
2 14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988

Performance Modeling and Measurement of
Real-Time Multiprocessors with

Time-shared Buses
MICHAEL H. WOODBURY, STUDENT MEMBER, IEEE, AND KANG G . SHIN, SENIOR MEMBER, IEEE

Abstract-A closed queueing network model is constructed to
address workload effects on computer performance for a highly
reliable unibus multiprocessor used in real-time control. The
queueing model consists of multiserver nodes and a nonpreemp-
tive priority queue. Use of this model requires partitioning the
workload into task classes. The time average steady-state solution
of the queueing model directly produces useful results that are
necessary in performance evaluation.

The model is experimentally justified with the Fault-Tolerant
Multiprocessor (FTMP) located at the NASA AIRLAB. Exten-
sive experiments are performed on FTMP with a synthetic
workload generator (SWG) to directly measure performance
parameters, such as processor idle time, system bus contention,
and task processing times. These measurements determine values
for parameters in the queueing model. Experimental and analytic
results are then compared.

Index Terms-Closed queueing network, experimental mea-
surement, fault-tolerant and real-time systems, performance
modeling, synthetic workload, task classes, workload.

I. INTRODUCTION
ORKLOAD representation is an important factor in the
study of computer system performance, because system

performance is directly related to the type of workload
handled. Based on the level of abstraction, the workload of a
computing system is the collection of data processing require-
ments presented to the system during a specified period of
time. This paper presents the analytic development and
experimental justification of a model to study workload effects
on performance for a highly reliable multiprocessor with a
time-shared (redundant) system bus used in real-time control.

Despite the growing use and importance of real-time
systems, their exclusive analysis is an approach that has not
been largely addressed in the literature relating to the
evaluation of multiprocessor performance. Usually, a general-
purpose multiprocessor is discussed, as in [1]-[3]. When
describing workload effects on performance, this type of
system becomes unreasonably complex. It appears that signifi-
cant results can be obtained only if the analysis is narrowed to
the structure of a real-time system and its workload.

Manuscript received October 21, 1985; revised May 12, 1987. This work
was supported in part by NASA Grant 1-296 and NASA Training Grant NGT
23-005-801. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily
reflect the view of NASA.

The authors are with the Real-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109-2122.

IEEE Log Number 8716227.

Most other works deal with a general class of systems,
rather than an actual system. This introduces an inexactness to
the analysis and conclusions. Alternatively, we will emphasize
a specific system, i.e., computers used for real-time control,
and derive results using both analytic and experimental
methods. Analytic modeling descriptions will necessarily be
different than those used for simulation approaches.

A real-time computer system can be viewed as the combina-
tion of two dependent components: the controlled process and
the controlling computer [4]. Thus, the development and
justification of a performance model for this system should
rely on the workload being modeled as well as the structure of
the system handling the workload. Detailed analysis of real-
time systems is also desired because of their increasing amount
of critical applications, e.g., aircraft, spacecraft, and nuclear
reactor control, where controlling computer failure would
result in catastrophic losses. A failure could be the result of a
physical malfunction or the system not reacting quickly
enough. The latter subsumes the former and is termed
dynamic failure in [4].

Many authors have presented synthetic workload designs
for performance modeling, and usually rely on heuristic
methods to provide an adequate workload description for a
general class of computing systems [51-[81. Ferrari [91 has
emphasized that a more systematic method is necessary,
because of the fundamental correlation between workload and
performance modeling. In this paper, a model to represent the
workload effects on a specific real-time system is proposed
that is amenable to the type of performance analysis desired
for real-time applications.

The problem is not oversimplified by restricting it to a
particular system. Because the analysis of a general-purpose
system is necessarily inexplicit, one fails to obtain an in-depth
understanding of a computer’s operation. Focusing on a
specific system, we are able to directly address areas relevant
to that system and derive results that might otherwise be
overlooked. Also, the architecture and operation of the system
analyzed is typical of those used in many real-time applica-
tions.

The performance model developed is a closed queueing
network representing the different states of the processors in a
multiprocessor. It consists of multiserver nodes and a nonpre-
emptive priority queue. Vital factors can be directly deter-
mined, such as processor idle time, contention for the single
bus, and which tasks most significantly effect system perform-
ance .

0018-9340/88/0200-0214$01.00 0 1988 IEEE

WOODBURY AND SHIN: PERFORMANCE MODELING AND MEASUREMENT 215

The structure and use of the dueueing model is justified
through extensive experiments on the Fault-Tolerant Multipro-
cessor (FTMP) [lo], [111. A synthetic workload generator
(SWG) is used to create an environment where a real-time
workload can be readily simulated, and hardware and software
measurements can be conducted. The results of these measure-
ments determine values for the parameters in the queueing
model. The experiments directly measure the performance
elements mentioned above and demonstrate the practicality of
the queueing model. We then compare experimentally derived
performance values with analytic results from the queueing
model. Other results derived from the experiments, but not
directly related to the model, are presented for completeness.

The rest of the paper is organized as follows. In Section I1
the specific architecture being addressed is elaborated, and the
basic principles of operation are outlined. In Section III, the
queueing model is discussed in detail. Analytic results of the
model are presented in Section IV. Section V explains the
structure and operation of FTMP and the use of the SWG. The
experimental results are presented in Section VI, and their use
to justify the queueing model is discussed in Section VII. The
paper concludes with Section VIII.

E. SYSTEM ARCHITECTURE AND OPERATION
The computer system addressed is a highly reliable unibus

multiprocessor, typical of those used for critical real-time
applications. Reliability is attained through redundancy at the
component level. The general structure of such a system
consists of four major components: processing clusters,
input/output links, a time-shared system bus, and system
memory (see Fig. 1).

A processing cluster operates on one task at a time and
consists of one or more pairs of a processing unit and its local
memory. Component redundancy is considered immaterial to
the performance of the cluster, but does affect reliability and
configuration aspects of system operation. It is assumed that
all clusters are identical, i.e., they are constructed with the
same elements and contain the same number of processor-
memory pairs.

An input/output link enables data transmission between
the system and external devices, e.g., sensors, actuators,
displays, terminals, or other similar devices.

The time-shared system bus is for exchanging all data and
control signals and interconnects the processing clusters, I/O
links, and system memory. The bus may be redundant for
reliability reasons, but only one cluster at a time controls the
bus. Thus, a redundant system bus logically acts as a unibus.

Finally, there exists a single system memory, consisting of
RAM’S, accessible via the system bus. The system memory
may be redundant with the restriction that only one memory
location may be addressed at a time.

The control computer is analyzed at the system level, where
the elements of concern are the components listed above and
system tasks. Typically, a real-time system workload is a fixed
group of tasks that are repeatedly executed at specific
intervals. There is usually a group of short, frequently initiated
tasks that monitor internal and external conditions. There are
also tasks initiated less frequently that require more computa-

... PC rn

t
c f c

SYSTEM Bus

i
SYSTEM
MEMORY

I

PC Processing Cluster
LM LocalMemory
110 Inpuffoutput Link

Fig. 1. System architecture.

tion time. Tasks are partitioned into n disjoint sets called task
classes and stored in system memory. A task class contains
tasks with similar execution times which are required to
repeatedly execute at the same frequency. More specifically,
tasks from task class i are executed every r, seconds. A major
frame is defined as maxi ri. When a cluster is idle, i.e.,
performing no useful computations, it is considered to be
executing an “idle task.” This “task” is not corisidered part
of the system workload.

The operating principles of this multiprocessor system can
be described as follows. Each task class is assigned a priority
to determine which processing cluster may access the system
bus when there is contention for bus control. A cluster
executing a task from class i has priority over another cluster,
if the other cluster is working on a task from class j, where 1
5 i c j I n. Priority of clusters executing tasks from the
same task class is determined by a first come first served
(FCFS) policy. Task queues stored in system memory are kept
for each task class.

An idle cluster preparing to prdcess a task from class i must
first gain bus control by waiting for bus inactivity, and
proceeding to participate in a polling sequence. A polling
sequence is a decentralized decision process where each
cluster transmits its priority number over the system bus and
individually determines if it has the highest priority. The
polling sequence concludes with the highest priority cluster
receiving bus control. (See [lo] for a detailed exanlple.) The
controlling cluster next reads the task queue for class i and
determines which task to execlite by selecting the first task in
the queue not assigned to a cluster. There are other mecha-
nisms such as counters, queues, and interrupt timers to aid a
cluster in determining which task class to request. It then reads
the task code and all data necessary to internally execute the
task, updates the task queue, and releases the bus. When a
cluster completes a task, it will again request bus control,
transmit results to relevant addresses, determine which task
class to work on next, and proceed as before. To increase
throughput by having the maximum number of clusters
executing tasks, an idle cluster is given priority over nonidle
clusters in obtaining bus control.

216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988

NODE1

PRIORITY
QUEUE

Fig. 2. Queueing model.

It should be stressed that while a cluster is internally
executing a task it does not communicate with any other task
or cluster. In other words, task communication is only at the
beginning (for input) and at the end (for output) of execution.
This operation is typical of real-time applications and is not a
limitation of this work.

For a general-purpose computing system’s workload, the
best number of task classes and distribution of the tasks among
these classes is difficult to determine [8]. The major problems
of representing the workload in a general-purpose multipro-
cessor system model are 1) showing task interdependencies, 2)
a nonstationary workload, i.e., tasks of one type might occur
at different rates at different times, 3) the possibly unlimited
number of tasks, and 4) component contention for concur-
rently executing tasks. Providing a model capable of repre-
senting all these features would be extremely difficult, if not
impossible. Fortunately, when real-time applications on a
unibus multiprocessor system are considered, these problems
become relatively easier to address.

The workload of a real-time system is usually a fixed set of
tasks to be executed in a prescribed order at regular intervals.
As a result, the physical and logical interdependencies are
more tractable. It also implies a stationarity among the relative
frequencies of different tasks. Therefore, natural task classes
can be formed and parameterized based on the frequency and
internal processing requirements of each task.

III. QUEUEING MODEL DESCIUFTION

The computer system state is defined by the relative states of
the processing clusters. Cluster states most relevant to system
performance are when a cluster is 1) competing in a polling
sequence, 2) transmitting or waiting to transmit on the system
bus, 3) processing a task from task class i , or 4) idle. Fig. 2 is
a closed queueing network relating these states. The actions of
bus contention and the polling sequence are reduced to a single
nonpreemptive priority queue. In a nonpreemptive priority
queue, arriving customers move ahead of customers with
lower priorities and behind those of equal or higher priority. In

this manner, customers of the highest priority are served first
on a FCFS basis. When a customer begins service, it is able to
complete that service regardless of the priority of customers in
the queue. These actions are exactly those performed by the
polling sequence and system bus. The different task classes are
explicitly parameterized by nodes 3 through n + 2.

Before describing the details of the model, it should be
clarified that the parameters and node representations of this
model differ from those of most conventional queueing
models. Typically, the nodes of a queueing model represent
servers of sQme type. e.g., processors or workers, and the
tokens or markings moving about the model represent cus-
tomers that desire service, e.g., programs or jobs. The model
described here reverses the conventional meanings of node
and token. In this model, a node represents a customer that
needs service, and the associated exponential service rate
describes the time required to complete that service. The
tokens on the other hand represent servers, where all the
servers are identical. Therefore, this model represents servers
moving from customer to customer and performing the service
requested by that customer. This is analogous to the concept of
a ‘‘traveling serviceman. ” This unorthodox representation is
used because it 1) simplifies the model, and 2) explicitly shows
the state of each processing cluster.

It is the goal to determine the time average steady-state
probabilities for the distribution of clusters among the
different system states. Each of these probabilities is the long
run probability averaged over time of an outside observer
finding the system in a particular state. A favorable feature of
highly reliable systems is that the time between cluster failures
is much longer than the time it takes the system to reach steady
state. Typical values for the mean time between failures
(MTBF) of computing clusters are on the order of 103-104 h,
whereas, steady state can be reached in a matter of minutes at
most. Consequently, it is justifiable to assume that the system
will reach steady state before a cluster fails. Once steady state
is reached, a cluster may fail. At that point, the system with
one less cluster reconfigures. It is reasonable to assume that
this system will reach steady state before another failure
occurs. Therefore, in the following analysis, we will assume
that no cluster fails, and the number of clusters remains
constant.

A token in the queueing model represents a single clfister.
Let m equal the number of homogeneous clusters in the
system. There are n + 2 nodes, where n is the number of task
classes. The number of tasks in tqsk class i is denoted by n,.
Therefore, the maximum number of cluster executing tasks
from class i is K; = min (m, ni). As mentioned earlier, tasks
with similar traits are grouped into the same task class. Thus,
all tasks in a class are assumed to have the same distribution of
internal processing time. The processing time distribution is
an exponentially distributed random variable, because execu-
tion times are usually data dependent and random in nature.

Each node is described below.

NODE 1 represents transmission activity and contention of the
system bus, where transmission activity includes
system memory and I/O link access time. It consists

WOODBURY AND SHIN: PERFORMANCE MODELING AND MEASUREMENT 217

of a nonpreemptive priority queue and a transmission
server. A token at this node represents a cluster that
is either waiting to transmit on the system bus or
actively transmitting. The parameter ps describes the
exponential transmission rate of a cluster, i.e., Ups
is the average transmission duration.

NODE 2 represents clusters that are idle, performing no useful
computations. It is a multiserver node with m
servers. The sojourn time in this state is assumed to
be exponentially distributed with rate pf. Tokens
leave the node at a rate of k p f , where k is the number
of tokens being served by the node.

NODES 3 through n + 2 represent the n different task
classes. Node i + 2 is a multiserver node with K,
servers corresponding to the processing activity of
tasks in task class i . The parameter p, is the
processing rate of a task of class i . Typically, p, 2 pJ
when i < j. Tokens leave these nodes at a rate of
kp,, where k is the number of tokens being served by
the particular node.

The remaining model parameters are the branch probabili-
ties. When a cluster completes a transmission, it either drops
into the idle state or continues processing. Pf , the probability
that the next state is the idle state, is determined by the
triggering frequency of all tasks and their execution times, and
is equivalent to the expected proportion of idle time during a
major frame. A cluster enters the processing state of task class
i with probability PI, where Pf + E;= P, = 1. Typically, P,
1 PJ when i < j. The derivation of the P,'s requires
information on the number of tasks in each task class and their
relative frequencies. Task classes with high frequencies or a
large number of tasks with respect to the other task classes will
have a higher probability of occurring.

IV. QUEUEING MODEL SOLUTIONS
A common method for determining time average steady-

state probabilities of a queueing model is to convert the model
to a continuous parameter Markov chain [121. The following
definitions are for the construction of a Markov chain.

Definition I: A cluster state is a pair (c,, n;), where c, E
{ 1, 2, - * , m } labels a particular processing cluster, and n, E
{ 1 , 2, - e , n + 2) is the node where the token representing
the cluster is located. There are m(n + 2) cluster states.

Definition 2: A system state is an m-tuple (sl, s2, - - - , s,)
E SI x S2 x X S,, where S, is the set of cluster states
whose first element is c,. There is a maximum of (n + 2)"
system states.

A system state example for a system with three clusters and
three task classes is ((1, l) , (2, 3), (3, 1)). This represents the
configuration when clusters 1 and 3 are waiting for the system
bus or currently transmitting, and cluster 2 is processing a task
from task class 1.

A system state contains more information than necessary.
Since the clusters are homogeneous, the number of tokens
present at a node determines how fast tasks will be completed
or delayed. This motivates the following definition.

*

(al , a2, * - , an + 2), where a; E { 0, 1, * , m } is the number
of tokens at node i . There are J reduced system states, where J
is defined below.

from a system state to a reduced
system state can be defined as follows: cP(sl, s2, - - a , s,) =

(al , a2, - * a , an+2), where a; = number of si's (j = 1, - a - ,

m) whose second component is i. Referring to the example
above, the system state ((1, l) , (2, 3), (3, 1)) is represented by
the reduced system state (2,0, 1 ,0 ,0) . It should also be noted
that system states ((1, I), (2,3), (3, 1)) ~ ((1, I), (2, 11, (3,3)),
and ((1, 3), (2, l) , (3, 1)) are all represented by the same
reduced system state.

The reduced system states are used as the Markov chain
states, where state transitions are defined by the relevant
service rates of each of the nodes in the closed queueing
network. As stated in [13], a closed queueing model, where all
the nodes are homogeneous with K customers and N nodes has
J = (N$"r') states in its Markov chain representation. For
our model, K = m and N = n + 2. Therefore, the maximum
number of reduced system states in the closed queueing model
is J = ("i,":'). The minimum number of reduced system
statesoccurswhenK;= 1 , i = 1, - - . , n . I n t h i s c a s e , J =

(;)(m - i + l) , where L = min (m, n). Various
maximum and minimum values when m = 3 are shown in
Table I.

From the Markov chain, a J x J transition rate matrix A
can be formed, whose structure is the coefficient matrix for the
set of linear equations

First note that a mapping

where

k; = number of tokens at node i ,
s; = number of servers at node i ,
p; = service rate at node i,

rij(kl, k2, - 9 kn+J

- Prob[when in state (k,, k2, - , k,+J a token that
completes service at node i will next enter node j] .

Solving the matrix equation A* = 0 determines the time
average steady-state probabilities for each state in the Markov
chain, where x = (xI, x2, - - , xJ) r, and xi represents the time
average steady-state probability of the system being in state i .

-

Definition 3: A reduced system state is the (n + 2)-tuple A nontrivial solution results when the probability constraint

218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 2, FEBRUARY 1988

TABLE I
NUMBER OF MARKOV CHAIN STATES J FOR THREE CLUSTERS

Number of Strtea No. of T u k
Cl lum (n)

1

2

3

4

5

6

7

8

9

10

10

20

35

56

84

120

165

220

286

364

=q
102

140

::: 1
M u h u m number when K, = m, i = l , ..., n
Minimurn number when K, = 1, i = l , ..., n.

E:= xi = 1 is considered. The existence of such a solution is
guaranteed because we have constructed a finite state, irreduc-
ible, and recurrent, i.e., ergodic, Markov chain.’ Since a
token can move from one node to any other node directly or
through some intermediate nodes, and there exists a nonzero
probability that a token leaving a node will return to that node,
the Markov chain is indeed irreducible and recurrent.

Two useful results can be immediately obtained from the
steady-state probabilities. The probability that a cluster is idle
is the sum of the probabilities for each of the Markov chain
states that represent having one or more clusters at node 2.
When more than one cluster is at node 1, there is a cluster
waiting to obtain bus control. Thus, the probability of having
bus contention is the sum or the probabilities for each of the
states that represent having more than one cluster at node 1.
These two results are necessary to produce a performance
measure of any type.

A third result is how long a cluster executing a task from
task class i would have to wait, on the average, if there is
contention for the system bus. This information is necessary to
determine the probability of a task meeting its deadline. It is
shown in [141 that the average queueing time for customers of
priority class i in a nonpreemptive priority queue is

1 ‘ I
- XjYJ
2,=1 W, =

where

k = the number of priority classes,
Aj = the mean arrival rate of a customer of class j ,
pJ = the mean service rate of a customer of class j, and
yj = the second moment of the service-time distribution

for customers of class j .

The mean queueing time of all customers is W, = Xf= a, W,,
where a, = X , / X j k = , A,.

To simplify notation, we classify idle clusters as executing

’ A unique time average steady-state solution exists for this type of Markov
chain.

priority class 0 “idle tasks,” since idle clusters are given
priority to gain bus control over nonidle clusters. Tokens
requesting service at node 1 are assumed to have the same
distribution of service time. Therefore, k = n, pi = ps for all
i , and yi = 1/pi for all i . The average queueing time for a
cluster working on a task from task class i (note the inclusion
of priority class 0) now becomes

x j

W, is the average queueing time only. The total average
waiting time of a cluster working on a task of task class i ,
W y , is the sum of the average queueing time and the service
time, i.e.,

1

PS
wy= w,+-.

Deriving W, requires values for each of the hi’s. Let p(s)
equal the time average steady-state probability of being in state
s of the Markov chain and S,, be the set of states representing j
clusters at node i. The rest of the clusters, if any, may be at
any of the remaining nodes. Then, A, = P , Z ~ = ~ CsEsIt2,,

V . EXPERIMENTAL SYSTEM DESCRIPTION
To illustrate the application of the performance model,

FTMP is analyzed. FTMP is a real-time multiprocessor with a
hardware and software structure similar to that assumed for
the queueing model. With parameter values derived through
experiments on FTMP, the effects of varying the workload
structure are illustrated and analyzed.

FTMP is a highly reliable multiprocessor installed at the
NASA AIRLAB intended for real-time control of commercial
aircraft of the next decade. Because disastrous effects could
occur if this computer should fail while in operation, NASA
specified the probability of system failure to be less than
for a 10 h flight. This obviously calls for extremely rigid
performance criteria.

The FTMP architecture, from a programmer’s view,
consists of three triads, system memory, inputloutput !inks,
system clock, system control registers, and a single time-
shared system bus [lo]. A triad consists of three pairs of a
processor and its local memory. Every component of the
system is redundant and is either an active, standby, or shadow
component. The three processors in a triad are operating in
tight synchrony and should receive identical data under fault-
free conditions. When there is a disagreement, an error is
considered to have occurred, but masked, and task execution
continues. The error is recorded in an error latch for later
identification of the faulty component. The interested reader is
referred to [lo] for a complete architectural description of
FTMP.

The operating workload for FTMP is the Executive Soft-
ware and Applications Software [1 11. Most workload tasks are
dispatched at regular intervals to handle repetitive applications
such as flight control, configuration control, fault detection,

j -p(s).

WOODBURY AND SHIN: PERFORMANCE MODELING AND MEASUREMENT 219

recovery, and system displays. Based on the application,
FTMP developers determined that tasks should be executed at
three different frequencies. They termed the three rate groups
R1, R3 , and R4 with respective nominal frequencies of
3.125, 12.5, and 25 Hz. Tasks executing at a particular
frequency are given priority to access system components over
tasks initiated at lower frequencies, implying R4 rate group
tasks have priority for bus access over R3 tasks, etc.

Extensive experiments were conducted on FTMP with a
synthetic workload generator (SWG) developed by researchers
at Carnegie-Mellon University [15]. The SWG provides an
FTMP experimenter with a variety of workloads. By con-
structing different synthetic workloads, performance charac-
teristics of FTMP can be analyzed. An experimenter is able to
construct a workload consisting of the executive software,
existing application tasks, i.e., those delivered with FTMP,
and user-generated synthetic tasks. The executive software
controls the hardware and software resources. It is responsible
for presenting the user with a virtual machine such that
hardware redundancy, redundancy management, and the
timely execution of application tasks are transparent to the
user. Therefore, the executive software must be part of all
synthetic workloads.

There are four application tasks on the system and up to nine
synthetic tasks can be added, limited by the availability of
system memory. The existing application tasks are 1) TIME,
which updates the register holding the current time, 2)
DISPLAY, which updates the display terminal indicating the
status of FTMP, 3) READALL, which reads and interprets the
fault latches, and 4) SCC, the system configuration controller.
During fault-free behavior, none of these tasks are essential
and may be excluded from the workload. Therefore, a
workload consisting exclusively of user-generated synthetic
tasks and the executive software can be constructed.

All synthetic tasks have the structure shown below.

TASKi

are fixed when the workload is constructed. Each task may
have different parameter values, but the values for a particular
task remain the same for all iterations.

This structure is typical of most real-time application tasks,
where I/O is permitted only at the beginning and end of a task.
The read and write instructions in the synthetic tasks are
dummy system operations to fixed external and internal
addresses. Therefore, no relevant data are transmitted. It is the
action of the operation that is being characterized. By
adjusting the parameters Pi, Qi, S;, and Ti, the I/O require-
ments of any task can be closely modeled.

The modeling of the data processing portion of a task (i.e.,
the portion characterized by the parameter R; above) is less
representative of an actual task. Generally, a specific applica-
tion task may have different computational requirements each
time it is invoked, because different inputs place different
demands on the task. The synthetic task shown above is not
data dependent. The processing portion consists of executing a
representative instruction (i.e., the add instruction) R; times.
Thus, the computation time required is constant for all
iterations of the task. However, this is an adequate representa-
tion when a worst case analysis is desired.

In each synthetic task, system clock values are stored for
timing analysis. * The time between specific task events can be
measured. For example, 1) the total task execution time, 2) the
time between iterations of a task, 3) task switching time, 4)
task startup time, 5) the time to perform I/O, and 6) the idle
time of processors. See [15] for the justification of these
application level measurements and their calibration.

VI. EXPERIMENTAL RESULTS
Synthetic workloads were constructed to measure the

performance of FTMP. With FTMP executing these work-
loads, hardware and software measurements were made,
demonstrating that all the parameters of the queueing model
can be experimentally derived.

Begin A. ExDerirnental Workloads
ReaW;, Q;, Ri7 Si, Ti) ;
Store(Time) ;
For X = 1 to Pi do

Store(Time) ;
For X = 1 to Qi do

Store(Time) ;
For X = 1 to Ri do

Store(Time) ;
For X = 1 to Si do

Store(Time) ;
For X = 1 to Ti do

Store(Time) ;

Read External Sensor Data;

Read Internal Data;

Process Data (A = B + C);

Write External Actuator Commands;

Write Internal Data Results;

End;

Two synthetic workloads, consisting of the executive
software and synthetic tasks only, are used for the experi-
ments. Synthetic tasks are the only tasks where software
timing measurements can be made.

The workloads are outlined in Table 11. The number of tasks
in each rate group are shown along with the parameter used for
all tasks in that group. The number of tasks for each group is
intended to show that higher frequency rate groups usually
have more tasks to execute. Because a maximum of three
synthetic tasks can be added to each rate group, this is the most
variation that can be demonstrated. When constructing the
workload, all the parameters of a task were set to the same
value, i.e., Pi = Qi = R; = Si = Ti = Parameter value in the
table. Making them all equal was an arbitrary choice and does
not affect the complexity of the problem. We could have
equivalently chosen values that were all different.

The parameter values were selected to reflect the relative

* System clock reads require the same action as memory read. This violates
our assumption that I/o can only be done at the beginning and end of a task
and will be taken into account when andyzing the experimental results.

The Parameters p i 7 Q i 7 Ri7 Si7 and Ti are user-supplied d u e s .
Even though they are read each time the task is executed, they

220

I
Workload 1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 2, FEBRUARY 1988

Exiating System
Workload

T A B L E I1
SYNTHETIC WORKLOAD PARAMETERS

Time From Bus
Req. To Start
Of Poll (Busy Bus)

R1 Tasks R3 Tasks

Workload 1

Workload 2 80 40 10

Ave. 48.33 (f0.16)
Var. 6104.90
SD. 78.13

T A B L E 111
EXPERIMENTALLY DERIVED PROBABILITIES

Prob. Busy Bus at

Prob. Succ. First Poll

Prob. Fail First Poll

Prob. Succ. Second Poll

Prob. Fail Second Poll

0.95 (1789) 0.95 (1805) 0.95 (2794)

0.05 (1789) 0.05 (1085) 0.05 (2794)

0.99 (87) 1.0 (86) 1.0 (140)

0.01 (87) 0.0 (86) 0.0 (140)

frequencies of the rate groups. For every eight executions of
an R 4 task, an R1 task is executed once. Therefore, the
parameters of R 1 tasks are set to eight times the parameters of
R4 tasks. The R3 tasks are set in a similar manner. These
values also reflect how lower frequency tasks have longer
execution times.

For all experiments and workloads, FTMP was configured
to have three fault-free triads operating. This is the initial state
of FTMP and demonstrates the maximum contention for
system components.

B. Hardware Measurements
Using a Tektronics DAS 9100 logic analyzer, hardware

measurements were made for both synthetic workloads and the
existing workload. Measurements were performed by sam-
pling five pin locations within one of the processing regions:
1) poll request line, 2) idle bus indicator line, 3) polling
sequence transmit line, 4) polling sequence receive line, and 5)
the 1 MHz system clock used for polling sequence transmis-
sion. Results are shown in Tables I11 and IV. The numbers in
parenthesis after the values in Table I11 are the number of
samples used to derive the value. For Table IV values, one
unit is 0.5 ps. The parenthesized numbers in this table, and all
succeeding tables with timing measurements, is the 99 percent
confidence interval based on the number of samples taken for
each entry. This means that with 99 percent confidence, the
true mean is in the range of the measured mean plus or minus
the value given.

The average bus transaction duration is one fifth the time
between bus requests, but the system bus is busy almost 50
percent of the time when a bus request is made. This is
explained by the fact that three triads are operating simultane-
ously, and there is a variation in both the transaction duration
and time between requests. Another point of interest concerns
the probability of succeeding in a second poll, if a triad fails
the first poll. It was never observed that a triad lost two

Time Between Bus Ave. 337.47 (f0.06) 336.50 (39.04) 337.67 (M.04)
Requests Var. 1548.33 746.59 1935.80

SD. 39.35 27.32 44.00

Time From Bus Ave. 4.83 (kO.00) 4.57 (M.OO) 4.75 (M.00) I
Req. To Start Var. 0.56 0.42 I 0.54
Of Poll (Idle Bus) SD. 0.75 i 0.65 0.74

(Incl. Poll)

46.74 (M.15)
6711.92
81.93

58.47 (M.94)
979.50
31.30

57.82 (fo.10)
3619.77
60.16

44.00 (ka.19)
6562.20
81.01

76.75 (i1.07)
2960.22
54.41

62.30 (M.08)
5184.05

successive polling sequences, except for one case noted in
Workload 1.

C. Software Measurements
For the purpose of justifying our queueing model, two

software timing measurements are necessary: triad (processor)
idle time and task execution time. When a triad becomes idle
in FTMP, it enters an infinite loop performing null operations.
The loop is exited by a timer interrupt triggering the beginning
of a time frame for a rate group. All tasks in a rate group are
executed exactly once in their respective time frame. The
major frame for FTMP is 0.32 s, the time frame for the RI
rate group.

During a major frame, exactly one iteration of each R1
task, four iterations of each R3 task, and eight iterations of
each R 4 task are executed. Because a triad can leave the idle
state at any time, it is difficult to directly measure the length of
time a triad is idle. However, this can be measured indirectly.
The effective length of a major frame is equivalent to the
length of eight R4 time frames. The beginning of each R4
time frame is recorded by the first R4 task executed by that
triad in that frame. Using these clock values, the time when
each major frame begins and ends can be measured. The triad
idle time is determined by subtracting the execution times of
all the tasks executed by that triad during the major frame.

Using this approach, the idle times of each triad-were
measured. The results are shown in Table V and Fig. 3 for
each of the synthetic workloads. One unit is 0.25 ms in Table
V. There is a significant decrease in idle time, 30.5 percent,
when a more intensive workload is introduced, as expected. It
was observed that the variation in idle time is greater for
Workload 2 , because the range of task execution times for this
workload is greater.

The second software measurement was the execution times
of synthetic tasks. FTMP was configured into a single
operating triad to ensure no contention for the system bus. The
results of the task execution times are shown in Table VI,
where task Tn is the synthetic task with parameter n. Again,
Pi = Qi = Ri = Si = Ti = Parameter value and one unit is

Obviously, these values cannot be determined for the existing system
workload.

WOODBURY AND SHIN: PERFORMANCE MODELING AND MEASUREMENT

Workload 1

22 1

Workload 2 Average

3.85 (M)
6.52 (io)
9.24 (M)

11.91 (io)
14.56 (fO)
17.26 (M)
19.97 (f0)
22.68 (M)
25.34 (M)
28.05 (M)

30.75 (io)
57.71 (M)

111.41 (M)
138.34 (M)
165.24 (M)

219.04 (fO)
245.93 (M)
272.84 (MI

84.52 (M)

192.60 (33.02)

E: 1 1741.53 (34.08)

SD. 66.57 376.10

1210.09 (f0.60)
4431.76 141450.42 Idle Time Of

A Cluster

Vuirncc Std.Dev.

0.13 0.36
0.25 0.50
0.18 0.42
0.08 0.29
0.25 0.50

0.19 0 .u
0.02 0.16
0.22 0.47
0.22 0.47
0.05 0.22

0.19 0.43
0.21 0.46
0.25 0.50
0.24 0.49
0.22 0.47
0.18 0.43

12.59 3.55
0.35 0.59
0.11 0.33
0.40 0.63

I

8 .

0 ::

0

0 '

VI

3

m w
L O , Om

n

4 '

0

L

('

..

L
1850

c_

I800

(b)
Fig. 3. (a) Triad idle time for Workload 1 . (b) Triad idle t ime for Workload

2.

0.25 ms. The consistency of the values, indicated by the low
variance, demonstrates that the synthetic tasks do have
constant execution times. The execution time for a task is
found to be a linear function of the parameters. A linear
regression analysis on the mean execution times for tasks TO,

T A B L E VI
EXPERIMENTALLY DERIVED SYNTHETIC TASK EXECUTION TIMES

Task

TO
T1
T2
T3
T4
T5
T6
T7
T8
T9

~

T10
T20
T30
T40
T50
T60
T70
T80
T90
TlOO

Parameter

0
1
2
3
4
5
6
7
8
9

10
20
30
40
50
60
70
80
90
100

T1, * - , T10 produces

Task Execution Time = 0.67 X Parameter + 0.96 ms.

Similarly, for tasks TO, T10, - e, TlOO we find

Task Execution Time = 0.67 x Parameter + 0.97 ms.

Therefore, we are able to predict the execution times for any
synthetic task where all the parameters are equal.

VII. COMPARISON OF ANALYTIC AND EXPERIMENTAL RESULTS

The architecture and system operation of FTMP is a
structure that can be modeled by our queueing network. The
triads in FTMP can be represented as three clusters and each
of the rate groups as a task class. Task class 1 is rate group
R4, because of the relative priorities of the rate groups and
task classes. Likewise, task class 2 is R 3 , and task class 3 is
R 1. Therefore, in the queueing model representation, there
are five nodes and three tokens representing clusters, i.e., n =
3 and rn = 3 . There is some dependence when tasks from a
rate group are executed based on the state of tasks in a higher
priority rate group. However, the model can handle this by
increasing the number of task classes. For the purpose of
illustration, these dependencies are assumed to be negligible.

Both synthetic workloads have three tasks in task class 1,
two in class 2, and one in class 1. Therefore, there are J = 29
states in the Markov chain representation of FTMP. These
states and their respective reduced system states are given in
Table VII. Experimental values for parameters were deter-
mined from the measurements described in Section VI and are
outlined in Table VIII. The values for ps and p I are the
inverses of the mean times measured. The experimental values
for pl, p2, and p3 have been adjusted, as discussed below.

In the construction of our queueing model we assumed that
all the data input for the task was done once at the beginning of
the task, and output was done once at the end of the task.
Because the SWG was designed for other types of experi-
ments, we did not have the luxury of constructing tasks exactly
of this type. As a result, synthetic tasks had many more I/O
operations, e.g., task TI had 15 read/write operations and
task T80 had 252. To compensate for this, the internal data

222

1 ps = 28765

, p , = 224140

IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 2 , FEBRUARY 1988

1

pI = 2.2968 PI = 0.00015

p2 = io7760 I ~ p3 = 88362

TABLE VI1
MARKOV STATE DESCRIPTIONS AND STEADY-STATE PROBABILITIES

ps = 34590

p, = 84483

Markov S t a t u (I Computed Steady State Prob.

p, = 3.3055 PI = 0.00015

I
p2 = 56035 I p3 = 53879

Workload 2 State

1
2
3
4
5
6
7
8
9
10
11
12
13
1.1

15

- Reduced System State Workload 1

0.152
0.286
0.014
0.010
0.002
0.269
0.027
0.019
0.003
0.001
0.001

0
0
0

0.168
0.025
0.017
0.003
0.001
0.002
0
0
0

0.152
0.241
0.045
0.023
0.003
0.190
0.071
0.037
0.005
0.006
0.008
0.001
0.001
0.001

0.099
0.057
0.028
0.004
0.009
0.013
0.002
0.002
0.001

- - O 0.001 1

I1 0

TABLE VI11
EXPERIMENTALLY DERIVED QUEUEING MODEL PARAMETERS

TABLE IX
MARKING DEPENDENT BRANCH PROBABILITIES

(a) Workload 1 Q d a)

0.72728
0.72728
0.64000
0.82759
0.75000
0.72728
0.64000
0.82759
0.75000
0.47059
0.76190

0.96000
0.85714

0.e6667

Q d a 1
0.24242
0.24242
0.32000
0.13793
0 . 2 m
0.24242
0.32000
0.13793
0.25000
0.47059
0.19048
0.33333

0
0.14286

0.03030
0.03030
0.04000
0.03448

0
0.03030
0.04000
0.03448

0
0.05882
0.04782

0
0.04OOO

0

10
11
12

l i
~ :,"

(b) Workload 2

processing time of a task (i.e., the step parameterized by RJ
was divided into segments to create tasks with only two I/O
operations. Since task T1 had 13 more U0 operations than
modeled, the internal processing time was divided by 13. Task
T1 had one execution of the step A = B + C to represent the
internal processing which takes 0.058 ms to e x e c ~ t e . ~ There-
fore, we use the value (0.058 ms/13)-' for pl in the analytic
representation of Workload 1. Similarly we use the value of
(80.0.058 ms/250)-' for p3 in the representation of Workload
2. The other task execution rates were similarly adjusted. These
adjustments account for the low PI value, because we are
essentially creating more tasks and the chance of a cluster
moving into an idle state is proportionally reduced.

The branch probabilities, Pi's, were determined using the
nominal frequencies for the rate groups expressed earlier and
the task class sizes (see Table IX). The computed time average
steady-state probabilities for the states in the Markov chain
using these parameter values are shown in columns 3 and 4 of
Table VII. With these values, analytic results can be compared
to experimentally derived values.

This value was measured in [15].

X

I
X

X

x r
X

X

X

X

f 0.0. 3. 0.0 I II x

x = Does not apply for this case

The probability there is an idle cluster is the sum of the time
average steady-state probabilities for the Markov states where
there are one or more clusters at Node 2, i.e., states 2 ,6 , 7, 8,
9, and 15-23. The analytic values determined for both
workloads is compared to the experimental values in Table

WOODBURY AND SHIN: PERFORMANCE MODELING AND MEASUREMENT

ExpuLnent.1 Analytical

Workload 1 0.95 0.82

Workload 1 0.73 0.76

223

DiffeTUlce

13.7%

-4.1% I

Workload 1

Workbad 1

(a) Probability of an Idle Cluster

0.51 0.46 9.8%

0.48 0.48 4.2%

Workbad 1

Workload 1

(b) Probability of Bus Contention

ExperinunW Analyticd Difference

13.422 pen: 12.412 p x 7.5%

12.532 pen: 10.423 psec 16.8%

(e) Waiting Time for a F r r Bus

X(a), and their percent difference is noted. The difference in
Workload 1 is attributed to the assumption that the idle time
was exponentially distributed. As demonstrated by Fig. 3(a),
the idle time was usually one of three values. Since synthetic
tasks have a constant execution time and a time frame is
constant, the idle times become constant. When there was
more variation in idle times, which is more realistic and was
observed in Workload 2 [Fig. 3(b)], the analytic results are
more accurate.

The probability of bus contention is the sum of the steady-
state probabilities of states representing more than one cluster
at Node 1, i.e., states 1-5. The analytic and experimental
results are compared in Table X@). The difference here is
attributed to the adjustments necessary in deriving the parame-
ter values and to the fact that bus transmission times were not
data dependent.

Finally, the time for a cluster waiting for a free bus is
calculated using the expression for W, in Section IV. The
comparison of results is shown in Table X(c). These calcula-
tions were heavily dependent on ps and the second moment of
the service time. The differences are a result of the lack of
variation in transmission durations. This is a problem of the
SWG and not the model.

VIII. CONCLUSION
A closed queueing network model was presented to study

the workload effects on performance for a highly reliable
unibus multiprocessor used in critical real-time applications.
Through extensive measurements on FTMP, the model was
shown to be easily solved for a given set of parameters. We
were able to experimentally justify the performance values
demonstrated in the model. Despite the differences in the
analytic and measured values, which have been accounted for,
the queueing model produces acceptable results that justify its
use as a tool for performance modeling.

The number of operating clusters remained constant
throughout the analysis, because of the assumption that a

reconfigured system will rwch steady state before another
cluster fails. The performance of a degraded system will be
less than that of the previous system. To obtain the overall
performance of the system operating over a given length of
time, the performance contributions of each of the configura-
tions can be combined, weighted by their relative time of
operation. This analysis is similar to Meyer’s performability
V61.

The area that merits further research is determining the task
partition equivalence relation for defining task classes. Being a
more restricted problem than the workload characterization of
a general-purpose computer motivates continued research in
finding a solution. Once a characterization method is devel-
oped, the possibility of obtaining an optimal workload
distribution to provide optimal performance can then be
considered.

Ultimately, it would be desirable to be able to determine if a
real-time multiprocessor system can handle a given workload
and set of performance criteria. If it can, one would like to
know how this might be accomplished in the sense of optimal
performance, workload distribution, and scheduling. The
model presented here is a device that can aid in solving some
of these problems.

ACKNOWLEDGMENT
The authors are grateful to P. Padilla, C. Liceaga, and R.

W. Butler at the NASA AIRLAB for their assistance in the
FTMP experiments.

REFERENCES

M. Calzarossa and G. Serazzi, “A characterization of the variation in
time of workload arrival patterns,” ZEEE Trans. Comput., vol. C-34,
pp. 156-162, Feb. 1985.
M. A. Marsan, G . Balbo, and G . Conte, “Comparative performance
analysis of single bus multiprocessor architectures,” ZEEE Trans.
Comput., vol. C-31, pp. 1179-1191, Dec. 1982.
M. A. Marsan and M. Gerla, “Markov models for multiple bus
multiprocessor systems,” ZEEE Trans. Comput., vol. C-31, pp. 239-
248, Mar. 1982.
C. M. Krishna and K. G. Shin, “Performance measures for multipro-
cessor controllers,” in Performance ’83, A . K. Agrawala and S . K.
Tripathi, Eds.
L. J. Miller, “A heterogeneous multiprocessor design and the
distributed scheduling of its task group workload,’’ in Proc. 9th Symp.
Comput. Architecture, 1982, pp. 283-290.
A. Singh and Z. Segall, “Synthetic workload generation for experi-
mentation with multiprocessors,” in Proc. 3rd Znt. Conf. Distribured
Comput. Syst., Oct. 1982, pp. 778-785.
M. H. Machugall, “Instruction-level program and processor model-
ing,” Computer, vol. 17, pp. 14-24, July 1984.
D. Ferrari, G . Serazzi, and A . Zeigner, Measurement and Tuning of
Computer Systems.
D. Ferrari, “On the foundations of artificial workload design,” in
Proc. 1984 ACM SZGMETRZCS Conf. Meas. Modeling Comput.

T. B. Smith and J . H. Lala, “Development and evaluation of a fault-
tolerant multiprocessor (FTMP) computer: Volume I FTMP principles
of operation,” NASA Contractor Rep. 166071, May 1983.
J. H. Lala and T. B. Smith, “Development and evaluation of a fault-
tolerant multiprocessor (FTMP) computer: Volume II FTMP soft-
ware,” NASA Contractor Rep. 166072, May 1983.
K. S . Trivedi, Probability and Statistics with Reliability, Queueing,
and Computer Science Applications. Englewood Cliffs, NJ: Pren-
tice-Hall, 1982.
L. Kleinrock, Queueing Systems, Vol. Z: Theory. New York:
Wiley, 1975.

New York: North-Holland, 1983, pp. 229-250.

Englewood Cliffs, NJ: Prentice-Hall, 1983.

Sy~t . , Aug. 1984, pp. 8-14.

224 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 2, FEBRUARY 1988

[I41

[15]

D. R. Cox and W. L. Smith, Queues. London, England: Methuen,
1961
F. Feather, “Validation of a fault-tolerant multiprocessor: Baseline
experiments and workload implementation,” Master’s Thesis, Dep.
Elec. Eng Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA,
1984. 1978, respectively.
J F. Meyer, “Closed-form solutions of performability,” IEEE Trans.
Cornput., vol C-31, pp. 648-657, July 1982

Kang G. Shin (S’75-M’78-SM’83) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea in 1970, and the
M.S and Ph.D. degrees in elect ical engineering
from Cornel1 University, Ithaca, NY, in 1976 and

He is a Professor in the Department of Electrical
Engineering and Computer Science, The University
of Michigan, Ann Arbor, Michigan, which he
joined in 1982. He has been very active and
authored/coauthored over 100 technical papers in

the areas of fault-tolerant real-time computing, computer architecture, and
robotics and automation. In 1986, he founded the Real-Time Computing
Laboratory, where he and his students are currently building a 19-node
hexagonal mesh multiprocessor to validate various architectures and analytic
results in the area of distributed real-time computing. From 1970 to 1972 he
served in the Korean Army as an ROTC officer and from 1972 to 1974 he was

Michael H. Woodbury (S’83) received the on the Research Staff of the Korea Institute of Science and Technology, Seoul,
B.S.E and M.S E degrees in computer engineer- Korea, working on the design of VHF/UHF communication systems. From
ing, in 1983 and 1984, from the University of 1978 to 1982 he was an Assistant Professor at Rensselaer Polytechnic
Michigan, Ann Arbor, where he is currently pursu- Institute, Troy, NY. He was also a Visiting Scientist at the U.S. Airforce
ing the Ph.D. degree. Flight Dynamcs Laboratory in Summer 1979 and at Bell Laboratories,

His areas of technical interest include computer Holmdel, NJ, in Summer 1980
workload characterization, real-time systems and Dr Shin was the Program Chairman of the 1986 IEEE Real-Time Systems
control, and fault-tolerant computing. Symposium (RTSS), the General Chairman of the 1987 RTSS. He was a Guest

Mr. Woodbury is a member of Eta Kappa Nu, Editor of the 1987 August special issue of IEEE TRANSACTIONS ON
Tau Beta Pi, the IEEE Computer Society, and the COMPUTERS on Real-Time Systems. He is a member of the Association for
Association for Computing Machinery. Computing Machinery, Sigma Xi, and Phi Kappa Phi.

[I61

I t
I J

