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Abstract-A closed queueing network model is constructed to 
address workload effects on computer performance for a highly 
reliable unibus multiprocessor used in real-time control. The 
queueing model consists of multiserver nodes and a nonpreemp- 
tive priority queue. Use of this model requires partitioning the 
workload into task classes. The time average steady-state solution 
of the queueing model directly produces useful results that are 
necessary in performance evaluation. 

The model is experimentally justified with the Fault-Tolerant 
Multiprocessor (FTMP) located at the NASA AIRLAB. Exten- 
sive experiments are performed on FTMP with a synthetic 
workload generator (SWG) to directly measure performance 
parameters, such as processor idle time, system bus contention, 
and task processing times. These measurements determine values 
for parameters in the queueing model. Experimental and analytic 
results are then compared. 

Index Terms-Closed queueing network, experimental mea- 
surement, fault-tolerant and real-time systems, performance 
modeling, synthetic workload, task classes, workload. 

I. INTRODUCTION 
ORKLOAD representation is an important factor in the 
study of computer system performance, because system 

performance is directly related to the type of workload 
handled. Based on the level of abstraction, the workload of a 
computing system is the collection of data processing require- 
ments presented to the system during a specified period of 
time. This paper presents the analytic development and 
experimental justification of a model to study workload effects 
on performance for a highly reliable multiprocessor with a 
time-shared (redundant) system bus used in real-time control. 

Despite the growing use and importance of real-time 
systems, their exclusive analysis is an approach that has not 
been largely addressed in the literature relating to the 
evaluation of multiprocessor performance. Usually, a general- 
purpose multiprocessor is discussed, as in [1]-[3]. When 
describing workload effects on performance, this type of 
system becomes unreasonably complex. It appears that signifi- 
cant results can be obtained only if the analysis is narrowed to 
the structure of a real-time system and its workload. 

Manuscript received October 21, 1985; revised May 12, 1987. This work 
was supported in part by NASA Grant 1-296 and NASA Training Grant NGT 
23-005-801. Any opinions, findings, and conclusions or recommendations 
expressed in this paper are those of the authors and do not necessarily 
reflect the view of NASA. 

The authors are with the Real-Time Computing Laboratory, Department of 
Electrical Engineering and Computer Science, The University of Michigan, 
Ann Arbor, MI 48109-2122. 

IEEE Log Number 8716227. 

Most other works deal with a general class of systems, 
rather than an actual system. This introduces an inexactness to 
the analysis and conclusions. Alternatively, we will emphasize 
a specific system, i.e., computers used for real-time control, 
and derive results using both analytic and experimental 
methods. Analytic modeling descriptions will necessarily be 
different than those used for simulation approaches. 

A real-time computer system can be viewed as the combina- 
tion of two dependent components: the controlled process and 
the controlling computer [4]. Thus, the development and 
justification of a performance model for this system should 
rely on the workload being modeled as well as the structure of 
the system handling the workload. Detailed analysis of real- 
time systems is also desired because of their increasing amount 
of critical applications, e.g., aircraft, spacecraft, and nuclear 
reactor control, where controlling computer failure would 
result in catastrophic losses. A failure could be the result of a 
physical malfunction or the system not reacting quickly 
enough. The latter subsumes the former and is termed 
dynamic failure in [4]. 

Many authors have presented synthetic workload designs 
for performance modeling, and usually rely on heuristic 
methods to provide an adequate workload description for a 
general class of computing systems [51-[81. Ferrari [91 has 
emphasized that a more systematic method is necessary, 
because of the fundamental correlation between workload and 
performance modeling. In this paper, a model to represent the 
workload effects on a specific real-time system is proposed 
that is amenable to the type of performance analysis desired 
for real-time applications. 

The problem is not oversimplified by restricting it to a 
particular system. Because the analysis of a general-purpose 
system is necessarily inexplicit, one fails to obtain an in-depth 
understanding of a computer’s operation. Focusing on a 
specific system, we are able to directly address areas relevant 
to that system and derive results that might otherwise be 
overlooked. Also, the architecture and operation of the system 
analyzed is typical of those used in many real-time applica- 
tions. 

The performance model developed is a closed queueing 
network representing the different states of the processors in a 
multiprocessor. It consists of multiserver nodes and a nonpre- 
emptive priority queue. Vital factors can be directly deter- 
mined, such as processor idle time, contention for the single 
bus, and which tasks most significantly effect system perform- 
ance . 
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The structure and use of the dueueing model is justified 
through extensive experiments on the Fault-Tolerant Multipro- 
cessor (FTMP) [lo], [ 111. A synthetic workload generator 
(SWG) is used to create an environment where a real-time 
workload can be readily simulated, and hardware and software 
measurements can be conducted. The results of these measure- 
ments determine values for the parameters in the queueing 
model. The experiments directly measure the performance 
elements mentioned above and demonstrate the practicality of 
the queueing model. We then compare experimentally derived 
performance values with analytic results from the queueing 
model. Other results derived from the experiments, but not 
directly related to the model, are presented for completeness. 

The rest of the paper is organized as follows. In Section I1 
the specific architecture being addressed is elaborated, and the 
basic principles of operation are outlined. In Section III, the 
queueing model is discussed in detail. Analytic results of the 
model are presented in Section IV. Section V explains the 
structure and operation of FTMP and the use of the SWG. The 
experimental results are presented in Section VI, and their use 
to justify the queueing model is discussed in Section VII. The 
paper concludes with Section VIII. 

E. SYSTEM ARCHITECTURE AND OPERATION 
The computer system addressed is a highly reliable unibus 

multiprocessor, typical of those used for critical real-time 
applications. Reliability is attained through redundancy at the 
component level. The general structure of such a system 
consists of four major components: processing clusters, 
input/output links, a time-shared system bus, and system 
memory (see Fig. 1). 

A processing cluster operates on one task at a time and 
consists of one or more pairs of a processing unit and its local 
memory. Component redundancy is considered immaterial to 
the performance of the cluster, but does affect reliability and 
configuration aspects of system operation. It is assumed that 
all clusters are identical, i.e., they are constructed with the 
same elements and contain the same number of processor- 
memory pairs. 

An input/output link enables data transmission between 
the system and external devices, e.g., sensors, actuators, 
displays, terminals, or other similar devices. 

The time-shared system bus is for exchanging all data and 
control signals and interconnects the processing clusters, I/O 
links, and system memory. The bus may be redundant for 
reliability reasons, but only one cluster at a time controls the 
bus. Thus, a redundant system bus logically acts as a unibus. 

Finally, there exists a single system memory, consisting of 
RAM’S, accessible via the system bus. The system memory 
may be redundant with the restriction that only one memory 
location may be addressed at a time. 

The control computer is analyzed at the system level, where 
the elements of concern are the components listed above and 
system tasks. Typically, a real-time system workload is a fixed 
group of tasks that are repeatedly executed at specific 
intervals. There is usually a group of short, frequently initiated 
tasks that monitor internal and external conditions. There are 
also tasks initiated less frequently that require more computa- 
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Fig. 1.  System architecture. 

tion time. Tasks are partitioned into n disjoint sets called task 
classes and stored in system memory. A task class contains 
tasks with similar execution times which are required to 
repeatedly execute at the same frequency. More specifically, 
tasks from task class i are executed every r, seconds. A major 
frame is defined as maxi ri. When a cluster is idle, i.e., 
performing no useful computations, it is considered to be 
executing an “idle task.” This “task” is not corisidered part 
of the system workload. 

The operating principles of this multiprocessor system can 
be described as follows. Each task class is assigned a priority 
to determine which processing cluster may access the system 
bus when there is contention for bus control. A cluster 
executing a task from class i has priority over another cluster, 
if the other cluster is working on a task from class j, where 1 
5 i c j I n. Priority of clusters executing tasks from the 
same task class is determined by a first come first served 
(FCFS) policy. Task queues stored in system memory are kept 
for each task class. 

An idle cluster preparing to prdcess a task from class i must 
first gain bus control by waiting for bus inactivity, and 
proceeding to participate in a polling sequence. A polling 
sequence is a decentralized decision process where each 
cluster transmits its priority number over the system bus and 
individually determines if it has the highest priority. The 
polling sequence concludes with the highest priority cluster 
receiving bus control. (See [lo] for a detailed exanlple.) The 
controlling cluster next reads the task queue for class i and 
determines which task to execlite by selecting the first task in 
the queue not assigned to a cluster. There are other mecha- 
nisms such as counters, queues, and interrupt timers to aid a 
cluster in determining which task class to request. It then reads 
the task code and all data necessary to internally execute the 
task, updates the task queue, and releases the bus. When a 
cluster completes a task, it will again request bus control, 
transmit results to relevant addresses, determine which task 
class to work on next, and proceed as before. To increase 
throughput by having the maximum number of clusters 
executing tasks, an idle cluster is given priority over nonidle 
clusters in obtaining bus control. 
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Fig. 2. Queueing model. 

It should be stressed that while a cluster is internally 
executing a task it does not communicate with any other task 
or cluster. In other words, task communication is only at the 
beginning (for input) and at the end (for output) of execution. 
This operation is typical of real-time applications and is not a 
limitation of this work. 

For a general-purpose computing system’s workload, the 
best number of task classes and distribution of the tasks among 
these classes is difficult to determine [8]. The major problems 
of representing the workload in a general-purpose multipro- 
cessor system model are 1) showing task interdependencies, 2) 
a nonstationary workload, i.e., tasks of one type might occur 
at different rates at different times, 3) the possibly unlimited 
number of tasks, and 4) component contention for concur- 
rently executing tasks. Providing a model capable of repre- 
senting all these features would be extremely difficult, if not 
impossible. Fortunately, when real-time applications on a 
unibus multiprocessor system are considered, these problems 
become relatively easier to address. 

The workload of a real-time system is usually a fixed set of 
tasks to be executed in a prescribed order at regular intervals. 
As a result, the physical and logical interdependencies are 
more tractable. It also implies a stationarity among the relative 
frequencies of different tasks. Therefore, natural task classes 
can be formed and parameterized based on the frequency and 
internal processing requirements of each task. 

III. QUEUEING MODEL DESCIUFTION 

The computer system state is defined by the relative states of 
the processing clusters. Cluster states most relevant to system 
performance are when a cluster is 1) competing in a polling 
sequence, 2) transmitting or waiting to transmit on the system 
bus, 3) processing a task from task class i ,  or 4) idle. Fig. 2 is 
a closed queueing network relating these states. The actions of 
bus contention and the polling sequence are reduced to a single 
nonpreemptive priority queue. In a nonpreemptive priority 
queue, arriving customers move ahead of customers with 
lower priorities and behind those of equal or higher priority. In 

this manner, customers of the highest priority are served first 
on a FCFS basis. When a customer begins service, it is able to 
complete that service regardless of the priority of customers in 
the queue. These actions are exactly those performed by the 
polling sequence and system bus. The different task classes are 
explicitly parameterized by nodes 3 through n + 2. 

Before describing the details of the model, it should be 
clarified that the parameters and node representations of this 
model differ from those of most conventional queueing 
models. Typically, the nodes of a queueing model represent 
servers of sQme type. e.g., processors or workers, and the 
tokens or markings moving about the model represent cus- 
tomers that desire service, e.g., programs or jobs. The model 
described here reverses the conventional meanings of node 
and token. In this model, a node represents a customer that 
needs service, and the associated exponential service rate 
describes the time required to complete that service. The 
tokens on the other hand represent servers, where all the 
servers are identical. Therefore, this model represents servers 
moving from customer to customer and performing the service 
requested by that customer. This is analogous to the concept of 
a ‘‘traveling serviceman. ” This unorthodox representation is 
used because it 1) simplifies the model, and 2) explicitly shows 
the state of each processing cluster. 

It is the goal to determine the time average steady-state 
probabilities for the distribution of clusters among the 
different system states. Each of these probabilities is the long 
run probability averaged over time of an outside observer 
finding the system in a particular state. A favorable feature of 
highly reliable systems is that the time between cluster failures 
is much longer than the time it takes the system to reach steady 
state. Typical values for the mean time between failures 
(MTBF) of computing clusters are on the order of 103-104 h, 
whereas, steady state can be reached in a matter of minutes at 
most. Consequently, it is justifiable to assume that the system 
will reach steady state before a cluster fails. Once steady state 
is reached, a cluster may fail. At that point, the system with 
one less cluster reconfigures. It is reasonable to assume that 
this system will reach steady state before another failure 
occurs. Therefore, in the following analysis, we will assume 
that no cluster fails, and the number of clusters remains 
constant. 

A token in the queueing model represents a single clfister. 
Let m equal the number of homogeneous clusters in the 
system. There are n + 2 nodes, where n is the number of task 
classes. The number of tasks in tqsk class i is denoted by n,. 
Therefore, the maximum number of cluster executing tasks 
from class i is K; = min (m, ni). As mentioned earlier, tasks 
with similar traits are grouped into the same task class. Thus, 
all tasks in a class are assumed to have the same distribution of 
internal processing time. The processing time distribution is 
an exponentially distributed random variable, because execu- 
tion times are usually data dependent and random in nature. 

Each node is described below. 

NODE 1 represents transmission activity and contention of the 
system bus, where transmission activity includes 
system memory and I/O link access time. It consists 
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of a nonpreemptive priority queue and a transmission 
server. A token at this node represents a cluster that 
is either waiting to transmit on the system bus or 
actively transmitting. The parameter ps describes the 
exponential transmission rate of a cluster, i.e., Ups 
is the average transmission duration. 

NODE 2 represents clusters that are idle, performing no useful 
computations. It is a multiserver node with m 
servers. The sojourn time in this state is assumed to 
be exponentially distributed with rate pf. Tokens 
leave the node at a rate of k p f ,  where k is the number 
of tokens being served by the node. 

NODES 3 through n + 2 represent the n different task 
classes. Node i + 2 is a multiserver node with K, 
servers corresponding to the processing activity of 
tasks in task class i .  The parameter p, is the 
processing rate of a task of class i .  Typically, p, 2 pJ 
when i < j. Tokens leave these nodes at a rate of 
kp,, where k is the number of tokens being served by 
the particular node. 

The remaining model parameters are the branch probabili- 
ties. When a cluster completes a transmission, it either drops 
into the idle state or continues processing. Pf ,  the probability 
that the next state is the idle state, is determined by the 
triggering frequency of all tasks and their execution times, and 
is equivalent to the expected proportion of idle time during a 
major frame. A cluster enters the processing state of task class 
i with probability PI,  where Pf + E;= P, = 1. Typically, P, 
1 PJ when i < j. The derivation of the P,'s requires 
information on the number of tasks in each task class and their 
relative frequencies. Task classes with high frequencies or a 
large number of tasks with respect to the other task classes will 
have a higher probability of occurring. 

IV. QUEUEING MODEL SOLUTIONS 
A common method for determining time average steady- 

state probabilities of a queueing model is to convert the model 
to a continuous parameter Markov chain [ 121. The following 
definitions are for the construction of a Markov chain. 

Definition I: A cluster state is a pair (c,, n;), where c, E 
{ 1, 2, - * , m }  labels a particular processing cluster, and n, E 
{ 1 ,  2, - e ,  n + 2) is the node where the token representing 
the cluster is located. There are m(n + 2) cluster states. 

Definition 2: A system state is an m-tuple (sl, s2, - - - , s,) 
E SI x S2 x X S,, where S, is the set of cluster states 
whose first element is c,. There is a maximum of (n + 2)" 
system states. 

A system state example for a system with three clusters and 
three task classes is ((1, l ) ,  (2, 3), (3, 1)). This represents the 
configuration when clusters 1 and 3 are waiting for the system 
bus or currently transmitting, and cluster 2 is processing a task 
from task class 1. 

A system state contains more information than necessary. 
Since the clusters are homogeneous, the number of tokens 
present at a node determines how fast tasks will be completed 
or delayed. This motivates the following definition. 

* 

(al ,  a2, * - , an + 2), where a; E { 0,  1, * ,  m }  is the number 
of tokens at node i .  There are J reduced system states, where J 
is defined below. 

from a system state to a reduced 
system state can be defined as follows: cP(sl, s2, - - a ,  s,) = 

(al ,  a2, - * a ,  an+2), where a; = number of si's ( j  = 1, - a - ,  

m) whose second component is i. Referring to the example 
above, the system state ((1, l) ,  (2, 3), (3, 1)) is represented by 
the reduced system state (2,0,  1 ,0 ,0) .  It should also be noted 
that system states ((1, I), (2,3), (3, 1 ) ) ~  ((1, I), (2, 11, (3,3)),  
and ((1, 3), (2, l) ,  (3, 1)) are all represented by the same 
reduced system state. 

The reduced system states are used as the Markov chain 
states, where state transitions are defined by the relevant 
service rates of each of the nodes in the closed queueing 
network. As stated in [13], a closed queueing model, where all 
the nodes are homogeneous with K customers and N nodes has 
J = (N$"r') states in its Markov chain representation. For 
our model, K = m and N = n + 2. Therefore, the maximum 
number of reduced system states in the closed queueing model 
is J = ("i,":'). The minimum number of reduced system 
statesoccurswhenK;= 1 , i =  1, - - . , n . I n t h i s c a s e , J =  

(;)(m - i + l) ,  where L = min (m, n). Various 
maximum and minimum values when m = 3 are shown in 
Table I. 

From the Markov chain, a J x J transition rate matrix A 
can be formed, whose structure is the coefficient matrix for the 
set of linear equations 

First note that a mapping 

where 

k; = number of tokens at node i ,  
s; = number of servers at node i ,  
p; = service rate at node i, 

rij(kl, k2, - 9  kn+J 

- Prob[ when in state (k,, k2, - , k,+J a token that 
completes service at node i will next enter node j ] .  

Solving the matrix equation A* = 0 determines the time 
average steady-state probabilities for each state in the Markov 
chain, where x = (xI, x2, - - , xJ) r, and xi represents the time 
average steady-state probability of the system being in state i .  

- 

Definition 3: A reduced system state is the (n + 2)-tuple A nontrivial solution results when the probability constraint 
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TABLE I 
NUMBER OF MARKOV CHAIN STATES J FOR THREE CLUSTERS 

Number of Strtea No. of T u k  
Cl lum (n ) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

10 

20 

35 

56 

84 

120 

165 

220 

286 

364 

=q 
102 

140 

::: 1 
M u h u m  number when K, = m, i = l ,  ..., n 
Minimurn number when K, = 1, i = l ,  ..., n. 

E:= xi = 1 is considered. The existence of such a solution is 
guaranteed because we have constructed a finite state, irreduc- 
ible, and recurrent, i.e., ergodic, Markov chain.’ Since a 
token can move from one node to any other node directly or 
through some intermediate nodes, and there exists a nonzero 
probability that a token leaving a node will return to that node, 
the Markov chain is indeed irreducible and recurrent. 

Two useful results can be immediately obtained from the 
steady-state probabilities. The probability that a cluster is idle 
is the sum of the probabilities for each of the Markov chain 
states that represent having one or more clusters at node 2. 
When more than one cluster is at node 1, there is a cluster 
waiting to obtain bus control. Thus, the probability of having 
bus contention is the sum or the probabilities for each of the 
states that represent having more than one cluster at node 1. 
These two results are necessary to produce a performance 
measure of any type. 

A third result is how long a cluster executing a task from 
task class i would have to wait, on the average, if there is 
contention for the system bus. This information is necessary to 
determine the probability of a task meeting its deadline. It is 
shown in [ 141 that the average queueing time for customers of 
priority class i in a nonpreemptive priority queue is 

1 ‘ I  
- XjYJ 
2,=1 W, = 

where 

k = the number of priority classes, 
Aj = the mean arrival rate of a customer of class j ,  
pJ = the mean service rate of a customer of class j, and 
yj = the second moment of the service-time distribution 

for customers of class j .  

The mean queueing time of all customers is W, = Xf= a, W,, 
where a, = X , / X j k = ,  A,. 

To simplify notation, we classify idle clusters as executing 

’ A unique time average steady-state solution exists for this type of Markov 
chain. 

priority class 0 “idle tasks,” since idle clusters are given 
priority to gain bus control over nonidle clusters. Tokens 
requesting service at node 1 are assumed to have the same 
distribution of service time. Therefore, k = n, pi = ps for all 
i ,  and yi = 1/pi for all i .  The average queueing time for a 
cluster working on a task from task class i (note the inclusion 
of priority class 0) now becomes 

x j  

W, is the average queueing time only. The total average 
waiting time of a cluster working on a task of task class i ,  
W y ,  is the sum of the average queueing time and the service 
time, i.e., 

1 

PS 
wy= w,+-. 

Deriving W, requires values for each of the hi’s. Let p(s) 
equal the time average steady-state probability of being in state 
s of the Markov chain and S,, be the set of states representing j 
clusters at node i. The rest of the clusters, if any, may be at 
any of the remaining nodes. Then, A, = P , Z ~ = ~  CsEsIt2,, 

V . EXPERIMENTAL SYSTEM DESCRIPTION 
To illustrate the application of the performance model, 

FTMP is analyzed. FTMP is a real-time multiprocessor with a 
hardware and software structure similar to that assumed for 
the queueing model. With parameter values derived through 
experiments on FTMP, the effects of varying the workload 
structure are illustrated and analyzed. 

FTMP is a highly reliable multiprocessor installed at the 
NASA AIRLAB intended for real-time control of commercial 
aircraft of the next decade. Because disastrous effects could 
occur if this computer should fail while in operation, NASA 
specified the probability of system failure to be less than 
for a 10 h flight. This obviously calls for extremely rigid 
performance criteria. 

The FTMP architecture, from a programmer’s view, 
consists of three triads, system memory, inputloutput !inks, 
system clock, system control registers, and a single time- 
shared system bus [lo]. A triad consists of three pairs of a 
processor and its local memory. Every component of the 
system is redundant and is either an active, standby, or shadow 
component. The three processors in a triad are operating in 
tight synchrony and should receive identical data under fault- 
free conditions. When there is a disagreement, an error is 
considered to have occurred, but masked, and task execution 
continues. The error is recorded in an error latch for later 
identification of the faulty component. The interested reader is 
referred to [lo] for a complete architectural description of 
FTMP. 

The operating workload for FTMP is the Executive Soft- 
ware and Applications Software [ 1 11. Most workload tasks are 
dispatched at regular intervals to handle repetitive applications 
such as flight control, configuration control, fault detection, 

j -p(s). 



WOODBURY AND SHIN: PERFORMANCE MODELING AND MEASUREMENT 219 

recovery, and system displays. Based on the application, 
FTMP developers determined that tasks should be executed at 
three different frequencies. They termed the three rate groups 
R1, R3 ,  and R4 with respective nominal frequencies of 
3.125, 12.5, and 25 Hz. Tasks executing at a particular 
frequency are given priority to access system components over 
tasks initiated at lower frequencies, implying R4 rate group 
tasks have priority for bus access over R3 tasks, etc. 

Extensive experiments were conducted on FTMP with a 
synthetic workload generator (SWG) developed by researchers 
at Carnegie-Mellon University [15]. The SWG provides an 
FTMP experimenter with a variety of workloads. By con- 
structing different synthetic workloads, performance charac- 
teristics of FTMP can be analyzed. An experimenter is able to 
construct a workload consisting of the executive software, 
existing application tasks, i.e., those delivered with FTMP, 
and user-generated synthetic tasks. The executive software 
controls the hardware and software resources. It is responsible 
for presenting the user with a virtual machine such that 
hardware redundancy, redundancy management, and the 
timely execution of application tasks are transparent to the 
user. Therefore, the executive software must be part of all 
synthetic workloads. 

There are four application tasks on the system and up to nine 
synthetic tasks can be added, limited by the availability of 
system memory. The existing application tasks are 1) TIME, 
which updates the register holding the current time, 2) 
DISPLAY, which updates the display terminal indicating the 
status of FTMP, 3) READALL, which reads and interprets the 
fault latches, and 4)  SCC, the system configuration controller. 
During fault-free behavior, none of these tasks are essential 
and may be excluded from the workload. Therefore, a 
workload consisting exclusively of user-generated synthetic 
tasks and the executive software can be constructed. 

All synthetic tasks have the structure shown below. 

TASKi 

are fixed when the workload is constructed. Each task may 
have different parameter values, but the values for a particular 
task remain the same for all iterations. 

This structure is typical of most real-time application tasks, 
where I/O is permitted only at the beginning and end of a task. 
The read and write instructions in the synthetic tasks are 
dummy system operations to fixed external and internal 
addresses. Therefore, no relevant data are transmitted. It is the 
action of the operation that is being characterized. By 
adjusting the parameters Pi, Qi, S;, and Ti,  the I/O require- 
ments of any task can be closely modeled. 

The modeling of the data processing portion of a task (i.e., 
the portion characterized by the parameter R; above) is less 
representative of an actual task. Generally, a specific applica- 
tion task may have different computational requirements each 
time it is invoked, because different inputs place different 
demands on the task. The synthetic task shown above is not 
data dependent. The processing portion consists of executing a 
representative instruction (i.e., the add instruction) R; times. 
Thus, the computation time required is constant for all 
iterations of the task. However, this is an adequate representa- 
tion when a worst case analysis is desired. 

In each synthetic task, system clock values are stored for 
timing analysis. * The time between specific task events can be 
measured. For example, 1) the total task execution time, 2) the 
time between iterations of a task, 3) task switching time, 4) 
task startup time, 5) the time to perform I/O, and 6) the idle 
time of processors. See [15] for the justification of these 
application level measurements and their calibration. 

VI. EXPERIMENTAL RESULTS 
Synthetic workloads were constructed to measure the 

performance of FTMP. With FTMP executing these work- 
loads, hardware and software measurements were made, 
demonstrating that all the parameters of the queueing model 
can be experimentally derived. 

Begin A. ExDerirnental Workloads 
ReaW;, Q;, Ri7 Si, Ti) ;  
Store(Time) ; 
For X = 1 to Pi do 

Store(Time) ; 
For X = 1 to Qi do 

Store(Time) ; 
For X = 1 to Ri do 

Store(Time) ; 
For X = 1 to Si do 

Store(Time) ; 
For X = 1 to Ti do 

Store(Time) ; 

Read External Sensor Data; 

Read Internal Data; 

Process Data (A = B + C);  

Write External Actuator Commands; 

Write Internal Data Results; 

End; 

Two synthetic workloads, consisting of the executive 
software and synthetic tasks only, are used for the experi- 
ments. Synthetic tasks are the only tasks where software 
timing measurements can be made. 

The workloads are outlined in Table 11. The number of tasks 
in each rate group are shown along with the parameter used for 
all tasks in that group. The number of tasks for each group is 
intended to show that higher frequency rate groups usually 
have more tasks to execute. Because a maximum of three 
synthetic tasks can be added to each rate group, this is the most 
variation that can be demonstrated. When constructing the 
workload, all the parameters of a task were set to the same 
value, i.e., Pi = Qi = R; = Si = Ti = Parameter value in the 
table. Making them all equal was an arbitrary choice and does 
not affect the complexity of the problem. We could have 
equivalently chosen values that were all different. 

The parameter values were selected to reflect the relative 

* System clock reads require the same action as memory read. This violates 
our assumption that I/o can only be done at the beginning and end of a task 
and will be taken into account when andyzing the experimental results. 

The Parameters p i 7  Q i 7  Ri7 Si7 and Ti are user-supplied d u e s .  
Even though they are read each time the task is executed, they 
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Exiating System 
Workload 

T A B L E  I1 
SYNTHETIC WORKLOAD PARAMETERS 

Time From Bus 
Req. To Start 
Of Poll (Busy Bus) 

R1 Tasks R3 Tasks 

Workload 1 

Workload 2 80 40 10 

Ave. 48.33 (f0.16) 
Var. 6104.90 
SD. 78.13 

T A B L E  111 
EXPERIMENTALLY DERIVED PROBABILITIES 

Prob. Busy Bus at 

Prob. Succ. First Poll 

Prob. Fail First Poll 

Prob. Succ. Second Poll 

Prob. Fail Second Poll 

0.95 (1789) 0.95 (1805) 0.95 (2794) 

0.05 (1789) 0.05 (1085) 0.05 (2794) 

0.99 (87) 1.0 (86) 1.0 (140) 

0.01 (87) 0.0 (86) 0.0 (140) 

frequencies of the rate groups. For every eight executions of 
an R 4  task, an R1 task is executed once. Therefore, the 
parameters of R 1 tasks are set to eight times the parameters of 
R4 tasks. The R3 tasks are set in a similar manner. These 
values also reflect how lower frequency tasks have longer 
execution times. 

For all experiments and workloads, FTMP was configured 
to have three fault-free triads operating. This is the initial state 
of FTMP and demonstrates the maximum contention for 
system components. 

B. Hardware Measurements 
Using a Tektronics DAS 9100 logic analyzer, hardware 

measurements were made for both synthetic workloads and the 
existing workload. Measurements were performed by sam- 
pling five pin locations within one of the processing regions: 
1) poll request line, 2) idle bus indicator line, 3 )  polling 
sequence transmit line, 4) polling sequence receive line, and 5 )  
the 1 MHz system clock used for polling sequence transmis- 
sion. Results are shown in Tables I11 and IV. The numbers in 
parenthesis after the values in Table I11 are the number of 
samples used to derive the value. For Table IV values, one 
unit is 0.5 ps. The parenthesized numbers in this table, and all 
succeeding tables with timing measurements, is the 99 percent 
confidence interval based on the number of samples taken for 
each entry. This means that with 99 percent confidence, the 
true mean is in the range of the measured mean plus or minus 
the value given. 

The average bus transaction duration is one fifth the time 
between bus requests, but the system bus is busy almost 50 
percent of the time when a bus request is made. This is 
explained by the fact that three triads are operating simultane- 
ously, and there is a variation in both the transaction duration 
and time between requests. Another point of interest concerns 
the probability of succeeding in a second poll, if a triad fails 
the first poll. It was never observed that a triad lost two 

Time Between Bus Ave. 337.47 (f0.06) 336.50 (39.04) 337.67 (M.04) 
Requests Var. 1548.33 746.59 1935.80 

SD. 39.35 27.32 44.00 

Time From Bus Ave. 4.83 (kO.00) 4.57 (M.OO) 4.75 (M.00) I 
Req. To Start Var. 0.56 0.42 I 0.54 
Of Poll (Idle Bus) SD. 0.75 i 0.65 0.74 

(Incl. Poll) 

46.74 (M.15) 
6711.92 
81.93 

58.47 (M.94) 
979.50 
31.30 

57.82 (fo.10) 
3619.77 
60.16 

44.00 (ka.19) 
6562.20 
81.01 

76.75 (i1.07) 
2960.22 
54.41 

62.30 (M.08) 
5184.05 

successive polling sequences, except for one case noted in 
Workload 1. 

C. Software Measurements 
For the purpose of justifying our queueing model, two 

software timing measurements are necessary: triad (processor) 
idle time and task execution time. When a triad becomes idle 
in FTMP, it enters an infinite loop performing null operations. 
The loop is exited by a timer interrupt triggering the beginning 
of a time frame for a rate group. All tasks in a rate group are 
executed exactly once in their respective time frame. The 
major frame for FTMP is 0.32 s, the time frame for the RI 
rate group. 

During a major frame, exactly one iteration of each R1 
task, four iterations of each R3 task, and eight iterations of 
each R 4  task are executed. Because a triad can leave the idle 
state at any time, it is difficult to directly measure the length of 
time a triad is idle. However, this can be measured indirectly. 
The effective length of a major frame is equivalent to the 
length of eight R4 time frames. The beginning of each R4 
time frame is recorded by the first R4 task executed by that 
triad in that frame. Using these clock values, the time when 
each major frame begins and ends can be measured. The triad 
idle time is determined by subtracting the execution times of 
all the tasks executed by that triad during the major frame. 

Using this approach, the idle times of each triad-were 
measured. The results are shown in Table V and Fig. 3 for 
each of the synthetic workloads. One unit is 0.25 ms in Table 
V. There is a significant decrease in idle time, 30.5 percent, 
when a more intensive workload is introduced, as expected. It 
was observed that the variation in idle time is greater for 
Workload 2 ,  because the range of task execution times for this 
workload is greater. 

The second software measurement was the execution times 
of synthetic tasks. FTMP was configured into a single 
operating triad to ensure no contention for the system bus. The 
results of the task execution times are shown in Table VI, 
where task Tn is the synthetic task with parameter n. Again, 
Pi = Qi = Ri = Si = Ti = Parameter value and one unit is 

Obviously, these values cannot be determined for the existing system 
workload. 
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Workload 1 

22 1 

Workload 2 Average 

3.85 (M) 
6.52 (io) 
9.24 (M) 

11.91 (io) 
14.56 (fO) 
17.26 (M) 
19.97 (f0) 
22.68 (M) 
25.34 (M) 
28.05 (M) 

30.75 (io) 
57.71 (M) 

111.41 (M) 
138.34 (M) 
165.24 (M) 

219.04 (fO) 
245.93 (M) 
272.84 (MI 

84.52 (M) 

192.60 (33.02) 

E: 1 1741.53 (34.08) 

SD. 66.57 376.10 

1210.09 (f0.60) 
4431.76 141450.42 Idle Time Of 

A Cluster 

Vuirncc Std.Dev. 

0.13 0.36 
0.25 0.50 
0.18 0.42 
0.08 0.29 
0.25 0.50 

0.19 0 .u  
0.02 0.16 
0.22 0.47 
0.22 0.47 
0.05 0.22 

0.19 0.43 
0.21 0.46 
0.25 0.50 
0.24 0.49 
0.22 0.47 
0.18 0.43 

12.59 3.55 
0.35 0.59 
0.11 0.33 
0.40 0.63 

I 

8 .  

0 :: 

0 

0 '  

VI 

3 

m w 
L O ,  Om 

n 

4 '  

0 

L 

(' 

.. 

L 
1850 

c_ 

I800 

(b) 
Fig.  3. (a) Triad idle time for Workload 1 .  (b) Triad idle t ime for Workload 

2. 

0.25 ms. The consistency of the values, indicated by the low 
variance, demonstrates that the synthetic tasks do have 
constant execution times. The execution time for a task is 
found to be a linear function of the parameters. A linear 
regression analysis on the mean execution times for tasks TO, 

T A B L E  VI 
EXPERIMENTALLY DERIVED SYNTHETIC TASK EXECUTION TIMES 

Task 

TO 
T1 
T2 
T3 
T4 
T5 
T6 
T7 
T8 
T9 

~ 

T10 
T20 
T30 
T40 
T50 
T60 
T70 
T80 
T90 
TlOO 

Parameter 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

T1, * - , T10 produces 

Task Execution Time = 0.67 X Parameter + 0.96 ms. 

Similarly, for tasks TO, T10, - e, TlOO we find 

Task Execution Time = 0.67 x Parameter + 0.97 ms. 

Therefore, we are able to predict the execution times for any 
synthetic task where all the parameters are equal. 

VII. COMPARISON OF ANALYTIC AND EXPERIMENTAL RESULTS 

The architecture and system operation of FTMP is a 
structure that can be modeled by our queueing network. The 
triads in FTMP can be represented as three clusters and each 
of the rate groups as a task class. Task class 1 is rate group 
R4,  because of the relative priorities of the rate groups and 
task classes. Likewise, task class 2 is R 3 ,  and task class 3 is 
R 1. Therefore, in the queueing model representation, there 
are five nodes and three tokens representing clusters, i.e., n = 
3 and rn = 3 .  There is some dependence when tasks from a 
rate group are executed based on the state of tasks in a higher 
priority rate group. However, the model can handle this by 
increasing the number of task classes. For the purpose of 
illustration, these dependencies are assumed to be negligible. 

Both synthetic workloads have three tasks in task class 1, 
two in class 2, and one in class 1. Therefore, there are J = 29 
states in the Markov chain representation of FTMP. These 
states and their respective reduced system states are given in 
Table VII. Experimental values for parameters were deter- 
mined from the measurements described in Section VI and are 
outlined in Table VIII. The values for ps and p I  are the 
inverses of the mean times measured. The experimental values 
for pl,  p2, and p3 have been adjusted, as discussed below. 

In the construction of our queueing model we assumed that 
all the data input for the task was done once at the beginning of 
the task, and output was done once at the end of the task. 
Because the SWG was designed for other types of experi- 
ments, we did not have the luxury of constructing tasks exactly 
of this type. As a result, synthetic tasks had many more I/O 
operations, e.g., task TI had 15 read/write operations and 
task T80 had 252. To compensate for this, the internal data 
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1 

pI  = 2.2968 PI = 0.00015 

p2 = io7760 I ~ p3 = 88362 

TABLE VI1 
MARKOV STATE DESCRIPTIONS AND STEADY-STATE PROBABILITIES 

ps = 34590 

p,  = 84483 

Markov S t a t u  (I Computed Steady State Prob. 

p,  = 3.3055 PI = 0.00015 

I 
p2 = 56035 I p3 = 53879 

Workload 2 State 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
1.1 

15 

- Reduced System State Workload 1 

0.152 
0.286 
0.014 
0.010 
0.002 
0.269 
0.027 
0.019 
0.003 
0.001 
0.001 

0 
0 
0 

0.168 
0.025 
0.017 
0.003 
0.001 
0.002 
0 
0 
0 

0.152 
0.241 
0.045 
0.023 
0.003 
0.190 
0.071 
0.037 
0.005 
0.006 
0.008 
0.001 
0.001 
0.001 

0.099 
0.057 
0.028 
0.004 
0.009 
0.013 
0.002 
0.002 
0.001 

- - O  0.001 1 

I1 0 

TABLE VI11 
EXPERIMENTALLY DERIVED QUEUEING MODEL PARAMETERS 

TABLE IX 
MARKING DEPENDENT BRANCH PROBABILITIES 

(a) Workload 1 Q d a )  

0.72728 
0.72728 
0.64000 
0.82759 
0.75000 
0.72728 
0.64000 
0.82759 
0.75000 
0.47059 
0.76190 

0.96000 
0.85714 

0.e6667 

Q d a  1 
0.24242 
0.24242 
0.32000 
0.13793 
0 . 2 m  
0.24242 
0.32000 
0.13793 
0.25000 
0.47059 
0.19048 
0.33333 

0 
0.14286 

0.03030 
0.03030 
0.04000 
0.03448 

0 
0.03030 
0.04000 
0.03448 

0 
0.05882 
0.04782 

0 
0.04OOO 

0 

10 
11 
12 

l i  
~ :," 

(b) Workload 2 

processing time of a task (i.e., the step parameterized by RJ 
was divided into segments to create tasks with only two I/O 
operations. Since task T1 had 13 more U0 operations than 
modeled, the internal processing time was divided by 13. Task 
T1 had one execution of the step A = B + C to represent the 
internal processing which takes 0.058 ms to e x e c ~ t e . ~  There- 
fore, we use the value (0.058 ms/13)-' for pl  in the analytic 
representation of Workload 1. Similarly we use the value of 
(80.0.058 ms/250)-' for p3 in the representation of Workload 
2. The other task execution rates were similarly adjusted. These 
adjustments account for the low PI value, because we are 
essentially creating more tasks and the chance of a cluster 
moving into an idle state is proportionally reduced. 

The branch probabilities, Pi's, were determined using the 
nominal frequencies for the rate groups expressed earlier and 
the task class sizes (see Table IX). The computed time average 
steady-state probabilities for the states in the Markov chain 
using these parameter values are shown in columns 3 and 4 of 
Table VII. With these values, analytic results can be compared 
to experimentally derived values. 

This value was measured in [15]. 

X 

I 
X 

X 

x r  
X 

X 

X 

X 

f 0.0. 3. 0.0 I II x 

x = Does not apply for this case 

The probability there is an idle cluster is the sum of the time 
average steady-state probabilities for the Markov states where 
there are one or more clusters at Node 2, i.e., states 2 ,6 ,  7, 8, 
9, and 15-23. The analytic values determined for both 
workloads is compared to the experimental values in Table 
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ExpuLnent.1 Analytical 

Workload 1 0.95 0.82 

Workload 1 0.73 0.76 
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DiffeTUlce 

13.7% 

-4.1% I 

Workload 1 

Workbad 1 

(a) Probability of an Idle Cluster 

0.51 0.46 9.8% 

0.48 0.48 4.2% 

Workbad 1 

Workload 1 

(b) Probability of Bus Contention 

ExperinunW Analyticd Difference 

13.422 pen: 12.412 p x  7.5% 

12.532 pen: 10.423 psec 16.8% 

(e) Waiting Time for a F r r  Bus 

X(a), and their percent difference is noted. The difference in 
Workload 1 is attributed to the assumption that the idle time 
was exponentially distributed. As demonstrated by Fig. 3(a), 
the idle time was usually one of three values. Since synthetic 
tasks have a constant execution time and a time frame is 
constant, the idle times become constant. When there was 
more variation in idle times, which is more realistic and was 
observed in Workload 2 [Fig. 3(b)], the analytic results are 
more accurate. 

The probability of bus contention is the sum of the steady- 
state probabilities of states representing more than one cluster 
at Node 1, i.e., states 1-5. The analytic and experimental 
results are compared in Table X@). The difference here is 
attributed to the adjustments necessary in deriving the parame- 
ter values and to the fact that bus transmission times were not 
data dependent. 

Finally, the time for a cluster waiting for a free bus is 
calculated using the expression for W, in Section IV. The 
comparison of results is shown in Table X(c). These calcula- 
tions were heavily dependent on ps and the second moment of 
the service time. The differences are a result of the lack of 
variation in transmission durations. This is a problem of the 
SWG and not the model. 

VIII. CONCLUSION 
A closed queueing network model was presented to study 

the workload effects on performance for a highly reliable 
unibus multiprocessor used in critical real-time applications. 
Through extensive measurements on FTMP, the model was 
shown to be easily solved for a given set of parameters. We 
were able to experimentally justify the performance values 
demonstrated in the model. Despite the differences in the 
analytic and measured values, which have been accounted for, 
the queueing model produces acceptable results that justify its 
use as a tool for performance modeling. 

The number of operating clusters remained constant 
throughout the analysis, because of the assumption that a 

reconfigured system will rwch steady state before another 
cluster fails. The performance of a degraded system will be 
less than that of the previous system. To obtain the overall 
performance of the system operating over a given length of 
time, the performance contributions of each of the configura- 
tions can be combined, weighted by their relative time of 
operation. This analysis is similar to Meyer’s performability 
V61. 

The area that merits further research is determining the task 
partition equivalence relation for defining task classes. Being a 
more restricted problem than the workload characterization of 
a general-purpose computer motivates continued research in 
finding a solution. Once a characterization method is devel- 
oped, the possibility of obtaining an optimal workload 
distribution to provide optimal performance can then be 
considered. 

Ultimately, it would be desirable to be able to determine if a 
real-time multiprocessor system can handle a given workload 
and set of performance criteria. If it can, one would like to 
know how this might be accomplished in the sense of optimal 
performance, workload distribution, and scheduling. The 
model presented here is a device that can aid in solving some 
of these problems. 
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