A Microprogrammable VLSI Routing Controller for HARTS

J. W. Dolter, P. Ramanathan, and K. G. Shin

Real-Time Computing Laboratory
Department of Electrical Enginecring and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

ABSTRACT

This paper presents the design and implementation of a VLSI routing
controller for use in the Hexagonal Architecture for Real-Time Systems
(HARTS) that is currently being built at the Real-Time Computing Labo-
ratory at The University of Michigan, Ann Arbor. The routing controller
is a microprogrammed unit designed to function as an intelligent front-end
interface for the interconnection network. Unlike other routing controllers
known to date, this routing controller allows for the flexibility to investi-
gate several low-level routing algorithms by downloading the appropriate
microcode into the routing controller.

The design was carried out using the combination of Seattle Silicon Tech-
nology’s silicon compiler and Mentor Graphics® schematic capture and sim-
ulation wols. The implementation is targeted for a 64-pin package using a
1.2 pm CMOS process.

1 INTRODUCTION

This paper presents the VLSI design and implementation of a routing
controller for a distributed computing system based on a hexagonal mesh
architecture (1, 4, 5). This effort is part of a larger research project to design
and implement an experimental distributed real-time system called Hexag-
onal Architecture for Real-Time Systems (HARTS). The ongoing develop-
ment of HARTS has influenced the architecture of the routing controller to
a great extent.

The routing controller will serve as the front-end interface to the hexag-
onal mesh in each node of HARTS. It implements the data link layer and
portions of the network layer of the OSI seven layer model for network
communications. The two primary goals of the routing controller are: @)
to provide support for the timely delivery of messages in HARTS, and (i)
to permit various low-level routing algorithms to be investigated.

The routing controller provides support for routing algorithms that are
based on either packet switching, circuit switching, or virtual circuit cut-
through. The primary routing algorithm being considered for HARTS ex-
ploits the properties of virtual circuit cut-through. In adopting virtual circuit
cut-through, messages do not always get buffered in the intermediate nodes.
Instead, messages arriving at an intermediate node are forwarded to the next
node in the route if a circuit can be established. This approach differs from
conventional circuit switching schemes since messages do not wait for the
entire circuit to the destination to be established before proceeding toward
the destination. If a circuit cannot be established at an intermediate node,
the messages are buffered at that node for later transmission. It can be
shown that by using this approach the mean delivery times for messages
can be considerably reduced.

Other notable work concerning routing controllers is presented in [2, 3, 5].
These efforts have focused on achieving high bandwidth communication for
a specific topology and a specific routing algorithm. In [2, 3], Dally et. al
described an an elegant implementation of a deadlock free routing algorithm
for a k-ary n-cube. In [5], Stevens proposed a VLSI architecture for the

The work presented here has been supported in part by the Office of Naval Research under
Contracts NO0014-85-K—0122 and N00014-85-K~0531, and Grant NOOO14-87-G-0086. Any

" opinions, findings and lusions or dati d in this paper are those of
the authors and do not reflect the view of the ONR.

CH2794-6/89/0000/0160$01.00 © 1989 IEEE

inter-node communication in the FAIM-1 system that is based on a hexag-
onal mesh interconnection topology. But to the best of our knowledge, this
architecture is yet to be implemented. Our work, due to the experimental
nature of HARTS, emphasizes the ability to investigate multiple algorithms
for routing and provide assistance in network testing and diagnosis. Differ-
ent routing algorithms can be implemented by downloading the appropriate
ucode into the routing controller. For example, the routing controller can
support the primary routing algorithm in HARTS, source-directed routing,
routing in k-ary n-cube for n < 3, and other mesh routing algorithms,

The routing controller is composed of six receivers and six transmitters
interconnected through a time-slice bus. The receivers convert serial data
coming from neighboring nodes into parallel form, make routing decisions
and, if possible, relay the messages to the next node. These routing decisions
are made under the control of a microprogram resident in each receiver,

The key features of the routing controller are;

e Provides front-end interface functions in a single chip solution.

o Supports packet switching, circuit switching, and virtual circuit cut-
through.

o Designed using fault-tolerant state machines.

e Incorporates an integrated testing approach.

The implementation was targeted for a 1.2 ym CMOS process result-
ing in a 102,000 transistor die measuring 8.2 mm x 7.0 mm. The de-
sign was carried out using the schematic capture and simulation tools of
Mentor Graphics®, DRACULA™ of ECAD, and the silicon compiler,
CONCORDE™ , from Seattle Silicon.

The rest of this paper is organized as follows. Section 2 describes the
environment for which the routing controller was designed. The internal
architecture is introduced in Section 3. In Section 4 a description of the
physical implementation is presented. The paper concludes with Section 5.

2 Operating Environment

HARTS is an experimental testbed for research in distributed real-time
computing. The primary goal of HARTS is to investigate low-level architec-
tural issues in the design of real-time systems such as message scheduling,
routing, buffering, etc. The dimension of a hexagonal (H-) mesh is defined
as the number of nodes on a peripheral edge of the H-mesh. The current
version of HARTS is a 3-dimensional H-mesh and is comprised of 19 nodes
interconnected in a C-wrapped H-mesh topology, which is formally defined
as follows.

Definition 1: A C-wrapped h I mesh of di e is comprised
of 3e(e — 1) + 1 nodes, labeled from 0 to 3e(e — 1), such that each node s
has six neighbors [s+ 1]acs3e41, [s+3e— sea-3e415 [s+3e—2aca3041,
[s + 3e(e — 1))aca3e41. [5 + 3% ~ 6e + 2]s,2_3.41, and [s 4+ 32 — 6e +
3323041, Where [a]; denotes a mod b.

® Mentor Graphics is a registered trademark of Mentor Graphics Corporation
TMDRACULA is a trademark of ECAD
TMCONCORDE is & trademark of Seatle Silicon Technology Inc.

Figure 1: A hexagonal mesh of dimension 3.

A C-type wrapping has several nice properties as shown in {1]. First,
this wrapping results in a homogeneous network. Consequently, any node
can view itself as the center (labeled as node 0) of the mesh. Second, the
diameter of a H-mesh of dimension e is e — 1. Third, there is a simple,
transparent addressing scheme such that the shortest paths between any two
nodes can be determined by a ©(1) algorithm given the address of the
two nodes. (At each node on a shortest path there are at most two different
neighbors of the node to which the shortest path runs.) Fourth, based on this
addressing scheme it is possible to devise a simple routing algorithm that
can be efficiently implemented in hardware as shown in this paper. Figure 1
illustrates an example of a C-wrapped H-mesh of dimension 3 in which the
gray links on the periphery are connected to the nodes as indicated by the
label of the link.

The C-wrapped H-mesh described above is isomorphic to the intercon-
nection topology presented in [5S]. However, the above formalism allows
routing of messages between all pairs of nodes to be treated uniformly and
does not require any special treatment of the “wrap lines” as was necessary
in [5] when the “axial offset” was between e and 2(e — 1).

The six neighbors of a node in a C-wrapped H-mesh can be thought
of as being in directions dy, dy, ..., ds. To send a message, the source
node calculates the shortest paths to the destination and encodes this routing
information into three integers denoted by mg, m, and m,. These three
integers represent the number of hops from the source node to the destination
node along the do, dy and d, directions, respectively. Before sending the
packet to an appropriate neighbor, intermediate nodes update these values
to indicate the remaining hops in each direction to the destination. Hence,
mg = my = my = 0 indicates that the packet has reached its destination.
This routing scheme and its associated algorithm are currently the primary
routing algorithm being used in HARTS.

For example, the (mo, m;, m,) triple calculated using the algorithm in
[1] for routing a message from node 1 to node 10 is (1, 1, 0) (See Figure 1).
This triple encodes all the shortest paths from node 1 to node 10, i.e., node
10 can be reached by either going from node 1 to node 2 in the dy-direction
and then from node 2 to node 10 in the d,-direction or by first going from
node 1 to node 9 in the d,-direction and then from node 9 to node 10
in the do-direction. Note that in routing this message from the source to
the destination the “wrap” link was used transparently by all nodes in the
message path.

In addition to communicating with the routing controllers of the six neigh-
boring nodes, the routing controller interacts with the network processor’s
buffer management unit (BMU) and interface manager (IM) as shown in

161

utfer Butfer
Meuory ageme:

Subsysten onit

[

Routing
Controller

St

Interface
Manager

[y

Figure 2: Routing controller environment.

\E‘_cn':.’i";‘{f., —'El/
=N

IR SLICE BUS

K)‘@'"
=]

A=

L E—

Buffer

Interface
Manager
unit

Figure 3: Routing controller,

Figure 2.

The BMU serves as an interface to the buffer memory subsystem and
provides the routing controller with six virtual inbound channels for incom-
ing packets and four outbound channels for outgoing packets. (It was found
through both analytical and simulation models that increasing the number
of outbound channels beyond four provided only marginal performance im-
provement.) The IM interacts with the routing controller during system
initialization and monitoring activities.

The communication packets used in HARTS, similar to HDLC, are framed
between a start of packet (SOP) and end of packet (EOP) bytes. Follow-
ing the SOP is a byte indicating the type of packet (e.g., Data, Control,
Broadcast, etc.) and three bytes indicating routing information. The routing
controller imposes no restrictions on the length of the packet.

3 Routing Controller Architecture

The routing controller consists of six microprogrammable receivers, six
transmitters, and an interconnecting time-slice bus (Figure 3). Three pri-
mary goals influenced the architecture of the routing controller. First, the
routing controller was to efficiently support virtual circuit cut-through with
as little impact on the complexity and performance of the network proces-
sor as possible. This feature weighed heavily since the fast delivery of
messages is extremely important in HARTS. Second, in order to preserve
the experimental nature of HARTS the routing controller had to be flexible
enough to allow multiple low level routing algorithms to be investigated.
Last, all six tran$mitter—receiver pairs should eventually fit onto a single
silicon die.

A distributed reservation scheme was used to efficiently implement virtual
circuit cut-through. In this scheme the transmitters are reservable resources.

The users of these resources are the receivers and the BMU of the network
processor. To arbitrate for these resources the time-slice bus provides a
mechanism for receivers and the BMU to reserve/unreserve the transmitters.
Each transmitter independently maintains its own reservation status.

The receivers shift in serial data coming from the neighboring nodes and
convert the data into parallel form. The receivers then identify the routing
information and determine an appropriate route(s) for the packet. If the
packet is to be relayed to a neighboring node, the receivers try to reserve
the corresponding transmitter(s). In the case that the transmitter(s) cannot be
reserved, the receivers pass the packet to the BMU. Each of the components
in the routing controller will be detailed in Section 4.

There were several factors that contributed to the selection of the time-
slice bus as the interconnecting structure between the internal components
of the routing controller and the BMU. First, the number of components
that need to communicate is fixed, and thus the lack of expandability of a
time-slice protocol was not an issue. Second, the bandwidth of a parallel
time-slice bus matched well with the number of devices and the incoming
serial data to the receivers. Last, the time-slice bus was able to support
a reservation scheme that allowed receivers and the BMU to check the
availability and reserve transmitters, thus simplifying the implementation of
virtual circuit cut-through.

The adoption of a microprogrammable architecture over a state machine
approach was necessary in order to satisfy the requirement that the rout-
ing controller be able to support multiple routing algorithms. For exam-
ple, the routing controller can support the primary routing algorithm in
HARTS, source-directed routing, routing in k-ary n-cube for n < 3, and
other mesh routing algorithms. Furthermore, the routing controller can oper-
ate in circuit-switched, packet-switched, and/or a virtual-circuit cut-through
mode, simultaneously. The decision of which delivery mode to use can be
made on a per-message basis by the source node.

At first, the cost of this flexibility appears quite high without providing
any clear benefits. On the contrary, our experience has shown this first
impression to be false. The microprogrammable nature of the routing con-
troller has proved useful not only in supporting multiple routing algorithms
but also in self-test and network testing roles.

4 IMPLEMENTATION

This section describes the internal architecture and implementation details
of the transmitter and receiver modules and the time-slice bus protocol. We
will restrict our discussion to a single transmitter-receiver pair (Ti5, Rji),
where T;; represents the transmitter in node { communicating with node j
and R;; represents the receiver in node j communicating with node i. Data
being transmitted from T;; to Rj; is first filtered through a Data Encoding
Unit (DEU) in node i and then a Data Recovery Unit (DRU) in node j before
being sent to R;;. This filtering was necessary to convey clocking informa-
tion from Tj; to R;; since nodes i and j do not operate synchronously under
the same clock. For example, the sampling clock at R;; can be constructed
from the incoming data stream using a digital phase-locked loop.

Figure 4 shows the resulting layout from this implementation.
4.1 Time-slice Bus Protocol

The time-slice (TS) bus consists of a set of signal lines that can be divided
into five functional groups: clocks(2), address(4), control(4), data(9), and
acknowledgment(1).

The clock group, ¢, and ¢, provide a two phase non-overlapping time-
base used in the generation of the remaining signals on the bus. We define
a minor cycle 1o be from the rising edge of ¢, to the next rising edge of
¢1: A minor cycle is an atomic action on the TS bus.)

The address group can be further divided into bus master and device
address lines. The bus master lines are used to identify and enable the
current master of the TS bus. The device address lines are in turn used
by the current bus master to select slave devices during each minor cycle.
During normal operation the receivers and the outbound channels of the

162

BMU function as bus masters in tandem with the transmitters and inbound
channels of the BMU functioning as slave devices. The bus master lines
cycle through the possible master devices in a round robin fashion giving the
receivers and the outbound channels equal and deterministic access to the
TS bus. This cycle repeats every twelve minor cycles and will be referred
to as a major cycle. The lower three bits of the address lines identify
the addressed slave while the most significant bit conceptually “tees” an
incoming packet to both the BMU and a transmitter simultaneously. This
provides for an efficient implementation of message broadcast in an H-mesh.

The control lines are used to define the action (command) to be taken
during the current minor cycle. The commands can be divided into two
fundamental modes of operation: run mode and download mode. During
download mode, the TS bus is used to initialize the microsequencers in the
receivers. During this operation the IM maintains control of the TS bus.
During run mode, TS bus provides two types of data transfers and sup-
ports the reservation of the transmitters. The commands reservation request
and reservation release provide for an easy and efficient implementation of
virtual circuit cut-through.

4.2 Transmitter

The transmitter T;; performs two major functions. First, T;; maintains
its own reservation status and responds appropriately to the reservation re-
quest and reservation release commands. Second, once T;; is reserved,
T;; converts the parallel data on the TS bus into properly formatted serial
data. These functions are implemented using a PLA for data padding, a
decoder for command/address decoding, a shift register, and a fault-tolerant
controlling state machine.

T;; has two modes of operation: sync mode and packet mode. In sync
mode, T;; transmits a continuous stream of zeros. T;; switches from sync
mode to packet mode when a device has reserved T;; and the first byte of
the packet is transferred to 7;; from the TS bus. Once in packet mode, T;
will transmit either a byte of data if that data was provided in time from
the TS bus or insert a “null” byte into the data stream. The null byte will
be ignored by the receiver R;;. By supporting null byte transmission, the
BMU is relieved of the responsibility of providing a continuous stream of
data during peak loads.

When T;; receives a reservation release command, T;; returns to sync
mode after a “backoff” period. This backoff time is to allow R;j; to finish
processing the current packet. T;; is not reservable during this period.

In addition to the normal reservation request and release commands, 7; 5
also responds to the hold and check commands from the IM. The hold com-
mand guarantees the IM a reservation of T;; at the end of the current packet.
The check command is used by the IM to inquire the stats of a pending
hold command. This allows the IM to obtain a guaranteed reservation that
can be used to transmit time-critical messages.

4.3 Receiver

The receiver is comprised of a Data Detection Unit (DDU), a
microsequencer, a data unit, an eight word FIFO unit, and a TS bus interface.
The DDU shifts in the serial data from a neighboring node and provides the
data to the microsequencer in a parallel form. The data unit consists of an
ALU, an accumulator, and four registers. The microsequencer identifies the
routing information in the incoming packet and determines the appropriate
route for the packet. If the packet is to be relayed to a neighboring node,
the microsequencer attempts to reserve the corresponding transmitter. In
the case that the transmitter is not currently reserved by any other device,
the microsequencer reserves the transmitter and relays the packet through
the TS bus. However, if the transmitter has already been reserved, then the
microsequencer attempts to reserve alternate transmitters that can be used
to deliver the packet. (Note that multiple shortest paths may exist between
a source node and a destination node.) If all the alternate transmitters are
currently reserved, then the microsequencer relays the packet to the BMU.

The order in which the microsequencer attempts to reserve the transmitters
is determined by the microcode. This allows the end user to easily to change

Figure 4: Routing controller layout.

the transmitter reservation policy. Transmitter reservation policies can have
direct impact on the network traffic patterns.

4.3.1 Data Detection Unit

The operation of the DDU in receiver R;; is tightly-coupled to the oper-
ation of T;;. In addition to transforming the incoming serial data, the DDU
also identifies the special bytes, SOP and EOP. The DDU is comprised of a
shift register, a depadding unit, a controlling state machine, and a bit FIFO.

The shift register transforms the incoming serial stream into words. After
reconstructing a word, the depadding unit identifies and removes the padded
zeros from the data as it is transferred to a buffer register in the data unit.
The depadding unit also informs the controlling state machine of the receipt
of SOP and EOP bytes. :

The state machine is used to keep track of the mode of the DDU. The
DDU has three primary modes of operation: sync mode, packet mode, and
recovery mode. The DDU remains in sync mode when no real data is being
received from Tj;. In sync mode all internal modules are passively waiting
for the receipt of a SOP. On detecting a SOP, the DDU enters the packet
mode. In packet mode, the DDU is continuously receiving a stream of data
until an EOP is received. The EOP causes the DDU to return to the sync
mode,

Sync mode and packet mode are sufficient for operation in the absence of
data transmission errors. Errors in either the SOP or the EOP could put the
DDU in an undesirable state. For example, an error in EOP would leave the
DDU in packet mode even after T;; has completed transmitting the entire
packet. To ensure reliable operation in the presence of errors in either SOP
or EOP, the DDU was supplemented with a recovery mode. In recovery
mode, inter-message gaps are detected and used to reset the DDU into sync
mode.

432 Microsequencer

The microsequencer is the source of intelligence of the receiver. It con-
sists of a controlling PLA, a writable control store, a pipeline unit and a
flag unit. ’

The writable control store provides the user with the flexibility of imple-
menting different low-level routing algorithms. This feature was essential
to preserve the experimental nature of HARTS. It is comprised of sixty-
four 16-bit words of memory. It is loaded from the TS bus by using the
download commands.

The instruction set provides a rich set of operations necessary to imple-
ment different low-level routing algorithms. The code size for representative
routing algorithms were found to be sensitive to subtle changes in the in-
struction set implemented. For example, the introduction of asynchronous
event instructions, such as the Wait instruction, resulted in a substantial
reduction in the code size.

The Wait instruction can be used to wait for a particular event. While

163

waiting for an event the user has an option of enabling an exception han-
dler. This option acts as a pseudo-interrupt to the microsequencer while
waiting for an event. The Jump on Condition causes the microsequencer to
jump to the address specified in the instruction when the condition being
tested is true. It provides the user with a decision making capability in the
receiver. The Jump instruction also provides the user with the option of a
link capability. Along with the Return instruction this option can be used
to implement single-level procedure calls.

The rest of the instructions are used to control the flow of data through
the receiver. The ALU instruction can be used to manipulate the routing
information, the Load Constant instruction can be used 1o load immediate
data while the the Transfer instruction can be used to transfer data in the
receiver. The Set Flags instruction provides the user with the capability of
saving state information.

§ CONCLUSION

In this paper we have described a routing controller designed for use in
HARTS. The end result is a single chip solution for interfacing the nodes
of HARTS.

The most important feature of this design is that it supports the experimen-
tal flexiblilty needed to investigate differing low level strategies in network
design. In particular, the routing controller directly supports packet switch-
ing, virtual circuit cut-through, and circuit switching techniques. It also has
ability to investigate multiple low level routing algorithms. It incorporates
an integrated testing approach and provides assistance in network testing
and diagnosis. The above features could not have been achieved using the
traditional hardwired controller approaches.

The design of the routing controller has been carried out in such a fashion
that a single transmitter-receiver pair can be fabricated separately. This will
allow functional verification at a much reduced cost. An implementation
with a single transmitter-receiver pair has been fabricated and is currently
under test.

Acknowledgements

We would like thank Richard B. Brown of The University of Michigan
and Kendall Russell of Seattle Silicon Corp. for their assistance and support
throughout the course of this ongoing project.

References

[1] M.-S. Chen, K. G. Shin, and D. Kandlur, “Addressing, routing and
broadcasting in hexagonal mesh multiprocessors,” To appear in /EEE
Trans. Comput.

[2] W. J. Dally and C. L. Seitz, “The torus routing chip,” J. Distributed
Systems, vol. 1, no. 3, pp. 187-196, 1986.

(3] W. J. Dally and P. Song, “Design of a self-timed VLSI multicomputer
communication controller,” In Proc. IEEE Intl. Conf. Computer Design:
VLSI in Computers, pp. 230-234, 1987.

[4] A. J. Martin, “The torus: An exercise in constructing a processing
surface,” In Proc. Caltech Conf. on VLSI, pp. 527-537, 1981.

[5] K. S. Stevens, “The communication framework for a distributed ensem-
ble architecture,” AI Technical Report 47, Schlumberger Research Lab.,
February 1986.

