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ON RELAXED SQUASHED EMBEDDING OF GRAPHS
INTO A HYPERCUBE*

MING-SYAN CHEN’ AND KANG G. SHINS

Abstract. Task allocation in an n-dimensional hypercube (or an n-cube) multicomputer consists of two
sequential steps: (i) determination of the size of the cube required to accommodate an incoming task
composed of a set of interacting modules, and (ii) allocation of the task to a cube ofthe dimension determined
from (i). Step (i) is usually done manually by the users, which is often difficult and leads to the underutilization
of processors in an n-cube system. The main objective here is to automate step (i). Step (ii) has already
been addressed in [IEEE Trans. Comput., 36 (1987), pp. 1396-1407].

Each incoming task is represented by a graph in which each node denotes a module of the task and
each link represents the need of intermodule communication. Each module must be assigned to a subcube
in such a way that node adjacencies in the associated task graph are preserved. This assignment problem
is called the relaxed squashed (RS) embedding of a graph, and the minimal dimension of a cube required
for a given graph is termed the weak cubical dimension of the graph. Some mathematical properties of the
RS embedding are derived first. In light of these mathematical properties, fast algorithms are developed to
RS embed task graphs. A heuristic function for the A* search algorithm is also derived to determine the
weak cubical dimension of a graph.

Key words, n-cube, loop switching addressing scheme, squashed embedding, weak cubical dimension,
heuristic search

AMS(MOS) subject classifications. 05C10, 06E15, 14E25

1. Introduction. Recently, hypercube multicomputers are beginning to spread
widely in the research and development community as well as in commercial markets
[Cor85], [Sei85], [Va182], [Wi187]. To execute a task in an n-dimensional hypercube
(or n-cube) multicomputer, the task is usually decomposed into a set of interacting
modules that are then assigned to a subcube. Thus, task allocation in an n-cube
multicomputer system consists of two sequential steps: (i) determination of the
dimension of the subcube required to accommodate all the modules of each incoming
task, and (ii) allocation of each task to a subcube of the dimension determined from
(i) in the hypercube multicomputer. As an efficient solution to (ii), we propose a first-fit
linear search for required subcubes whose addresses are represented by the binary
reflected Gray code [CHS87]. Conventionally, (i) is determined manually by the users,
which is often very difficult and results in the underutilization of processors and
degradation of system performance. The automation of step (i) is thus very important
and will be the focus of this paper.

Each incoming task is described by a graph (called task graph), in which each
node denotes a module of the task and each link represents the need of intermodule
communication. We want to determine a subcube in the n-cube system that can
accommodate the incoming task subject to some constraints. Note that different
computing systems and user environments may require different criteria to be used for
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RELAXED SQUASHED EMBEDDING FOR HYPERCUBES 1227

the determination of the subcube size required for each task. Several important results
in various types of embedding have been reported [Fir65], [GAG75], [GrP72], [Har86],
[Har80], [HAM72]. Basically, isomorphic embedding is a node-to-node adjacency-
preserving mapping [GAG75], [HAM72], whereas isometric embedding is a node-to-node
distance-preserving mapping [Fir65]. In homeomorphic embedding, additional nodes
are allowed to be inserted into edges so as to make the graph isomorphically embeddable
into a cube [Har86]. Squashed embedding is a. node-to-subcube distance-preserving
mapping [GrP72].

In this paper, we propose and investigate a new type of embedding, called relaxed
squashed (RS) embedding, a node-to-subcube adjacency-preserving mapping, In other
words, adjacent modules in the task graph are assigned to adjacent subcubes. The
dimension of the minimal cube required for the RS embedding of a given graph will
henceforth be called the weak cubical dimension of the graph. Clearly, the problem of
determining the weak cubical dimension of a task graph is similar to the squashed
embedding problem [BGK72], [GrP71], [GrP72], [Yao78], [Win83] in the sense that
each node in the source graph is mapped into a subcube. But, it differs from the
squashed embedding problem in that only adjacency, rather than internode distance,
must be preserved under the mapping. For example, the embedding from a path P4
into a Q2 in Fig. preserves adjacency, but not distance.

n n 2 n 3 n 4

0 0 0 0

n2 n3

n n4

Q2

FG. 1. A mapping that preserves adjacency but not distance.

From the result of the squashed embedding problem [Win83], we know that every
graph has its weak cubical dimension, although the cubical dimension is defined only
for cubical graphs [Har69]. Similarly to the determination of the cubical dimension
of cubical graphs [KVC85] [CKV87], we shall prove that the problem of determining
the existence of an RS embedding from a graph to a cube of a given dimension is
NP-complete. This proof justifies the need of our heuristic approaches to the RS
embedding problem. Some mathematical properties for the RS embedding problem
will be derived first. Then, using these results, we shall develop (a) fast algorithms for
the RS embedding of a given task graph and (b) a heuristic function for the A* search
algorithm to determine if a graph can be RS embedded into a cube of a given dimension.
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1228 M.-S. CHEN AND K. G. SHIN

By applying this search algorithm for different dimensions repeatedly, we can determine
the weak cubical dimension of a graph.

This paper is organized as follows. The definitions and notation necessary for our
discussion are given in 2 where related topics and results are also reviewed. Section
3 deals with the mathematical properties of the RS embedding. Using these properties,
fast algorithms for the RS embedding are then developed in 4. A heuristic search
algorithm to determine if a graph can be RS embedded into a cube of a given dimension
is proposed. Illustrative examples are presented in 5, and the paper concludes with
6.

2. Preliminaries.
2.1. Notation and definitions. Denote an undirected graph by GA VA, EA), where

VA and Ea are the set of nodes and the set of links in GA, respectively, and use G to
denote the complement of a graph G [Har69]. For two graphs GA =(VA, EA) and
GB VB, E), G is a subgraph of GA if V

_
VA and EB EA. An induced subgraph

of GA with a node set Vs c_ VA is the maximal subgraph of GA with the node set Vs.
An edge in a connected graph is called a bridge if its removal disconnects the

graph. Clearly, the removal of an edge from a tree will result in two trees, called the
attached trees of the edge. The number of nodes in the larger of the two attached
trees of an edge is called the weight of the edge. The centroid edge of a tree is defined
as the edge with the minimal weight. Besides, the graph operations, x (product), U
(union) and + (join) [Har69] will be used to facilitate our presentation. Note that
while the union operation may be applied on two graphs that are not disjoint, the join
operation is applied only on two disjoint graphs. An illustrative example of the above
operations is given in Fig. 2. An n-cube can now be defined as Q, K2 x Q,-1, for all
n-> 1, where K is the complete graph with two nodes and Qo is a trivial graph with
one node.

Let Z be the ternary symbol set {0, 1, ,}, where is the don’t care symbol. Then,
every subcube of an n-cube can be uniquely represented by a sequence of ternary
symbols, called the address of the subcube. Also, let ]q] denote the dimension of the
subcube q. The distance between two subcubes is then defined as follows.

DEFINITION 1. The Hamming distance, H""x"I+, between two subcubes
with addresses a a,a,_ al and/3 b,b,_ b in a Q, is defined as H(a, )
Z" h(ai bi), wherei=1

1 if[a=0andb=l]or[a=landb=0],
h(a, b)

otherwise.

A subcube a a,a,_ a is said to contain another subcube/3 b,b,_ bl,
denoted by/3 c_ c, if and only if all the nodes in/3 belong to a. The notation/3 c c is
used to denote the case when /3 __c_ a and /3 a. The minimal upper subcube of two
subcubes a and /, denoted by lcm (c,/3), is then defined as the smallest subcube
among all those subcubes which contain both a and/3. Similarly, the maximal lower
subcube of two subcubes c and/3, denoted by gcd (a,/3), is the largest subcube among
all those subcubes contained in both a and /3. For notational convenience, we let
gcd (a,/3)= if H(c,/3)-> 1. For example, H(00,1,, 1000,) 2, lcm (,100, 0110)
1,0, and gcd (01,,,,10,) =010,. Also, let D(n) denote the address of the subcube

assigned to module n and B(n) denote the set of nodes adjacent to n in the graph.
For the graph of Fig. 3, we get B(nl) {n2, n3, n4, n6}.

One tree is said to be larger than the other if it contains more nodes.
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RELAXED SQUASHED EMBEDDING FOR HYPERCUBES 1229

Ul

v

u2 v2

GlxG2

(ul,w 2)

(v v w2)

w2

O]+O2

FIG. 2. The product, union, and join operations on graphs.

5 I

n 2 nl

FIG. 3. An example task graph.
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1230 M.-S. CHEN AND K. G. SHIN

2.2. Previous related results. In [GrP71], an interesting addressing scheme for
loop switching networks [Pie72] has been proposed. In this scheme, a loop switching
network is represented by a graph in which nodes and links represent the loops and
the contact points between loops, respectively. The problem is to find an addressing
scheme in which each node is assigned a sequence of ternary symbols to correctly
represent distances between nodes in the graph. More formally, this problem can be
stated as follows. Given a connected graph G with n nodes, find the least integer
N(G) with which it is possible to assign each node v in G an address D(v)E
such that do(v, v2)=H(D(v),D(v2)), for all Vl, v2 V, where d(v, v2) is the
distance between v and v2 in G, and Vc is the set of nodes in G. Naturally, the
following two questions arise. (1) Does there always exist such an addressing scheme
for an arbitrary network G with n nodes? (2) If the answer to (1) is yes, what is the
least number N(G) ofternary symbols that suffices to implement the addressing scheme
for G? This problem was studied for more than a decade [BGK72], [GrPT1], [GrP72],
[Yao78] until an important conjecture N(G) < n-1 was proved in [Win83]. Thus,
questions (1) and (2) have been answered.

As pointed out in [GrP72], this problem is equivalent to the squashed embedding
problem. Embed a task graph into a cube in such a way that each node of the
graph is assigned to a subcube while preserving internode distances. Fig. 4 shows an
example of the squashed embedding, where D(v) 11, D()2) 110, D(D3) 010,
and D(v4) 000.

When task allocation in a hypercube multicomputer is considered, it is more
important to preserve node adjacencies than internode distances, since node adjacencies
are directly related to intermodule communication delays. Based on this observation,
we shall consider the problem of embedding a given task graph into a hypercube in
such a way that each task module must be assigned to a subcube while preserving task
module adjacencies. This problem can be viewed as a relaxed version of the squashed

v 2

v

v3 v4

D(v

011 J
D((1010 D(v2)

D(v
101

000 100

FIG. 4. An example of squashed embedding.
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RELAXED SQUASHED EMBEDDING FOR HYPERCUBES 1231

embedding problem since it preserves node adjacencies instead of internode distances.
(Henceforth it will be called the relaxed squashed (RS) embedding.) Obviously, a graph
can be RS embedded in any cube of size greater than or equal to its weak cubical
dimension. Insofar as system utilization is concerned, however, we want to find a
minimal cube for the RS embedding of each task graph. Several important properties
of the RS embedding problem will be derived in the following section. We shall prove
first that the problem of determining the existence of an RS-embedding for a given
task graph is NP-complete, and then derive some mathematical properties of the RS
embedding. These properties will be applied to develop our heuristic solutions.

3. Mathematical properties of RS-embedding.
THEOREM 1. The problem of determining if a graph can be RS embedded into a

cube of a given dimension is NP-complete.
Proof Suppose k is the dimension of the cube into which a source graph is to be

RS embedded. Consider the instance that the source graph contains 2k nodes. Clearly,
the source graph can be RS embedded into a Qk if and only if it can be isomorphically
embedded into a Qk. However, the problem of determining whether a graph of 2k

nodes can be isomorphically embedded into a Qk has already been proved to be
NP-complete in [CKV87], meaning that the problem of determining whether a graph
of 2k nodes can be RS embedded into a Qk is also NP-complete. This theorem is thus
proved by restriction [GaJ79]. [3

Theorem justifies the need of heuristic solution approaches to the RS embedding
problem. It is necessary to develop some mathematical properties of the RS embedding
problem, on which these heuristic approaches will be based. The following theorem
about the squashed embedding has been proved in [GrP72].

THEOREM 2 [GrP72]. N(K,)= n-1, where K, is a complete graph with n nodes.
Note that when the graph to be embedded is a complete graph, the requirement

of preserving distance is the same as the adjacency requirement. This fact is described
by the following corollary.

COROLLARY 2.1. Let wd (G) be the weak cubical dimension of G. Then, wd (K,)
n-1.

Consider the case when G1 is a subgraph of G2. Clearly, we have less restirction
in the RS embedding of G than that of G2. This leads to the following proposition.

PROPOSITION 1. If G is a subgraph of G2, then wd (G) -< wd (G2).
Since the number of nodes in the n-cube must be greater than or equal to that of

the task graph to be embedded, we have the following corollary.
COROLLARY 2.2. Let G be a graph with n nodes. Then, [log n _-< wd (G)-< n- 1.
Note that Corollary 2.2 provides loose bounds for the weak cubical dimension of

a graph with n nodes.
THEOREM 3. Let G= (V, E) be a connected graph and let Gs (Vs, Es) be a

subgraph of G. Suppose the induced subgraph of G with the node set Vs, denoted by
ind Vs), can be RS embedded into a Qm, and the removal of all edges in Es from G
results in Vsl disjoint graphs, Gi V, Ei), <= <- Vsl. Then, wd (G)_-<
max --<--<1 vl {wd (G)} + m.

Proof Let u, <= <- Vsl k, be the nodes in Gs 71 G. Since ind (Vs) can be RS
embedded into a Qm and Gs

_
ind (Vs), there exists an addressing scheme for the

RS embedding of Gs into the Q,. Let D(ui) denote the address of ui Vs f-I V in
the addressing scheme.

Partition V into k disjoint node sets V/, 1 <- <= k. For =< -< k, let D, (v) denote
the address of v V/for the RS embedding of G into a Qwd(, and let Dk,(v) denote
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1232 M.-S. CHEN AND K. G. SHIN

the kth bit of D,(v). Without loss of generality, we can assume rl
maxl=i=k {ri=wd (Gi)}. Address each node w in G with D(w) according to the
following rules"

(1) For all wE V, encode the first m bits of D(w) with Ds(u).
(2) For all w E V, m + 1 _<- k <- r h- m, if D;(ui) 1 then D(w) D7"(w) else

Dk(w) D"(w). And, let D(w) for ri + m + 1 -< k -< r + m.
This theorem follows from the existence of the above addressing scheme for G, whose
length is max l<-i<=lWsl {wd (Gi)} + m. [3

For an illustrative purpose, consider the example graph in Fig. 5(a). The induced
subgraph of the node set {Ul, u2, u3} is Gs in Fig. 5(b) and can be RS embedded into
a Q2. G, G2, and G in Fig. 5(c) are the resulting graphs after removing the edges
of Gs from G. We have maxl=_3 {wd (G)} 2. By encoding the last two bits of D(ui),
1 _<- -<_ 3, with O’s and ,’s only, inverting some corresponding bits in the address D, (w)
to preserve the adjacency in G, and using D.(u) as the leading portion of the address
of w E V, we get the address of each node in G as shown in Fig. 5(d).

u2

(a) An example graph G.

O 11G G2:

00 10

u

u30 ul
* 01

(b) The encoding of Gs.
u2

0

00 11

(c) The encoding of GI, G2 and G3

000" 001 *u2
1"00u "1 0101

* 01 * 10 0110 0111

(d) The encoding of G.

FIG. 5. An illustrative example for Theorem 3.
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RELAXED SQUASHED EMBEDDING FOR HYPERCUBES 1233

It is important to note that there does not exist any bound tighter than the upper
bound provided in Theorem 3. This can be proved by showing the existence of some
graphs for which the equality relation in Theorem 3 holds. For example, if Gi QR
for l<=i<=lVs and some nonnegative integer p and Gs=Q,, then wd(G)=
wd (Gi)+ m. Furthermore, the above theorem and Proposition 1 lead to the following
corollary.

COROLLARY 3.1. Let Gi, <= i<-_k, be disjoint graphs and G--Uki_l Gi. Then,
wd (G) _-< maxl<__iNk {wd (Gi)} + [log2 k ].

Since every edge in a tree is a bridge, the following corollary, an immediate result
of Theorem 3, can be used to determine a tighter upper bound for the weak cubical
dimension of a tree.

COROLLARY 3.2. Let Cl(T) and c2(T) denote the two attached trees of the centroid
edge of a tree T. Then, wd (T) -<_ max {wd (cl (T)), wd (c2(T)) + 1.

As it will be shown in 4, Corollary 3.2 can be applied to implement a fast
algorithm for the RS embedding of a given tree. In addition, the effects of join and
product operations on the weak cubical dimension of graphs can be described below
by Theorems 4 and 5.

THEOREM 4. wd (G1 + G2) -<- wd (G1) + wd (G2) + 1.

Proof Let D.;(w) denote the address of w G, j 1, 2, before a join operation.
Address each node w in G G1 + G2 according to the following rules:

(1) If w V, then D(w)=O,...,D,(w), which contains wd (Gz) consecutive
’s before D,(w).

(2) If w Vz, then D(w) 1D(w), ,, which contains wd (G) consecutive
’s after D(w).

Clearly, the above addressing scheme, having length wd (G) + wd (G) + 1, not
only preserves the original adjacency in G and G, but also joins every pair of nodes
(b/l, JX2) U, Vl, U2 V

Note that Theorem 4 provides the best upper bound, since there exist some
graphs for which the equality relation in Theorem 4 holds, e.g., wd (Ql+ Q2)-
wd (Q1) +wd (Q2) + 1.

COROLLARY 4.1. Let { V1, V2} be a partition of the node set of a graph GA, i.e.,
V (’1 V2 and VI U V2 VA. Let the induced subgraphs of GA with the node sets V1
and V2 be Gh and G,2, respectively. Then, wd (GA) <= wd (G,) + wd G,2) + 1.

Proof Since GA c_G_ Gh + G2 the inequality wd (GA) <= wd (G, + G) =< wd (G,) +
wd (G12)+ 1 follows from Proposition 1 and Theorem 4.

Let Gia_s denote the induced subgraph of GA with the node set VA--Vs where
Vs
_

VA. Then, we have the following corollary.
COROLLARY 4.2. wd (GA) wd (GIA_s) -t-IVS["
Proof. Let GI be the induced subgraph of GA with Vs. From Corollary 4.1,

wd (GA) <- wd (Gls) -b wd GA_S -+- 1. In addition, we get wd (Gls) [Vs[- from Corol-
lary 2.2, and thus, this corollary follows.

Using Corollaries 4.1 and 4.2, in 4 we shall propose two fast algorithms for the
RS embedding of a given graph. The relationship between the weak cubical dimensions
of several graphs and that of their union can be described by the following corollary.

COROLLARY 4.3. Let G=t_J G. Then, wd (G)=<= wd (Gi)+m-1.
Proof First, prove the inequality wd (G U G2) -<- wd (G) + wd (G2) + 1. Let G.

be the induced subgraph of G2 with the node set V2- V1. Clearly, G U G2 G + G..
Then, the inequality, wd (G t_J G) -< wd (G) + wd (G.) + 1 =< wd (G1) + wd (G2) + 1,
follows from Theorem 4 and Proposition 1. The corollary follows by applying this
inequality repeatedly.
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1234 M.-S. CHEN AND K. G. SHIN

It is interesting to compare Corollary 4.3 with Corollary 3.1 that is applicable to
disjoint graphs only. This result agrees with our intuition, since there are fewer
restrictions in the RS embedding of disjoint graphs. Moreover, we have the following
corollary for the complement of a graph.

COIOLI.ARY 4.4. Let G be a graph with n nodes. Then, wd (G)+wd (G)>-n-2.
Proof Since Kn=GUG, we get n-l=wd(Kn)=wd(GUG)<-wd(G)+

wd (G)+I. [-1

Corollary 4.4 can sometimes be used to determine tighter bounds of the weak
cubical dimension of a graph. For example, Corollary 2.2 offers a loose lower bound
(6) ofwd (Q6), whereas Corollary 4.4 gives a much tighter lower bound (56) ofwd (Q6).

COROLLARY 4.5. Let T be a tree with n nodes. Then, wd (T)<-2 [log2 n ].
Proof Since every tree is a bigraph, there exists an integer rn such that T is

a subgraph of Kn_m,m, where Kp.q is a complete bigraph [Har69]. Without loss
of generality, we can let rn =< n/2. Clearly, [log2 m -<_ [lo52 n/2] [log2 n 1,
and [log2 (n m) -< [log2 n ]. Then, we have wd (T) _-< wd (Kn-r,.,) -<-
[1og2 (n rn) + [log2 rn + -< [-log2 n + [log2 n + 1 2 [log2 n ].

This corollary offers a tighter upper bound of the weak cubical dimension of a
tree. Using Corollary 4.5, a fast RS embedding algorithm for a given tree will be
developed in 4.

THEOREM 5. wd (a 62) -< wd (G) + wd (G2).
Proof For all Ul V, u2e V2, let DG,(u) and DG2(u2) be the addresses of u and

u2 before the product operation. Encode the address of a node (u, u2) in G1 x G2 with
the concatenation of their original addresses, D,(u)D2(uz), whose length is
wd (G1) + wd (G2). Obviously, the adjacency requirement in G1 x G2 is preserved under
the above addressing scheme, and thus the theorem follows.

Note that Theorem 5 also provides the best upper bound. For example, wd (Qr x
Qs) wd (Qr)+ wd (Q,) for positive integers r and s. It can also be verified that the
above addressing schemes are valid for the squashed embedding problem, i.e., N(G x
G2)---N(G)+ N(G). In addition, from the topology of a hypercube, we have the
theorem below.

TWEOREM 6. Let q be an m-dimensional subcube of a Qn, where n >= m. Then, q is

adjacent to at most (n- m)2 subcubes within the Q,.
Proof Without loss of generality, we can let the address of q be 00... 0* "*,

in which there are n-m consecutive O’s followed by m consecutive .’s. Note that the
address of every Q0 adjacent to q must have one 1 and (n rn- 1) O’s in its left n rn
bits. Among all Qo’s adjacent to q, there are 2 different Qo’s with the kth bit equal
to for m+l<-_k<-_n. Thus, q is adjacent to exactly (n-m)2mQo’s.

In what follows, the number (n m)2" will be referred to as the adjacency number
of q, where q is an m-dimensional subcube of a Q,.

COROLLARY 6.1. Let {d} be the degree sequence of a graph CA. If wd (CA) <- m,
then .IV__A 2b <--2m, where for each l<--_i<--I gAI, bg is the least nonnegative integer such
that the adjacency number of Qb di.

Proof From Theorem 6, the dimension of the subcube assigned to a task node n
with degree d cannot be less than b. This corollary follows from the fact that the total
number of nodes in a Q,, assigned to GA must be less than or equal to the total number
of its nodes, 2m. [’]

Since b >- O, <- <--[VAI, we have 21v__31 2b, >=IVAI, meaning that using the knowledge
of degree sequence provides a tighter lower bound than Corollary 2.2. Moreover, the
relationship between the number of edges in a graph and its weak cubical dimension
can be described by the following theorem.
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RELAXED SQUASHED EMBEDDING FOR HYPERCUBES 1235

THEOREM 7. Let rn wd (GA) and k= [log2 (2m/I VAI)J. Then,

IEAI <----&[(2-- Wal) min {(m- k- 1)2 k+, Wal- 1
+ (21VAI- 2 m-k) min {(m k)2k, Wal-

Note that Theorem 7 provides a necessary condition for a task graph with a given
number of edges to be RS embedded into a cube. This condition provides information
useful for the decomposition of a task into (interacting) modules in such a way that
the resulting task graph can be embedded into a cube of a given dimension. In order
to simplify the proof of Theorem 7, first it is necessary to introduce the following two
lemmas.

LEMMA 1. The maximal adjacency number of a subcube in a Q, is 2-, which is
attained by a subcube of dimension n- 1 or n- 2.

Proof Let F(k) (n k)2k. Since dF(k)/dk= 2k[(n k) 1Oge 2-1]>0for0=k -<

n 2, and F(n 1) F(n 2) 2- > F(n) 0, this lemma follows.
2;<2". Then,LEMMA 2. Let ai, l<----i<--r, be nonnegative integers and i--

f(a, a2, ar)=i= (m-ai)2, <-2 -k--r)(m--k--1)2k+l+(2r--2"-k)(m--k)2k,
where k= [log2 (2"/r)].

Proof Let (a*, 02*," ", at*) be the vector that maximizes f(a, a2,..., ar), i.e.,
f*=f(a*,..., a*). From the proof of Lemma 1, we know that g(ai)= (m-a)2; is
a monotonically increasing function in the integer variables a, where 1-< a =< m- 1.

=min {a*} and suppose 2" i=1 2*. 2"--r 20*.Let ap i<=r > 0. Then, i= must be an
integral multiple of 20,*,. This is impossible, since the ap* in the function f can be

2=2" implyingreplaced with ap* + 1, resulting in a larger f-value than f*. Thus, i=
that there exist ap* and a*, p x, such that ap* a* min=<__<r {a*}. We claim that
max<=i<=r{a*}-min<=i<__r{a*}<-l, and then this lemma follows from the fact that
2"-k--r variables among a*’s are k+ and 2r-2"-k variables among a*’s are k.

maxl__<ir {a*}, ap**= a* =.minl=<ir {a*} and suppose ay* ap* _-> 2. Then,Let ay
we have 2*."+2+2=20:-+2a:’-+2+1 and (m-a*y)2*.,+(m-a*p)2,+
(m-a*)2<-(m-a*y+ 1)2.,*-+ (m- ay*+ 1)2-,*-+ (m- ap*- 1)20,+. This leads to a

* and a* in the function f can be replaced by ay*-1contradiction, because ay, ap,
ay* 1, and ap* + 1, respectively, yielding a larger f-value than f*. Therefore, the claim
max __< i<= {a*}-minl__<i__<r {a*} _-< 1 is proved and, thus, this lemma follows.

Proof of Theorem 7. Let a be the dimension of the subcube assigned to a task
2; <2" follows from the capacity constraintnode ni in GA 1 <- <-- VAI r. Then i=l

of a Q". Note that the adjacency number of the subcube assigned to n is (m- a)2i
and the degree of any node in GA <--IWal- 1. This theorem follows from Lemma 2 and
the fact that i= d 2[EAI.

When a graph belongs to some regular families, its weak cubical dimension can
be determired by the theorem below.

THEOREM 8. The weak cubical dimensions of a cycle C", a path P", and a star
can be determined by the following formulas:

(i) wd (C") [log2 m];
(ii) wd (P")= [log m ];
(iii) wd (S")= [loge(m-1)]+l.
Proof Consider (i) first. Clearly, wd (C")_-> [log m] k. From the existence of

Hamiltonian cycles in a Qg, we know that a C" can be RS embedded into a Qk by
embedding 2k--m nodes of the Cm into Ql’S and 2m-2k nodes of the C" into Qo’s,
and thus (i) is proved. Part (ii) follows from (i) immediately.

Consider (iii). Let 6k be a trivial graph with k nodes and no edges. Note that
S"=t5"_1+61 and wd (6k) [log2 k]. Then, we have wd (S")=< [logz (m-1)]+l by
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1236 M.-S. CHEN AND K. G. SHIN

Theorem 4. From Lemma 1, we know that the maximal adjacency number of a subcube
in a Qog2(,,-1)l is 2fg2(m-1)l-l<m--1. Thus, wd(Sm)> [log2(m-1)] and (iii)
follows. []

COROLLARY 8.1. Let mcxd denote a (c d)-dimensional mesh. Then, wd (mcxd)
log2 c + [log2 d ].

Proof. Since a (c d)-dimensional mesh is Pc x Pd, this corollary follows from
Theorem 5 and (ii) of Theorem 8..

Due to its nature of NP-completeness, the weak cubical dimension of a graphis
in general very difficult to characterize. However, as we shall show in the following
section, the mathematical properties derived in this section can play a significant role
in designing efficient algorithms for the RS embedding of a given graph.

4. Algorithms for relaxed squashed embedding. The mathematical properties
derived in 3 are applied to the design of algorithms for the RS embedding. Fast
algorithms of polynomial time complexity that are efficient but may not provide the
minimal cube required for a given task graph are presented first. Then, a heuristic
search algorithm is developed to determine the weak cubical dimension of a graph.

4.1. Fast algorithms for RS-embedding. Since every tree is a bigraph, we have an
efficient addressing scheme for a tree with n nodes as described below.

ALGORITHM AI(T)/*. This algorithm uses the property that every tree T is a
bigraph and determines an efficient addressing scheme for T.,/

Step (1). Choose an arbitrary node in T. Label it with a symbol /.

Step (2). Label with -’s all the nodes adjacent to each node labeled with +. If
every node in T has been labeled with + or then goto Step (4).

Step (3). Label with /’s all the nodes adjacent to each node labeled with -. If
every node in T has been labeled with / or then goto Step (4) else
goto Step (2).

Step (4). Suppose there are j nodes with / and k nodes labeled with -. Then,
encode all the nodes labeled with + with 0,... ,B(+)(i), O<=i<-j 1,
where B<+)(i) is a binary representation of the number with [log2j]
bits, which follows [log2 k] *’s. Also, encode all the nodes labeled with

with 1B-)(i), ,, 0 -< -< k- 1, where B-)(i) is a binary representa-
tion of the number with [log2 k] bits, followed by [log2j] *’s.

By Corollary 4.5, the length of the above addressing scheme must be less than or
equal to 2[log2 n]. (This, in general, is significantly less than n-1 for a large n.)
Although the required length of the addressing scheme used in A1 may be larger than
the weak cubical dimension of the tree, A is favorable in some cases due to its linear
complexity.

Corollary 3.2 suggests the following algorithm that also determines a cube required
to accommodate a tree.

ALGORITHM A2(T)/*. This algorithm determines the dimension of a cube to
accommodate a task tree T.,/

Step (1). If T is a star or a path then determine wd (T) by Theorem 8 and return
wd(T) else compute the weight of each edge and determine the centroid
edge of the tree.

Step (2). Let T1 and T2 be the two attached trees of the centroid edge of T. Return
max {A(T), A2( T2)} + 1.

A2 is recursive and uses the divide-and-conquer technique. We decompose a tree
by removing its centroid edge first, and then continue to decompose the remaining
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RELAXED SQUASHED EMBEDDING FOR HYPERCUBES 1237

trees in the same way until only stars or paths are left, whose weak cubical dimension
can be determined by Theorem 8. An illustrative example for this algorithm can be
found in 5. Note that the complexity of A2 depends on the degree of sophistication
in the way of determining the centroid edge. Nevertheless, it is easy to verify that A2
requires only polynomial time.

Consider the case when the task graph is an arbitrary graph. Clearly, using
Corollary 2.1, we can derive a straightforward algorithm for the RS embedding of each
graph: address any first two nodes with 0... 0 and 0... 01, respectively, each of
which consists of n 1 bits, and then the kth node, 3 <= k <= n, with 0 01, * that
consists of n- k consecutive O’s and k-2 consecutive ,’s. However, despite its linear
complexity, this naive algorithm is not used for a better system utilization. Instead,
we present Algorithm A below that is derived from Corollary 4.2.

ALGORITHM A3(G)/*. Using the technique of node-removing, this is a fast
algorithm to determine the size of the cube required for a given task graph.,/

Step (1). Let n* be the node with the largest degree among all the nodes in G.
If d(n*)<-2 then goto Step (2) else goto Step (3).

Step (2). Determine all the cycles in G, denoted by C, C2, ., C m, and the least
integer p such that 2 p > i=1 2[lg21Cilqq- 2[lgz(lvl-Y"’--’tlC’l)] where IC’l is
the number of nodes in the cycle C i. Return p.

Step (3). Let G1 := G- n* and return A3(G1)+ 1.

Using A3, a graph is reduced by removing the node with the largest degree from
the graph. The reduction steps are performed repeatedly until the graph is reduced to
the extent that it contains only disjoint cycles and paths. By Corollary 4.2, the size
determined in Step (2) plus the total number of nodes removed will be the dimension
of a cube required to accommodate the original task graph. Note that in A2 and A3,
it is required to determine if a graph belongs to some families of graph such as paths,
stars, and cycles. For this purpose, an adjacency matrix [Har69] can be used to represent
each task graph, since these families of graph can be easily identified if they are
represented with adjacency matrices. Moreover, by Corollary 4.1 we can modify Step
(3) of A as follows and get a generalized version of A3, called Algorithm An.

Step (3’). Partition V into V and V2. Let GI, and GI be, respectively, the in-
duced subgraphs of G with the node sets V and V2. Return Aa(Gt)-+-
A4( GI2 "k- 1.

Several heuristic approaches can be employed in determining how to partition
the node set V into V and V2 in Step (3’) of A4. Clearly, a more sophisticated method
will lead to an addressing scheme with a shorter length at the cost of higher computa-
tional costs of A4.

Although the above proposed algorithms are efficient in determining the required
cube for a given graph, the resulting cube may not be minimal. As far as the system
utilization is concerned, we want to find the minimal subcube required for a given
task graph. This is explored in 4.2.

4.2. An algorithm for determining the weak cubical dimension. To determine the
weak cubical dimension of a task graph, first we present an algorithm that determines
whether or not there is an RS embedding from a given task graph into a cube. Then,
the algorithm is applied to determine the weak cubical dimension of the graph. To
facilitate our discussion, we label the task graph as follows. Label the node with the
largest degree with n and let X := {n} and i:= 2. Then, among all the nodes that are
adjacent to any node in X and are not in X, choose a node with the largest degree
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1238 M.-S. CHEN AND K. a. SHaY

and label this node with ni. Then, let X := X U {hi} and i:= i+ 1. Repeat the same
procedure until all nodes are labeled.

Now, we want to assign a subcube within the n-cube to each node in a task graph,
node by node, subject to the adjacency requirement in the RS embedding. Clearly,
this problem is a graph matching problem and can be solved by a state-space search
similar to the one in [ShT85]. In what follows, we shall formulate a heuristic function,
and the A* search algorithm [Nil80] will then be used to determine the existence of
an RS embedding from a given graph into a cube. The following definitions are
necessary to facilitate our presentation.

DEFINITION 2. The merge operation, denoted by @, of two sets of subcubes, U
and U2, is defined as

U @ U2 {1 " lcm (a,/3) for a U and/3 Uz}.

The merge operation among k-2 sets of subcubes is written as @=i=
DEFINITION 3. The exclusion operation of two sets of subcubes, U and U2, is

defined as

U- U2 {rl r U and gcd (t, r)= , V U2}.
DFyxoy 4. The reduced set of a set of subcubes U is defined as

Rd.(U)=U-{rlrUand tcrforsome tU}.

For example, let U {0,,, 0,0, 01,, 001}, U2 {00,, 10,}, and U3 {001}. Then,
Rd (U) {0,0, 01,, 001}, U- U2= {01,}, and U2@ U3 {00,, ,0,}. Recall that B(n)
is the set of all nodes adjacent to n in the task graph Gr. Let M denote the partial
mapping for the task node n, 1 Nj N i. Let A) be the set of unoccupied Q0’s that are
adjacent to D(n) under the partial mapping M. Also, define the set of essential
subcubes of n under the partial mapping M, denoted by as the reduced set of
unoccupied subcubes that are adjacent to the subcubes assigned to all ne B(n),
1 N k N i. For example, suppose that in the graph of Fig. 3, we have D(n)=00,,
O(n2) 010. Then, ..,a() {011,100, 101}, .A().. {110, 011}, and (2)n3 {011, 1,0}. That
is, the subcube to be assigned to n3 should contain either 011 or 1,0 to satisfy the
adjacency requirement. Then, the ] generated under M can be expressed as follows"

(1) e (i) Rd( @ ()) +, A,, D(nj) Vk> i.
niB(nk) j=l
ljNi

From this formula, we can determine the sets of all essential subcubes of unassigned
task nodes Note that F( is determined by A) for all n B(n), and the adjacencyk

requirement, and the term j= D(nj) in equation (1) is necessary to exclude, the
possibility of allocating the already occupied subeubes. Given a partial mapping M,
the set of all possible subeubes that can be assigned to the task node n+ is represented
by

Sp(E()=q there exists tE tq andi+1 i+1
(2)

2 [O(n)l+lql<2n-(IVTI -i-1) D(nj).
j=l

The inequality in equation (2) is to ensure that after the allocation of q to n+,
there is a sufficient number of nodes in the Q to be assigned to the remaining task
nodes. From equation (2) it is easy to see that both (i) more subcubes in E) andi+l

(ii) subcubes of smaller dimensions in E () will allow for more freedom in allocatingi+l
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RELAXED SQUASHED EMBEDDING FOR HYPERCUBES 1239

a required subcube to ni+. This in turn implies that the sets of essential subcubes of
unassigned nodes can be used in determining the heuristic value of the node in the
search tree associated with the partial mapping made thus far.

Suppose that a node p in the search tree corresponds to the allocation of a subcube
q to the task node hi. Then, A(ni, can be determined by the method introduced in the
proof of Theorem 6, and the sets Ai], <= k < i, can be updated from their predecessors
by equation (3) below. They are in turn used to determine E i) k > i, by using equation
(1).
(3) Ai=’-’-{q}.--nk l<k<i.=

Combining all the results and findings discussed thus far, a heuristic function for each
node p in the search tree can be contructed as follows:

(4)
f(P) g(P) + h(p) where g(p)= i2 n,

h(p)= , V(E) and V(E= E,i+1 teE

Note that the heuristic value (or h-value) of a node p is defined so that both more
subcubes in ---nki and subcubes of smaller dimensions in E]., k> i, will result in a
larger h-value of p. Applying the above heuristic function to the A* search algorithm,
we propose the following RS-embedding algorithm.

ALGORITHM RS-embedding (Gr, k)/,. This algorithm determines the existence
of an RS embedding from a task graph G- into a Qk.*/

Step (1). Without loss of generality, let the list OPEN be
{00. 0, 0 0,,. , 0, ,} consisting of k strings of length k-
each. Check the validity of these nodes by using Theorem 6. Compute
equations (1), (3), and (4) for nodes in the list OPEN.

Step (2). If OPEN , report false and exit. Determine the node p with the
maximal f-value from the list OPEN. Remove it from OPEN and put
it into the list CLOSE. If node p is associated with the allocation of the
last node, report true and exit.

Step (3). Determine the successors of p by equation (2). Check the validity of
successors by using Theorem 6, evaluate equations (1), (3), and (4) for
valid nodes, and put these nodes in the list OPEN.

Step (4). Go to Step 2.

According to the formulation of the heuristic function, the h-value of any node
in the search tree must be less than 2n. This means that our heuristic function satisfies
the monotone restriction [Nil80]. In other words, the goal nodes whose distances from
the root node are V-I have the maximal f-value. Thus, if there exist goal nodes in the
search tree, then one of them should be reached in a finite number of steps. Note that
there may be more than one goal node in the search tree. However, we are concerned
only with the existence of such nodes, rather than the number of such nodes in the
search tree.

Using the RS embedding algorithm, we can determine the existence of an RS
embedding of a given graph into a cube. For some graphs whose weak cubical
dimensions are in a narrow range, a linear search algorithm is suggested as follows.
Since an unsuccessful search usually involves more computational costs than a success-
ful one, the linear search algorithm is designed to perform a top-down search for the
weak cubical dimension of a graph. Let ub and lb be, respectively, the upper and
lower bounds of the weak cubical dimension of the graph determined by the mathemati-
cal properties in 3. Using a linear search, the expected number of times to execute
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1240 M.-S. CHEN AND K. G. SHIN

the RS embedding algorithm is (ub- lb+ 1)/2, containing (ub- lb- 1)/2 successful
searches and one unsuccessful search.

On the other hand, the bounds for the weak cubical dimension of some other
graphs may be quite loose, making any linear search algorithm inefficient. For those
graphs, a binary search algorithm is suggested. Then, the expected number of times
used to execute the RS embedding algorithm becomes [log2 (ub-Ib + 1)], in which
successful and unsuccessful searches have the same likelihood of occurrence.

5. Examples. In this section, examples are presented to illustrate the application
of the results developed in 3 and the execution of the algorithms proposed in 4.

Example 1. Consider the example graph G shown in Fig. 6. From Corollary 2.2,
we have [log26]=3-<wd(G)-<6-1=5. Moreover, from Corollary 6.1 we get
wd (G) 3. Let V1 {r/l, n2, ns, n6} and V2 {n3, n4}. Denote the induced subgraph
with the node in V by G.j, j 1, 2. Clearly, G, C4 and G P2. Thus, from Corollary
4.1 we obtain wd (G) -< wd (C4) / wd (P2) + 1 2 + 1 + 1. From the above results, we
get wd (G) 4.

n n2

n 3 n4

n
5

n
6

FIG. 6. An example graph G.

Example 2. Consider the task tree shown in Fig. 7(a). Using A1, we obtained a
labeled tree as shown in Fig. 7(b), and then derived an addressing scheme with the
length [log2 5 + [log2 8 + 1 7. For example, under this addressing scheme the assig-
ned address of ns, the second node labeled with +, is 0010.** and that of ns, the
fourth node labeled with -, is 1,**100.

The application of A2 to the tree in Fig. 7(a) can be described by Fig. 8. The tree
with the weight of each edge specified is given in Fig. 8(a), and the operations of A2
are illustrated by the binary tree in Fig. 8(b). Each internal node in Fig. 8(b) has two
children that are the disjoint trees resulting from the removal of its centroid edge. For
example, T1 and T2 are the two attached trees of the edge (ns, ns), while n8 is in T
and n5 in T2. Using A:, we get A2(T3) 3, A2(T4) 2, A2(Ts) 2, A2(T6) 1, A(T) 4,
A2(T2) 3, and A2(T) 5.

Example 3. Consider the example graph (3 (V, E) of Fig. 3. Again, we have
wd ((3)>= [log2 V]] 3 from Corollary 2.2. In addition, the induced subgraph of G
with the node set {n2, r/3, r/a, r/5, r/6} is P5 whose weak cubical dimension is 3. From
Corollary 4.2, we get 3-< wd (G)-<4. To determine wd ((3), we must apply the RS
embedding algorithm.
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RELAXED SQUASHED EMBEDDING FOR HYPERCUBES 1241

n
10 [ n4 n

n7

n12 n9 n
3

(a) An example tree T.

(b) The labeling of the tree T.

FIG. 7. An example of labeling a tree.

Figure 9 shows the state-space search tree for a Q3 to accommodate the task graph.
Let L denote the list of occupied subcubes. By using the heuristic search algorithm in
4.2, initially we get OPEN {000, 00., 0..}. Note that the allocation (n <--000) and

(nl <-- 0..) will be eliminated by Theorem 6 and equation (2), respectively. Thus, node
A is the only node to be expanded. According to equations (1), (3), and (4), we have
the following:

(1) Node a(n -00,)" a,)= E= E(=/13 E(1)=/14 E(1)=/I {010, 011,100, 101}, E(nl5)=
{010, 011,100, 101,110, 111}, and L= {00.}. g(A) 23, h(A) =4+4+4+4+.6, and
f(A) 30.

(1)Under the allocation M1 (nl <-- 00.), we get Sp (E, )= {010, 011, 101, 100, 01.,
10., .10, .11, 1.0, 1.1} from equation (2). Due to the symmetry, only the computation
for the nodes B, C, and D is shown below.

(2) Node B (n2<-010)" A(2)={011 100, 101}, A(2)= {011 110} 2)=
"/11 /12 /13

---(2) (2)Rd (A//, A/12) {011, 1.0}, E 2)/14 E(2)//6 {011,100, 101}, E 2)//5 {011,110}, and L=
{00., 010}. g(B) 232 16, h(B) 11/2+ 3 + 2 + 3, and f(B) 251/2.

(3) Node C (n2 <-- 01.) Z{2) a(2) , (2)
../1, ={100, 101}, ../12 {110, 111} *-’/13

Rd (A)Q).A2]) ={1.0, 1.1}, E 2) E 2)
//4 /16 ={100, 101}, E) {110,111}, and L=/15

{00., 01.}. g(C) =232= 16, h(C)=1/2+1/2+2+2+2, and f(C) =23.
j. (2)(4) Node D (n2<--*10)

{011 100, 1.1}, E (2) .(2)
,,4 /16 ={101 100,011}, E (2) {100,011 111}, and L= {00., .10}

g(D) 232 16, h(D) 21/2+ 3 + 3 + 3, and f(D) 271/2.
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12p
n nnl0 4

n3 @. 2 .9 n n5

12

n12 n9 n
3

(a) A ee wi e weight of each edge specified.

T

T3 s T--- Ts’--P3 T6"-- P2

(b) The determination of the subcube required for a tree using divide and conquer.

FIG. 8. An application example for Corollary 3.2.

Since node D has the maximal f-value among the three nodes, D is now the next
node to be expanded. Note that under the partial mapping M2 (nl - 00., n2 * 10),
Sp (E(2) {011 100}. Then, using the same procedure the remaining computation forr/3

the heuristic search algorithm is given below.
(5) Node E (n3011) g(E)=233=24, h(E)=1/2+2+2 andf(E)=281/2.
(6) Node F (n3 100): g(F) 233 24, h(F) 1 + 2 + 2 and f(F) 29.
Node F is now the next node to be expanded. Using the same procedure, it is

easy to verify that all the children of nodes F and E can be pruned, and node B
becomes the next node to be expanded, since f(B)>f(C). Thus, M2=(nl00*,
n2+- 010), leading to the following results: f(G) 271/2, f(H) 281/2, and f(I) 281/2.

Now, node H is to be expanded. Continuing the same procedure, we obtain the
following results: f(J)= 34, f(K)= 41, and f(L)=48.

Since the node L is associated with the allocation of the last node, true will be
reported, meaning that an RS embedding of G into Q3 has been found and wd (G) 3.
It is easy to see that the proposed heuristic function plays an important role in guiding
and, thus, speeding up the state-space search. Use of the f-value of a node as an
indication of the likelihood for the node to lead to a successful mapping results in a
significant improvement over a blind search. However, as the size of the task graph
increases, large amounts of computation will be required for the node expansion of
the heuristic search, and the necessity of applying this state search algorithm to every
graph calls for an optimization in some sense. For example, depending on the system’s
objective function, one can strike a compromise between the system utilization and
the computational cost.
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n --- 000 A:n o00* n --0"*

B:n 2o 010 C:n 2o01* D:. n 2o*10

G: H: I:
n
3
o011 n3o*ll n3 ol*0

J" o 101

E: F:

n3o 011 n3 o100

K n5o 110

FIG. 9. Part of the search tree.

6. Discussion and conclusion. We have proposed and investigated a new type of
embedding, called the RS embedding, that was motivated by the problem of allocating
tasks in a hypercube multicomputer. Several mathematical properties for the weak
cubical dimension have been derived that are not only applied to develop fast algorithms
for the RS embedding, but also used to guide the heuristic search for an RS embedding.

The problem studied in this paper can be generalized by considering both the
computation load of each module and the communication load between modules in
a task graph. The task graph can then be represented by a labeled graph. The number
assigned to a node of the graph denotes the dimension of a subcube required for the
corresponding module to perform the computation load of the module. The number
assigned to an edge of the task graph represents the required number of communication
links between the two subcubes assigned to the two task nodes incident to this edge
to provide enough communication capacity between them. Note that two adjacent
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1244 M.-S. CHEN AND K. G. SHIN

subcubes could have different numbers of connecting links. For example, .10. and
00,0 are connected by a link (0100, 0000), and 010. and 00.. are connected by two
links, (0100, 0000) and (0101, 0001). Thus, the constraint treated in this paper is a
special case of the generalized version, since one is assigned to every node and every
edge of the task graph.

Clearly, the inclusion of computation and communication loads of modules
increases the number of constraints to meet, and thus, makes the RS embedding more
realistic but complicated.
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