 
or operational mode. When the availability/functionality 
of units are uncorrelated and the failure process in each 
unit are Markovian, state transitions will be independent 
of the past states and actions. Thus, the system’s behavior 
at time t can be fully specified by the pair ( S ( t ) .  a(S( r ) ,  
t ) ) ,  where S ( r )  E a, and a ( S ( r ) ,  r )  E Asl,,. 

Let p (i, a ( i  )) be a reward rate associated with the sys- 
tem state i and the action a ( i  ) E A,. This reward rate 
represents what the system can achieve, or may lose, per 
unit time, with the pair ( i .  a ( i  )). In addition, we assume 
that there exists a cost, c ( i ,  a ( i ) ) ,  with the action a ( i )  
taken when the system enters state i. The cost c (  i ,  a ( i  )) 
represents the instantaneous cost (if any) of taking the ac- 
tion a ( i ) .  

A = Uie* Ai is defined to consist of all choices of ac- 
tion or operational mode that the system will take during 
its lifetime. When the choice of action at time t depends 
only on the system’s state at time t ,  the strategy is called 
stationary. In other words, if we take an action or enter a 
particular operational mode when the system enters a new 
state, that action or operational mode will be used until 
the next state transition takes place. Thus the same action 
or operational mode will be used continuously between 
two successive state transitions. A stationary strategy can 
be specified by a set of actions, { a (  i ) l a ( i )  E A,, i = 1,  
2, * * - , n } .  With a given stationary strategy r ,  the action 
taken at time t is denoted by a,( S (  2 ) ) .  Also, we assume 
that, when the system has no units available, the only ac- 
tion that can be chosen is to repair all or part of the sys- 
tem. Thus, under a stationary strategy r, the reward ac- 
cumulated during [0, t) can be expressed as 

Wr.i(t)  = jl P ( s ( ~ ) ,  a r ( ~ ( 7 ) ) )  d7 

- /e* 4A a r m  W )  (2. 

where S(0) = i is the initial state of the system, and kj( 
the number of visits to statej during [0, t). 
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If, instead of being stationary, there is a periodicity to 
the reward, failure, or cost structures, then the system is 
periodic. If, as sometimes happens, cost and failure rates 
have different periods, the least common multiple of these 
determines the system period. If the period is T, then the 
choice of action at time t of a periodic system will depend 
only on the system state at time t and on r - [ t / T ]  T, 
where 1x1 is the maximum integer not exceeding x. 
Clearly, any periodicity in the job arrival process can be 
expressed through the reward function. 

The period of reward. cost, etc., will depend on the 
application in question. For example, the arrival process 
might be diurnal, as in most computing centers. 

The resource control problem arising from this model 
is to determine a strategy ?r* such that the average ex- 
pected reward lim,-.- Wr. . i ( t ) / t  is maximized with re- 
spect to all feasible strategies. This is a common problem: 
for instance, if a two-dyad system were to suffer a pro- 
cessor failure, does it reconfigure into a one-triad system, 
or into a one-dyad, one-simplex system? Another exam- 
ple is choosing the recovery action to be taken when a file 
becomes inaccessible. 

111. OPTIMAL STRATEGY FOR HOMOGENEOUS SYSTEMS 
A system is homogeneous if transition characteristics 

between states, the cost of actions, and the reward rate do 
not change in time. The distribution of the time that the 
system spends in state i before leaving it is independent 
of the time at which the system entered state i. Thus, given 
an arbitrary stationary strategy, the system can be mod- 
eled by a semi-Markov process. Moreover, when + is fi- 
nite, the optimal strategy of a homogeneous system must 
be stationary as shown in [IO]. 

While few-if any-distributed systems exhibit exact 
homogeneity, there are many which are approximately 
homogeneous. Aging of components and a change in the 
reward structure are the most frequent causes of a depar- 
ture from homogeneity. However, in many instances. 
components age, and the reward structure changes so 
slowly that the system can, for all practical purposes, be 
regarded as homogeneous. 

Because we are interested in optimizing the asymptotic 
reward rate, the transient states have no effect on our ob- 
jective and are therefore not considered in this model. 
Also, we limit ourselves to the case where there is only 
one recurrent class in this semi-Markov process. (Recur- 
rence follows from the fact that repair is allowed.) This 
i s  not a limiting factor: even if there are multiple classes, 
each of them can be considered separately. 

Since repair is allowed and the total number of states is 
finite, the expected period between two consecutive visits 
to state i, denoted by 7;, is finite. Under a stationary strat- 
egy, S ( r )  is a regenerative process. Thus, W*. i ( i )  can be 
regarded as a renewal reward process with regenerative 
period T,. It follows that, under the strategy x ,  the aver- 
age expected reward per unit time can be given as 

This equality can be proved easily from the facts that 
E l  ‘I;.] I; and that the strategy is stationary. The opti- 
mal resource control problem in which V , ( i )  is maxi- 
mized then becomes a semi-Markov decision problem. Let 
the optimal strategy be r* such that V + ( i )  = max, 
Vz(i). 

We denote the transition probability from state i to state 
j under action a ( i  ) by pij(a ( i  )), and the mean holding 
time at state i by a (i,  a ( i  )). Then, the mean reward ac- 
crued from the moment the system enters state i until the 
moment the next transition occurs can be’ represented by 
y( i ,  a ( i ) )  p ( i ,  a ( i ) )  a( i ,  a ( i ) )  - c(i, a ( i ) ) .  Ac- 
cording to Theorem 7.6 of (81, the optimal stationary 
strategy can be obtained by the following theorem. 

Theorem 1: If there exists a bounded function h ( i ) ,  i 
= 1.2, * * .  , n,  and a constant g such that 

f 

(3.2) 
then there exists a stationary strategy r* such that g = 
V f ( i )  = max, V , ( i  ). 

Notice that the condition in the above theorem will be 
met automatically when y( i ,  a ( i ) )  is bounded for all i 
and action a(  i ), and all stationary strategies give rise to 
a finite and irreducible state space, despite the fact that 
we do not know g in advance. The optimal strategy can 
be determined by Howard’s strategy improvement pro- 
cedure [6] .  171. In the discussion that follows, we shall 
present an algorithm on the basis of the strategy improve- 
ment procedure that is embedded in the solution of How- 
ard’s equations: 

g a ( i ,  a ( i ) )  + h ( i )  = y ( i ,  a ( i ) )  + ,x p g ( a ( i ) )  h ( j )  

(3-3)  

n 

J ‘ I  

where a ( i  ) e Ai. Equation (4) stems from Theorem 1 .  
It is easy to see from (4) that the functions h ( ) cannot 

be uniquely determined, since [ pi j  ( n  ( i  ))] is a transition 
matrix: the set of equations is dependent. From Theorem 
1, the absolute value of the h (  0 ) ’ s  does not matter in our 
search for the optimal actions: only the relative value 
does. So, we can set one of the h (0)’s to some value, and 
solve for the rest. In the algorithm below, we set h ( n )  = 
0 in step 3 as the most convenient value. 

Algorithm I :  
I )  Select an arbitrary strategy ?r = { a ( i  ) I a(  i ) E Ai ,  

i = I ,  * * 

2 )  Solve (4) to obtain h(i ), i = 1, * - , n - 1 ,  and 
g, under the strategy zr. To do this, set h (n) = 0. 

3) Generate the strategy T‘  as follows. For each i, de- 
termine an action a’( i ) for which h ( i  ) is maximized. That 
is, find a’( i ) to maximize: 

, n } .  

11 

~ ( i .  a ( i ) )  + .X p c ( u ’ ( i ) )  h ( j )  - ga( i ,  uf( i ) ) .  
J = I  
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If more than one action maximizes the function, choose 
the one with the smaller label. ir' consists of these ac- 
tions: ( ~ ' ( l ) ; . .  , a ' ( n ) } . I f s =  d , t h e n r  = r*and 
we can stop, having found an optimal strategy. Other- 
wise, set T = r f  and go to step 2. 

A proof that policy improvement procedures of this kind 
converge is presented, for example, in [SI. The worst- 
case complexity of this algorithm is simply the total num- 
ber of possible strategies: this is because the policy im- 
provement procedure is essentially a contraction m a p  
ping, and so the same nonoptimal strategy is never 
encountered twice. 

1V. SYSTEMS WITH PERIODIC REWARDS 

In this section, we consider the case where the reward 
rate is a periodic function. Suppose that, at time t ,  the 
reward rate associated with state i and the action a ( i  ) is 
p ( 7 ,  i ,  a ( i ) ) ,  where 7 = t - [ t / T ] T .  The period T i s  
obtained from practical considerations: it may be a day, 
a week, or any other period natural to the application. Our 
objective is to find a strategy 

(4.1) z = { u ( i ,  7 ) l i  = 1, 2, * - , n ,  7 E [0, T)] 

such that the average expected reward is maximized. 
For tractability, we assume that the holding time at state 

i under action U ( i  ) is exponentially distributed with mean 
a( i ,  a ( [ ) ) .  Then, the system can be modeled by an 
embedded Markov chain in which the system's state is 
examined every period T. Let the system state at time mT 
be s,. With a strategy r ,  the system will transfer into state 
s,,~ at time ( M + 1 ) T. The sequence { s,,, } is a Markov 
process, and the state transition probability is defined as 
qij( a) = Prob { s,,,+~ = j i s n 1  = i ). Also, denote the re- 
ward accumulated between mTand ( m  + 1 ) T by w(  i, r )  
when s,,, = i. Thus, as in Theorem 1, an optimal strategy 
exists if there exists a bounded function h ( i  ) for i = 1, 
2, * . .  , n, and a constant g such that 

f I1 > 
w ( i ,  r )  + ,x qu(?r) h ( j )  - 81 (4.2) 

J = !  

where g is the maximal reward. 
It is easy to see that these conditions are satisfied in our 

case. Although we do not know g a priori, it is clear from 
the problem definition that it is finite. So is w. 

The policy improvement procedure can also be applied 
to find the optimal strategy, a* in this case. However, for 
each possible r. we need to determine both qij( a) and 
w ( i ,  a). A modified algorithm is presented below, in 
which dynamic programming is used to find qij( a), w ( i .  
T ) ,  and the improved strategy, at each iteration. 

The first step is to discretize the period to make the 
algorithm suitable for digital implementation. Let K be a 
large natural number, 6 = T / K ,  and let a ( i ,  k )  be the 
action applied at the system state i when t E [ mT + k6, 
mT + ( k  + 1)6). We are concerned with the optimal 

strategy 

r * ( K )  = {a& k ) ( i  = 1,2, * * , n,  

k = O , l ; * * . K - l } .  ' 

Also, it is convenient here to regard pu(a( i ,  k)) as the 
probability that the state transition i -+ j occurs in one 
time period of duration 6. 

Algorithm 2; 
1) Select an arbitrary strategy 

T(K) = {a(i, k ) l i  = 1,2, - - 9 n, 
k = 0, 1, . - - , K - 1, a ( &  k) E Ai}. 

2) For each i = 1, 2, - * * , n, calculate q o ( x )  and 
w(  i, r )  by the following equations: 

S i j b )  = 4ij(r, K), (4.3) 

(4.4 1 

where 
I1 

q i j ( . ~ ,  k + 1) = C ~ / j ( a ( l ,  k ) )  4i/(.R, k )  
/ = 0  

K - l  R 

w ( i ,  r )  = C C qij(rR, k) p ( k s , j ,  ~ ( j ,  k ) ) 6  
k = O  j = l  

- c ( 4  k)) (4.5 1 
with qii(r, 0) = 1 and qij(r, 0) = 0 ( j  f 0). C ( a ( j ,  
k)) is the cost of taking action a(  j ,  k). 

3) Calculate h ( i ) as follows: 
fl 

h ( i )  = w ( i ,  r )  + ,E qu(a) h ( j ) .  (4.6) 

4) Foreachi=  1,2 ,  * - - . , n , d e f i n e 6 ( i , K )  = h ( i ) ,  
&(i ,  K )  = 0, and g i i ( K )  = 0 i f j  $ i, g i i ( K )  = 1 oth- 
erwise. Fork = K - 1 to 0, find actions 6( i ,  k) for i = 
1,2, * . '  , n. which maximize 

J = 1  

6( i ,  k) = p ( k 6 ,  i ,  ci(i, k))b 
n 

+ pU(6(i, k)) i( j ,  k + 1 )  (4.7) 
j -  I 

where a ( i ,  k) E Ai.  
S ) L e t a ' ( K ) = { a ( i , k ) l i =  l , . . .  , n , k = 0 , 1 ,  

9 * - , K - 1 }. If rf(  K ) = a( K), then stop the algorithm 
with r = r ' ( K ) .  Otherwise, set r ( K )  = r ' ( K ) ,  w ( i ,  
t )  = &( i ,  0), and qij( +) = .&( i ,  0), and go to step 2. 

In (10). one can set h ( n  ) equal to some positive con- 
stant and solve for the rest of the h ( i  )'S. 

For finite K, this algorithm produces nearly-optimal ac- 
tions and not necessarily optimal ones, since the actions 
take place at specific epochs in the operating interval 
(namely at multiples of 6). It is easy to show, from the 
fundamentals of dynamic programming, that the algo- 
rithm tends to optimal as K --* 00 I IO]. It is trivial to show 
(by contradiction) that if there are two numbers kl and k2. 
with kt  = mkl for some natural number tn > I ,  then the 
algorithm with K = k2 produces a policy which is at least 
as good as that with K = k l .  This nearly optimal issue is 
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less troublesome from a practical standpoint than it first 
appears, since, for example, computers are not expected 
to reconfigure themselves more than a certain number of 
times an hour because of the overhead required for each 
reconfiguration. b can then be chosen appropriately. For 
instance, in the numerical example that follows, we use S 
= 3 minutes. This means that reconfiguration can take 
place up to 20 times an hour: something that should be 
perfectly adequate for the example in question. 

Theorem 2:  Algorithm 2 converges. 
Proofi We exploit the well-known fact that the strat- 

egy-improvement procedure converges for homogeneous 
systems. For every periodic system S,, with Jinite action 
set A,,. transition functions qy ' (  e), and a reward struc- 
ture, we can construct a discrete-time (with time-period 
T) homogeneous s stem Sh with finite action set Ah, tran- 
sition functions q ( e ) ,  and a reward structure, such that 

for every policy i, in the periodic system, there is a 
corresponding action a, E Ah such that qy' (ra)  = 

( h )  

the expected reward per time T of taking action a, 
with S,, in state h is equal to that per period (of length T )  
due to policy rm with S,, in the corresponding state p at 
the beginning of the period. 

Clearly, running the strategy-improvement procedure 
for Sh is equivalent to running it for S,,. Convergence is 
thus established. Q.E.D. 

(x, 

qlj ( G I ,  

. 
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I 

.................................. ...* ............ - ........ " ..... 
i l l 1  

V. EXAMPLE 
Let us consider a fault-tolerant multiprocessor system 

which uses n-modular redundancy, where n = 2 or 3, i.e., 
it can operate either in dyads or in triads. When it operates 
in dyads, it can detect one failure in any dyad, but not 
mask it. As a result, the affected computation must be 
rolled back'or restarted. The cost of this is expressed 
through a penalty function, described in greater detail be- 
low. When the system operates in triads, however, it can 
mask up to one failure per triad by voting. Clearly, roll- 
back or restart is not needed in this case. ' There is a trade- 
off here: if the system is configured in triads, the system 
can sustain failures without having to roll back or restart, 
while if the system is configured in dyads, there will tend 
to be more of them, and as a result, the throughput (when 
there is no failure) can be expected to be greater. 

There is a repairman on call. There is a cost associated 
with summoning the repairman, and a nonzero time taken 
by him to get there. There is also a cost per unit time of 
keeping the repairman at the site. Handling the repairman 
resource also consists of balancing tradeoffs: sending him 
away too early might mean he will have to be called 
back-thus incurring a cost-while keeping him too long 
will also result in the incurral of some cost. 

The state of the system expresses two things: whether 
the repairman is present, absent, or summoned, and how 
many processors are functional. In response to the states 

'We assume that near-simultaneous failure of more than one processor 
in the same triad is vanishingly unlikely. 

i a  16 20 0 4 8 

T h e  01 day 

Fig. 1. Reward function. 
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Cost rate for keoplng repairman 8 rk (Rtpolrnun multlpller) 

Fig. 2. Cost of keeping the repairman. 

are a set of actions, which are decisions to do with the 
repairman (keep him, send him away, or summon him) 
and decisions to do with the configuration (configure in 
triads or in dyads). Naturally, the actions that are avail- 
able depend on the current system state. To take a trivial 
example, the action of summoning the repairman is mean- 
ingless when the repairman is already at hand. 

The action depends on the system state and the reward 
structure. The reward structure in this example is partic- 
ularly simple. The system receives a reward per unit time 
equal to the number of clusters (dyads or triads) function- 
ing, minus any costs incurred due to the action at that 
state. The penalty incurred when a processor in a dyad 
fails is the product of a penalty multiplier and the reward 
rate. Because a triad has the failure-masking capability, 
there is no corresponding penalty for a processor failure 
when processors are configured in triads. 

Processors fail, and are repaired (if the repairman is 
present), according to an exponential distribution with 
mean ~ j - '  and p; ' ,  respectively. More specifically, the 
following symbols will be used for this example. 

p,  repair rate. 
p~ failure rate. 
r k  cost per hour of keeping the repairman. 
r,vx cost per hour of summoning the repairman. 



SHIN cf (11.: DYNAMIC CONTROL OF RESOURCES 

000 

6:OO 

l ime 
01 dcy 

1200 

lam 

24:OO 

I I93 

0 1 2 J 4  5 6 7 8 9 4 0  
I , , , , ,  I 1  1 1  

- - 

col1 
npairmar - 

- 

don'l caU 
wpriwnan 

LOO 

1 inu 
d W  

12:oo 

I&W 
8md 3 

repairman 
awav 

- 

- 

- 

..-- 

With repairman presevt 

No of procraaota 

0 1 2 3 4 5 6 7 0 9 1 1  

h) 
rmd I wpairrnan 

away I 
24:w - 

With repairmon present 

No of p r o c o w s  
0 1 2 3 4  5 6 7 6 9 1 1  

000 1 I , , , , ,  :db ' 

I 

(11 
24.w 

With repoirmon obsent 
(h) 

Fig. 3. Effect of changing r,. r, = 30 000, p, = 0.01. p,  = 1.0, penalty 
multiplier = 300. (a) r, = 1O00. (b) r, = 5000. 

If the repaiman is called at time nS, he arrives at time ( n  
+ 116. 

The reward rates and the repairman costs are periodic 
with a period of 24 hours. They are shown in Figs. 1 and 
2, respectively. The reward rates per processor group 
(dyad or triad) are low until about 7:OO in the morning, 
and then rise to their peak value by 8;OO. This value is 
maintained, with a break of an hour at noon, until 5:OO in 
the evening, after which it declines. This reward rate is 

directly proportional to the job amval rate, and is the 
means by which changes in the arrival rate are accounted 
for. Repairman costs are greatly magnified when he is 
called in after normal business hours. We have set K = 
480, i.e., the day is divided down into 480 3-minute seg- 
ments. 

Numerical results are contained in Figs. 3-7. Fig. 3 
deals with the effect of rk ,  i.e., the cost of having the 
repairman on-site on the optimal action. As expected, the 
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Fig. 4. Effect of failure penalty on configuration r, = IOOO, r, = 30 OOO. 
1,. = 0.01. j i ,  = 1.0. 

system tends to use him less when he is more expensive. 
As rk increases, it becomes better to send the repairman 
away during particularly expensive periods (e.g., during 
the lunch hour or in the evening), and to accept the ad- 
ditional cost r,, of summoning him later. A sample trajec- 
tory is plotted in Fig. 3(b). The system starts the day (030 
hour) with eight processors functional, and the repair- 
man away. At 4:OO AM, a processor fails (point b). Still, 
the repairman is not called until 6:oO AM, when the cost 
of keeping him is sufficiently low. With the repairman 
present, the system is brought up to eight functional pro- 
cessors by about 9:OO AM, (point e) ,  to nine processors 
(pointf) by about 1O:OO AM, and fully functional (point 
g) around 11:OO AM. At this point, the repairman is sent 
away. The sample path for the second half of the day can 
be interpreted in the same way: at night, for example, 

with the reward rate down and the repairman expensive, 
even a bad succession of failures does not prompt the 
summoning of the repairman: not unless there are fewer 
than two processors functional is the repairman sum- 
moned. 

Fig. 4 considers the effect of the penalty of dyadltriad 
failure: as the penalty increases, it shows that the system 
configures itself more and more into triads. When the pen- 
alty is 200, the only triad formed is when there are only 
three processors functional: this is obvious since with just 
that many processors available, there will be as many 
triads as there can be dyads. As the penalty for failure 
increases, triads are preferred more and more, despite the 
reduction in throughput that results. When the penalty is 
300, the system now configures into triads for states 10 
and 20 (nine functional processors) as well. As the pen- 
alty rises to 400, this is the case for 6 and 7 functional 
processors in addition to those mentioned above. Finally, 
when the penalty is 600, the system is always configured 
into triads except when there are not suficient processors 
to make up even one triad. 

The change in penalty of failure also affects how the 
repairman is handled. In Fig. 5 ,  we plot the repairman 
curves for two penalty multipliers: 200 and 500. As one 
might expect, when the failure penalty is large, the re- 
pairman is called sooner and retained longer. 

In Fig. 6 .  we consider the case when the penalty is con- 
stant and not a function of time, and show how the chang- 
ing reward rate affects the optimum configuration. Below 
three functional processors, there is no decision to be 
taken; the system has to work in a dyad. When, for in- 
stance, there are nine processors functioning, the system 
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is configured into triads from midnight to 7: 12 AM, when 
it switches to dyads. It switches back to triads at 12:12 
PM, and back again to dyads at 1:12 PM. Finally, at 5:OO 
PM, when the reward rate begins to drop, the system goes 
back to operating in triads. 

Fig. 7 considers the effect of increasing the cost of sum- 
moning the repainan. The repairman iii now kept for a 
greater number of states when the cost of summoning him 
becomes very great: it is better to pay the cost of keeping 

the repairman under such circumstances. When rss = lo6, 
the repairman is sent away only when all processors are 
functioning, and it is eight o'clock in the evening (the 
time when the reward rate is very small and the cost of 
keeping the repairman is especially large). 

While all these trends are intuitively clear and do not 
need a sophisticated algorithm to determine, the exact ep- 
ochs at which the repairman should be called or sent away, 
and the system configured into triads or dyads, cannot be 
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obtained through intuition alone, and do require an algo- 
rithm such as this one. 

processor systems. In this paper, we have countered this 
trend with the development of a rigorous, quantitative 

VI. DISCUSSION 
method for optimally controlling reiources i n  a distrib- 
uted system. 

Because of its inherent difficulty, the problem of con- 
trolling resources in distributed systems has usually been 
treated in an ad hoc manner. Such a trend could remove 
the various advantages of distributed systems over uni- 

The-resource control problem is  of great practical sig- 
nificance because gracefully degrading systems are being 
used increasingly in such commercial fields as banking 
and travel. In such systems it is possible to estimate run- 
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ning costs, the benefits from having a certain throughput 
at various times of the day, repair costs, etc., much more 
accurately than for the computers used in, say, a univer- 
sity computing center. Another application is in real-time 
embedded systems, such as those which control airliners 
or spacecraft, where the reward rates for various jobs may 
vary with the phase of the mission. A third application is, 
as was mentioned in the Introduction, in local-area net- 
works such as token rings, where one has the problem of 
allocating bandwidth to each of the rings, subject to a 
constraint on the total bandwidth allowed. 
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